
SynaptiCAD 2007

SynaptiCAD Tutorials

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written
permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective
owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly
by this document.

Printed: March 2008 in (whereever you are located)

SynaptiCAD Tutorials

Copyright SynaptiCAD 2007, version 12

SynaptiCAD’s tutorials demonstrate everything from how to
draw basic timing diagrams to advanced VHDL and Verilog
simulation techniques. The following chart describes the
recommended tutorials for each of our products. If you are
new to our product line, the best tutorial to start with is the
Basic Drawing and Timing Analysis tutorial, because this
demonstrates how to draw waveforms and the general
design strategy for our timing diagram editors. Some of the
features demonstrated require additional licenses for the
particular software option. Please see our web site or
contact our sales department for specific information on
those features.

BugHunter Pro, VeriLogger Extreme, VeriLogger Pro

SynaptiCAD Product Tutorials
DataSheet Pro, WaveFormer Pro, Timing Diagrammer Pro

TestBencher Pro, GigaWave Viewer, Transaction Tracker

SynaptiCAD Tutorials4

SynaptiCAD 2007

Table of Contents

Foreword 0

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 9

... 10(TD) 1.1 Timing Diagram Editor Choices

... 11(TD) 1.2 Set the Base and Dispaly Time Unit

... 12(TD) 1.3. Add the Clock

... 14(TD) 1.4 Add the Signals

... 15(TD) 1.5 Drawing Signal Waveforms

... 16(TD) 1.6 Editing Signal Waveforms

... 18(TD) 1.7 Adjust Diagram to Match Figure

... 19(TD) 1.8 Add the D Flip-Flop Propagation Delay

... 21(TD) 1.9 Add the Inverter Propagation Delay

... 23(TD) 1.10 Add the Setup for the Dinput to Clock

... 24(TD) 1.11 Add a Free Parameter

... 26(TD) 1.12 Drawing with Equations

... 28(TD) 1.13 Drawing Virtual Busses

... 29(TD) 1.14 Drawing Group Buses and Differential Signals

... 33(TD) 1.15 Working with Drawing Environnment

... 33(TD) 1.16 Summary

Timing Diagram Editor 2: Simulated Signals 35

... 35(TD) 2.1 Setup for Simulation

... 36(TD) 2.2 Simulate a Boolean Equation

... 38(TD) 2.3 Boolean Equations with Delays

... 39(TD) 2.4 Register and Latch Signals

... 41(TD) 2.5 Set and Clear Lines

... 43(TD) 2.6 Multi-bit Equations

... 45(TD) 2.7 Design a Multi-Bit Counter

... 46(TD) 2.8 End Diagram Marker Stops Simulation

... 47(TD) 2.9 Behavioral HDL Code

... 49(TD) 2.10 Simulated Bus Signals

... 50(TD) 2.11 Summary of Simulated Signals Tutorial

Timing Diagram Editor 3: Display and Documentation 52

... 52(TD) 3.1 Controlling Parameter Display String

... 53(TD) 3.2 Repeating Parameters

... 54(TD) 3.3 Editing Waveform Edges From an Equation

5Contents

5

SynaptiCAD 2007

... 54(TD) 3.4 Drag and Drop Parameter End Points

... 55(TD) 3.5 Adjusting the Vertical Placement of a Parameter

... 55(TD) 3.6 Clock Jitter and Display

... 56(TD) 3.7 Markers

... 57(TD) 3.8 Edit Text Blocks

... 58(TD) 3.9 Summary of Display and Documentation Tutorial

Timing Diagram Editor 4: Analog Signals 59

... 59
(TD) 4.1 Viewing & Exporting Real Radix Signals as Analog
Waveforms

... 60(TD) 4.2 Creating Analog Signals using the Mouse

... 61(TD) 4.3 Drawing a Step Signal

... 62(TD) 4.4 Drawing Analog Ramps

... 62(TD) 4.5 Generating Sine Waves

.. 63(TD) 4.5.a The SinStart(amplitude, period, duration) Function

.. 63(TD) 4.5.b The Sin(amplitude, period, duration) Function

.. 63(TD) 4.5.c The SinEnd(amplitude, period, duration) Function

... 64(TD) 4.6 Generating Capacitor Charge and Discharge

.. 646.1 The CapCharge(amplitude, RC, duration) Function

.. 646.2 The CapDischarge(amplitude, RC, duration) Function

... 65(TD) 4.7 Converting between Real and Multi-bit Signals

Timing Diagram Editor 5: Parameter Libraries 66

... 66(TD) 5.1 Adding Libraries to the Project's "Library Search List"

... 67(TD) 5.2 Setting Library Specifications

... 68(TD) 5.3 Startup Library Configuration

... 68(TD) 5.4 Referencing Parameters in Libraries

... 69
(TD) 5.5 Using Macros to Examine Tradeoffs Between Different
Libraries

Timing Diagram Editor 6: Advanced Modeling and Simulation 71

... 72(TD) 6.1 Set up a New Timing Diagram

... 72
(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform
Equations

... 74(TD) 6.3 Modeling State Machines

... 75(TD) 6.4 Checking for Simulation Errors

... 76(TD) 6.5 Incremental Simulation

... 77(TD) 6.6 Modeling Combinational Logic

... 78(TD) 6.7 Entering Direct HDL Code for Simulated Signals

... 78(TD) 6.8 Modeling n-bit Gates

... 79
(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer
Simuations

... 80(TD) 6.10 Modeling the Incrementor and Latch Circuit

SynaptiCAD Tutorials6

SynaptiCAD 2007

... 80(TD) 6.11 Modeling Tri-State Gates

... 81(TD) 6.12 Debugging External Verilog Models

... 81(TD) 6.13 Verify the Histogram Circuit

... 81(TD) 6.14 Controlling the Length of the Simulation

... 82(TD) 6.15 Editing Verilog Source Files

... 82
(TD) 6.16 Simulating Your Model with Traditional Verilog
Simulators

... 82(TD) 6.17 Summary

Test Bench Generation 1: VHDL-Verilog Stimulus 83

... 83(TBench) 1.1 Getting Started

... 83(TBench) 1.2 Default Mappings: Hex and Binary Translations

... 84(TBench) 1.3 Generating Verilog Code

... 85(TBench) 1.4 VHDL - Advanced Data Types

... 86(TBench) 1.5. Exporting to VHDL

Test Bench Generation 2: Reactive Test Bench Option 87

... 87(TBench) 2.1 The Model Under Test

... 88(TBench) 2.2 Create Signals

... 89(TBench) 2.3 Draw Single Write (without waiting on TRDY)

... 90(TBench) 2.4 Export Diagram as an HDL Test Bench

... 90(TBench) 2.5 Add Wait for TRDY Assertion

... 92(TBench) 2.6 Draw Single Read

... 93(TBench) 2.7 Add a Sample to Verify Data Read From MUT

... 93(TBench) 2.8 Drive Data Using a "Test Vector Spreadsheet" File

... 94
(TBench) 2.9 Create For-Loop to Perform Multiple Writes and
Reads

... 95
(TBench) 2.10 TestBencher Pro Transactor - Add Address
Argument

... 96(TBench) 2.11 Alternatives

Test Bench Generation 3: TestBencher Pro Basic Tutorial 97

... 97(TBench) 3.1 Run TestBencher Pro

... 97(TBench) 3.2.Create a Project

... 100(TBench) 3.3 Add the SRAM model to the Project

... 101(TBench) 3.4 Setup the Template Diagram

... 103(TBench) 3.5 Create the Write Cycle Transaction Diagram

... 105(TBench) 3.6 Create the Read Cycle Transaction Diagram

... 106(TBench) 3.7 Add a Sample to Verify Data

... 108(TBench) 3.8 Create the Initialize Transaction Diagram

... 110(TBench) 3.9 Add Transaction Calls to the Sequencer Process

7Contents

7

SynaptiCAD 2007

... 113(TBench) 3.10 Setup the Simulator

... 113(TBench) 3.11 Generate the Test Bench and Simulate

... 114(TBench) 3.12 Examine Report Window Results

... 115(TBench) 3.13 Examine the Stimulus and Results Diagram

... 115(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

Simulation 1: VeriLogger Basic Verilog Simulation 116

... 116(Sim) 1.1 Simulator Choices

... 117(Sim) 1.2 Add Files to the Project

... 119(Sim) 1.3 Build the Tree and Investigate the Project

... 121(Sim) 1.4 Simulate the Project

... 123(Sim) 1.5 Prepare for Graphical Test Bench Generation

... 124(Sim) 1.6 Draw Test Bench in Debug Run Mode

... 127(Sim) 1.7 Simulate in Auto Run Mode

... 128(Sim) 1.8 Breakpoints, Stepping and Inspecting

... 130(Sim) 1.9 Archiving Stimulus and Results

... 132(Sim) 1.10 Saving the Project files

... 132(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

Simulation 2: Using WaveFormer with ModelSim VHDL 134

... 134(Sim) 2.1 Compile SynaptiCAD Library Models

... 136(Sim) 2.2 Create a project and extract the ports

... 137(Sim) 2.3 Draw the test bench waveforms

... 140(Sim) 2.4 Export Waveforms to VHDL

... 141(Sim) 2.5 Simulate VHDL test bench using ModelSim

... 142(Sim) 2.6 Compare simulation results against expected results

... 145(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

Waveform Comparison Tutorial 146

... 1461. Creating Individual Compare Signals

.. 1461.1 To Create a Compare Signal

.. 1471.2 Draw the Expected Waveform on the Compare Signal

.. 1471.3 Comparison Using Tolerance

... 1482. Comparing Timing Diagrams

.. 1482.1 Import VCD Data and Save as a .btim

.. 1492.2 Open the Logic Analyzer Data File

.. 1492.3 Compare the Two Timing Diagrams

.. 1502.4 Editing all Compare Signal Properties

.. 1512.5 Methods of Examining the Differences Reported During a Comparison

... 1523. Performing a Clocked Comparison

... 1534. Comparing During Clock Cycle Windows

.. 1534.1 Add Offset Clock to Diagram

.. 1534.2 Change the Compare Signals to Use the Offset Clock

SynaptiCAD Tutorials8

SynaptiCAD 2007

... 1545. Masking Clock Segments During Comparison

.. 1545.1 Search and Replace Signal Names

.. 1555.2 Add the Compare Enable

.. 1555.3 Add the Simulated Masking Signal

.. 1565.4 Use Masking Signal to Mask Clock Segments

.. 1565.5 Setting up Don't Care Regions

... 1566. Adjusting the Time Difference Between Two Diagrams

... 1577. Summary

Gigawave and WaveViewer Viewer Tutorial 159

... 1591. Converting a vcd file into a btim file

... 1592. Importing a subset of the Waveforms

... 1613. Creating a Filter File to selectively load signals

... 1624. Show and Hide Signals in the display

... 163
5. Options: Gigawave, Waveform Comparison,Transaction
Tracking

... 1646. Waveviewer/GigaWave Viewer Tutorial Summary

Transaction Tracker Tutorial 165

... 1671) Open the Example File

... 1672) Match all occurrences of a simple pattern

... 1683) Match Consecutive Occurrences with Concatenation Operator

... 1684) Match with consecutive repetition Operator

... 1695) Match with non-consecutive Repetition Operator

... 1696) Bit-slices and the Boolean operators

... 1697) Implication operator

... 1708) Implication Next-Cycle operator

... 1709) PSL Property

Index 171

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 9

SynaptiCAD 2007

Timing Diagram Editor 1: Basic Drawing And Timing
Analysis

This tutorial demonstrates the basic timing diagram editor features. It teaches you how to draw
timing diagrams using delays, setups, clocks and part libraries and how to use timing diagrams to
help detect timing errors in digital designs. It also covers the waveform editing features,
measurement and quick access buttons.

You will draw the timing diagram for the circuit shown in Figure 1. This circuit divides the clock
frequency in half. Both the flip-flop and the inverter have propagation times that delay the arrival of
the Dinput signal. If the Dinput is delayed too long it will violate the data-to-clock setup time. This
increases the risk of the flip-flop failing to clock in the data and may lead to the flip-flop entering a
metastable state.

Circuit Parameters:

clk 20MHz (50ns period)

DFFtp 5-18ns D flip-flop (74ALS74): Clock to Q propagation time

Dsetup 15ns minimum D flip-flop (74ALS74): D to rising edge Clock setup time

INVtp 3-11ns Inverter (74ALS04): propagation time

Figure 2: Completed timing diagram (captured with copy-to-clipboard function)

Figure 2 is the completed timing diagram. The first thing you may notice is the gray signal
transitions caused by the min/max values of the component delays. The gray areas of the signal
transitions are uncertainty regions, which indicate that the signal may transition any time during
that period. This is a little disconcerting especially if you have been using a low-end simulator that

SynaptiCAD Tutorials10

SynaptiCAD 2007

cannot compute both min and max at the same time. This representation shows the entire range of
possible circuit performance. With a SynaptiCAD Timing Diagram Editor, there won't be any
surprises during production when you get components at extreme ends of their tolerance range.

(TD) 1.1 Timing Diagram Editor Choices

SynaptiCAD has three levels of timing diagram editors. The most basic is Timing Diagrammer Pro,
which allows drawing and basic timing analysis using delays, setups and holds. The middle level is
WaveFormer Pro, which has a built in simulation engine that allows signals to be described using
Boolean and registered logic equation. WaveFormer is also a universal waveform translator and
can take waveforms from one format and convert it to a different format. And the highest level is
DataSheet Pro which supports multiple timing diagram display, object linking and embedding, and
more image file formats. Each editor has all of the features of the products that are below it. This
tutorial covers basic features which are supported in all three editors.

Run a Timing Diagram Editor:

· Run one of the timing diagram editors from the Start Menu.

Open a New Timing Diagram File:

· Select the File > New Timing Diagram menu to open a diagram editing window and a
matching parameter window.

Investigate the Status Bar:

· Move the cursor over the buttons on the diagram editor window, and then look at the bottom
left corner of the big window to see the status bar.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 11

SynaptiCAD 2007

· As you perform this tutorial, keep an eye on the status bar. It will give you hints on the types of
functions that the mouse can perform at that particular place. The status bar also works when
the mouse is inside the drawing window.

(TD) 1.2 Set the Base and Dispaly Time Unit

The base time unit controls the accuracy of the of time calculations. It is the smallest representable
amount of time, and all time values are internally stored in terms of the base time unit. The display
time unit controls the units for entering and displaying the results. At the beginning of a new design
you should check these settings to make sure they are valid for the time ranges that you are
working in.

Set the Base Time Unit:

The base time unit for your project should be set at least one unit below the units you are working
in for best rounding performance during division operations (clock frequencies are inverted and
stored internally as clock periods). The circuit that we are modeling in this tutorial has gate
propagation times in the range of 3 to 18 nanoseconds and a clock with a period of 20ns.
Therefore we will set the base time units to picoseconds.

· Select the Options > Base Time Unit menu, to open the Base Time Unit dialog.

SynaptiCAD Tutorials12

SynaptiCAD 2007

· Check the Active Diagram box
so that the dialog operates on
your new timing diagram. Notice
that the dialog displays the name
of the diagram so that you can
tell which diagram is the active
one in a multi-diagram display.

· Check the ps button to set the
base time unit to picoseconds.

· The remaining options control
how any existing parameters or
signals are changed when the
base time unit is changed and
have no effect on an empty
timing diagram.

· Press the OK button to close the
dialog.

Set the Display Time Unit:

Set the display time unit to the units you most commonly use in the design. In this tutorial, all of the
times are listed in nanoseconds so that will be the easiest time setting to enter the values.

· Select the Options > Display Unit
menu option. This will display a
submenu of display time units. The
checked time is the current display
time unit (Default is ns =
nanoseconds).

· Click on ns to make nanoseconds
the display time unit.

(TD) 1.3. Add the Clock

First we will create a clock. Clocks draw themselves based on their parameters, so you will not be
able to drag and drop clock edges or make a delay end on a clock edge. For this tutorial, the clock
is named clk, has a period of 50ns (20MHz), and starts with a low segment.

Define the Clock Parameters using a dialog:

· Press the Add Clock button to
open the Edit Clock Parameters
dialog.

· In the Name box, type clk to set the
clock name.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 13

SynaptiCAD 2007

· In the Period box enter 50 and make
sure that the MHz/ns button is selected.
When you tab out of this box, the Freq
box will change to 20 to match the new
period value.

· Notice that the period can be also be
defined by a period formula or in terms
of a reference clock.

· Check the Invert (Starts Low) box at
the bottom of the dialog. Clocks are
normally displayed high at time zero, so
"invert" makes the clock start low at time
zero.

· Notice that the clock can have an offset
starting time from time zero. The duty
cycle can be set to any percentage
value. And edge jitter is uncertainty
around the occurrence of the clock
edge.

· Notice that buffer delays represent
uncertainty after the clock edge (used to
model uncertainty from clock tree
buffers), and delay correlation
determines how closely delays are
related to each other.

· For more information on correlation and
the different types of delays, and clock
grids read Chapter 2: Clocks in the
on-line help

· Click the OK button to close the
dialog. Make sure that the clock
looks like the following image.

Reopen the Edit Clock Parameters dialog:

· Double left click on the clock waveform to reopen the Edit clock parameters dialog. Note, if you
click too close to a clock edge it opens an edge dialog instead of the parameters dialog.

SynaptiCAD Tutorials14

SynaptiCAD 2007

· Click the Ok button to close the dialog.

(TD) 1.4 Add the Signals

Next, add two signals and name them "Qoutput" and "Dinput".

Use the Add Signal button to create new signals:

· Press the Add Signal button two
times to add two signals to the
diagram window.

· The signals will have default names
such as SIG0 and SIG1.

Double Click to rename the signals:

· Double click on the SIG0 signal
name to open the Signal Properties
dialog.

· Enter Qoutput into the Name edit
box. (DO NOT CLOSE THE DIALOG)

· Click the Next button or ALT-N
to move to the next signal on the
list. Notice that SIG1 is now
displayed in the Name edit box.

· Enter Dinput into the Name: edit
box and press the OK button to
close the dialog.

Tip: The Signal Properties dialog is a modeless dialog - you can keep the dialog open while
working with other drawing features. The Boolean Equation and Simulation features of the Signal
Properties dialog are covered in the Interactive HDL Simulation tutorial. The Signal Properties

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 15

SynaptiCAD 2007

dialog is modeless, so you can leave the dialog open while you perform actions on the timing
diagram.

(TD) 1.5 Drawing Signal Waveforms

Next, we will draw some random waveforms to become familiar with the drawing environment. The
timing diagram editor is always in drawing mode so left clicking on a signal will draw a waveform.
The red state button controls the type of waveform that is drawn (high, low, tri-state, valid, invalid,
weak high, and weak low). The buttons toggle back an forth between two states, and the next state
is indicated by the little red T on top.

Draw and watch the State Buttons:

· Move the mouse cursor
to about 40nsand on
the same level as
Qoutput. Notice that
the cursor has the
same shape as the
selected State Button.

· Left Click to draw a
high waveform
segment from 0ns to
the cursor. Notice that
the State Button
toggled to low, and
the toggle T moved to
the High button.

· Move the cursor to
about 80ns on the
same signal. Notice
that the cursor looks
like a low signal to
match the active state
button.

· Left click to draw a
LOW segment. It is
drawn from the end of
the HIGH signal to the
location of the cursor

SynaptiCAD Tutorials16

SynaptiCAD 2007

Draw with other state buttons:

· Left click first on the Tri-state button then
on the Valid button, so that the Valid
button is red and the tri-state button has
the red toggle T on it.

· Draw some valid
and tri-state
waveforms, while
watching the
cursor shape and
the state buttons.

· Draw more segments, using all the states except the HEX button. The HEX state button is
used in defining multi-bit signals and signals which have a user defined VHDL type. This button
is covered in later tutorials. For now, experiment with the graphical states.

(TD) 1.6 Editing Signal Waveforms

This section covers the main editing techniques used to modify existing signals (Note: these
techniques will not work on clocks, because they draw themselves). The most commonly used
technique is the dragging of signal transitions to adjust their location. Most of the other techniques
all act on signal segments, the waveforms between any two consecutive signal transitions. The
segment waveform can be changed, deleted, or a new segment can be inserted within another
segment. Use each of the following techniques:

1) Drag-and-Drop Signal Transitions:

· Left click and hold down the mouse button on a signal
transition and drag it to the desired location.

· To move transitions on different signals
simultaneously, first select multiple transitions by
holding the <CTRL> while clicking on them. Then
drag the transition to desired location.

2) Click-and-Drag to insert a segment into a waveform or select to delete:

· Inside of a segment, click and drag the
cursor to insert a segment

· The inserted state is determined by the
red state button

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 17

SynaptiCAD 2007

· Delete a segment: Select a segment (see above) and then press the delete key on the
keyboard.

3) Change a segment's graphical state by selecting it and then pressing a state button:

· Click in the middle of the segment to select
it (so that it has a green box around it).

· Click on a state button to apply that
graphical state to the segment. If you
change a segment to the same state as an
adjacent section, the transition will turn red
to preserve the edge data. This transition
can be deleted if necessary.

4) Find the exact edge time and see how to lock an edge

· Double-click on an edge of the signal transition to
open the Edge Properties dialog.

· To move an edge, enter a new min or max time.
An edge only has one time until uncertainty is
added either by using a delay parameter or the
min uncertainty box in this dialog.

· To lock an edge so that it cannot be moved, check
the Locked checkbox. If a delay ends on a locked
edge it will turn red if it cannot force the edge to
the proper time.

· Note: All edges on a signal can be locked by selecting the signal name, and then choosing the
Edit > (Un)Lock Edges of Selected Signals from the main menu.

· Make sure to unlock any signals or edges you locked in this tutorial, or else your delay in the
next section may not be able to force its ending edge.

5) Adjusting the drawing Grid

Drawn signal transitions are automatically aligned to the closest grid time. The grid does not affect
the placement of edges that are moved by delays or formulas. By default the grid is set to the
display time unit, because this generates nice VHDL and Verilog stimulus generation files with
whole number times (like 2ns instead of 2.465ns). However, it is sometimes convenient to set the
grid to a multiple of the clock frequency to make all new signal edges line up with the clock edges.

SynaptiCAD Tutorials18

SynaptiCAD 2007

· Select the Options > Grid
Settings menu item to open
the Edit Text and Edge Grids
dialog.

· You do not have to make
any changes to this dialog.
Just notice that you are able
to control the Signal Edge
Grid.

· Also notice that text objects
have a different grid.

6) Adding virtual state Information to a segment

· For Signals, double-click on the middle
of a segment to open the Edit Bus State
dialog, and then type in a new value into
the Virtual edit box.

· For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a different
dialog to allow editing of the clock.

(TD) 1.7 Adjust Diagram to Match Figure

In the next few sections we will be adding the delays and setups to the timing diagram. It is best to
start with the waveform edges in the approximate position that they should be in when the timing
diagram is finished.

Adjust the Waveforms:

· Use the editing techniques in the previous section so that the waveforms have roughly the
same transitions as the signals in the figure below.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 19

SynaptiCAD 2007

Minimize the Report Window and tile the Parameter and Diagram Windows:

· Minimize the Report window because it is not
used in this tutorial.

· Select the Window > Tile Horizontal menu to
tile the Parameter and Diagram windows so
that you will be able to see the interaction
between the two windows.

(TD) 1.8 Add the D Flip-Flop Propagation Delay

Add the delay that represents the propagation time from the positive edge of the clock to the
Qoutput of the D flip-flop. First we will add a blank delay between the edges and then we will edit it
so that it is named "DFFtp" and has a propagation delay of 5-18ns.

Add a blank graphical delay:

· Press the Delay button so that right clicks will add
delays.

· Left click on the first rising edge of the clock to
select it. This edge will be the first or driving
edge of the delay.

· Right-click on the first falling edge of the
Qoutput signal, to add the delay between the
two edges. Since the delay is pointing to this
edge, this will be the edge that moves in
response to formula values entered into the
delay

· Notice that D0 was also added to the Parameter window.

SynaptiCAD Tutorials20

SynaptiCAD 2007

Watch the delay as you change the min value:

When delays are added, they are blank and do not enforce any timing restraints. Notice that the
delay is drawn with gray colored lines: this indicates that the delay is not forcing either the min or
max edge of the Qoutput signal. Now edit the delay's parameters.

· Double-click on D0 in either the Diagram or Parameter window to open the Delay
Properties dialog. For simplicity, we will refer to this dialog as Parameter Properties, even
though the name at the top may say Delay Properties or Setup Properties depending on the
type of parameter being edited.

· Adjust the position of the Parameter
Properties dialog so that you can see
the parameter in the Diagram
window and at least part of the
parameter in the Parameter window.

· Type 5 into the min edit box and
press the TAB key to move to the
max edit box (leave max blank for
now). This enters 5 display time units
(5ns for this timing diagram).

Several things happened when you pressed the TAB key:

· The falling edge of Qoutput was moved
so that it is 5ns from the clock edge. If
you hover over the delay with the
mouse, blue boxes with the edge times
will appear so that you can check the
edge times.

· Also note that the delay changed from a gray color to a blue color. Delays are color-coded
to indicate which delays are forcing the min and max edges of a transition. This type of
critical path display is necessary in diagrams where multiple delays drive a single signal
transition. The colors are: Gray = none, Blue = Min only, Green = Max only, Black = both min
and max. After this tutorial you may want to experiment with the multdely.btim file to see
the effects of multiple delays on a single transition and critical path color coding.

· Finally, the parameter information also
was updated in the Parameter Window.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 21

SynaptiCAD 2007

Edit the rest of the delay:

· Type DFFtp in the Name box.

· Type 18 in the Max box.

· In the Comment box, enter Ck to
Q propagation time.

· Close the dialog when you are
done.

· Notice that the DFFtp delay is
black which indicates that it is
forcing both edges of Qoutput.

· Also notice the falling edge of
Qoutput now has a gray
uncertainty region. Double click
on the edge to verify that the
edges of the region are 5ns and
18ns from the clock edge (13ns
of uncertainty).

Tip: The Parameter Properties dialog is modeless (other operations can be performed while the
dialog is open) and interactive (any changes in the dialog fields are reflected in the diagram after
you move out of that field). When the Parameter Properties dialog is open you can edit a different
parameter by double-clicking in the Diagram or Parameter window on the parameter you want to
change. If you double-click in the Diagram window, that instance of the parameter will be edited
(the Change All Instances checkbox will NOT be checked). If you double click in the Parameter
window, ALL instances of the parameter will be edited (the Change All Instances checkbox will be
checked).

(TD) 1.9 Add the Inverter Propagation Delay

Next add the delay that represents the propagation time of the inverter from its input Q to its output
D. Since this delay is the second in a chain starting with DFFtp, its uncertainty region will be larger
than just the uncertainty caused by the inverter.

Add the Inverter Delay:

· Make sure the Delay button is red so that right
clicks will add delays.

SynaptiCAD Tutorials22

SynaptiCAD 2007

· Left click on the first falling edge of the
Qoutput signal to select it (the same edge
that ends the "DFFtp" delay).

· Right-click on on the first rising edge of the
Dinput signal to add a blank delay.

· Double-click on the new delay to
open the Parameter Properties
dialog and enter the following
values: Name is INVtp,
propagation delay of 3 to 11 ns,
and a comment of Inverter (Q to
D) delay.

· Click on the OK button to close the
dialog.

Verify that the Uncertainty region is correctly calculated:

Notice the uncertainty region for the Dinput transition is much larger than the 3-11 ns that you
entered in the last step. This is because the DFFtp uncertainty adds to the INVtp uncertainty.

· Click on the first rising edge of
Dinput (to select it). This also
moves the blue delta mark on the
time line.

· Move the mouse cursor over the
second edge of the uncertainty
region. As you move the red line
on the time line tracks your
progress, and the Blue delta
readout shows the exact distance
from the blue delta mark.

· Here the readout shows that the uncertainty region lasts for 21ns (13ns from DFFtp + 8ns
from INVtp = 21ns).

· Next, click on the first edge of clk
and measure to the end of the
uncertainty region of Dinput. If both
the inverter and the D flip-flop are
slow, Dinput may not transition until
29ns after the clock edge.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 23

SynaptiCAD 2007

(TD) 1.10 Add the Setup for the Dinput to Clock

One of the most important features of a timing diagram
editor is that setup and hold parameters can monitor pairs
of signals transitions to make sure that they do not violate
the timing constraints of the circuit. In this design, if Dinput
changes too close to a clock edge then there is a risk that
the flip-flop will go into a meta-stable state. We will use a
setup parameter to make sure the Dinput does not violate
the setup time for the clock.

Add a Setup parameter:

· Press the Setup button so that right clicks will
add setups.

· Left click on one of the rising edges of the
Dinput signal to select it.

· Right click on the second rising edge of
the clock to add a blank setup between
the selected edge and this one.

· Notice that the arrows of the setup are
pointing to the control signal. This means
that you added the setup correctly.

· Double-click on the new
setup to open the Parameter
Properties dialog and enter
the following values: Name
is Dsetup, min time is 15,
and the comment is Check
for metastable condition.

· Press the OK button to close
the dialog.

Notice that the margin column in the Parameter window says that there is a 6ns safety region
before the setup is violated. Verify this by clicking on the maximum edge of the Dinput signal (to
place the blue delta mark on the time line), then placing the cursor on top of the second rising edge
of the clock. The blue time readout should say 21ns (measured time 21ns - setup time 15ns = 6ns
margin).

Cause the Setup to be violated:

Next, we will demonstrate what happens when a setup is violated by increasing the inverter's
delay.

· Double-click on INVtp to open the Parameter Properties dialog and change the max time to
18 ns. Then press the Apply button to apply the change.

SynaptiCAD Tutorials24

SynaptiCAD 2007

· Notice that the setup has turned red in the Diagram window and that the Margin value of the
Parameter window has also turned red.

· Change the inverter delay back to 11ns and click OK to close the dialog.

(TD) 1.11 Add a Free Parameter

So far we have always directly edited a parameter's values. This is inefficient and error prone if the
circuit is large. It would be better to define one variable that held the value and make everything
that needed that value reference this variable. Then if the value needs to be changed, you only
have to edit one variable.

Free parameters act as variables that can be referenced by other parameters. They are called
"free" because these parameters are not attached to any signal transitions in the Diagram window.
Let's add a free parameter to hold the propagation times for the inverter.

Add the free parameter:

· In the Parameter window, press
the Add Free Parameter button to
create a blank free parameter.

· Double click on the free
parameter to open the
Parameter Properties dialog
box and enter the following:
Name is tpFreeInv, min time is
3ns, max time is 11ns, and
comment is 74ALS04 inverter
delay. (Leave the dialog open).

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 25

SynaptiCAD 2007

· Make the dialog point to the
INVtp delay, either by pressing
the Previous button, or by
double clicking on INVtp.

· Type tpFreeInv into the min and
max cells of INVtp and notice
that the calculated values show
the actual times. Any changes
to the timing values of the free
parameter will now affect this
delay.

· Notice that the row for
tpFreeInv turned white to
indicate that it is being
referenced by another
parameter.

· Select the max value of INVtp in
the parameter window and
notice that the formula is
displayed in the box above.

· You can make the parameter window display formulas in the table part by choosing the
Options > Parameter Window Preferences> Display min/max formula.

Using Formulas in the Parameter time boxes:

Parameters can contain mathematical formulas as well as numeric time values. Common
operations include multiplication(*), division(/), addition(+), and subtraction(-). For example, the
inverter in this circuit could represent 3 cascaded inverters used to generate a minimum delay of
9ns. To represent this in your timing diagram:

· Enter 3 * tbFreeInv into INVtp's
min edit box. Then tab to a new
box and see that the equation
correctly calculated 9ns.

· Free parameter names can also be used with an attributed parameter name such as
tpFreeInv.min and tpFreeInv.max. This gives you the flexibility to specify formulas any way
you need. If no attribute is added then a min or max is assumed depending on whether the
formula is in the min or max column.

Create Libraries of Free Parameters:

Free parameters can be saved to special library files which can later be merged into other projects.
You can also reference free parameters without including them into your project file by placing
libraries in your library search path (Libraries > Library Preferences menu option). For more
information on free parameters and libraries read the on-line help Chapter 10: Libraries or perform

SynaptiCAD Tutorials26

SynaptiCAD 2007

the Parameter Libraries Tutorial.

(TD) 1.12 Drawing with Equations

We have finished with the timing analysis section of this tutorial, and next we would like to take the
time to show you a few more drawing techniques that will help you create and manage complex
timing diagrams. One such technique is to use equations to draw and label waveforms. Waveform
and label equations provide a quick way to generate signals that have a known pattern that is more
complicated than a periodic clock. WaveFormer (and higher editors) also support simulated signals
based on Boolean Equations which are covered in the next tutorial Simulated Signals.

Use the Waveform Eqn Feature:

The waveform equation box in the Signal Properties dialog accepts a list of time/value pairs, and
the default equation has all of the syntax and states that are supported by this box. Each time you
press the button more waveforms will be added on to the end of the signal.

· Press the Add Signal button two
times to add two new signals to the
diagram window.

· Double click on SIG0 to open the
Signal Properties dialog.

· Press the Wfm Eqn button to
apply the default equation to
SIG0.

· Look at the waveform and try
to match it to the different
parts of the equation.

· The first pair, 8ns=Z, causes
an 8ns long tri-state segment
to be drawn.

· The next terms, 5=1 5=0, draws a
5 ns long high segment followed
by a 5ns low segment, where the
ns is implied by the display time
unit. Enclosing it in (...)*5 causes
the sequence to be repeated 5
times.

· We annotated the last sequence
using a setup parameter and
changing the display label from
name to comment.

· The values H and L draw weak
high and low waveforms, and V
and X draw valid and invalid
sections.

Use the Label Eqn Feature:

Label equations are used to automatically insert data on waveform segements. All of the equations
are listed in the label fly-out box. Here we will draw and label a counter signal that first counts up

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 27

SynaptiCAD 2007

and then counts down.

· Double click on SIG1 to open the
Signals Properties dialog, then
use a waveform equation to draw
seven valid segments that are
10ns long.

· Open the fly-out to the
right of the Label Eqn
button and take a look at
the list of available
functions. Choosing any
function puts it at the end
of the current label
equation, then you can
edit the parameters of the
function call.

· Functions can be
concatenated together by
separating them with a
comma.

· The Analog Label
equations are covered in
the Tutorial called Analog
Signals.

· Use the Label equation quick-fill box and choose Inc then Concatenate and then Dec to add
those equations to the edit box.

· Edit the parameters as shown,
so that the counter first starts
from 0, adds 1 each time, and
counts up for 4 cycles. Then
make the counter count down
starting at 2, for 3 cycles.

· Press the Label Eqn button to
apply the equation.

SynaptiCAD Tutorials28

SynaptiCAD 2007

(TD) 1.13 Drawing Virtual Busses

Buses are multi-bit signals. The timing diagram editor supports several different kinds of buses to
accommodate all the different ways signal information may be imported or exported from the tool.
Virtual and Group buses have the ability to be converted from one to the other type by right clicking
on the name.

· Virtual Bus is a single signal defined as multiple bits. This is the most common and easiest to
work with because all of the normal signal editing techniques work on it.

· Group Bus displays the aggregate values of its member signals. This is handy way to manage
lots of single bit signals that have been imported from other sources.

· Simulated Bus is a simulated signal defined as a concatenation of it member signals. This is
primarily designed for the testbench products so that both a member signal and the whole bus
can be passed to models as needed. This is covered in the Simulated Signals Tutorial.

· Differential Signals are two-bit group buses that display a superimposed image of the
member signal waveforms. This can also be a useful technique for overlaying two analog
signals to compare them visually.

Draw a Virtual Bus:

Virtual Buses are the recommended way to display and work with bus information. Virtual Buses
are regular signals that have the LSB and MSB values set.

· Add an 8-bit virtual bus named VirtualBus with an LSB of 0 and an MSB of 7 using one of the
following methods.

· Fastest method: Make sure no
signals are selected, then click
the Add Bus button to open the
Add Bus dialog. Then select the
Virtual Bus radio and set the
MSB and LSB values.

· Alternate method: Add a signal
and then double-click on the
name to open the Signal
Properties dialog. In the dialog
edit the edit the MSB and LSB
values.

· You can sketch the virtual bus waveform using any of the graphical states, but normally virtual
buses are drawn with all valid states. Press the Valid state button twice so that it is red and
also has the red T on the top of the button. Then draw some consecutive valid states.

· Open the Edit Bus State dialog by either double-clicking on a segment OR first selecting a
segment and then clicking the HEX button on the button bar.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 29

SynaptiCAD 2007

· In the Virtual field, type in the segment value. This can by any type of data including text with
spaces (e.g., A0C, 5 + 3, blue level, and 24 are all valid virtual states).

· Use Next and Prev buttons, or the <Alt>-N and <Alt>-P keys, to move between the different
segments on the same bus. When you are done press the OK button to close the dialog.

Investigate the Virtual bus using the Signal Properties dialog:

· Double click on the
VirtualBus signal name to
open the Signal Properties
dialog.

· On the bottom of the dialog,
notice the MSB and LSB
settings are the same as
what you typed in the Add
Bus dialog

· Notice the Radix setting
which controls how the tool
interprets the data in the
virtual states of the
waveform.

(TD) 1.14 Drawing Group Buses and Differential Signals

Group Buses display the aggregate value of their member signals. Normally, you would use them
after importing from a format that treated all signals like one-bit signals (like from a logic analyzer).
They are also used to create differential signals, which are just two bit group buses with some
special display settings. Before a group bus can be created, its member signals must either be
specified by selecting the signal names or new signals need to be created. We will use both

SynaptiCAD Tutorials30

SynaptiCAD 2007

methods in this tutorial.

To create a group bus and its member signals:

· Make sure that no signal names are selected (clear
selected signals by clicking in the Diagram window),
then press the Add Bus button to open the Add Bus
dialog box. If signals are selected, they will become the
member signals of the bus (we will do that next).

· Name the bus data and set the
LSB to 0 and the MSB to 1.

· Check the Group Bus button.

· Verify that the Hide member
signals check box is NOT
checked. We want to be able to
see the member signals in this
demonstration.

· Press the OK button to close the dialog and create the bus. There should be 3 signals
generated: data (the bus), and data0 and data1 (the bus member signals). If the member
signals are not shown, use the View > Show Hidden Signals to show them.

· Draw High and Low segments
on data0 then draw the
opposite on data1 (later we
will use these to make a
differential signal).

· Notice that the edges in the
data bus are a little ragged
because the edges of the
member signals are not on
exactly the same times.

· Select an edge on data and
choose the Bus > Align to
Group bus edge to snap all
the edges together. All the
edges can be locked together
by using the Bind menu.

· Note the bus edge can be locked to
the member edges at a particular
time by selecting and edge and
choosing the Bind Group Bus
Edge menu as shown above.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 31

SynaptiCAD 2007

· Note that you can edit the
data bus values by double
clicking on a segment to
open the Edit Bus State
dialog and changing the
Hex or Binary state (but not
the virtual state). The
member signals change to
reflect the new value.

· The red event on data0 preserves the edge on the member signal, so that you can make
consecutive changes in the bus values without stopping to add edges. To remove the red
events choose the Edit > Clear Red Events menu, but don't to it now. Just return the first state
to 1.

Creating a group bus from existing signals:

Here we will create a bus using existing signals by selecting the signal names in order from LSB to
MSB, then adding the bus. We will make a bus with the opposite order from the last bus.

· Select data1 by clicking on the
name. This will be the LSB of the
new bus.

· Select data0 by clicking on the
name. This will be the MSB of the
new bus.

· Press the Add Bus button to
open the Choose Bus Type
dialog. Notice that the New
Bus dialog did not open up
because this bus will be
automatically created from the
selected signals.

· Select the Group Bus radio button and click OK to close the dialog. Notice that a new bus,
data, was added to the diagram and that it has a different MSB and LSB than data.

Create a Differential Signal

· Differential signals look best when the line type and color of one of the member signals is
different. Right click on the data0 signal and use the menus to change the signal color to blue
and the signal line type to dot.

SynaptiCAD Tutorials32

SynaptiCAD 2007

· Double click on
the second data
bus to open the
Signal Properties
dialog.

· Check the Display
as Superimposed
signals so that the
signals will draw
on top of each
other, instead of
the normal state
value display.

· Change Display
Label drop-down
to List of Signal
Names so that the
bus name is
replaced with the
list.

· Press the Ok
button to close the
dialog and display
the bus as a
differential signal.

Timing Diagram Editor 1: Basic Drawing And Timing Analysis 33

SynaptiCAD 2007

(TD) 1.15 Working with Drawing Environnment

Play with moving signals and zoom in and out of the diagram.

Move a single signal:

· Select the signal clk by clicking on the name (a selected
signal will be highlighted).

· Move the mouse cursor near the very bottom of the
selected signal. When the mouse cursor changes from
a normal arrow to an up/down arrow, click and hold the
left mouse button down. A green bar will appear.

· Drag the green bar until it is in between Qoutput and Dinput.

· Drop the green bar by releasing the mouse button. Notice that the timing diagram has redrawn
itself.

· Try dropping clk at the very top and at the very bottom of the diagram. Leave clk at the bottom
of the diagram.

Moving and reordering multiple signals:

When several signals are highlighted and moved as a group, they will reorder themselves
according to the order in which they are selected. This ability to quickly reorder signals by the order
of selection will help you deal with the large numbers of member signals of buses.

· Select Dinput, then select Qoutput by left clicking on the signal names in that order.

· Move the signals to the bottom of the diagram. Notice that Dinput is above Qoutput because
that is the order in which they were selected.

· Select Qoutput and then select Dinput.

· Move the signals to the top of the diagram. Notice that Qoutput is above Dinput, because the
signals were selected in that order. This is a quick way to reorder a large group of signals.

· Return the signals to their original order, (clk, Qoutput, Dinput).

 Play with the Zoom Level

· Click the Zoom In or Zoom Out buttons, which are located on the right hand corner of the
button bar, to show less or more of the waveforms. Zooming in can also be performed with the
'Click-and-Drag' method. Simply click in the time bar over the waveforms and drag the cursor
to specify the region to zoom to. Right clicking in the time bar will zoom out by a factor of two
(same as pressing Zoom Out button).

(TD) 1.16 Summary

Congratulations! You have completed the Basic Drawing and Timing Analysis tutorial. In this
tutorial we covered how to create a timing diagram, drawing simple signals and clocks, basic timing
analysis with delays and setups, and advanced drawing techniques using equations and buses.

SynaptiCAD Tutorials34

SynaptiCAD 2007

What to do next:

· If you will be doing lots of timing analysis, you need to read Section 5.1 Delays in the Timing
Diagram Editor menu to find out about delay correlation and how delay times are calculated.

· If you will need to make timing diagram documentation, then do the Display and
Documentation tutorial.

· If you are purchasing WaveFormer Pro or Data Sheet Pro, then do the Simulated Signals
tutorial to discover the fastest way to generate timing diagrams.

· If you are working with analog signals, then do the Analog Signals tutorial.

Timing Diagram Editor 2: Simulated Signals 35

SynaptiCAD 2007

Timing Diagram Editor 2: Simulated Signals

Simulated Signals reduce the amount of time needed to draw and update a timing diagram,
because the waveform is described using a Boolean or registered logic equation. With Simulated
Signals you will no longer have to figure the output of a combinational circuit or calculate the critical
path of a synchronous circuit by hand. WaveFormer Pro has an internal interactive simulator that
supports multi-bit equations with true min-max timing, unlike traditional simulators that can only
represent single-valued delays. This tutorial contains some simple examples of Boolean and
registered logic equations that showcase the simulator's capabilities.

To do this tutorial, you will need WaveFormer Pro or a higher level product. SynaptiCAD has also
included Simulated Signals with the VeriLogger and TestBencher products, even though they have
a built-in Verilog simulator, because this feature makes it easier to generate test benches and
timing diagrams. In WaveFormer, it is the backbone of the timing analysis and design features.

This tutorial assumes that you are able to draw signals and can add delays, setups, and holds to
those signals. We recommend that beginners start with the Basic Drawing and Timing Analysis
Tutorial to learn the basics of timing diagram editing before attempting this tutorial.

(TD) 2.1 Setup for Simulation

In the next few sections we will simulate signals using Boolean and registered logic equations. The
inputs to a simulated signal are other drawn signals, so in this section we will create a timing
diagram and a free parameter that we will use in the subsequent steps.

Run WaveFormer Pro or higher:

· Run WaveFormer Pro, DataSheet Pro, VeriLogger, or one of the more advanced products. If
you are evaluating Timing Diagrammer Pro or one of our Viewers and you would like to learn
about the simulation features, close the program and restart the evaluation version in
WaveFormer Pro mode.

SynaptiCAD Tutorials36

SynaptiCAD 2007

Create a Timing Diagram:

· Choose File > New Timing Diagram menu to open an empty timing diagram window.

· Sketch the following timing diagram. Clock CLK0 has the default 100ns period. Just
approximately sketch the waveforms for SIG0 and SIG1; exact edge placement is not
necessary for this tutorial. Leave SIG2 blank, because it will be the simulated signal.

Create a Free Parameter:

We will also be experimenting with the min and max timing features of the Boolean equations, so
create a Free Parameter to use in the equations.

· In the Parameter window, press the Add Free
Parameter button to add a free parameter F0.

· Double-click on F0 to open
the Parameter Properties
dialog.

· Enter a min time of 10, and a
max time of 15, then press the
OK button to close the dialog.

(TD) 2.2 Simulate a Boolean Equation

A simulated signal is created by adding a Boolean equation to the Signal Properties dialog for that
signal. The dialog accepts Boolean equations in either VHDL, Verilog, or SynaptiCAD's enhanced
equation syntax. The SynaptiCAD format supports the following operators: and or &, or or |, nand,
nor, xor or ^, not or ~ or !, and delay. We will cover the delay operator in the next section.

Timing Diagram Editor 2: Simulated Signals 37

SynaptiCAD 2007

Simulate a Boolean equation once:

· Double click on the SIG2 signal
name to open the Signal
Properties dialog. Move the
dialog so that you can see the
dialog and the 3 signals at the
same time.

· Enter SIG0 and SIG1 into the edit
box below the Boolean Eqn type
box (signal names are case
sensitive).

· By default, all signals are Drive
signals that will only simulate
when the user presses the
Simulate Once button.

· Click the Simulate Once button at the top of the dialog and watch the signal draw itself. Notice
that SIG2 is the result of the Boolean Equation "SIG0 and SIG1". SIG2 is drawn in black to
indicate that it will not re-simulate automatically.

Continuously Simulate the Boolean Equation:

· First make sure the program is in the continuously simulate mode:

· If you are using VeriLogger Pro or TestBencher Pro, make sure that the program is in
Auto Run simulation mode. Debug Run mode will not continuously update signals. The
Auto Run/ Debug Run simulation mode button is located on the simulation toolbar, in the
upper left of the window below the Project menu.

· If you are using WaveFormer, then check the Options > Diagram Simulation
Preferences menu to make sure that the Continuously Simulate box is checked.
WaveFormer does not have the Auto Run/Debug Run button.

· To make the signal continuously
simulate, check the Simulate signal
type button.

· Notice that the SIG2 is now drawn in purple. This color means that the signal is being

SynaptiCAD Tutorials38

SynaptiCAD 2007

continuously simulated, and changes in the input waveforms cause automatic re-simulations.

· Move some of the edges on SIG0 and SIG1 and watch SIG2 re-simulate. (Notice that you
cannot drag and drop SIG2's signal edges because they are calculated edges).

(TD) 2.3 Boolean Equations with Delays

Next we will modify the Boolean equation to take into account the propagation delay through the
AND gate. First we simulate a simple 15ns delay, then we will simulate a min/max delay. The
SynaptiCAD delay operator takes a signal on the left, and a time or parameter name on the right,
and returns a signal. If a parameter name is used on the right hand side of the delay operator, then
the equation will simulate true min/max timing. This true min/max timing is the main advantage that
SynaptiCAD's format has over the VHDL or Verilog format.

Simulate a simple delay:

· Add a 15ns delay to the SIG2
Boolean equation. The box
accepts Verilog, VHDL, or
SynaptiCAD syntax, so these
equations are all equivalent to
each other.

· Press the Apply button at the
bottom of the dialog to notify the
simulator about the change in the
equation.

#15 (SIG0 & SIG1)
(SIG0 and SIG1) after 15
(SIG0 and SIG1) delay 15

· Verify that SIG2 is 15ns delayed,
by first selecting an input edge
then moving the mouse over the
resulting edge on SIG2. The blue
delta read out will say 15ns.

Simulate a true min/max delay using SynaptiCAD syntax:

The most powerful feature of a timing diagram editor is the ability to display min/max timing using
the grey uncertainty regions. To make the Simulated Signals support min/max timing, we created
the SynaptiCAD delay operator, because the delay operators in VHDL and Verilog only support a
single delay.

· Edit the equation so that the
delay references the free
parameter F0 then press the
Apply button to notify the
simulator about the change in
the equation.

Timing Diagram Editor 2: Simulated Signals 39

SynaptiCAD 2007

· Notice that SIG2 has grey
uncertainty regions that
are 5ns wide (F0.max -
F0.min).

View the HDL code that models the Boolean equation:

The timing diagram editor takes the Boolean equation and generates Verilog or VHDL code
necessary to perform the equation. You can edit this code directly to perform more complex
functions. The tool ships with an embedded Verilog simulator that executes the code, so if you
change VHDL code you will have to provide the tool with a VHDL simulator. The manual explains
how to configure for a different simulator.

· Press the Verilog tab to open an editor window that displays the generated Verilog code. Do
not change the code now.

· This example demonstrated true min/max simulation, however Min-Only and Max-Only
simulations can be performed by changing the selection in the Timing Model drop-down list of
the Simulation Preferences dialog box. The Simulation Preferences dialog can be opened
using the Options > Diagram Simulation Preferences menu option. The Timing Model
drop-down list is in the upper right corner.

(TD) 2.4 Register and Latch Signals

The Interactive Simulator can register or latch the result of a Boolean equation. This circuit is
similar to most FPGA cells and can model a large number of components. Below is a figure of the
register that a Simulated Signal models. If no clocking signal is chosen, then the Boolean equation
goes straight to the signal output as shown in the previous sections. Note: setting the MSB/LSB
fields in the Signal Properties dialog will "parallelize" the circuit, allowing multi-bit registers such as
counters, shifters, etc. to be modeled).

SynaptiCAD Tutorials40

SynaptiCAD 2007

Experiment with the register and latch equations:

· Change the SIG2
equation to just one term
SIG1 and press the
Simulate Once button.
SIG2 should be an exact
copy of SIG1.When we
register SIG2 you can
visually compare it to
SIG1 to see the effects of
the register.

· Set the clock control to CLK0.
Choosing a clock brings in the
register/latch model to buffer the
Boolean equation.

· Set the edge/level control to both,
to indicate that both the rising and
falling edges of the clock are
triggering edges. Since it is edge
triggered a register circuit will be
created rather than a level sensitive
latch.

· Click the Simulate Once button to simulate the circuit. Notice that SIG2 only transitions when
CLK0 has a positive or negative edge transition (move some edges on SIG1 to verify this).

Timing Diagram Editor 2: Simulated Signals 41

SynaptiCAD 2007

· To make the diagram
look like the above
picture, we hid SIG0
because it is not
being used.

· We also added Grid
Lines to every edge
of the clock. To do
that double click on
the clock name to
open the Signal
Properties dialog and
press the Grid Lines
button. This opens
the Grid Options
dialog. Play with the
controls and hit
Apply until you get
an image that you
like.

· Change the Edge/Level control value and press the Simulate Once button to verify the
operation of the different register and latch circuits.

(TD) 2.5 Set and Clear Lines

The Set and Clear lines are useful when defining circuits whose initial value needs to be specified.
In this example we demonstrate how to design a divide by 2 circuit using a negative edge
triggered register with an asynchronous active-low set line.

SynaptiCAD Tutorials42

SynaptiCAD 2007

Use the Set line to define an initial state:

· Click the Add Signal button to
create a new signal named SIG3.
Then double click on the signal
name to open the Signal
Properties dialog.

· Check the Simulate button.

· Type !SIG3 into the Boolean
Equation edit box (it references
itself).

· Choose CLK0 from the Clock
drop down list box.

· Choose neg from the Edge/Level
box.

· Notice that the waveform for SIG3 is completely gray but
that the status bar (in the lower right corner of the window)
reports Simulation Good. This is because SIG3's Boolean
equation references itself but it does not provide the
simulator with a known start state.

· Press the Advanced
Register button (see above)
to open the Advanced
Register and Latch Controls
dialog. Notice that all the
register and latch individual
propagation times, setup/hold
constraints, clock enable, and
set/clear options are set here.
Tip: the Global defaults are
set using the Options >
Simulation Preferences
menu.

· Make sure the Active Low and the Asynchronous check boxes in the Set and Clear section
are checked. Click OK to close the dialog.

Timing Diagram Editor 2: Simulated Signals 43

SynaptiCAD 2007

· Choose SIG0 from
the Set drop down
list box.

· We hid SIG0 in a
previous section, so
choose the View >
Show Hide Signals
menu and show
SIG0.

· Press the Simulate
Once button to
notify the simulator
of the change in the
model.

· Notice that SIG3 now has a
simulated waveform.
Redraw SIG0 so that it goes
low early in the timing
diagram, and then stays
high for four or five clock
cycles.

· Experiment with SIG0 to see how the active low set line affects the operation of the flip-flop.
Remember that we set the model to have an asynchronous low set signal.

· To make the above diagram, we hid the unused signals. We also changed the clock grid so that
the starting event was 2 and there were 2 events per line, that way we got grid lines on just the
negative edges.

(TD) 2.6 Multi-bit Equations

The Interactive Simulator can automatically generate multi-bit equations for the register, latch and
combinatorial logic circuits. To convert a register or latch circuit into a multi-bit signal, change the
MSB of the input signal and the MSB of the register or latch. If the sizes of the signals do not
match, WaveFormer maps as many LSB's as it can. The following example uses only a simple
equation to demonstrate the LSB mapping feature, however multi-term Boolean equations are
completely supported.

Create a Multi-bit Signal by changing the MSB setting:

· Create a copy of SIG2. Click on the
SIG2 name in the Label window to
select it. Select the Edit > Copy Text
and Signals menu option to copy the
signal, then the Edit > Paste option to
paste the signal. There are now two
signals named SIG2 in your diagram.

SynaptiCAD Tutorials44

SynaptiCAD 2007

· Double click on the bottom
SIG2 to open the Signal
Properties dialog, and
rename the signal to SIGX.

· Type 3 in the Bus MSB edit
box. This will make SIGX a
4-bit signal and add a [3:0]
to the end of the name.

· Press the Apply button to
notify the simulator of the
changes.

· SIGX's waveform is now drawn as a bus
with a 4 bit binary display. Only the LSB of
SIGX is working because the input signal
SIG1 is a single bit. Compare SIG2 and
SIGX and verify that they are the same
values.

Change the input signal to a multi-bit signal:

· Double-click on SIG1 to open the
Signal Properties dialog, and add
[3:0] to the end of the name. This
has the same effect as changing
the values in the MSB and LSB
edit boxes.

· Press the Apply button. Now all
four bits of SIGX should be toggling
between 0 and F. If the radix is in
Binary, the signal will toggle1111
and 0000. The radix box is located
in the lower left part of the dialog.

· If you want to further experiment with multi-bit signals, change SIG1's graphical segments to
Valid regions instead of Highs and Lows. Then double click on a valid region to open the Edit
Bus State dialog box. Type different hex values from 0 through F, like 5 or A, into the Virtual
edit box and watch how it affects the output of SIGX and SIG2. Since SIG2 is a single bit signal
it uses only the LSB of the input signals.

Timing Diagram Editor 2: Simulated Signals 45

SynaptiCAD 2007

(TD) 2.7 Design a Multi-Bit Counter

When a muti-bit signal is clocked the register/latch circuit shown will be instantiated one time for
each bit of the signal. This allows you to use one signal to represent the operation of a multi-bit
counter or buffer.

Use a multi-bit signal to make counter:

· Press the Add Signal button to add
a new signal.

· Rename the signal to
four_bit_counter.

· Set the type to simulate.

· Type in the equation
four_bit_counter +1.

· Set the clock to CLK0 with an
trigger edge of pos. This will make
the signal change only on the
positive edges of the clock.

· Set the clear line to SIG0. If you
press the Advanced Register
button you can verify that the clear
line with be active low and
asynchronous, so that a pulse low
on this line will clear the signal
registers to zero.

· Set the Msb to 3 to instantiate the
multiple registers.

· Press the Apply button to simulate the signal. Notice that the signal will be a grey unknown
region until the SIG0 goes low to clear the register.

· If you press the Verilog tab, in the Signal Properties dialog you can see that the register is
going to be 4 bits wide (it is the first parameter that is passed into the register).

SynaptiCAD Tutorials46

SynaptiCAD 2007

(TD) 2.8 End Diagram Marker Stops Simulation

Normally the simulation will continue to the end of the last drawn signal or about one clock cycle
past the drawn signal. However, the exact end of simulation can be controlled using Marker line.

Use an End Diagram Marker to control the end of simulation time:

· Press the Marker
button so that right
clicks will add marker
lines to the diagram.

· Right click inside the diagram window to add a Marker line. By default all new markers are just
documentation lines that will not effect the timing or simulation of the diagram.

· Double click on MARK0 to open
the Edit Time Marker dialog.

· Set the type to End Diagram. But
also notice all the other types
available. The timebreak types
compress time and hide parts of
the dialog. The loop markers are
used by TestBencher and
Reactive Test Bench generation to
create complex test bench code.

· Set the display label to Type. This
will make the marker display its
type instead of its name. Also
notice all the display label options
to control exactly what the marker
displays.

· Press the Ok button to close the
dialog

· Notice that the simulation ends at the clock cycle after the End Diagram Marker. Grab the
marker with the mouse and drag it around to control the simulation end.

Timing Diagram Editor 2: Simulated Signals 47

SynaptiCAD 2007

(TD) 2.9 Behavioral HDL Code

In addition to the simulation of Boolean and registered logic circuits, SynaptiCAD products can
simulate behavioral Verilog code, and if you provide a VHDL simulator it can also simulate
behavioral VHDL code. The behavioral code is entered directly in to the Verilog or VHDL tabs in
the Signal Properties dialog, instead of using the Equation Entry tab that we used for the Boolean
equations in the last sections. There is also a template feature that generates code from a Boolean
equation and allows you to modify the generated code.

In this section we will use a register template as a starting point to build a circuit that
asynchronously counts the number of edges that occur on SIG1 and synchronously presents the
total number of edges on the positive edge of the clock.

Use a partially defined signal to generate PLACEHOLDER code:

· Add a new signal named Count.

· Select the Simulate type setting.

· Set the clock to CLK0 with an
edge/level of pos.

· Set the MSB to 3.

· Press the Apply button to apply
the changes and generate the
code. Since there is no Boolean
equation for the signal, this is also
going to generate a compile error
and all the simulated signals in
the diagram will go grey. If no
compile error happens, then
choose Options > Diagram
Simulation Preferences menu
and check the Continuously
Simulate box.

· Next, press the Verilog tab to open and editor window containing the the template code. The

SynaptiCAD Tutorials48

SynaptiCAD 2007

internal wire names Count_wf*** will vary depending on how many signals you have simulated.

· The registerP_Asyn line instantiates (defines an instance of) a 4 bit positive-edge-triggered
register of the type used by the logic wizard. This register takes PLACEHOLDER as an input
and outputs a synchronized version on Count.

· The auto generated variable PLACEHOLDER is undefined and will not simulate. If a Boolean
equation was defined for the circuit, it would replace the PLACEHOLDER variable. This error
will be displayed in the Report window under the error tab.

Add behavioral code to the generated code:

We will use the PLACEHOLDER variable to store the edge count. First we will define
PLACEHOLDER, give it an initial starting value, then define an always process that triggers each
time the SIG1 changes. Since Count is buffered by a positive edge triggered register, it will not
display the PLACEHOLDER value until the positive edge of the clock.

· Either copy-and-paste or type the first four lines the below code directly into the Signal
Properties Verilog Code window (add the bold lines):

reg [3:0] PLACEHOLDER;
initial PLACEHOLDER = 0;
always @(SIG1)
 PLACEHOLDER = PLACEHOLDER + 1;
wire [3:0] Count_wf1 = PLACEHOLDER;
wire [3:0] Count_wf0;
registerP_Asyn #(4,1,1) registerP_Asyn_Count(Count_wf0,
 CLK0,Count_wf1,1'b0,1'b1,1'b1,
 $realtobits(0.0),$realtobits(0.0),
 $realtobits(0.0),$realtobits(0.0));
assign Count = Count_wf0;

· Click the Apply radio button. Verify that Count is counting the edges of SIG1. The new edge
count is presented on each positive edge of CLK0. The Count starts at one because there is a
1'bz to 1'b0 transition at time zero on SIG1.

Code explanation:

The code that you just entered is behavioral Verilog code.

Timing Diagram Editor 2: Simulated Signals 49

SynaptiCAD 2007

· The first line defines PLACEHOLDER as a 4-bit register. PLACEHOLDER needs to be defined
as a register rather than a wire in this case because it must "remember" its value. Verilog wires
don't remember their values so they must be constantly driven to retain their value.

· The second line initializes the value of PLACEHOLDER to 0 when the simulator first runs.

· The third and fourth lines contain an always block (note for VHDL users: these work like VHDL
process blocks). Whenever SIG1 changes state, the always block will execute, incrementing
PLACEHOLDER.

· The rest of the lines consist of the automatically generated template code that instantiates the
synchronizing register.

(TD) 2.10 Simulated Bus Signals

Simulated Buses are similar to Group Buses. The primary difference is that the bus is generated
using a Boolean Equation. A simulated bus can be referenced in another signal's Boolean
equation, (group buses cannot). Also, TestBencher will generate a Boolean equation for the timing
transaction so that the simulated bus can include input signals as member signals.

Create a Simulated Bus:

· Make sure that no signals are selected, and
press the Add Bus button to open the Add Bus
dialog. Note, if a signal was selected a different
dialog will open and you cannot add a
simulated bus from there.

· Set the LSB to 0 and the MSB to
2.

· Select the Simulated Bus radio
button.

· Press the OK button to close the
dialog and create the bus and
member signals.

· BUS0''s waveform will be grey
because none of the member
signals are defined.

· Draw on the member signals and
see the bus simulate.

SynaptiCAD Tutorials50

SynaptiCAD 2007

· Double click on BUS0[2:0] label
to open the Signal Properties
dialog. Notice that the bus is
defined as a concatenation of the
member signals.

(TD) 2.11 Summary of Simulated Signals Tutorial

Congratulations! You have completed the Simulated Signals tutorial. In this tutorial, you have used
a Boolean Equation to define the waveform of a signal, and experimented with the delay operator
and multi-bit equations. You have also worked with the internal register and latch circuits and the
template function for generating a starting point for writing behavioral code. And fininally you have
generated a simulated bus.

More information on simulated signals and the internal simulator look at:

· Chapter 4: Simulated Signals and VHDL and Verilog Export in the Timing Diagram Editor
manual.

· Advanced Modeling and Interactive Simulation Tutorial demonstrates how to model a complex
circuit using external models, behavioral HDL code, and incremental simulation techniques.

If you currently own Timing Diagrammer Pro or one of the SynaptiCAD Viewers, then these
products can be upgraded to WaveFormer Pro or Data Sheet Pro so that you will have access to

Timing Diagram Editor 2: Simulated Signals 51

SynaptiCAD 2007

the Simulated Signal features.

SynaptiCAD Tutorials52

SynaptiCAD 2007

Timing Diagram Editor 3: Display and Documentation

This tutorial introduces techniques for controlling the display of parameters, clocks, waveforms,
markers and text objects. These techniques that will allow you to control exactly what your timing
diagrams look like and what information is displayed. It is recommended that you are comfortable
drawing waveforms and adding parameters before you begin this tutorial. These features are
covered in the Basic Drawing and Timing Analysis tutorial.

Load the starting timing diagram for this tutorial:

1. Open the file tutdocstart.btim in the
SynaptiCAD\Examples\Tutorial\DisplayAndDocumentation directory.

2. Select the File > Save As menu option, and save this file as mystart.btim.

(TD) 3.1 Controlling Parameter Display String

A Delay, Setup, Hold, or Sample parameter can display a specific attribute or a custom display
string. The Parameter Properties dialog box has the Display Label and Custom String controls
that manage the display properties of the parameter. Individual instances or all instances of a
parameter are configured depending on where the Parameter Properties dialog is opened. For
individual instances double click on a parameter in the Diagram window. To configure all instances
of a parameter double click on a parameter in the Parameter window.

Setups and Holds are often used in a timing diagram to display information like distance
measurements or used for cycle annotation, because these parameters monitor state information
instead of forcing edges like a delay parameters. First lets experiment with using simple attributes
to display margin and distance calculations of the setup parameters.

1. Double-click on the setup label S0 to open the Parameter Properties dialog. Arrange the dialog
so that you can see the S0 in the diagram window and the dialog at the same time.

2. Use the Display Label drop-down list box to select the min/max Margin display. Notice that
the label for the parameter now displays, [9,], the min/max margin, instead of the name S0.
This display will change if the setup’s edges are moved. Margin is the amount of time
available before a setup or hold constraint is violated. The max is blank because there is no
maximum setup time specified in the parameter.

3. Click the Next button to display the setup S1 in the Parameter Properties dialog. We will use
S1 to display the distance between two edges, so we have not bothered to define the min and
max values.

4. Select the Distance from the Display Label drop-down list box. The label now shows the
minimum and maximum distances between the transitions.

5. Check the Outward Arrows check box to make the parameter’s arrows display the type of
arrows that are usually used for distance measurements.

Timing Diagram Editor 3: Display and Documentation 53

SynaptiCAD 2007

NOTE: The default display for all parameters can be set using the Options > Drawing
Preferences dialog box.

1.1 Parameter Custom Strings

A parameter label can be made to show more than one attribute or to show a custom string of
characters and attributes using the Custom string in the Parameter Properties dialog. In a custom
string, certain character sequences are interpreted as attribute control codes, and when such a
sequence is found it is replaced with that parameter’s attribute.

Attribute control codes start with a % character followed by one or two letters. The control codes
are: name (%n), value (%mv, %Mv), formula (%mf, %Mf), margin (%mm, %Mm), distance (%md,
%Md), and comment (%c). The lower case m means minimum, and the upper case M means
maximum. Now lets experiment with D0’s custom string.

1. Double click on D0 delay parameter to open the Parameter Properties dialog.

2. Select Custom from the Display Label drop-down list box. This will cause the string in the
Custom edit box to be displayed as the parameters label.

3. Compare the default Custom string to the label that is displayed in the diagram. The default
custom string is a little messy to look at, however it contains all of the control codes so you
don't have to remember them. When you want to make a custom label just edit the default
string. The default custom string should be:

%n v= %mv,%Mv f=%mf,%Mf m=%mm,%Mm d=%md,%Md %c

4. Next, make the parameter label display only the parameter name and min and max values.
Edit the contents of the custom string so that the string reads: %n value = %mv,%Mv

5. Click the Apply button. The and D0’s label will show:

(TD) 3.2 Repeating Parameters

Once you have drawn a delay, setup, or hold parameter, that parameter can be automatically
drawn between similar edges across the timing diagram. When the Repeat button, in the
Parameter Properties dialog, is pushed the program will search for the next beginning edge, and
add a parameter between that edge and the next ending edge. This will continue until the end of
the diagram. Some caution should be taken when repeating delays because the delays cause
edges to move.

Repeat D0 across the timing diagram:

1. For this demonstration arrange Diagram window so that you can see the entire diagram. You
may need to use the zoom in buttons.

2. In the diagram window, double-click on D0 to open the Parameter Properties dialog.

SynaptiCAD Tutorials54

SynaptiCAD 2007

3. Press the Repeat button. This will cause delays to be added to each of the falling edges of
SIG0 that have a matching edge on SIG1. Also notice that the margin for setup S1 is now
violated and is displayed in red. This happened because the second D0 moved the edge that
S1 is attached to.

4. Close the Parameter Properties dialog.

(TD) 3.3 Editing Waveform Edges From an Equation

In the last section, our new delay caused the setup S1 to fail. To fix the setup, we would like to shift
all of the edges on both SIG0 and SIG1 over by 5ns. This could be done by dragging and dropping
each edge, but a faster way would be to apply an equation to the waveform edges.

1. Select the SIG0 and SIG1
names by clicking on the
signal names.

2. Choose the Edit > Edit
Waveform Edges menu
to open a dialog of the
same name that will act
on all of the selected
signals. Notice that the
dialog can be setup to act
on a range of edges, clear
sections of the
waveforms, or apply an
equation to each edge of
the waveform.

3. Type $time + 5 into the Edge Time Equation edit box. The $time variable represents the time
of each edge.

4. Press the OK button to apply the equation and close the dialog. Notice the edges have shifted
over and the S1 setup is satisfied.

(TD) 3.4 Drag and Drop Parameter End Points

When a parameter is created it is attached to two signal transitions. These signal transitions can be
changed by dragging and dropping one of the parameter endpoints to a new signal transition. To
demonstrate dragging and dropping a parameter’s endpoint:

1. In the Diagram window, select the first delay parameter D0 to select it by clicking on it. A
selected parameter is surrounded by a rectangle with a solid handle box on either end.

Timing Diagram Editor 3: Display and Documentation 55

SynaptiCAD 2007

2. Place the mouse over the solid handle box on the right side of the selection rectangle.

3. Click and drag the mouse to the edge indicated on SIG2 so that it is highlighted. If the entire
parameter is changing its vertical position then you clicked on the middle of the parameter
instead of a handle box.

4. Release the mouse button. Now D0 ends on this transition.

(TD) 3.5 Adjusting the Vertical Placement of a Parameter

Normally, the vertical placement for parameters on the sreen is set automatically. However, you
can also place parameters at a specific height by dragging the parameter to a new position.

1. Click and hold on the center of
the delay parameter, D0, and
drag it up to a new vertical
position closer to the top of the
screen.

2. Release the mouse button to
place the parameter.

After you move a parameter, it is considered user placed and it will not be moved from that position
unless you choose to move it. Any new parameters will arrange themselves around user placed
signals. To return vertical placement control to the program:

1. Open D0’s Parameter Properties dialog box by double-clicking on the parameter.

2. Uncheck the User Placed box, and the delay will return to its original position.

3. Click the OK to close the dialog box.

(TD) 3.6 Clock Jitter and Display

Clocks have many display and timing analysis settings that are covered in Chapter 2: Clocks. In
this section we will add edge jitter and see the effect on the distance measurement. We will also
add arrows to the falling edge of the clock and change the slant of the waveform edges.

The timing analysis features are controlled through the Edit Clock Parameters dialog:

SynaptiCAD Tutorials56

SynaptiCAD 2007

1. Double click on waveform segment on CLK0 to open the Edit Clock Parameters dialog.

2. Type 4 into the Rise Jitter (range) edit box and tab to another control. This will add an
uncertainity region to the rising edge of the clock and also change the distance
measurement.

3. Click OK to close the dialog

The display features for signals and clocks are controlled through the Signal Properties dialog:

1. Double click on the CLK0 signal name to open the Signal Properties dialog.

2. Check the Falling Edge Sensitive box and push the Apply button. This causes arrows to be
added to the falling edge of the clock.

3. Press the Analog Props button to open the Analog Properties dialog.

4. Check the Use Straight Edges box and press OK to close the analog dialog. This will cause
the clock to be drawn with straight edges instead of the normal slanted edges.

5. Press the Grid Lines button to open the Grid Options dialog.

6. Check the Enable Grid box and press the Apply button. This draws grid lines on the clock.

7. Play around with the grid options and make the grid draw on different edges. Also draw
different color edges and line styles.

8. When you are done uncheck Enable Grid and close both dialogs.

(TD) 3.7 Markers

Time markers (vertical lines) can be added to a timing diagram for documentation, time
compression, and to indicate the end of the diagram. TestBencher Pro also uses markers to
specify loops and to insert HDL code into a transaction.

Next add a documentation marker the diagram and experiment with the display and time
compression.

1. Press the Marker button, on the top of the Diagram window, to put the program in marker
drawing mode.

2. Left click on the third falling edge of CLK0 (250ns), to select it, and then right click to add a
Marker.

3. Double click on the marker to open the Edit Time Marker dialog. Since an edge was selected
when you added the marker it is automatically be attached to the selected edge, and the
attachment is listed in the middle of the dialog as EDGE CLK0 250.

4. Uncheck the Draw line from marker to edge box. When marker is attached to an edge, this
box determines if a dotted line will be drawn between the edge and the marker.

5. From the Display Label box, choose Comment. Since the comment for the marker is blank,
no label will be displayed for the marker.

6. From the Marker Type box, choose Timebreak(Curved) to make the marker use a double
curved line display.

7. Press OK to close the dialog. Notice that the marker is curved and does not display its label.
Double click on the marker to open the Edit Time Marker dialog again.

8. Type 15 into the Time Break compresses time by box and press OK to close the dialog.
Notice that 15ns of the next clock cycle is not displayed in the diagram. All the parameters
inside a compressed region continue to function, just part of the diagram is not shown.

Timing Diagram Editor 3: Display and Documentation 57

SynaptiCAD 2007

9. Drag and Drop the parameter and watch the compression marker make objects disappear.

A marker can also be used to indicate the end of a timing diagram. This is a useful feature if you
are using the export scripts. You can also make the ends of all the signals snap to the marker for a
cleaner looking timing diagram.

1. Make sure that no edges are selected in the diagram, and then right click at the top of the
diagram at about 400ns. This will add a marker to the right of all the drawn signals.

2. Double Left click on the marker to open the Edit Time Marker dialog. Notice that the
attachment is listed as Time because no edges where selected when the marker was added.

3. From the Marker Type box, choose End Diagram to indicate that the marker is the end of the
diagram. This causes the marker to draw itself with the purple simulation line.

4. From the Display Label box, choose Type to make the marker display End Diagram as the
display label.

5. Check the Signal ends snap to marker box and press OK to close the dialog. Notice that all
of the drawn waveforms have drawn themselves over to the marker.

6. Drag and drop the end diagram marker and notice how the waveforms draw themselves.

(TD) 3.8 Edit Text Blocks

Text objects can be placed anywhere in a diagram to annotate cycles, edges, or segments. The
font and color of each text object can be changed to stress the importance of that particular text
object. The fonts also support superscripts, subscripts, and bold and italic attributes so your timing
diagrams can use the same names and comments that are commonly used in data books

1. Press the Text button, on the top of the Diagram window, to put the program in text drawing
mode.

2. At the top of the diagram, around 50ns, right click to open a text editing box and type Read
Cycle2tp, and then press the Enter key to close the editing box. This will add a text block to
the top of the diagram using the default font.

3. Double click on the text block to open the Edit Text dialog. From this dialog you can edit the
text, add multi-line text blocks, and set the bold, italics, superscript, and subscript settings.

SynaptiCAD Tutorials58

SynaptiCAD 2007

4. Select the 2 in the text box and press the super script button. Select tp and press the subscript
button.

5. Press the Font key to open the Font dialog.

6. Change the font size to 16 and the color to blue and close both dialogs.

7. Drag and Drop the text object to a new location.

8. Experiment by adding more text blocks. In the Edit Text dialog, add a multilane text block.

(TD) 3.9 Summary of Display and Documentation Tutorial

Congratulations! You have completed the Display and Documentation tutorial. In this tutorial you
experimented with parameter display settings including how to add distance measurements and
custom display strings. You have also touched on the some of the display options for markers, text
objects, and clocks but these objects have many more features that are covered in the manual.

Timing Diagram Editor 4: Analog Signals 59

SynaptiCAD 2007

Timing Diagram Editor 4: Analog Signals

This tutorial describes how to easily create and display analog waveforms by directly drawing them
and using pre-written label equations.

(TD) 4.1 Viewing & Exporting Real Radix Signals as Analog
Waveforms

The three signals in the diagram below have the same waveform values, but the bottom two
signals have their Analog Display checkboxes checked, so they draw as magnitude plots instead
of as bus values. This checkbox is located in the Signal Properties dialog, which is opened by
double-clicking on a signal’s name. The second signal, RealRadix_AnalogSlanted, shows the
waveform using the analog values of each segment drawn from point to point (piecewise-linear).
The third signal, RealRadix_AnalogStraight, shows the waveform using the analog values of
each segment drawn as step voltages.

SynaptiCAD Tutorials60

SynaptiCAD 2007

Analog Signal Display Methods (piecewise-linear or as step voltages): Analog signals can be
rendered as piecewise-linear (slanted) or as step voltages (straight). By default, analog signals
draw piecewise-linear, as this makes for smoother curves. You can change the rendering method
for an individual analog signal by setting the Use Straight Edges checkbox in the Analog
Properties dialog (to open this dialog, press the Analog Props button in the Signal Properties
dialog).

Exporting Analog Signals To HDL Simulators: When exporting analog signals to a discrete
event simulator such as VHDL or Verilog, analog signals must be exported as step voltages
(discrete event simulators cannot model a true ramp, for example, so ramps must be approximated
by step voltages). So regardless of whether an analog signal is being rendered piecewise-linear or
as step voltages in the timing diagram window, it will export as step voltages to HDL simulators.

Exporting Analog Signals To SPICE: When exporting analog signals to SPICE, the signals can
be exported piecewise-linear or we can approximate step voltages depending on whether the
"straight edges" option is unchecked or checked. Step voltages are approximated by adding an
additional point in the spice PWL statement immediately after each drawn point. Note: digital
signals always export to SPICE as quasi step voltages using PWL statements.

(TD) 4.2 Creating Analog Signals using the Mouse

Analog signals can be created by drawing valid segments and inserting real values for the segment
states. By inserting an extra segment for each value change, we will be able to render a "stepped"
waveform even though we have not checked the Use Straight Edges checkbox.

· Add a new signal and draw 5 valid
segments.

· Double click to open the Signals
Properties dialog.

· Set the radix to real.

· In the Label Eqn box, type 1.5, 1.5,
4.5, 4.5, 0 and then press the Label
Eqn button to apply the equation
and label the valid segments.

· Check the Analog Display check box, to switch from a digital display to an analog display.

Timing Diagram Editor 4: Analog Signals 61

SynaptiCAD 2007

· Set the Size to 3, to expand the waveform.

The picture below shows what your signal looks like before and after the Analog Display is
checked.

Reminder: although the signal above appears to have ramps in it, it will look like a stepped
waveform when exported to a digital simulator. To create ramps that export to a digital simulator,
use the Ramp function discussed later in this tutorial.

(TD) 4.3 Drawing a Step Signal

The ramp signal can now be easily converted to a step signal by adjusting the edge times for the
segment that displays the change in value (The second and the fourth segments in our example).
You can either use mouse to move one of the edges of the segment to the same time as the other
or you can use the Edge Properties dialog to adjust the edge times.

To use the mouse:

· Click the edge to move to select it.

· Drag the edge to the same time as the start or end edge of the segment. This shows that the
value change is instantaneous (or not visible in the current time scale).

· Collapse all edges in this manner.

To use the Edge Properties dialog:

· Double-click the first edge
to open the edge properties
dialog.

· Make note of the Min time.

· Click the Next button to
move to the next edge.

· Enter the Min time from the
previous edge in either the
Min or Max edit box. Click
Next to move to the next
edge and apply the
changes.

SynaptiCAD Tutorials62

SynaptiCAD 2007

Once this process is completed for the transition segments the signal displays as a Step signal,
such as below:

(TD) 4.4 Drawing Analog Ramps

The best way to create a ramp signal is to use a Ramp label equation. This function can create a
ramp signal with plenty of data points, so that it will export accurately to both analog and
discrete-event digital simulators. The function is in the form of Ramp(startVoltage, endVoltage,
duration, numberOfPoints):

· Add a new signal to your diagram and double click on the signal name to open the Signals
Properties dialog.

· Change the signal’s Size to 3 so that the ramp will look nice.

· In the Label Eqn box, type Ramp(0, 5, 150, 40) and press the Label Eqn button. This will
draw a ramp that starts at 0 volts and ramps up to 5 volts, over a period of 150 ns, using 40
points.

· Now add a down ramp by changing the equation to Ramp(5, 0, 150, 40) and pressing the
Label Eqn button.

(TD) 4.5 Generating Sine Waves

This step will describe how to use the Label Equation generator to create Sine waves on signals.
There are three functions SinStart, Sin, and SinEnd that generate sine waves with a growing,
steady, or decreasing amplitude. All of these functions take three parameters - amplitude, period
and duration.

Timing Diagram Editor 4: Analog Signals 63

SynaptiCAD 2007

(TD) 4.5.a The SinStart(amplitude, period, duration) Function

This function starts a Sine wave with amplitude of 0 and grows to the amplitude specified over the
duration specified. The duration should be specified in Display Time Units.

· Add a new signal to the diagram named SinWave.

· Double click the signal name to open the Signal Properties dialog.

· Type SinStart(5, 20, 100) in the Label Eqn history box. This tells WaveFormer to start a Sine
wave that will have amplitude of 5, a 20ns period and has reached its full amplitude by 100ns
(assuming that ns is the display time unit).

· Click Apply to generate the start of a Sine wave. The waveform should look similar to this:

(TD) 4.5.b The Sin(amplitude, period, duration) Function

This function draws a continuous Sine wave using the specified parameters. Here, we will append
to the starting Sine wave drawn on the SinWave signal.

· Enter Sin(5, 20, 100) in the Label Eqn history list of the Signal Properties dialog for SinWave.

· Press the Label Eqn button to continue the Sine wave generation

Notice that by using the same parameters the generated Sine wave matches the Start Sine wave
that was drawn.

(TD) 4.5.c The SinEnd(amplitude, period, duration) Function

The SinEnd function does the inverse of the SinStart function - it starts with a Sine wave with the
amplitude specified and diminishes over the specified duration until is has amplitude zero by the
end of the duration.

· Enter SinEnd(5, 20, 100) in the Label Eqn history list of the Signal Properties dialog for

SynaptiCAD Tutorials64

SynaptiCAD 2007

SinWave.

· Click Apply or the Label Eqn button to finish our Sine wave generation

(TD) 4.6 Generating Capacitor Charge and Discharge

The label equation generator also has two functions that are useful for drawing capacitor charge
and discharge waveforms. These two functions have three required parameters - amplitude, RC
and duration - that are used to generate the waveform.

6.1 The CapCharge(amplitude, RC, duration) Function

This function generates the waveform for a charging capacitor based on the amplitude, RC and
duration specified. The waveform will start at the lowest point specified by the amplitude and
gradually rise (using the RC value) over the duration specified.

To generate a waveform for a charging capacitor:

· Add a new signal to the diagram named Capacitor_Waveform.

· Double click the signal name to open the Signal Properties dialog.

· Type CapCharge(5, 10, 50) in the Label
Eqn history box. This tells WaveFormer to
generate a capacitor charge waveform
that will have amplitude of 5, a 10ns
period and has reached its charge by
50ns (assuming the ns is the display time
unit).

· Click Apply to generate the start of a Sine wave. The waveform should look similar to this:

6.2 The CapDischarge(amplitude, RC, duration) Function

The CapDischarge function performs the inverse of the CapCharge function. The initial state that
it generates is the peak charge specified by the amplitude and it slowly declines based on the RC

Timing Diagram Editor 4: Analog Signals 65

SynaptiCAD 2007

provided over the duration until it reaches the lowest point specified by the amplitude.

To generate a waveform for a discharging capacitor:

· Type CapDischarge(5,10,50) in the Label Eqn history box. This tells WaveFormer to generate
a capacitor discharge waveform that has amplitude 5, an RC value of 10ns and a duration of
50ns (assuming that the display time unit is ns).

· Click the Label Eqn button to generate the waveform.

Note that in the image below a 50ns high segment was added to Capacitor_Waveform prior to
generating the discharge.

(TD) 4.7 Converting between Real and Multi-bit Signals

Signals can be converted between real and digital multi-bit signals by changing the radix in the
Signal Properties dialog. This is particularly important when waveform data comes in as either
analog or digital, but the eventual use will be the opposite format.

SynaptiCAD Tutorials66

SynaptiCAD 2007

Timing Diagram Editor 5: Parameter Libraries

This tutorial explains how to use the library functions of WaveFormer Pro, TestBencher Pro,
VeriLogger Pro and Timing Diagrammer Pro. It starts up where the basic tutorial ends. If you do not
want to go through the first tutorial, a completed diagram of the first tutorial is on your disk under
the filename tutorial.btim (can be loaded directly by clicking on the tutorial icon). A completed
diagram of the Library tutorial is also on your disk under the filename tutlib.btim if you wish to check
your diagram at the end of this tutorial.

Getting Started

First, configure your program, and load the file tutlib.btim.

1. Minimize the Report window (and Project window if applicable). They are not used in this
tutorial.

2. Select the Window > Tile Horizontally menu option. Both the Diagram and the Parameter
windows should be visible during this tutorial. If you are unable to view one of the windows,
use the Window > Parameter or Window > Diagram menu option to open the missing
window.

3. Select the File > Open Timing Diagram menu option and load tutlib.btim from the
SynaptiCAD\Examples\TutorialFiles\ParameterLibraries directory.

4. Select the File > Save As menu option and save the file as mylib.btim (this will keep the
original file intact).

5. Click Open to load the file.

(TD) 5.1 Adding Libraries to the Project's "Library Search List"

In order for a project to use a library, it must know the library's name and path location. This
information is kept in the project's library search list.

To edit the library search list of the mylib.btim file:

1. Select the ParameterLibs > Parameter Library Preferences menu option. This opens the
Parameter Library Preferences dialog.

2. Click the Add Library to List button to open the Parameter Library Browse dialog to search
for libraries on your disk.

3. Select the two sample libraries ac.txt and 3ac.txt, located in the
SynaptiCAD\Examples\TutorialFiles\ParameterLibraries directory.

4. Click the OK button. This adds the selected files to your search list, and close the Parameter
Library Browse dialog.

Timing Diagram Editor 5: Parameter Libraries 67

SynaptiCAD 2007

Now in the Parameter Library Preferences dialog, both libraries should be selected in the library
search list path section. The next section also uses the Parameter Library Preferences dialog so
leave it open.

Note: the filenames for the libraries will have their path names attached unless you have
unchecked the "Use full path names" check box. Generally you will want to leave this option
checked as this allows you to use libraries in multiple directories.

(TD) 5.2 Setting Library Specifications

After adding libraries to the project's search list, you need to define the library specification. Library
specifications allow SynaptiCAD products to distinguish between similarly named parts in different
parameter libraries. Libraries 3ac.txt and ac.txt contain parameters with the same names. If you do
not assign specifications and you referenced these parameter names in your design, the values
from the first library in the list would be used.

To assign specifications:

1. Select both the 3act.txt and the
ac.txt library files.

2. Click on the right arrow button in
the Parameter Library
Preferences. This will assign
specifications to the selected
libraries.

Now the specification for ac.txt is ac
and the specification for 3ac.txt is
3ac. To eliminate the specification for
a library, select it and press the left
arrow button.

SynaptiCAD Tutorials68

SynaptiCAD 2007

(TD) 5.3 Startup Library Configuration

Another useful feature of the Parameter Library Preferences dialog which we will not use in this
tutorial is the Edit Parameter Libraries and the Edit Default Libraries radio buttons. The Edit
Parameter Libraries radio button should currently be selected. This allows you to change the
parameter library settings for the current project. If you have a set of libraries that you wish to use
with all new projects, select the Edit Default Libraries radio button and add these libraries to the
Startup library search list. These libraries will not be added to the current project, but any new
project will automatically have these libraries included in their library search list.

Close the Parameter Library Preferences dialog:

1. Make sure the Edit Parameter Libraries radio button is selected.

2. Click the OK button to close the Parameter Library Preferences dialog.

(TD) 5.4 Referencing Parameters in Libraries

Now that we have added the libraries and set the specifications, we want to reference the library
parameters in our project.

1. Double click on the min value of the DSetup parameter (in the parameter window) to edit the
value. This opens the Parameter Properties dialog box.

2. Delete the value in the min edit box, then press the Library button to open the View
Parameters in Libraries dialog.

- Notice that there are three libraries on the library list; the 3ac.txt and Ac.txt that you added,
and one called Parameter Data Table. This extra library is a virtual library that lists all the
user-added parameters in the project. You can use virtual library parameters in formulas
just like regular library parameters.

3. Select the Ac.txt library from the library list. This displays the parameters in this library in the
library parts list on the right.

4. Scroll down in the library parts list to find the parameter 074;D2CK_ts. Left click to select the
parameter, and press the Insert Into Formula button.

Timing Diagram Editor 5: Parameter Libraries 69

SynaptiCAD 2007

5. Click OK to close the View Parameters in Libraries dialog.

You are still in edit mode in the formula edit box, but now it should contain the name of the
parameter we just inserted (Note: the library specification "Ac" is added to the parameter name,
separated name by a colon, i.e. +ac:074;D2CK_ts).

Next, we will edit both the min and max value of the delay INVtp at the same time.

1. Double click on the INVtp parameter (in the Parameter window) to update the Parameter
Properties dialog display with the values for INVtp.

2. Click on the Library button to open the View Parameters in Libraries dialog.

3. Select the ac.txt library and insert the parameter 004;tp into min value. (Select the parameter
and press the Insert Into Formula button).

4. Choose the OK button to close the View Parameters in Libraries dialog.

- Notice that the ac:004;tp parameter was added to the values that were already in the min
and max edit boxes.

5. Delete the original values from the min and max edit boxes, leaving only the ac:004;tp value.

6. Click the OK button to close the Parameter Properties dialog.

Repeat the above process for the min and max values of DFFtp, inserting 074;CK2Q_tp from the
ac.txt library. Try using the Search For edit box in the View Parameters in Libraries dialog, instead
of scrolling, to find a parameter name.

(TD) 5.5 Using Macros to Examine Tradeoffs Between Different
Libraries

Your diagram is now using values for the AC logic family operating at 5V. If you want to examine
the impact of changing your design to 3.3V, you need to change the library specifications of the
parameters to "3ac". It can get tedious changing back and forth between different libraries when
you have to change the name of each parameter. To avoid this you can create a macro which you
use in place of the library specification in your parameter names. Then to change libraries you just
need to change the value of the macro.

SynaptiCAD Tutorials70

SynaptiCAD 2007

To create a macro:

1. Select the ParameterLibs > Macro Substitution List menu option to open the Edit Formula
Macros dialog.

2. Enter %ac% into the name edit box.

3. Select ac from the Value drop down box. The drop down box contains all libraries that have
specifications.

4. Click OK to add the macro to your macro list.

Now edit the five min & max values of your parameters, replacing ac with %ac%. Your design
should still be using the 5V AC values. When editing the values, try using the Next and Previous
buttons in the Parameter Properties dialog to move between parameters.

To make your design reference the 3V library, change the value of the macro.

1. Select the ParameterLibs > Macro Substitution List menu option, to open the Edit Formula
Macros dialog.

2. Click on the macro %ac% in the list box. This places this macro into the Name/Value edit
boxes.

3. Use the Value drop down box to change the value of the macro to 3ac. Click OK to close the
dialog.

Your design should now be using the 3V AC values (the delays should be longer due to the
decreased supply voltage). You have now completed the parameter library tutorial.

Note: Macros can also be used to make short or alternative names for library parameters without
having to edit the library names.

Timing Diagram Editor 6: Advanced Modeling and Simulation 71

SynaptiCAD 2007

Timing Diagram Editor 6: Advanced Modeling and
Simulation

This tutorial demonstrates how WaveFormer Pro can quickly model and simulate a digital system
of moderate complexity. We will be modeling a circuit that computes histograms for 64K of data
generated by a 12-bit Analog-To-Digital converter (this is a popular method for testing dynamic
SNR for ADCs). This circuit is a simplified form of a real VME board that would take several
months to model and simulate using conventional EDA tools. Using WaveFormer, we will model
and simulate this simplified circuit in 20 minutes. The full circuit with the complete VME bus
interface protocol could be modeled and debugged in about 4 hours.

Figure 1: Histogram circuit block diagram.

This tutorial teaches the user how to:

1. Model state machines using the Boolean Equation interface.

2. Generate input signals using temporal and label equations.

3. Use the simulation log to find design entry errors.

4. Simulate incrementally by temporarily modeling outputs as drawn inputs.

5. Enter direct HDL code for simulated signals.

SynaptiCAD Tutorials72

SynaptiCAD 2007

6. Use external HDL source code models.

7. Model tri-state gates using the conditional operator.

8. Model n-bit gates using reduction operators.

9. Model transparent latches.

10. Debug Verilog source code using $display statements.

11. Control length of simulation time using a Time Marker.

12. Edit an external HDL file with WaveFormer's Report window.

Before you begin the tutorial you may wish to view Figure 3 in Section 13 which shows a
completed version of the diagram that we will generate. File tutsim.btim included in the product
directory is a finished tutorial file. You will not use this file during the tutorial itself, but you can
always refer back to this file if you encounter any problems during the tutorial.

Circuit Operation

A histogram is a graph displaying the count of same 12-bit values received from the ADC. To store
the histogram count values we will use a 4K SRAM (2 12 storage cells) to hold a count for each
possible 12-bit value that the ADC can generate. The width of the SRAM depends on how many
data values we will accumulate from the ADC. In the worst case, the ADC could generate the same
value for the entire histogram accumulation, so the SRAM must be able to store a value of up to
4K. Thus we will use 2 8-bit wide SRAMs (2 16 = 64K > 4K).

When the circuit starts operation, the SRAM should contain zeros at every address. Each time a
data value is generated by the ADC, that data value is used as an address to look up the current
count for the data value in the SRAM. The count is incremented by one and the new value is
written back to the SRAM. This continues until the circuit has r

(TD) 6.1 Set up a New Timing Diagram

Create a new timing diagram to model the histogram circuit:

1. Select the File > New Timing Diagram menu option to create a new diagram.

2. Minimize the Parameter window. It is not used in this tutorial.

3. Select the Window > Tile Horizontally menu option. This will provide us with optimal viewing
by rearranging the Diagram window and the Report window (if either of these windows is not
visible, select the menu option Window > Diagram or Window > Report to make it visible).

Now that we have a new diagram to work with, we are ready to model the components of our
circuit.

(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform
Equations

The histogram circuit has a system clock, CLK0, and three signal inputs, POWER, START and
ADDR. We will create the waveforms for each of these signals using three different methods:
generating from clock parameters, drawing waveforms by hand, and automatically generating
waveforms from temporal equations.

2.1 Automatically generate the CLK0 system clock

Add a clock named CLK0 with a period of 100 ns:

1. Click the Add Clock button to open the Edit Clock Parameters dialog.

2. Verify that the default values are: name = CLK0, period = 100 ns, and duty = 50%. If not then
make the necessary adjustments.

Timing Diagram Editor 6: Advanced Modeling and Simulation 73

SynaptiCAD 2007

3. Press OK to accept the default values for the clock.

2.2 Graphically draw the POWER and START signal

The POWER signal is a power-on reset signal that we will use to set the initial state of our state machine. The START
signal is an external input to the system that pulses high to initiate acquisition in the histogram
circuit. The POWER and START waveforms are relatively simple, so we will draw them with the
mouse.

1. Click on the Add Signal button twice to add two signals.

2. Double-click on a signal name to open the Signal Properties dialog. Use this dialog to change
the names of the signals to POWER and START.

3. Draw the POWER signal so that it is low for 80ns, then high for 2000ns.

4. Draw the START signal so that it is low for 60ns, high for 100ns, and then low for 800ns:

5. Verify that the timing diagram looks like:

Waveform drawing and editing techniques can be found in Chapter 1: Signals and Waveforms in
the online help.

2.3 Use Temporal and Label Equations to model ADDR (A/D converter's output data)

We will model the A/D converter just as a data source, so all we need to do is generate a virtual
bus signal called ADDR (the output from the ADC) that drives the address lines of the SRAMs. The
ADDR waveform has a regular pattern that can be described easily using an equation, but would
be tedious to draw by hand.

Add a virtual bus signal called ADDR:

1. Add a signal and change the name to ADDR. Leave the Signal Properties dialog open for the
rest of the section.

2. Set the signal’s Radix to hex and the MSB to 11. Changing the MSB and Radix defines ADDR
as a 12-bit signal that display its values in hexadecimal format.

The A/D converter is driven by a clock that is 1/2 the frequency of the state machine clock CLK0,
so the ADDR value should change every other clock cycle (this maintains the same address for the
read out of each RAM cell's count data and its write back after it is incremented). The ADDR signal
should be unknown for 170ns then it should have twenty valid states, each 200ns in duration.
Use the Waveform Equation interface of the Signal Properties dialog to generate the ADDR
waveform:

1. Enter the following equation into the edit box next to the Wfm Eqn button: 170=X (200=V)*20

2. Press the Wfm Eqn button to apply the waveform equation. Notice that the waveform drew
itself. If the waveform didn't draw, a syntax error was made when typing in the equation. To
determine what the error was, look at the file waveperl.log displayed in the Report window.
This file will show you which part of the equation could not be parsed. Fix the error, and press
the Wfm Eqn button again.

SynaptiCAD Tutorials74

SynaptiCAD 2007

Next, we will label the states of the ADDR bus using a Label Equation. Each state could be
labeled individually using the extended state field of the HEX dialog box, but labeling twenty states
would take a long time. Instead, we will write an equation to label all the states at once. Chapter 11
covers all the different state labeling functions.

1. Enter the following equation into the edit box next to the Label Eqn button Skip(1), Rep(
(0,1,2,3,4), 4).

2. Press the Label Eqn button to apply the equation.

This equation will generate a hex count from 0 to 4, and then repeat it 4 times. The Skip(1) means
start labeling after the first state (which we defined to be an invalid state using our waveform
equation). Your timing diagram (at the appropriate zoom level) should now resemble the diagram
below.

(TD) 6.3 Modeling State Machines

We will use a simple one-hot state machine to control the circuit, and we will model it using
Boolean Equations. A one-hot state machine uses a single flip-flop for each state. At any given
time, only the flip-flop representing the current state will contain a 1, the other flip-flops will be at 0
(hence the name one-hot).

Figure 2: State diagram and design equations for the histogram controller state machine

The state machine (SM) initializes to the IDLE state. On the negative edge of the clock after
START goes high, the SM will enter the READ state and look up the current count for the current
address value being output by the A/D converter. This value will be incremented by a simple
fast-increment circuit. On the next clock, the SM will enter the WRITE state, latching the

Timing Diagram Editor 6: Advanced Modeling and Simulation 75

SynaptiCAD 2007

incremented value into a transparent latch called DBUS_INC and initiating the write back of the
incremented data to the SRAM. The state machine will continue to toggle between the READ and
WRITE state until the desired number of data values have been histogrammed (determined by the
size of the binary counter called COUNT), at which point the SM will return to the IDLE state.
Figure 2 shows the SM that we will model.

The state machine is modeled in WaveFormer using one signal for each state. Next we will enter
the equations for the state machine, however these signals are not simulated until Section 5
because signal DONE has not yet been defined.

1. Add 3 signals and name them IDLE, READ and WRITE.

2. For each signal, enter state machine Equation, select Simulate button, setup the clock and
trigger edge, and setup the set and clear signals as shown in the following pictures:

Notice the display in the bottom right hand corner and notice that the state machine
signal names turned gray . This is because the IDLE and READ equations reference a signal
called DONE. This signal has not been defined so if you try to simulate you get errors. In the next
section we will investigate the different ways to detect and fix simulation errors.

(TD) 6.4 Checking for Simulation Errors

If you check the simulator log file, simulation.log in the Report window, you will

SynaptiCAD Tutorials76

SynaptiCAD 2007

see an error message reporting that DONE is not declared. The log file also reports the lines in the
WaveFormer-generated Verilog source code file where this error occurred. The
WaveFormer-generated source file will have the same filename as your diagram, but with a file
extension of .v instead of .btim (so if your diagram is untitled.btim, the source code file is
untitled.v). This source file is automatically opened by the Report window whenever WaveFormer
Pro generates this file (by default this occurs every time you make a change to your design while
simulating signals).

View the HDL lines where the errors occur:

1. Check the log file for the line number at which the error(s) occurred. In the Report window,
click on the simulation.log tab . When we ran the simulator, our error occured at line number
57 (your run may be different) , as indicated by the error message:
C:\SynaptiCAD\UNTITLED.v: L57: error: 'DONE' not declared

2. Click on the tab for the *.v file at the bottom of the Report window. This will open your source
file in the Report window.

3. Click inside the Report window, and
press <Ctrl>-G. This brings up the Go To
Line window. Enter 57 as the line number
you wish to jump to, and press OK.

4. As expected, these lines show the HDL
code that simulates the IDLE and READ
signals.

NOTE: Do not make changes in this source file as your changes will automatically be overwritten
the next time a simulation is performed; instead, we will make the appropriate changes in the
Diagram window and Signal Properties dialog.

(TD) 6.5 Incremental Simulation

One common problem in simulating and debugging digital systems is that large parts of the design
have to be entered before testing can begin because the parts provide input to each other. One
solution is to break a design up into pieces and test each piece with test vectors that represent the
output of the other pieces. However, generation of the test vectors can be time consuming.

SynaptiCAD products provide a very simple and quick method for testing small parts of a design:
graphically draw the signals for the missing parts of the design to test the design at its current state
of development. Then later add the design information that models these signals (in other words,
we temporarily model simulated outputs as drawn inputs).

We will now use this method below to verify the operation of our state machine before we enter the
HDL code that generates the DONE signal:

1. Add a signal called DONE.

2. Draw a low segment for 1.6 us, followed by high pulse that lasts for at least one clock cycle.
Click on Apply to run the simulation.

3. The diagram should now show the simulation output from your state machine. The simulated
signals are pink to distinguish them from graphically drawn signals.

Timing Diagram Editor 6: Advanced Modeling and Simulation 77

SynaptiCAD 2007

Make sure everything is working properly:

1. First make sure that the simulation status indicators read Simulation Good.
If the indicators still show an error, then the simulation.log file will help you to pinpoint the
error in your diagram.

2. Next, check your diagram against the figure above to verify that your state machine is
simulating correctly.

3. If the simulation succeeded and there are still discrepancies in the output, check your design
equations and the input stimulus you’ve drawn (START and DONE signals).

Once you have the circuit simulating properly, let’s see what happens if the START pulse gets too
small:

1. Drag the falling edge of the START pulse back to approximate 140 ns (before the falling clock
edge at 150 ns). This step causes the state machine to stay in the IDLE state (the IDLE signal
stays high).

2. Double click on the falling START edge and enter a time of 160 into the Edge Properties
dialog to restore proper operation.

(TD) 6.6 Modeling Combinational Logic

In addition to the state signals, the state machine has one other output signal called ENABLE that
is used to enable the SRAM, the DONE counter, and the ADC. ENABLE is just the output of an OR
gate with the READ and WRITE signals as inputs. In Section 3 we used the Boolean Equation
interface to model the flip-flops of the state machine. We will use the same interface to model
combinatorial logic. To do this choose the default clock called unclocked. If a signal other then
unclocked is selected, then the Boolean Equation interface models registers or latches depending
on the type of Edge/Level trigger selected. Chapter 12 covers the advanced features of the
Boolean Equation interface including the min/max delay features.

Model the Enable logic:

1. Create a new signal called ENABLE.

2. Enter the equation: READ | WRITE into the Boolean Equation edit box in the Signal Properties
dialog.

3. Check the Simulate radio button.

4. Verify that ENABLE is the OR of READ and WRITE. If ENABLE did not simulate, use the
techniques found in section 4 to find your error. Remember that signal names are
case-sensitive.

5. Click OK to close the dialog.

SynaptiCAD Tutorials78

SynaptiCAD 2007

(TD) 6.7 Entering Direct HDL Code for Simulated Signals

For simplicity, the counter output COUNT is modeled using a simple block of behavioral HDL Code
instead of using Boolean equations. It would take a large number of Boolean equations to model
the counter and the equations would be difficult to modify if the counter operation had to be
changed. For this tutorial we will create a 4-bit counter to test our system. This counter could be
easily modified later to make it 12-bit (to acquire 4K worth of data). To enter direct HDL code for
the COUNT signal:

1. Create a signal called COUNT.

2. In the Signal Properties dialog, set the Radix to hex, its MSB to 3, and check the Simulate
radio button.

3. Press the Verilog radio button to switch from the Equation view to the HDL Code
view/editor.

4. Enter the Verilog code below in the HDL Code editor of the Signal Properties dialog
(comments begin with // and can be skipped during code entry). You can copy and paste the
text into WaveFormer instead of typing it (Select and copy to clipboard the source code below,
then click into the HDL Code window in WaveFormer and press <Ctrl>-V to paste the text):

reg [3:0] COUNTER; //declare a 4-bit register called COUNTER

always @(negedge CLK0) //on each falling edge of CLK0

 begin

 if (ENABLE)

 COUNTER = COUNTER + 1; // count while ENABLE is high

 else

 COUNTER = 0; // synchronous reset if ENABLE is low

 end

assign COUNT = COUNTER; //drive wire COUNT with reg COUNTER value

5. Click the Simulate Once button to simulate the COUNT signal.

Note: All signals in WaveFormer are modeled as wires, so the assign is required at the end of the
HDL code block to drive the COUNT wire with the value of COUNTER (which must be a register in
order to remember its value).

To increase the size of the counter to acquire 4K data values (do not do this now), we could
change the MSB of COUNT to 11 and change the declaration of COUNTER in the HDL code to:

reg [11:0] COUNTER; //example only, don't do in this tutorial

[****]

(TD) 6.8 Modeling n-bit Gates

Next we will model the DONE signal that we originally drew as an input to the state machine. The
DONE signal is generated by performing a bitwise AND of the COUNT signal (we are done
whenever all the counter bits are high).

Timing Diagram Editor 6: Advanced Modeling and Simulation 79

SynaptiCAD 2007

To model the DONE Signal:

1. Double click on the DONE signal name to open the Signal Properties dialog box.

2. Enter the following equation in the Boolean Equation edit box: &COUNT

3. Check the Simulate radio button. The resulting signal should look like the hand drawn signal
except that it is a purple simulated signal.

The & operator when used as a unary operator is called a reduction-AND operation. A
reduction-AND indicates that all the bits of the input signal should be ANDed together to generate a
single bit output. This is equivalent to the following equation: COUNT[0] & COUNT[1] & COUNT[2] &
...

One nice benefit of using a reduction operator instead of the above equation is that it automatically
scales the circuit to match the current size of the COUNT signal (it’s also a lot easier to type)!

(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer
Simuations

We will use an SRAM HDL module contained in an external file (sram.v) to model the SRAM. This
model is fairly complex and accurately models the asynchronous interface that is commonly used
by most off-the-shelf SRAMs. One special feature is that the SRAM resets all its memory cells to
zero when it first starts up. In a real circuit, we would need to add extra logic to iterate through the
addresses, writing zeros at each one. A full description of the Verilog modeling of this SRAM is
outside the scope of this tutorial, but let’s take a quick look at it inside the Report window:

1. Select the Report > Open Report Tab menu option and open the file sram.v (located in the
SynaptiCAD\lib\Verilog directory). Verify that you can view the file in the Report window.
Keep this file open because we will be referring back to this file later in the tutorial.

9.1 Including an external SRAM Verilog model file into WaveFormer

To add the SRAM model to our design we need to modify the wavelib_exact.v file that contains
the models used by WaveFormer. The SRAM model code cannot be entered into a signal’s HDL
code window because the model declares a module and modules cannot be nested in Verilog
(WaveFormer puts all the HDL code from signals into a single module called testbed). All
user-written Verilog modules should be declared in wavelib_exact.v (or preferably, included from
separate files into wavelib_exact.v using the include directive as will be doing). In this case, the
source code for the SRAM is already contained in a separate file called sram.v and we only need
to add an include statement to wavelib_exact.v to let WaveFormer know about it. To modify the
wavelib_exact.v file:

1. Select the menu option Report > Open Report Tab and open the wavelib_exact.v file in the
SynaptiCAD\hdl directory.

2. Add the following line to the beginning of the wavelib_exact.v (it may already be there
depending on which SynaptiCAD product you are using): `include "lib\verilog\sram.v"

3. Select the Report > Save Report Tab menu option to save your change.

9.2 Instantiating the SRAM component models

To drive the data bus DBUS, we need to instantiate two instances of the SRAM model:

1. Create a new signal called DBUS.

2. Set the Radix to hex, set the MSB to 15, check the Simulate radio button, and select the
Verilog radio button.

3. Enter the following HDL code into DBUS’s HDL code window:

wire CSB = !ENABLE;

sram BinMem1(CSB,READ,ADDR,DBUS[7:0]);

SynaptiCAD Tutorials80

SynaptiCAD 2007

sram BinMem2(CSB,READ,ADDR,DBUS[15:8]);

The first line creates an internal signal that is an inverted version of the ENABLE line (the SRAM is
active low enabled). The next two lines instantiate two 4Kx8 SRAMs and connect up their inputs
and outputs (the first SRAM contains the low byte of the count and the second contains the high
byte).

(TD) 6.10 Modeling the Incrementor and Latch Circuit

In Section 3 we used the Boolean Equation interface to model the state machine using negative
edge-triggered registers. Now we will use the same interface to generate level-triggered latches
used to model the increment-and-latch circuit. The value stored in the SRAMs is placed on DBUS
and the incrementor circuit takes that value, adds one to it, and latches the incremented value:

1. Create a new signal called DBUS_INC.

2. Enter the following equation into the Boolean Equation edit box: DBUS + 1

3. Choose the READ signal from the clock drop-down list box.

4. Choose high from the Edge/Level drop-down list box. This selects the type of latch to be
used.

5. Set Radix to hex, MSB to 15, and check the Simulate radio button.

6. Press the Simulate Once button and verify that DBUS_INC is an incremented version of
DBUS. If DBUS_INC did not simulate, use the methods in section 4 to determine the error.

(TD) 6.11 Modeling Tri-State Gates

There are 2 possible drivers for DBUS: the SRAMS which we modeled in section 9, and the
tri-stated output of the DBUS_INC signal. All the drivers for a bus should be included in the code
for the bus.

To add the tri-state gate to DBUS:

1. Double click on the DBUS signal name to open the Signal Properties dialog box.

2. In the direct HDL code edit box add a 4th line of HDL code to DBUS:

assign DBUS = WRITE ? DBUS_INC : 'hz;

Line 4 models the tri-state gates that follow the latches in the histogram circuit. These tri-state
gates are enabled whenever the WRITE signal is high. We use the conditional operator (condition
? x : y) which acts like an if-then-else statement (if condition then x else y). If WRITE is high, DBUS
is driven by DBUS_INC (the incremented version of DBUS that we latched), else the tri-state
drivers are disabled (‘hz means all bits are tri-stated).

Timing Diagram Editor 6: Advanced Modeling and Simulation 81

SynaptiCAD 2007

(TD) 6.12 Debugging External Verilog Models

Verilog contains two system tasks (commands), $display and $monitor, that can be included in
Verilog source files for debugging purposes. $display acts like a C-language printf statement
which prints to the simulation log file simulation.log whenever it is executed by the Verilog
simulator. $monitor is similar, but it automatically prints to the log file whenever any of the signals
listed in this command change state. The SRAM model file sram.v contains two $display
statements that output the address and data values for the SRAM whenever the SRAM is read
from or written to (you can view the $display commands in sram.v in the Report window). You can
see the output of the $display commands by viewing simulation.log in the Report window. Each
time the SRAM performs a read or write a message is sent to the log file.

(TD) 6.13 Verify the Histogram Circuit

At this point we have modeled the entire histogram circuit, so your diagram should resemble the
figure below. If it doesn’t, check the simulation.log for errors and correct as necessary. The output
of the $display commands will be particularly useful if you are getting x’s on your DBUS signal
which indicates unknown data is being read from your RAMs. One thing to check for is that your
diagram is never performing a write to an unknown address (an address containing x's) in your
RAM bank. If you write a value to an unknown address, the memory model has no way of knowing
which memory location has been changed. Therefore, all the memory locations in the entire
address space of the RAM bank may or may not have been changed. The memory model is forced
to represent this unknown state by setting all memory locations in the SRAM to x!

Figure 3: Completed Timing Diagram

(TD) 6.14 Controlling the Length of the Simulation

By default, WaveFormer simulates to the last drawn signal edge. You can also use a time marker
to control the length of the simulation. To place a time marker:

1. Click the Marker button found on the button bar. This turns the Marker button red which

SynaptiCAD Tutorials82

SynaptiCAD 2007

indicates that right clicks in the Diagram window will add marker lines.

2. Right click at about 1us in the Diagram window. A new time marker line will appear.

3. Double click on the marker to open the Edit Time Marker dialog.

4. Set the marker type to End Diagram.

5. Click OK to close the dialog, then drag the marker on the screen. As you move the marker,
the simulator will automatically resimulate the design up to the time location of the marker.

(TD) 6.15 Editing Verilog Source Files

To demonstrate how to make changes to a Verilog source file inside WaveFormer, we will edit the
SRAM model file sram.v in the Report window:

1. Change line 18 from: ram[i] = 0; To ram[i] = 8;

This causes the SRAM cells to be initialized with 8 instead of zero.

2. Select the Report > Save Report Tab menu option to save your change.

Let's see the effect of this change:

3. Press the Simulate Once button in the Signal Properties dialog, or move an input edge. Either
of these steps initiates a resimulation.

You may have anticipated that DBUS would now show 8 (we did when we first did this tutorial!), but
it is correct in showing 808 because our DBUS is a 16-bit value composed of the data in two
parallel SRAMs each initialized with 08 (hence 0808 = 808).

4. Reset the line back to ram[i] = 0;

(TD) 6.16 Simulating Your Model with Traditional Verilog
Simulators

The Verilog model of your system created by WaveFormer can also be simulated by traditional
Verilog simulators. The complete verilog model simulated by WaveFormer is composed of (1) the
verilog file generated by WaveFormer (untitled.v for this tutorial), (2) the WaveFormer library file
wavelib.v, and (3) any external model files you have included (e.g. sram.v for this tutorial). Follow
the instructions of your Verilog simulator to simulate these files together.

(TD) 6.17 Summary

This concludes the advanced simulation tutorial. Other simulation features not covered in this
tutorial that you may wish to experiment with are: flip-flop timing characteristics (clock to output
propagation delay and continuous setup and hold time checking) in the Signal Properties Dialog
and the global simulation options in the Options > Simulation Preferences Dialog.

Test Bench Generation 1: VHDL-Verilog Stimulus 83

SynaptiCAD 2007

Test Bench Generation 1: VHDL-Verilog Stimulus

This tutorial describes how to generate Verilog and VHDL stimulus files using WaveFormer Pro,
VeriLogger Pro and TestBencher Pro. This tutorial is important because it describes exactly how
the waveforms of a single timing diagram will be exported. It also covers advanced data types that
are used in VHDL generation.

TestBencher Pro customers should also work through the on-line TestBencher Tutorials, which
cover the sample parameters that generate the self-testing code, and modifying the template files
used to generate multi-diagram test benches.

This tutorial covers how the following objects are exported into VHDL and Verilog:

- clocks & signals

- graphical waveform states (high, low, tristate, valid, invalid, weak high, weak low)

- virtual buses with hex, binary, and other data values

- VHDL user-defined types and integer types

(TBench) 1.1 Getting Started

Get a Full Version License

If you are evaluating WaveFormer Pro, VeriLogger Pro or TestBencher Pro you need to upgrade
the evaluation version by obtaining a two week trial license. This license will turn your evaluation
version into a full version for two weeks. To obtain a two week evaluation license, complete the form under Help >
Request License, or contact our sales department.

1. Select the File > Open menu option and load file tuthdl.btim from the
SynaptiCAD\Examples\TutorialFiles\AdvancedHDLStimulusGeneration directory.

2. Select the File > Save As menu option and save the project as test.btim (this will keep the
original file intact).

The first signal, CLK0, is a clock with a period of 50ns. The second signal, SIG0, is a waveform
that contains all of the graphical states available in WaveFormer Pro. The third signal, VirtualBus,
is a waveform drawn with valid and tristate segments.

(TBench) 1.2 Default Mappings: Hex and Binary Translations

WaveFormer Pro supports a language independent bus format for hexadecimal and binary bus
values.

During the translation to Verilog or VHDL, the extended state value of a segment is evaluated to
determine if it is a hexadecimal or binary number. If the extended state value begins with a 'b or 'h
then it is assumed that the number is a binary or hexadecimal number and the number will be
translated to the appropriate VHDL or Verilog bus value. If the extended state value does not start
with 'b or 'h then the value is written out as it was entered, without any translation.

To demonstrate the hex and binary translations, we will edit the signal VirtualBus so that it will
correctly export as an 8-bit bus. We will also use the 'b and 'h values to set the segment values

SynaptiCAD Tutorials84

SynaptiCAD 2007

and compare how they export in VHDL and Verilog. Later in the tutorial we will generate the Verilog
and VHDL code.

Setting the size of a virtual bus to 8 bits:

1. Double click on the VirtualBus signal name to open the Signal Properties dialog box.

2. Type 7 into the Bus MSB edit box.

3. Type 0 into the Bus LSB edit box.

4. Click OK to close the dialog box.

Setting the values in a virtual bus waveform:

1. Select the first waveform segment of VirtualBus by clicking on it. A selected segment has a
box around it.

2. Click on the HEX button at the top of the window to open the Edit Bus State dialog box.
The Edit Bus State dialog box can also be opened by double-clicking on the selected
segment.

3. Type 'b11101110 into the Virtual edit box. This is an 8-bit binary number.

4. Press ALT-N (or press the Next button) two times to advance to the next valid segment.

5. Type 'hA into the Virtual edit box. This is the 8-bit hexadecimal number A (00001010 in
binary). The program automatically left pads missing bits with zeros.

6. Click the OK button to close the Edit Bus State dialog.

(TBench) 1.3 Generating Verilog Code

Next we will demonstrate how to generate Verilog stimulus vectors from timing diagrams.

1. Choose the Export > Export Timing Diagram As menu option to open the Export dialog.

2. In the Save as Type list box in the lower left corner of the dialog, choose the Verilog (*.v)
script. This indicates that the timing diagram will be exported to a Verilog code file with a
default file extension of ".v".

3. Choose test.v as the file name and click the Save button to close the dialog. WaveFormer Pro
will produce a Verilog file named test.v.

4. The file test.v is automatically displayed in the Report window. If you cannot see the Report
window, select the Window > Report Window menu option to bring the window to the top.

Look at the resulting file by clicking on the test.v tab on the bottom of the Report window. Notice
how CLK0 uses a while loop to produce its transitions and how SIG0 uses assignment statements.
Also note, values for the VirtualBus assignments have a 8’ in front which indicates that VirtualBus
is an 8-bit vector. The first segment of VirtualBus has a value of, 8’b11101110, which is the correct
Verilog syntax for an 8-bit bus with a binary value of 'b11101110. The next segment has a value of
8’bzzzzzzzz which is the value for an 8-bit tri-stated bus. Next value is 8’b00001010 which is a
zero padded translation of the hexadecimal value 'hA.

Test Bench Generation 1: VHDL-Verilog Stimulus 85

SynaptiCAD 2007

(TBench) 1.4 VHDL - Advanced Data Types

WaveFormer Pro supports both simple std_logic signals and complex user-defined data types for
VHDL test benches. By default all signals are assumed to have a type of std_logic and a direction
of out (CLK0, SIG0, and VirtualBus will use the defaults for this tutorial). In this section you will add
SIG1 and SIG2 to demonstrate signals with a standard integer type and a user defined type.

Add SIG1 and SIG2

1. Click on the Add Signal button two times to add two signals.

2. Double click on the VAL button. The first click selects Valid as the initial graphical state, and
the second click selects Valid as the toggle state (as indicated by the red T). This causes the
VAL button to stay selected when you draw waveform segments.

3. Sketch some valid waveforms for SIG1 and SIG2 similar to those in the figure below.

Change the type of SIG1 to integer and the type of SIG2 to MyColor.

1. Double-click on the SIG1 signal name to open the Signal Properties dialog box.

2. Choose integer from the Signal Type drop down list box. You may have to scroll down to find
the entry.

3. Choose dec from the Radix drop-down list box to indicate that the values you will be entering
into the virtual state are decimal values.

4. Click the Next button to move to SIG2. Make sure that you moved to SIG2 and not to the
previous VirtualBus signal.

5. Type in MyColor into the Signal Type drop down list box. MyColor is the name of the user
defined type that we will use.

6. Click the OK button to close the dialog.

Add Extended State information to the waveforms of SIG1.

1. Double-click on the first waveform segment on SIG1 to open the Edit Bus State dialog box.

2. Type 25 into the Virtual edit box and move to the next segment (ALT-N or the Next button).

3. Enter integer values for each segment (we used 25, 50, 47).

Add Extended State information to the waveforms of SIG2.

1. Select the first waveform segment on SIG2. Notice that the Edit Bus State dialog changes to
display state information about the current segment.

2. Type RED into the Virtual edit box and move to the next segment (ALT-N or the Next button).

3. Enter color values for each segment (we used RED, GREEN, BLUE).

For a real VHDL simulation, the color value would have to match the enumerated values

SynaptiCAD Tutorials86

SynaptiCAD 2007

defined for MyColor in your original circuit model. For instance, MyColor might be defined
as: enum MyColor ={RED, GREEN, BLUE, BLACK};

4. Click OK button to close the Edit Bus State dialog and exit the HEX mode.

Your timing diagram should resemble the figure below.

(TBench) 1.5. Exporting to VHDL

Export to a VHDL stimulus file:

1. Choose the Export > Export Timing Diagram As menu option to open the Save As dialog.

2. Choose VHDL (*.vhd) script using the Save File as Type list box in the lower left corner of
the Save As dialog.

3. Click Save to close the edit box and generate the VHDL transport stimulus file.

View the file test.vhd inside the Report window. Notice the entity and architecture structures and
the types of all the signals. CLK0 uses a while loop to calculate its value. SIG0 shows how the
graphical states are exported. VirtualBus is defined as an 8-bit logic vector. SIG1's values are
exported as integers. SIG2's values are exported as RED, GREEN, and BLUE.

Congratulations, you have now completed the HDL stimulus generation tutorial.

Test Bench Generation 2: Reactive Test Bench Option 87

SynaptiCAD 2007

Test Bench Generation 2: Reactive Test Bench Option

The Reactive Test Bench Generation Option can be added to WaveFormer Pro, DataSheet Pro,
VeriLogger Pro, and BugHunter Pro. The features are included in TestBencher Pro, so it is a good
introduction for creating a single timing transaction in TestBencher Pro, also. With Reactive Test
Bench Generation, users can draw "expected" waveforms on the MUT output ports and add
"samples" to the waveforms to test for specific state values. During simulation, the code generated
by the samples would watch the output from the model under test and compare it to the drawn
waveform states. Samples can perform a variety of functions such as pausing the simulation to
debug a problem, reporting errors and warnings, user-defined actions, and triggering other
samples.

All of the relevant files for this tutorial can be found in the
SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench directory. At the end of this tutorial,
you will have created one timing diagram that uses many different reactive features. There are also
pre-made diagrams for each completed step, allowing you to start at any step of the tutorial
desired. These completed diagrams can be found in the
ReactiveTestBench\CompletedDiagrams directory.

(TBench) 2.1 The Model Under Test

We will use a simplified version of a PCI slave device as the model to be tested. The model is
contained in mymut.v and the module is named mymut. No experience with PCI is required to
perform and understand this tutorial. There is no arbitration, the MUT responds to all addresses,
and the only valid commands are single reads and writes. It contains a memory that can be written
to and read from and has the following ports (all control signals are active low):

- CLK (input): device is clocked on the negative edge

- FRAME (input): indicates start of transaction.

- WRITE (input): indicates write transaction.

- IRDY (input): stands for initiator ready. Indicates when the master device is ready for
transaction to complete (the master will be the test bench in this case).

- TRDY (output): stands for target ready. During a write, this indicates that the MUT has
finished writing data to it's memory. During a read, this indicates that the MUT has read the
data from memory and put it on the DATA bus.

- ADDR (output): Address to write to or read from.

- DATA (inout): Data to write to memory or data that is read from memory.

Each transaction consists of an address cycle and data cycle. During the address cycle, the

SynaptiCAD Tutorials88

SynaptiCAD 2007

WRITE and ADDR signals must be valid. During a write data cycle, the DATA signal must be valid
before IRDY is asserted. Then the MUT indicates that it is finished storing the data by asserting
TRDY. During a read data cycle, the MUT must drive DATA before asserting TRDY. Then, the
master asserts IRDY when it is finished reading the data. Once IRDY or TRDY is asserted, they
must remain asserted until the transaction is finished which is indicated by the de-assertion of
FRAME.

(TBench) 2.2 Create Signals

A) Create a Project

First, create a project file to hold the model under test. This will allow WaveFormer to extract the
information necessary to instantiate the model under test inside the testbench and extract the input
and output ports from the model under test.

Non-Libero users:

· Choose Project > New Project menu function to open the New Project Wizard dialog.

· In the Project Name box, type in reactivetut as the name of the project. This will become both
the name of the project and the directory where the project and associated files are stored.

· Click the Finish button to create the project and close the dialog.

· Inside the Project window, right click and choose Copy New Source Files from the context
menu. This will open a file find dialog.

· Select mymut.v from the SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench
directory.

· The mymut.v file will be copied to the project directory and listed in the project window.

Actel Libero users only: Create a project inside Libero following the steps in the Libero
documentation, add the source file mymut.v from the SynaptiCAD\Tutorials\ Reactive Test
Bench directory, and launch WaveFormer Lite. This will automatically create a WaveFormer
project file and add your source files to that project.

B) Extract MUT ports into Diagram

· Next, press the, , Extract MUT ports into Diagram button to extract the top level ports
from mymut.v and dump them into a timing diagram window.

C) Create Clock Waveform

Once the ports are extracted, convert the signal named CLK to a Clock:

· Right-click on the CLK label name and select Signal <-> Clock from the context menu. This
will draw a clock waveform with a default frequency of 10MHz.

D) Set Default Clocking Signal and Edge

Next set the Clock signal and Edge for all of the signals in the diagram so that the test bench will
be cycle-based instead of time-based (this means the test bench stimulus will change after waiting
on clock transitions instead of time delays).

· Right-click in the signal name list in the diagram window and select TestBencher Diagram
Properties context menu to open a dialog of the same name.

· In the Default Clock drop down, select CLK as the default clocking signal to use and set the
Edge dropdown as pos to specify positive-edge clocking.

· Click the Update Existing button to set the clocking signal for existing signals. Press OK to
close the dialog.

Test Bench Generation 2: Reactive Test Bench Option 89

SynaptiCAD 2007

· The diagram window will have all of the signal names and the clock waveform. In the next
section you will draw the rest of the waveforms.

Following is an example of the difference between a cycle-based and time-based test bench. Both
of these code segments were exported from the diagram you will be drawing in the next step. The
example on the left is time-based and the example on the right is cycle-based.

Signals with the same clocking signal and edge type will be driven by a common process in the
generated code. We call a process of this type a Clocked Sequence. All the unclocked signals are
driven by the Unclocked Sequence. This means that when a diagram contains signals with different
clocking signals, a separate sequence process will be created for each clocking signal/edge type.
Clocked Sequences are named based on the clocking signal and the edge type, so for this
example, the clocked sequence that contains the code on the right in the example below will be
called CLK_pos.

#137;

FRAME_driver <= 1'b0

#3;

WRITE_driver <= 1'b0

ADDR_driver <= 8'h00

#100;

WRITE_driver <= 1'b1

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx

DATA_driver <= 8'hAA

#100;

FRAME_driver <= 1'b1

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz

#101;

repeat (2)

begin

 @(posedge CLK);

end

FRAME_driver <= 1'b0;

WRITE_driver <= 1'b0;

ADDR_driver <= 8'h00;

@(posedge CLK);

WRITE_driver <= 1'b1;

IRDY_driver <= 1'b0;

ADDR_driver <= 8'hxx;

DATA_driver <= 8'hAA;

@(posedge CLK);

FRAME_driver <= 1'b1;

IRDY_driver <= 1'b1;

DATA_driver <= 8'hzz;

@(posedge CLK);

(TBench) 2.3 Draw Single Write (without waiting on TRDY)

Draw the write transaction shown below. This transaction could be used as a simple test bench
that just drives the input ports of the MUT, but it ignores the TRDY signal and doesn't verify that the
data was actually written successfully to the MUT. We will add this functionality in the next couple
of steps. If you have trouble drawing the waveforms, please review the Basic Drawing and
Timing Analysis Tutorial before continuing with the rest of this tutorial.

SynaptiCAD Tutorials90

SynaptiCAD 2007

(TBench) 2.4 Export Diagram as an HDL Test Bench

To Generate a Verilog or VHDL test bench:

· Select the menu option Import/Export > Export Timing Diagram As to open the Export As
dialog.

· In the Save As Type drop-down, select either:

· Verilog w/ Top Level Test Bench to create a test bench that includes an instantiation of the
model under test, or

· Verilog to generate just the model that includes the testbench code

· Press the Ok button to generate the test bench.

· You can view the generated code in the Report window, under the tab of the saved file. (If you
cannot see the Report window, choose the menu Window >Report to bring it to the front).

As you proceed through this tutorial, you will periodically perform the steps above to see how the
generated code changes as the timing diagram is edited.

(TBench) 2.5 Add Wait for TRDY Assertion

There are two ways to perform this step. One method uses the Sensitive Edge feature and will
wait indefinitely for TRDY to assert. The other method uses a Sample instead, so that a timeout
can be specified. Both methods are explained below.

Draw the Expected Waveform for the TRDY signal

· First draw the expected TRDY waveform shown below. Notice that the waveform is blue
because it is an input to the diagram, so the data shown is predicted data, not data to be
driven. The direction of the signal was imported during the extract ports from mut step.

Test Bench Generation 2: Reactive Test Bench Option 91

SynaptiCAD 2007

A) Wait Indefinitely Using Sensitive Edges

A signal can be set to have sensitive edges, so that the test bench will wait on every falling or rising
edge that the model under test generates. Here we will edit TRDY’s properties so that the test
bench will wait until TRDY has a falling edge before continuing to supply stimulus to the model
under test.

· Double-click on TRDY to open the Signal Properties dialog.

· Check the Falling Edge Sensitive check box, and press OK to close the dialog.

· Notice that TRDY now has an arrow drawn on the falling edge, to indicate that it is falling edge
sensitive.

· Make sure that the falling edge of TRDY is drawn after the falling edge of IRDY, otherwise the
test bench will wait for TRDY to assert before asserting IRDY.

To see the generated code, export the test bench to your preferred language and view the code in
the Report tab that contains the generated code. Use the search tool in the button bar to locate the
CLK_pos sequence (in verilog, search for "task CLK_pos", in VHDL search for "CLK_pos :"). Then
search down for "Sensitive" to view the code generated for the sensitive edge. You should see
code similar to the following:

VHDL: -- Sensitive Falling Edge on signal: TRDY

wait until falling_edge(TRDY) or (tb_DgmAborted);
Verilog: // Sensitive Falling Edge on signal: TRDY

 @(negedge TRDY);

Using this method, the transaction will wait indefinitely for TRDY to assert. If you want the
transaction to timeout if TRDY doesn’t occur after a given time, use the sample approach below
instead to wait for TRDY.

B) Wait with a Timeout Using a Sample

An alternate approach to waiting on an incoming edge is to use a graphical sample. If you have
already performed the steps in section A, uncheck the sensitive edge check box to cancel the
indefinite wait that you created in the previous section before performing this step.

· Press the Sample button at the top of the diagram window to enter into sample mode.

· Left-click on the rising edge of CLK at 300ns to select the edge, then right-click on TRDY at
300ns. This will add a sample to the diagram.

· Double-click on the new sample's name to open the Sample Properties dialog.

· Change the name to WaitForTRDY, then click on the HDL Code button in the Sample
Properties dialog to open the Code Generation Options dialog. Here is where you can control
the behavior of the Sample once it is triggered to run. Make the following changes:

1. Uncheck the Full Expect check box to indicate TRDY only has to assert at some time
during the sample’s execution.

2. Specify 100 for the Multiplier to make the sample wait for up to 100 cycles of the clock
since TRDY is a clocked signal.

3. Check the Blocking check box so that the sample blocks the transaction until the
sample finishes.

SynaptiCAD Tutorials92

SynaptiCAD 2007

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. Locate the CLK_pos sequence, then search down for "WaitForTRDY" to see
the code generated for the sample.

(TBench) 2.6 Draw Single Read

A) Draw the Waveforms for the Read cycle

Draw a read transaction following the write transaction. Below is a picture of what the waveforms
should look like. The read cycle starts at 400ns. The picture will vary if you did the sample version
instead of the sensitive wait waveform.

B) Disable Drive for the DATA Segment

To avoid bus contention, the test bench must not drive the DATA bus during the read cycle,
because the MUT will be driving that bus. Since the DATA bus is a bi-directional signal, you can
specify which parts of the waveform are driven by the test bench and which are not. One-way to do
this is to draw a tri-state waveform. However, in this case we need to specify the expected data on
the bus, so we will have to disable the drive on the expected value segments.

· Double-click on the waveform segment of DATA that happens during the read cycle to open
the Edit Bus State dialog.

· Uncheck the Driven check box and click OK.

· Notice that the segment will be drawn in blue now, indicating that the DATA signal will not be
driven by the test bench during this time period (just like the entire TRDY signal).

Test Bench Generation 2: Reactive Test Bench Option 93

SynaptiCAD 2007

(TBench) 2.7 Add a Sample to Verify Data Read From MUT

Samples can be used to verify data that is generated by the model under test during simulation.
Here we will add a Sample to the Data bus to verify that the read cycle worked correctly.

· Press the Sample button at the top of the diagram window to enter sample mode.

· Left-click on the positive CLK edge at 600ns, then right-click on the DATA segment directly
below it. This will place a Sample that will trigger at that clock edge and verify that the data
read from the MUT is what we expect (indicated by the waveform drawn under the Sample).

· Double-click on the Sample name to open the Sample Properties dialog.

· Change the sample name to VerifyDataRead

· Press the HDL Code button to open the Code Generation Options dialog.

· The If condition should be set to Sample State Matches, which is the default behavior for a
sample

· Set the Then Action, to Display Message so that each time the sample passes it will
generate a log messages stating that it passed.

· Click OK to close these dialogs.

Here is what the diagram should look like after adding the Sample:

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. Locate the CLK_pos sequence, then search down for VerifyDataRead to see
the code generated for the sample.

(TBench) 2.8 Drive Data Using a "Test Vector Spreadsheet" File

his step will use an ASCII input file to drive the DATA bus during the write cycle so that we can
model a memory array. The basic idea is to create a user-defined array variable that is initialized
from a file containing the values stored in the memory, then drive the DATA bus using the values of
this array (using the current address value as the index for the array). Here are the steps to create
the array variable.

· Click the View Variables button in the diagram to open the Variable List dialog.

· Click the New Variable button, then click on the name and change it to inputData. This name
is important because it must match a column name in the input file that we choose.

· Under the Structure column select array.

· Set Size to 256 to indicate that we are creating an array of 256 elements.

SynaptiCAD Tutorials94

SynaptiCAD 2007

· Set Data Type to 2_state then change MSB to 7 (this indicates we’re storing 8-bit values in the
array).

· Check the Initialize Structure With File checkbox near the bottom of the dialog.

· Browse to the SynaptiCAD\Examples\TutorialFiles\ReactiveTestBench\inputData directory
and select inputData.txt.

· Hit OK to close the dialog

Now that the variable is created, the next step is to refer to this array to drive and verify data. So,
both of the AA states need to be changed. For the two AA states, do the following:

· Double-click on the state to open the Edit Bus State dialog.

· Set the Virtual State to @inputData[address] and click OK. The @ symbol is used to refer to
a variable defined in the Variable List dialog.

To see the generated code, export the test bench and view the code in the Report tab that contains
the generated code. To see the code that initializes the inputData array, seach for "inputData".
Next, look at the CLK_pos sequence, and search for "address" to find the assignment statement
that drives the DATA bus with a value from inputData indexed by the address variable (the address
variable will be created in the next step).

(TBench) 2.9 Create For-Loop to Perform Multiple Writes and
Reads

This step sets up the diagram to perform multiple writes and reads.

Note: If you are creating a TestBencher transactor then the next step should be performed,
TestBencher Pro Transactor - Add Address Argument. Perform this step if you are unsure as it is
also valid for TestBencher transactors.

· Depress the Marker button, left-click the positive clock edge at 100ns, then right-click to place
the Marker.

· Place another marker at the positive clock edge at 800ns.

Test Bench Generation 2: Reactive Test Bench Option 95

SynaptiCAD 2007

· Double-click on the first Marker to open
the Edit Time Marker dialog. Change
the name to AddressLoop, set the
type to For Loop, set Index to
address, and set end to 10. Then
press OK to close the dialog

· Double-click the second Marker to open the Edit Time Marker dialog. Change Type to Loop
End and then press the OK button to close the dialog

The two markers should now be connected graphically as shown below.

(TBench) 2.10 TestBencher Pro Transactor - Add Address
Argument

This step is optional and should only be performed if you are creating a TestBencher transactor. In
this case, the for-loop can be omitted from the diagram and an argument can be set up for the
address (i.e. the address can be passed in via the diagram apply call). It's not invalid to create a
for-loop as performed in the previous step, but avoiding the for-loop gives the transactor greater
flexibility.

Note: The primary purpose of this tutorial is to demonstrate various features available to all
Reactive TestBench users. So, there are several steps that may not make as much sense
for TestBencher users. For instance, two transactors could have been created instead of
one: one for the write cycle and one for the read cycle. Also, the data could have been
passed in as an argument to the diagram apply call (a function call that causes the
transactor to perform a transaction with a given set of transaction arguments).

To add an address argument, do the following for the two address states (which currently are set
to 00):

· Double-click on the state to open the Edit Bus State dialog.

· Enter $$address for the state value and click OK.

Here's what the final transactor should look like:

SynaptiCAD Tutorials96

SynaptiCAD 2007

Now when an apply call in inserted for this transactor in the sequencer process, you will be able to
specify which address to use.

(TBench) 2.11 Alternatives

A) Consecutive Writes followed by Consecutive Reads

If you want to perform multiple writes concurrently, followed by multiple concurrent reads, then two
for-loops are needed. The array of data can be referenced in each loop in the same manner
already demonstrated.

B) Random Data

In Verilog, you could use $random() as the state value for DATA during the write transaction. A
user-defined function can also be embedded into the generated test bench using the Class
Methods dialog which could be used to generate data values. In both of these cases, you would
need to modify the state value under the VerifyDataRead sample since the inputData array is no
longer used. A Sample must be placed on the driven DATA segment to capture the expected data.
For example, you could create a Sample named ExpectedData that is triggered from the clock
edge at 300ns. Then the state under the VerifyDataRead Sample would be set to ExpectedData
instead of @inputData[address].

Test Bench Generation 3: TestBencher Pro Basic Tutorial 97

SynaptiCAD 2007

Test Bench Generation 3: TestBencher Pro Basic Tutorial

In less then 30 minutes you will create a reusable test bench that can apply different stimulus and
verify the results of a clocked SRAM. Below is a schematic of the different components that you will
construct. First you will create the Project file that controls the generation of the interface model
(test bench). Next you will draw the different transaction diagrams that are needed to communicate
with the SRAM. And then you will edit the sequencer process to apply the transactions to the
model under test. Finally you will simulate the design and verify the operation of the SRAM model.

Figure 1: Tutorial Schematic

This tutorial assumes that you are familiar with the SynaptiCAD timing diagram editing
environment. If you would like more information on the drawing environment then work through the
short Help > Tutorial > Basic Drawing and Timing Analysis tutorial.

(TBench) 3.1 Run TestBencher Pro

This tutorial requires a full version license for TestBencher Pro or an evaluation license. If you are
evaluating then you can obtain a license by completing the form under the Help > Request
License menu item and contacting our sales department. To check that you have a good license,
verify that you can save a timing diagram.

· Run TestBencher Pro from the Start Menu.

(TBench) 3.2.Create a Project

TestBencher Pro uses a project file to represent and to control the generation of a bus-functional
model (BFM) component. The information in the project file is displayed in the Project window and
context sensitive menus (right-click menus) provide a list of actions that can be performed for the
elements in the project tree.

SynaptiCAD Tutorials98

SynaptiCAD 2007

Projects are created using New Project Wizard dialog. This dialog helps setup the project directory,
the generated language, and the clocking signal for the project.

· Select the Project > New Project
menu option to launch the New
Project Wizard dialog.

· Enter sramtest in the Project Name edit box. This will be both the name of the project and the
subdirectory were project files are located. The subdirectory will be placed underneath the
Project Directory path. Unix users need to make sure that you have read/write access to the
directory specified in the Project Directory edit box.

· Check the Transaction-based Test Bench Generation checkbox.

· Use the Project Language box to select the code generation language. This tutorial can be
use to generate Verilog, VHDL, and TestBuilder code. Sometimes a file name will be written as
filename.<language extension>. This means that the file extension will be different depending
on the language used: Verilog *.v, VHDL *.vhd, and TestBuilder *.cpp.

· Use the Simulator box to select your simulator. If you are evaluating, use the Verilog and
VeriLogger Extreme combination, because the simulator is already set to work with
TestBencher Pro. If you do not see your simulator pick one at random, then after the project is
created read through the Chapter 1, Section 7 Setting Up Simulators in the TestBencher Pro
Manual to setup the simulator manually.

· Press the Next button to move to the second page of the New Project Wizard.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 99

SynaptiCAD 2007

· Note that the name of the New Template is sramtest (the name of the project). TestBencher
will use this file to generate the top-level module of the test bench. The Original Template is a
file whose contents are copied into the new template file. Typically this file is tbench.v (a
default file that ships with the software).

· Type CLK into the Default Clock box, and choose neg from the Edge box. Selecting a default
clock causes the test bench to be cycle-based; if no clock is specified, the test bench will be
event-based.

· Check the Create Default Clock Generator box. This will cause TestBencher to create a
slave timing diagram called Clk_generator.btim that will drive the default clock signal.

· Press the Finish button to close the New Project Wizard, create the project, and populate the
Project window.

SynaptiCAD Tutorials100

SynaptiCAD 2007

(TBench) 3.3 Add the SRAM model to the Project

Next we will add the model under test (MUT) files to the project. TestBencher can parse the MUT
files and extract the signal and port information for use in the transaction diagrams. Also,
TestBencher uses the MUT information to instantiate the top-level component into the testbench
model. For this tutorial we are going to test a clocked SRAM model.

· Right-click the User Source
Files folder in the Project
window and select Copy Files
to User Source File Folder
from the context menu option.
This will open the Add Files...
dialog.

· Use the Look in box to browse to the
SynaptiCAD > Examples > TutorialFiles >
TestBencherBasicTutorial directory.

· Depending on your language type, select
either the Verilog clksram.v or the VHDL
clksram.vhd file.

· Press the Open button to close the
dialog and add the file to the
project.

· Double click on the clksram MUT file to open the file in an editor window. Glance through the
code so that you have an of how the model we will be testing works. Close the editor when you
are done.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 101

SynaptiCAD 2007

(TBench) 3.4 Setup the Template Diagram

When TestBencher created the project it also generated a template diagram. New transaction
diagrams that are created for this project will contain the same signals, waveforms, parameters,
and properties as the template diagram. Currently the CLK signal is the only signal in the template
diagram. You are going to add the port signals for the clocked SRAM to the template so that later
when you create the timing diagrams project all of the signal information matches up.

Extract the ports from the SRAM into the template diagram:

· In the Project window, under
the Template Diagram folder,
double click on
sramtest_templateDiagram.
btim to open the template
diagram window.

· Click the Extract Ports from

MUT button. This will build
the MUT and insert the
signals for the MUT ports into
the template diagram.

· Notice that <clksram> is now
present in the Project window
under the Simulated Model folder.
The single angle brackets
indicate that clksram is the Model
Under Test. Expanding this tree
will display signal, port, and
component information of the
MUT.

Note: If <clksram> was not generated as the MUT, then change the simulation preferences by

SynaptiCAD Tutorials102

SynaptiCAD 2007

choosing the Options > Diagram Simulation Preferences menu. Check the Auto-create test
bench and tree check box. Press the Extract Ports from MUT button to rebuild the MUT.

Add an end diagram marker:

The transaction diagrams use an End Diagram Marker to indicate the exact time that the
transaction ends. You can add an end diagram marker to the template diagram, so all new
transactions will get the marker.

· Press the Marker button
so that right clicks will
add Marker lines to the
diagram.

· Click on the fourth falling edge of
the CLK signal (at 350ns) to
select it and turn it green. Then
right-click to add the marker line.

· Double-click on the marker to open the Edit
Time Marker dialog.

· Select a Marker Type of End Diagram from
the drop down list box. This end diagram
marker will force the transaction to end at the
fourth falling edge of the CLK signal.

· Notice that the Marker is Attached to Edge
on CLK at 350ns. This is because you
selected the edge before adding the marker.
These controls can be used to changed the
attachment.

· Select Type from the Display Label list box.
This will cause the marker to display its type
rather then its name.

· Click OK to close the Edit Time Marker dialog.

· Use the File > Save All Files menu option to save the project and the template diagram.

The completed template diagram should look like the following:

Test Bench Generation 3: TestBencher Pro Basic Tutorial 103

SynaptiCAD 2007

(TBench) 3.5 Create the Write Cycle Transaction Diagram

TestBencher Pro uses timing diagrams to represent reusable bus transactions. This tutorial will use
two timing diagrams, tbread.btim and tbwrite.btim, to represent the read and write cycles used in
testing the memory module. First, draw the write cycle diagram and then create variables for the
data and address busses so that new values can be passed to the timing diagram each time it is
called by the sequencer. Variables are also used to provide comparison values for runtime testing,
and this will be demonstrated in the read diagram.

 Create the Write diagram from the Template:

· In the Project window, right
click the Transaction
Diagrams folder and select
Create a new Master
Transactor from the
context menu. This will
cause the Save As dialog
to open.

· Name the file tbwrite and press
the Save button. This creates a
new timing diagram using the
information in the template file and
lists the file in the Transaction
Diagram folder.

Draw the waveforms for the Write diagram:

Sketch the waveforms as shown on the diagram below. Since this is a negative edge clocked
diagram the exact placement of signal edges is not important (unless it is near a negative clock
edge). If you need a help drawing, refer to the Basic Drawing and Timing Analysis Tutorial
sections 1.5 Drawing Signal Waveforms and 1.6 Editing Signal Waveforms.

SynaptiCAD Tutorials104

SynaptiCAD 2007

Add the variables:

· Double click on the valid segment
in the center of ABUS to open
the Edit Bus State dialog.

· Type $$addr into the Virtual edit box. The "$$" in front of the variable name indicates that
this is a state variable. If the "$$" is missing, TestBencher Pro will assume that this is the
value of the address rather than a variable that will accept a value at a later time.

· Click on the valid segment in the
center of DBUS to move the
focus of the Edit Bus State dialog
to the new segment.

· Type $$data in the Virtual edit box, then press the OK button to close the Edit Bus State
dialog. The two edited segments will display the state variables.

· Click the diskette icon on the main toolbar to save the timing diagram.

Below is the completed write transaction. When the chip select (CSB) and the write enable (WRB)
are low, the address and data busses will be driven with the current values of the $$addr and
$$data variables.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 105

SynaptiCAD 2007

(TBench) 3.6 Create the Read Cycle Transaction Diagram

The read cycle will initiate a read transaction with the clocked SRAM and also monitor the data bus
to verify the result of the read. Since the signals for the read diagram are so similar to the write
diagram, we will start by copying the write diagram and then modify the waveforms (instead of
starting with the template).

Copy the tbwrite diagram to make tbread:

· Click on the tbwrite diagram window bar so that it is the active window, then choose File >
Timing Diagram As menu to open the Save As dialog

· Name the file tbread, and press the Save button.

· Right-click in tbread's Label
window, and select Add Master
Diagram to Project from the
context menu. This will add
tbread to the Transaction
Diagrams folder in the Project
window.

Modify the WRB Signal:

The write control signal, WRB, should stay high (inactive) for the duration of the read.

· Select the center segment
and press the delete key
to remove the low signal
segment.

Modify the DBUS Signal:

Since our SRAM is clocked the data comes out on the clock cycle after the chip select signal, CSB,
goes active. You can drag each edge of DBUS individually, or use the following technique to shift
the whole signal.

· Shift the start of the DBUS data segment to 200ns. Hold down the <2> key (the number 2 key)
on the keyboard, while dragging the starting transition to 200ns. The <2> key causes
transitions to the right of the selected edge to move with the dragged edge.

SynaptiCAD Tutorials106

SynaptiCAD 2007

During the read transaction, the DBUS signal will be driven by the SRAM so it will be an input
signal to the test bench (not an output like in the write cycle).

· Double click on the data
segment to open the Edit
Bus State dialog.

· Uncheck Driven (Export
to source code)
checkbox.This will cause
the segment to be
displayed in blue.

· Click the diskette icon on the main toolbar to save the timing diagram.

The completed read diagram looks like the following:

(TBench) 3.7 Add a Sample to Verify Data

Next a Sample will be added to the read timing diagram. Samples compare the actual state value
of an input signal to the expected state value, and conditionally react to the results of the
comparison.

Add the sample:

· In the tbread diagram, press the Sample button so
that right clicks will add delays.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 107

SynaptiCAD 2007

· First, left-click on
the third falling
edge (250ns) of
CLK to select the
edge.

· Then, Right-click
near the end of the
blue valid segment
on DBUS.

· This adds a Sample parameter named SAMPLE0 that lines up with the third neg edge of the
CLK signal. Refer the image in the previous section.

Investigate the sample code generation features:

The default behavior of the sample compares the run time value with the drawn value ($$data) and
throws an Error if they are different. This is the behavior that we need for the tutorial. The next few
steps show you the HDL code generation dialog and how to control the generated code. You do
not need to make any changes to the dialog defaults.

· Double-click on the
sample name
SAMPLE0 in the
drawing window to
open the Sample
Properties dialog.

· Notice that this
dialog controls all of
the display feature
for the Sample. The
sample can be offset
from the triggering
edge. Also notice
that the HDL Code
Generation is
enabled.

· Press the HDL Code
button to open the
Code Generation
Options dialog.

SynaptiCAD Tutorials108

SynaptiCAD 2007

· The Sample
generates an code
in the form of
if/then/else.

· Look through the
condition and action
drop-downs to see
the built-in behavior
choices.

· Make sure to return
the dialog to the
shown state so that
error messages will
be generated if the
Sampled data does
not match the
variable.

· Press OK to close the Code Generation Options dialog. Then press OK to close the Sample
Properties dialog.

· Save the timing diagram by selecting File > Save Timing Diagram from the main TestBencher
menu.

(TBench) 3.8 Create the Initialize Transaction Diagram

When drawing the waveforms for a transaction diagram it is important to remember that
transactions do not automatically include an event at time zero and that only the drawn events are
driven. This is a feature that allows transactions to be reused any time during simulation without
implying any initialization information. In our example the clocked SRAM control signals, CSB and
WRB, need to be initialized before the read and write cycles are applied to the model. We will draw
a simple initialization diagram that will drive the control signals to high (inactive).

Test Bench Generation 3: TestBencher Pro Basic Tutorial 109

SynaptiCAD 2007

Create the Initialization diagram from the Template diagram:

· In the Project window, right
click the Transaction
Diagrams folder and select
Create a new Master
Transactor from the
context menu. This will
cause the Save As dialog
to open.

· Name the file
tbinitialize and
press the Save
button. This
creates a new
timing diagram
using the
information in the
template file and
lists the file in the
Transaction
Diagrams folder.

Edit the Waveforms:

· Remove the ABUS and DBUS signals, because the tri-state bus signals do not need to be
initialized. Select the ABUS and DBUS signals by clicking on them, and then press the
<delete> key to delete the selected signals.

· Draw the following waveforms
as shown. If you need a help
drawing, refer to the Basic
Drawing and Timing Analysis
Tutorial sections 1.5 Drawing
Signal Waveforms.

Move the End Diagram Marker:

The initialization timing diagram will only need one clock cycle to initialize the control signals.
Therefore, the End Diagram marker can be moved to the 1st negative clock edge.

SynaptiCAD Tutorials110

SynaptiCAD 2007

· Double-click on the marker to open the
Edit Time Marker dialog.

· Select Attach to Edge from the radio
buttons.

· Click OK to close the Edit Time Marker
dialog. This will put TestBencher into a
special select mode.

· As you move the cursor around in the
diagram a green bar will jump to the
closest edge to remind you that you
are in the Attach to edge mode. Click
on the first negative clock edge (at
50ns) to attach the marker to that
edge.

· Click the diskette icon on the main toolbar to save the timing diagram.

(TBench) 3.9 Add Transaction Calls to the Sequencer Process

Inside the primary template file for the project is a Sequencer Process. This process is the place in
the top-level test bench that defines the order in which the timing transactions are applied to the
model under test. By using the Insert Diagram Calls dialog, you can construct the testbench by
writing little to no code.

Open the Component Model for the main Test Bench:

· In the Project window,
double click on the
Component Model
folder to open an editor
window with the
sramtest template file.

Find the Transaction Sequencer in the Component Model:

· Scroll down in the sramtest editor window near the end of the file until you find the
Transaction Sequencer comment block. The comment changes depending on the code
generation language.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 111

SynaptiCAD 2007

Open the Insert Diagram Calls Dialog:

· Click in the sramtest editor window below the Transaction Sequencer comment (as shown
above) so that the blinking cursor is in the place where the apply statement should be
added.

· Right-click in the editor window and select Insert Diagram Calls to open the Insert Diagram
Subroutine Call dialog.

· Arrange the windows so you can see the editor and the dialog at the same time.

Insert the Apply calls:

The Insert Diagram Subroutine Calls dialog generates diagram apply calls so you do not need to
memorize the function syntax. Each timing diagram can generate one of three task calls: Apply,
Apply-nowait, and Abort. Apply runs the transaction in a blocking mode, and Apply-nowait runs the
transaction concurrently with other transactions. The Master/Slave Diagram Setting determines
how many times a transaction executes. Master Transactors, like the Read, Write, and Initialize
diagrams run once and stop. Slave Transactors like the Global Clock Generator run in a looping
mode until an Abort call is received. You will first start the clock, initialize the control signals, write
to the SRAM, the read from the SRAM twice, and then abort the clock.

SynaptiCAD Tutorials112

SynaptiCAD 2007

· Double click on the CLK_generator insert the statement into the Sequencer Process. Since
this is a slave diagram (indicated by the black arrow), the default state is Apply-nowait,
because most of the time slave diagrams will run concurrently with other diagrams.

· Double click on the tbinitialize entry. Since this is a master diagram, the default state is Apply,
because usually Master diagram run in blocking mode.

· Double click on the tbwrite entry.

· Double click on the tbread entry TWO times to insert the code to add two read calls.

· Select CLK_generator entry, choose Abort radio button, and then press the Insert button to
insert the code. This will add the abort call to stop the clock generator.

· The apply call should look similar to the following code block. Different languages may have
extra parameters.

Edit the State Values of the Write and Read Apply calls:

Edit the write and read Apply code lines and replace the state variable names with actual variables
that will be passed into the timing diagrams. The comment lines are there to document the
parameter variable names. Note: The code to be entered is bold.

· For Verilog type:

Apply_tbwrite('hF0, 'hAE);

Apply_tbread('hF0, 'hAE);

Apply_tbread('hF0, 'hEE);

· For VHDL type:

Apply_tbwrite(tb_Control, tb_InstancePath, x"F0", x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0", x"AE");

Apply_tbread(tb_Control, tb_InstancePath, x"F0", x"EE");

· For OpenVera type:

tb_tbwrite.ExecuteOnce('hF0, 'hAE);

tb_tbread.ExecuteOnce('hF0, 'hAE);

tb_tbread.ExecuteOnce('hF0, 'hEE);

Notice that the tbwrite apply statement writes the hex value AE to memory cell F0. The tbread
diagram calls will then read the value from the same memory cell. The data values provided in the
tbread diagram calls will be used to compare with the actual value. The first call to tbread will
expect to find a value of hex AE in the address F0. The second call to tbread will expect to find the

Test Bench Generation 3: TestBencher Pro Basic Tutorial 113

SynaptiCAD 2007

hex value EE instead. This will cause the sample to report an error during the second execution of
tbread.

· Save the top-level template file by right-clicking in the editor window and selecting Save.

In addition to these task calls, you can also place HDL code in the sequencer. One example where
this would be useful is if you wish to place conditions on whether or not a timing transaction is
called, or on the parameter values that you wish to have applied.

An alternative method to placing transaction calls in the sequencer process is to create a file
external to the bus-functional model with transaction calls and during simulation read the
transaction calls from a file (see Section 9.4: Transaction Manager and Test Reader in the online
TestBencher Manual).

(TBench) 3.10 Setup the Simulator

At this point all the timing diagrams have been created and you have edited the Sequencer
process. Next we will generate the test bench and simulate the entire design, but we should first
check to see if the simulator is setup properly.

TestBencher can control external simulators and compilers or use its built-in Verilog simulator to
compile and simulate the design. If you are using the built-in simulator, skip ahead to next section.
Section 10.3: External Program Integration in the online manual has a complete list of instructions
for working with remote simulators and for setting up a compiler for TestBuilder.

To configure a third-party simulator:

1. Choose the Options > Simulator and Compiler Settings menu option. This will open the
Simulator and Compiler Settings dialog.

2. From the Simulator and Compiler tools dropdown select the appropriate simulator.

3. Enter the directory that contains the simulator executable in the Simulator Path edit box.

4. Press Compile Syncad Libraries to build libraries required by the simulator in order to
compile TestBencher projects. IMPORTANT: If you omit this step, you will get compile errors
when you attempt to compile your test bench source files.

5. Click OK to close the Simulator and Compiler Settings dialog.

Select the third-party simulator:

1. Select the Project > Project Settings menu option. This will open the Project Settings dialog.

2. Select the tab for the language you are working with.

3. Select the desired simulator from the Simulator Type dropdown.

4. Click OK to close the Project Settings dialog.

(TBench) 3.11 Generate the Test Bench and Simulate

Once the simulator is setup you are ready to generate the test bench and simulate the design.

To generate the test bench:

· Click on the Make TB button on the main TestBencher toolbar. This will expand the
macros in the template file and pop up a dialog that says "Finished generating test bench.
Please check waveperl.log for errors." Close this dialog by clicking the OK button.

· In the Report window, check the waveperl.log tab to see if TestBencher encountered any
errors during the test bench generation. If it did, fix the error and regenerate the test bench. (If
you can not see the Report window, choose the Window > Report menu to bring it to the

SynaptiCAD Tutorials114

SynaptiCAD 2007

front.)

To simulate the design:

· Click the yellow Compile Model and Test Bench button. This builds (parses) the project
using the tools specified in the Project Settings and Simulator and Compiler Settings dialogs.

· In the bottom right corner, a yellow Simulation Built status message indicates the build
was successful and that you are ready to simulate.

· If the status indicates an error, the Report window Errors tab displays the compile errors.
If there are errors then fix them, regenerate the test bench, and recompile.

· Click the green run button on the simulation button bar. This will simulate the design and
display the results in the StimulusAndResults diagram and the Report window simulation.log
tab.

· In the bottom right corner, a Simulation Good status message indicates that the
simulation has reached a successful end.

(TBench) 3.12 Examine Report Window Results

The Report window simulation.log tab displays the default log file for the simulator. TestBencher
automatically writes a message to the log file each time a transaction starts and stops. The clocked
SRAM contains code to display a message each time it performs a read or write. We also added a
sample parameter to the Read Cycle, and set it to generate an error message when the data from
the SRAM does not match the expected value.

Examine the log file:

· In the Report window, open the simulation.log tab and display the following results:

Running...

TB> Note: In "sramtest_CLK_generator" at 0.000ns: Executing LOOPING

TB> Note: In "sramtest_tbinitialize" at 0.000ns: Executing ONCE

TB> Note: In "sramtest_tbinitialize" at 50.000ns: Execution DONE

TB> Note: In "sramtest_tbwrite" at 50.000ns: Executing ONCE

In clksram at 150.000ns: Writing ae to address f0

TB> Note: In "sramtest_tbwrite" at 350.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 350.000ns: Executing ONCE

In clksram at 450.000ns: Reading ae to address f0

TB> Note: In "sramtest_tbread" at 650.000ns: Execution DONE

TB> Note: In "sramtest_tbread" at 650.000ns: Executing ONCE

In clksram at 750.000ns: Reading ae to address f0

TB> Error: In "sramtest_tbread" at 850.000ns: Sample SAMPLE0_process sampled

 signal: DBUS expected: ee ; detected: ae

TB> Note: In "sramtest_tbread" at 950.000ns: Execution DONE

TB> Note: In "sramtest_CLK_generator" at 950.000ns: Execution DONE

0 Errors, 0 Warnings

Compile time = 0.01000, Load time = 0.02000, Execution time = 0.05000

Normal exit

· Notice that the clock generator starts at time zero and continues until the end of the simulation
when the abort call is issued.

Test Bench Generation 3: TestBencher Pro Basic Tutorial 115

SynaptiCAD 2007

· The initialization diagram also starts executing at time zero and blocks the next transaction
until it is complete.

· The write diagram starts next and writes a value to the SRAM. The SRAM acknowledges that
is writing the value to the specified address.

· The first read diagram executes successfully.

· The second read diagram throws a warning because the expected value did not match the
value from the MUT. We purposely passed in a bad expected data value so we could see how
the sample throws the error.

· Next the abort call to the clock stops the clock transaction and ends the simulation.

(TBench) 3.13 Examine the Stimulus and Results Diagram

After simulation the Stimulus and Results diagram will contain all of the top level signals of the
project, the driver signals, and status and trigger signals for each transaction.

· Hide some of the signals in the Stimulus and Results diagram by selecting the signal names
and choosing View > Hide Selected Signals until the diagram looks like this:

· A status signal of <1> indicates the transaction is running. You can see that the initialization
diagram runs followed by the write cycle and two read cycles.

· During the write cycle, the data AE is written to address F0. When comparing the simulated
write cycle to the drawn transaction, remember that this is a negative clock edge diagram.

· The read cycles read back the data from the memory.

(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

Congratulations! You have completed the TestBencher Pro Basic tutorial. I just a few minutes you
created four transaction diagrams, modified the sequencer process, and generated a full bus
functional model. This is a very basic example of how TestBencher Pro can work. More advanced
features include the ability randomly generate values for transactions or read them in from files.
You also extend TestBencher's capabilities by writing functions and calling them within a
transaction diagram. The next step is read through the first page of each of the TestBencher Pro
Manual's chapters to see the types of functions that are available.

SynaptiCAD Tutorials116

SynaptiCAD 2007

Simulation 1: VeriLogger Basic Verilog Simulation

This tutorial demonstrates the basic simulation features of the VeriLogger simulators (simx and
vlogcmd) and the graphical debugger (BugHunter Pro). It teaches you how to create and manage a
project and how to build, simulate, and debug your design. It also demonstrates the graphical test
bench generation features that are unique to BugHunter Pro.

This is a stand alone tutorial which you should be able to complete without reading any of the other
tutorials. However, if you plan to make extensive use of the graphical stimulus generation features
then you may also want to perform the Basic Drawing and Timing Analysis tutorial which covers
more of the drawing features of the timing diagram editor.

(Sim) 1.1 Simulator Choices

SynpatiCAD offers two different Verilog simulators: VeriLogger Extreme (simx) and VeriLogger Pro
(vlogcmd). VeriLogger Extreme is a high-performance compiled-code Verilog 2001 simulator that
offers fast simulation of both RTL and gate-level simulations with SDF timing information.
VeriLogger Pro is an interpreted Verilog-95 compliant simulator with a low memory footprint, but it
does not support strengths.

VeriLogger Extreme is the faster simulator for large designs and simulating in debug run mode
(the standard mode for simulators). However, since VeriLogger Pro is interpreted and does not
need to compile the code, it is faster for smaller designs and for auto run mode where the user is
graphically changing the test bench and kicking off automatic simulations.

When you purchase a simulator, you get SynaptiCAD's graphical debugger, BugHunter Pro, in
addition to the command line version of the simulator. Instructions for running the command line
versions are found in the BugHunter and VeriLogger Manual Chapter 5: Command Line

Simulation 1: VeriLogger Basic Verilog Simulation 117

SynaptiCAD 2007

Simulators. For this tutorial, run BugHunter so that you can experiment with the graphical
debugging interface.

· From the Start Menu, choose one of the VeriLogger simulators running under BugHunter.

· An alternative way to launch the simulators is using the command line:

· VeriLogger Extreme: syncad -p bhp -s verilogger_extreme

· VeriLogger Pro: syncad -p bhp -s vlogcmd

The -p bhp option says to run the BugHunter Pro product. The -s option sets the default
simulator used for new BugHunter projects. Note that the simulator used by a project can
be changed at any time from inside BugHunter by selecting the Project > Project
Simulation Properties menu option and changing the the Simulator Type under the
Verilog tab in the dialog that appears.

(Sim) 1.2 Add Files to the Project

BugHunter uses a project file to list the files to be simulated and store the simulation options. Here
you will create the project file and investigate the source code that is used in the tutorial.

Create a new Project:

· Select the Project > New Project menu to open the New Project Wizard dialog.

· In the Project Name box, name the project simulation_tutorial. Notice that the wizard is also
creating a directory of the same name as you type in the project name.

· Notice that you can select the simulator used by the project by changing the selection in the
Simulator drop down box at the bottom of this dialog.

SynaptiCAD Tutorials118

SynaptiCAD 2007

Add the Source Files to the Project:

If you were starting a design from scratch, you could use the Editor > Open HDL File to open an
editor window and type in the code, and then add the new file to the project. In this tutorial, we will
just copy existing source files from an examples directory.

· Right click on the User
Source Files folder and
select Copy HDL files to
Source File Folder from
the context menu to open
a file dialog.

· In the file dialog, browse to the
SynaptiCAD\Examples\TutorialFiles\VeriloggerBasicVerilogSimulation directory and
select the add4.v and add4test.v files. To select multiple files, hold down the <CTRL> key
while selecting files with the left mouse button. Then close the file dialog.

· When the files are first
added to the project they
will be marked with a
purple x to show that the
files are not compiled.

Investigate the code for the Tutorial:

· In the project window, double
click on add4.v to launch an
editor window with the source
code loaded.

Simulation 1: VeriLogger Basic Verilog Simulation 119

SynaptiCAD 2007

· Look through the code and compare it to the following schematics. We will be simulating a
4-bit adder circuit which adds the x and y inputs together and outputs the answer on the
sum and c_out lines.

(Sim) 1.3 Build the Tree and Investigate the Project

In this section we will build the project tree and use the tree to view the internal modules.

Three ways to build a project:

· Press the yellow Build button on the simulation bar, select the
Simulate > Build menu, or press the <F7> key.

· When the build is successful, a yellow Simulation Built message will display in the lower
right hand corner of the program.

· The Report window Simulation Log tab shows the build results, and the Error tab would
display a hyper-linked list of errors if there were any.

SynaptiCAD Tutorials120

SynaptiCAD 2007

Setting Top-level instances after the first Build:

· By default, BugHunter identified
testbed as the only top-level
instance, because all other
modules are instantiated under
it. For this tutorial, this is the
desired top level instance.

· After the first build, you can
optionally right click on other
modules and choose Set as a
Top Level instance to force
instantiation as top level
instances.

· Notice that the User Source files
have green check marks to
indicated that they are built.

· Double clicking on any
component will open a editor
scrolled to that place in the
code.

Set Watch Signals after the first build:

Simulation 1: VeriLogger Basic Verilog Simulation 121

SynaptiCAD 2007

· BugHunter by default sets
watches on all the signals
and variables of the
top-level module. This
means that the signal
names are displayed in the
Stimulus and Results
diagram and the waveforms
will be displayed during
simulation. Event history is
only maintained for these
signals.

· Open the project tree until you find
component A1 and signal C1, then
right click and choose the watch
menu option. This causes C1 to be
added to the Stimulus and Results
diagram.

· You can also set watches on entire
components, blocks or variables
using the same technique.

· Remove any extra watch signals that you
added in the last step. First left click on
the signal name in the diagram window to
select it, then press the <delete> key.

(Sim) 1.4 Simulate the Project

The green buttons on the Simulation button bar cause the simulator to run. The smaller buttons are
for single stepping through the code. The one with the hourglass will simulate for a specified period
of time.

SynaptiCAD Tutorials122

SynaptiCAD 2007

Simulate the project:

· Press the large green run button to simulate until the end of the
simulation or until a breakpoint is encountered.

· Notice that the Stimulus and Results diagram has displayed the simulation results. Verify
that sum and c_out are correctly being computed as x + y + c_in.

· If there were errors in the code, they would be indicated by the status bar in the lower right
hand corner, and listed in the Report window's Error tab.

For the rest of this section, just play around with the zooming, scrolling and searching capabilities
of the waveform window.

Zoom using buttons or the mouse:

· To zoom in and out quickly, hold
down the <Shift> key while using
the scroll wheel on your mouse.

<Shift> and mouse scroll wheel

· To zoom in over a visible section,
drag and drop inside the Time
Line.

· The zoom buttons are located on
the main window below the menu
bar and on the diagram window
button bar.

· The zoom in (+) and zoom out (-)
center the zoom on the selected
item, the blue delta mark, or the
center of the diagram in that order.

· The zoom full (F) displays the entire timing diagram on the screen.

· The zoom range (R) opens a dialog that lets you specify the starting and ending times for the
zoom.

Scroll to a specific or relative time using the Time or Delta buttons:

· Press on either the Time or the Delta button to open
an edit box, and type in a time. The Time button
(black) causes the diagram window to scroll to that
exact time. The Delta button (blue) causes the
diagram window to scroll that amount from its current
position.

Simulation 1: VeriLogger Basic Verilog Simulation 123

SynaptiCAD 2007

Search for a specific signal name, parameter name or string:

· Select one of the child
windows in the program, then
type into the Search box on
the main window bar.

· If the Diagram window is selected, then it will search for signal names.

· If the Parameter window is selected, then it will search for parameter names.

· If the Report window is selected, then it will search for text in the selected report tab.

(Sim) 1.5 Prepare for Graphical Test Bench Generation

So far in the tutorial, we have created a project and simulated some code using a manually written
testbench, which is the traditional design flow using a simulator. In the next few sections, you will
be drawing a testbench using SynaptiCAD's graphical testbench generator. Before we start, we
must prepare the project by removing the manually written testbench file and clearing out the
Stimulus and Results diagram. Then extract the MUT ports into the Stimulus and Results diagram.

Remove the Test Bench Source Code file and empty the Stimulus and Results Diagram:

· Select the file add4test.v
file in the project window
and press the <delete>
key.

· Delete all of the signals in
the Stimulus and
Results diagram by
selecting the signal
names and pressing the
<delete> key.

· Verify that only add4.v is
listed on the project tree,
and that the diagram is
empty.

Verify that BugHunter is in the proper mode to generate a test bench:

· Verify that the Simulate > Simulate
Diagram With Project menu option
is checked. This option lets the
simulator compile both the drawn
waveforms and the Verilog source
code files together. If this is
unchecked, then no testbench will
be created.

Extract Ports from the Model Under Test (MUT):

In the previous section, the Stimulus and Results diagram displayed only signals output by the
simulator (the results). This diagram can also hold a testbench that will exercise the model under

SynaptiCAD Tutorials124

SynaptiCAD 2007

test (the stimulus). First we will extract the ports from the model under test and later we will draw
the test bench.

· Press the Extract the MUT ports into Diagram
on the simulator button bar.

· Notice that the Stimulus and
Results diagram is populated with
the ports of the FourBitAdder
module (see project tree below).
These will be the signals that you
will draw on in the next section.

· The Extract the MUT
function makes a guess as
to which model is the model
under test and displays that
model with single brackets,
<>, underneath the
Simulated Model folder. It
guessed correctly for this
tutorial.

· If you wanted to pick a different model under test, right click on a different model under the
User Source Files list and pick Set as Model Under Test.

(Sim) 1.6 Draw Test Bench in Debug Run Mode

Draw the test bench on the input ports of the of the MUT. You can draw anything and see the
results, however the result images shown in this tutorial will be using the timing diagram shown
below.

Draw the Test Bench

· Make sure the simulation mode is
set to Debug Run, rather than Auto
Run, so that the simulator does not
re-simulate while you are drawing.

· Draw the following waveforms on the input ports of the MUT. Notice that the waveforms
are black to indicate that will drive the MUT. If you have never used SynaptiCAD's drawing
environment, then read the rest of the instructions in this section and practice drawing
random signals before drawing the following diagram:

Simulation 1: VeriLogger Basic Verilog Simulation 125

SynaptiCAD 2007

· Notice also that if you draw on the output ports (sum or c_out) the waveforms would be
blue to indicated that they are expected outputs from the MUT. This expected output is
used by the Reactive Test Bench Option to create self-checking test benches, which is
covered in the Reactive Test Bench Option Tutorial. For this tutorial, you can delete the
sum and c_out signals because we will not use them in this tutorial.

Basic Drawing Instructions (Skip to Section 1.7 if you can draw the timing diagram)

The timing diagram editor is always in drawing mode, so left clicking on a signal will draw a
waveform. The red state button controls the type of waveform that is drawn (high, low, tri-state,
valid, invalid, weak high, and weak low). The buttons toggle back and forth between two states,
and the next state is indicated by the little red T on top. Click on the state buttons to set the toggle
and next state.

 To draw the waveform of a signal:

· Place the mouse cursor inside the Diagram window at the same vertical row as the signal
name.The red state button on the button bar determines the type of waveform drawn. The
cursor shape also mirrors the red state button

· Click the left
mouse
button. This
draws a
waveform
from the end
of the signal
to the
mouse
cursor.

SynaptiCAD Tutorials126

SynaptiCAD 2007

· Move the
mouse to
the right and
click again
to draw
another
segment.

· Keep
drawing
from left to
right across
the diagram.

· Pressing the middle mouse button either toggles the state buttons or cycles through them
depending on the setting in the Design Preferences dialog. Choose Options > Design
Preferences menu to open the dialog.

There are several mouse-based editing techniques used to modify existing waveforms. These
techniques will only work on signals that are drawn. They will not work on generated signals like
clocks and simulated (purple) signals.

1) Drag-and-Drop a Signal Transitions:

· To move one transition, click
on the transition and drag it to
the desired location.

· To move all of the transitions
on one signal, hold down the
<1> and <2> number keys
while dragging. Holding down
just the <1> key moves all the
edges to the left, and the <2>
key moves all the right.

· To move transitions on
different signals, first select
the transitions by holding the
<CTRL> while clicking on
them. Then drag the transition
to desired location.

2) Click-and-Drag to insert a segment into a waveform:

· Inside of a segment, click
and drag the cursor to insert
a segment

· The inserted state is
determined by the red state
button

Simulation 1: VeriLogger Basic Verilog Simulation 127

SynaptiCAD 2007

3) Change a segment's graphical state by selecting it and then pressing a state button:

· Click in the middle of the segment to select
it (so that it has a green box around it).

· Click on a state button to apply that
graphical state to the segment. If you
change a segment to same level as an
adjacent section, the transition will turn red
to preserve the edge data. This transition
can be deleted if necessary.

4) Adding virtual state Information to a segment

· For Signals, double-click on the middle
of a segment to open the Edit Bus State
dialog, and then type in a new value into
the Virtual edit box.

· For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a different
dialog to allow editing of the clock.

(Sim) 1.7 Simulate in Auto Run Mode

In this section, you will build and simulate the MUT with the graphical testbench. Then you will
experiment with the Debug Run and Auto Run simulation modes.

Build and Simulate the Project:

· Press the yellow Build button on the simulation bar.

· Notice that after the build is complete, a new
model called syncad_top was added to the
Simulated Models tree. This is the top-level
instance for the project and it hooks up the
graphical test bench signals to the model under
test (FourBitAdder). Double clicking on
syncad_top will let you view the generated test
bench code.

· Also notice that all of the signals and variables
of syncad_top have been added to the
Stimulus and Results diagram (like in section
1.3).

· For this tutorial we are concerned with the
outputs of the MUT, so you can ignore all of the
signals except the sum and c_out signals.

· The driver and status signals are used by our
TestBencher Pro product to control the
execution of multi-diagram testbenches. These
are not used in the tutorial.

SynaptiCAD Tutorials128

SynaptiCAD 2007

· Press the large green Run button to simulate the entire test bench.

· Verify that Sum and c_out equals x + y + c_in. The schematic is shown in section 1.2.

Debug Run versus Auto Run Simulation Modes:

· Currently the simulator should be in
Debug Run mode, so that
simulations are only compiled when
the Build button is pushed.

· Drag and drop an edge on c_in and notice that the simulated waveforms
do not change. To update the waveforms, press the Build button, followed
by the Run button.

 and

· Press the Debug Run mode button
to toggle the mode to Auto Run.

· Drag and drop the same edge on c_in and now notice that the simulated waveforms
change each time an input is changed. In Auto Run mode, simulations are performed each
time a waveform is moved (the Build and Run actions are automatically performed).
However, if the simulator is paused in the middle of a simulation when the waveform is
changed, then you must manually restart the simulation to apply the change. This keeps
minor mouse clicks from prematurely exiting a debug session.

· Experiment with dragging edges and changing the values of the virtual states. If this was a
low-level module that you just designed, then you could quickly check the functionality of the
module without having to design a formal test bench. If you are running VeriLogger
Extreme, you need to wait between changes for the simulator to compile and finish the
previous simulation.

(Sim) 1.8 Breakpoints, Stepping and Inspecting

In this section we will place a breakpoint in the generated code and take a brief look at the
debugging environment.

Simulation 1: VeriLogger Basic Verilog Simulation 129

SynaptiCAD 2007

Insert a code breakpoint and simulate

· Double click on the
syncad_top module in the
project tree to open an editor
that displays the generated
code.

· Scroll down to the task
Unclocked module, to see the
stimulus code that was
generated from the drawn
waveforms.

· Place a breakpoint on the first
change of the y_driver signal by
left clicking on the grey bar on
the side of the editor window.
This will place a red dot in the
margin.

· Also note that the Report window breakpoints tab lists the source line break point.
BugHunter also supports time and condition breakpoints that are covered in Chapter 3
Debugging of the BugHunter and VeriLogger manual. These other kinds of breakpoints
can be added by right clicking on the breakpoint tab window and choosing Add
Breakpoint from the context menu, but the easiest way to add a condition breakpoint
on a signal is to right click on it in the project tree and select the Add/Toggle
Condition Break Point... menu option. This will cause the simulation to stop whenever
the signal changes value.

· Press the large green Run button to simulate to the breakpoint.This particular
code line will execute twice at time 50 because it is a non-blocking statement.
The expression values of Non-blocking statements are evaluated when the
statements are first encountered, but they only update their assigned signal at
the end of the simulation cycle (as opposed to blocking statements which
evaluate and immediately update the assigned signal).

SynaptiCAD Tutorials130

SynaptiCAD 2007

· Add a breakpoint to the first
exclusive or in the add4.v file, then
restart the simulation.

· Press the run button a few times and
watch the green status bar at the
bottom. The fulladder model is
instantiated 4 times inside the
FourBitAdder module, so you are
going to hit this breakpoint a lot. The
status bar shows which instance is
executing. Here, the fa1 instance of
fulladder, which is instantiated in
module FourBitAdder is about to
execute.

Single step through the code

· Next press one of the single step buttons a couple of times to watch the
execution of the code. Notice that step with trace (the middle button)
leaves a trail of statements in the simulation log tab of the Report
window. Make sure to check the status bar and compare the execution
to the schematic in section 1.2.

Use the Inspect Values

· Put the cursor over a variable
that has been initialized to see
its current value.

· Variables that are watched in the Stimulus and Results diagram can be inspected for values
at previous times. See the instructions in the BugHunter and VeriLogger manual for using
the Simulate > Inspect Variables menu function (to fill the window, drag signal names from
the Stimulus and Results diagram or type them in manually).

(Sim) 1.9 Archiving Stimulus and Results

So far we have only used a sigle Stimulus and Results diagram, however multiple diagrams can
be switched in and out to test different aspects of the design, or archived off to be used as
comparison diagrams for later simulations.

Archive off the simulation results:

· Run the simulator to the
end of the simulation so
that the Stimulus and
Results diagram and
simulation log file are full
of data.

Simulation 1: VeriLogger Basic Verilog Simulation 131

SynaptiCAD 2007

· Right click on the
Stimulus and Results
node and choose
Save Current
Simulation Result
in an Archive from
the context menu, to
open a dialog.

· Name the archive test1 and close
the dialog. This will create a
subdirectory called test1 under the
project directory.

· Notice that a new node called Simulation
Results Archive has been added to the
tree. Both the Stimulus and Results
diagram and the simulation log file have
been copied to the new archive directory.

Create a new test and archive that off:

· Modify the stimulus and then
simulate to see the changed
waveforms.

· Archive these results to an archive named test2
using the method described above.

Switch back to the original test:

· Right click and choose
Restore Archive as
Current Simulation Result
from the context menu to
restore the results

· Notice that the
Stimulus and
Results diagram
has been replaced
with the original
test1 data

SynaptiCAD Tutorials132

SynaptiCAD 2007

· The archive files remain untouched by the restore command. The data is copied from the
archive into the working directory and you need to re-archive if you want to save the new
data.

· If you purchase the Compare Option, then you can use the archive diagrams to compare
against new simulations of your design.

Multiple Stimulus and Results diagrams:

In the previous example, both archives used the default Stimulus and Results diagram name so it
can get a little confusing. However, the diagram can be named any name.

· Save the Stimulus and Results diagram to a new name using the File > Save Current
Diagram menu option.

· Right click on the Stimulus and
Results node and choose
Replace Current Result
Diagram from the context
menu, then choose the file that
you saved.

(Sim) 1.10 Saving the Project files

Whenever you build a project, the project file and any modified source files are automatically
saved. You can also manually save files at any time. This section describes how the different file
types can be saved manually.

Save the HPJ project file:

· Choose the Project > Save Project menu option to save the *.hpj file. The project saves the
simulation options and the names of the files contained on the project tree. It does not save the
source code or the watched signals.

Save the Source code:

Each time you simulate, every open editor is queried to determine if the source code needs to be
saved before the simulation starts. You can also force a save by doing the following:

· Select the Editor > Save HDL File menu option to save the source code in the editor with the
focus.

· Select the Editor > Save All menu option to save the source code in all opened editors.

Saving the Stimulus and Results diagram:

The watch signals and simulation results are saved in the current stimulus and results file.

· Click on the Stimulus and Results diagram window, then select the File > Save Timing
Diagram menu option to save the diagram. Note: the evaluation version does not allow
diagrams to be saved (you will need to buy a full license or get a temporary evaluation license
to perform this function).

(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

Congratulations, you have completed the VeriLogger Basic Verilog Simulation tutorial. We have
demonstrated how to create a project, copy files into the project, simulate and view the results.
Chapter 1 of the BugHunter Pro and VeriLogger Pro manual has a step-by-step design flow of how
to set up a simulator and create a project. You may wish to read that before attempting a to create
a complicated project.

Simulation 1: VeriLogger Basic Verilog Simulation 133

SynaptiCAD 2007

We have also introduced the graphical testbench generation that comes standard with BugHunter
Pro. This feature generates a test bench code from a single timing diagram. There are two other
levels test bench generation that can be added to BugHunter. The first is the Reactive Test Bench
Option that generates self-checking code from the expected waveform information. The highest
level is TestBencher Pro which creates bus functional models from multiple timing diagrams and
is able to apply randomized data to each transaction.

SynaptiCAD Tutorials134

SynaptiCAD 2007

Simulation 2: Using WaveFormer with ModelSim VHDL

WaveFormer Pro can be used to create a VHDL stimulus file for a VHDL model that needs to be
tested. Then the test bench and the model under test can be simulated using an external VHDL
simulator. In this tutorial we show the commands to use ModelSim, but if you are using a different
simulator this should give you the basic idea for controlling the simulation. Then we will use
WaveFormer Pro to compare the simulation results against expected results drawn by the user.

To perform this tutorial, you will need a license for WaveFormer Pro with the Comparison feature
and a license for some version of ModelSim VHDL (XE, PE or SE).

(Sim) 2.1 Compile SynaptiCAD Library Models

First time only step: When you first begin using WaveFormer Pro, you will need to compile
SynaptiCAD’s testbench library models with ModelSim.

· Start WaveFormer and select the Options > Simulator/Compiler Settings menu option to
open the Simulator and Compiler Settings dialog.

Simulation 2: Using WaveFormer with ModelSim VHDL 135

SynaptiCAD 2007

· From the Tool drop-down box, select the your particular ModelSim VHDL compiler. If you are
not sure which version of ModelSim that you have, select ModelSim VHDL Command-Line
XE/PE.

· Press the Compile Syncad Libraries button to compile the SynaptiCAD Libraries. The first
time that you set up a particular simulator or compiler you should press this button.

· You can view the results of this simulation by looking in the simulation.log tab of the Report
window. If you cannot see the Report window, then choose the Window > Report menu option
to bring the window to the front.

SynaptiCAD Tutorials136

SynaptiCAD 2007

(Sim) 2.2 Create a project and extract the ports

Create a project in WaveFormer Pro to hold the model under test. This will give WaveFormer
access to the port information of the model

In WaveFormer Pro create a new Project:

· Select the Project > New Project
menu to open the New Project
Wizard dialog.

· Name the project add4. This will
be both the name of the project
and the directory name where the
project is stored.

· Set the Project Language
drop-down to VHDL 93. This tells
WaveFormer’s parser what
language the MUT (Model Under
Test) is written in.

· Close the dialog to create the
project.

Copy the Model Under Test File into the project:

Next we will copy the file containing the VHDL model under test to the project directory and add the
source file to the project file.

Simulation 2: Using WaveFormer with ModelSim VHDL 137

SynaptiCAD 2007

· Right click on the surface of
the Project window and
choose Copy New Source
Files from the context
menu. This will open a file
dialog.

· In the above picture, the copy command copies the files to the project directory. The add
command will leave the file in place and just point to the file. For this tutorial we will copy the
files.

· In the file dialog, browse to the directory
C:\SynaptiCAD\Examples\ and select the
add4.vhd file. Then press ok to close the
dialog. The file should appear in the Project
window.

Extract the port information from the Model Under Test:

· Press the Extract MUT Ports button on the toolbar.

· Notice that the ports of the
fulladder model have been
inserted into the Stimulus and
Results diagram. If no signals
appear, make sure that language
drop-down on the toolbar is set to
VHDL.

· Select the File>Save Timing
Diagram As menu to open a file
dialog. Save the diagram and
name it add4test.btim.

(Sim) 2.3 Draw the test bench waveforms

Draw the stimulus on the input ports of the of the MUT and the expected output on the output
signals. You can draw anything and see the results, however the rest of the images shown in this
tutorial will be using the timing diagram shown below. If you do not want to draw the testbench then
you can copy the add4test.btim file from
c:\Synapticad\Examples\TutorialFiles\Waveformer2MsimVHDL directory into the project
directory.

Draw the Test Bench

· Draw the following timing diagram. If you have never used SynaptiCAD's drawing
environment, then read the rest of the instructions in this section and practice drawing
random signals before drawing the following diagram:

SynaptiCAD Tutorials138

SynaptiCAD 2007

· Notice that the black waveforms are the inputs and will generate code that will drive the
MUT. The blue waveforms are outputs of the MUT and represent expected outputs of the
model.

· Save the changes to add4test.btim using the File>Save Timing Diagram menu, as we will
use this btim file later to compare our expected results against the VCD results file
generated during simulation.

Basic Drawing Instructions (Skip to Section 2.4 if you can draw the timing diagram)

The timing diagram editor is always in drawing mode, so left clicking on a signal will draw a
waveform. The red state button controls the type of waveform that is drawn (high, low, tri-state,
valid, invalid, weak high, and weak low). The buttons toggle back and forth between two states,
and the next state is indicated by the little red T on top. Click on the state buttons to set the toggle
and next state.

 To draw the waveform of a signal:

· Place the mouse cursor inside the Diagram window at the same vertical row as the signal
name.The red state button on the button bar determines the type of waveform drawn. The
cursor shape also mirrors the red state button

· Click the left
mouse
button. This
draws a
waveform

Simulation 2: Using WaveFormer with ModelSim VHDL 139

SynaptiCAD 2007

from the end
of the signal
to the
mouse
cursor.

· Move the
mouse to
the right and
click again
to draw
another
segment.

· Keep
drawing
from left to
right across
the diagram.

· Pressing the middle mouse button either toggles the state buttons or cycles through them
depending on the setting in the Design Preferences dialog. Choose Options > Design
Preferences menu to open the dialog.

There are several mouse-based editing techniques used to modify existing waveforms. These
techniques will only work on signals that are drawn. They will not work on generated signals like
clocks and simulated (purple) signals.

1) Drag-and-Drop a Signal Transitions:

· To move one transition, click
on the transition and drag it to
the desired location.

· To move all of the transitions
on one signal, hold down the
<1> and <2> number keys
while dragging. Holding down
just the <1> key moves all the
edges to the left, and the <2>
key moves all the right.

· To move transitions on
different signals, first select
the transitions by holding the
<CTRL> while clicking on
them. Then drag the transition
to desired location.

2) Click-and-Drag to insert a segment into a waveform:

· Inside of a segment, click
and drag the cursor to insert
a segment

· The inserted state is
determined by the red state
button

SynaptiCAD Tutorials140

SynaptiCAD 2007

3) Change a segment's graphical state by selecting it and then pressing a state button:

· Click in the middle of the segment to
select it (so that it has a green box
around it).

· Click on a state button to apply that
graphical state to the segment. If you
change a segment to same level as an
adjacent section, the transition will turn
red to preserve the edge data. This
transition can be deleted if necessary.

4) Adding virtual state Information to a segment

· For Signals, double-click on the
middle of a segment to open the Edit
Bus State dialog, and then type in a
new value into the Virtual edit box.

· For Clocks, press the Hex button and then double-click on the middle of the segment to open
the Edit Bust State dialog. If the Hex button is not pressed, the double-click will open a different
dialog to allow editing of the clock.

(Sim) 2.4 Export Waveforms to VHDL

In the first steps of this tutorial, we created a project file and pressed the Extract MUT Ports
button. This also determined the model under test module. The project must remain open during
the export of the btim file in order for the model under test to be instantiated in the stimulus file. If
the source files in the project contained multiple modules that could be the top level MUT instance,
you would need to select the top level instance in the project window by right clicking on the
desired top level instance.

Generate the VHDL test bench by exporting the timing diagram file.

· Choose the
Import/Export > Export
Timing Diagram As
menu option to open the
Export As dialog.

· Set the Save As Type
drop-down to VHDL
w/Top Level Test Bench
(*.vhd). This creates a
VHDL file called
add4test.vhd containing
the stimulus and
instantiates a copy of the
model under test.

· Once the file is generated it is also loaded into the Report window so that you can see the
generated code. If you cannot see the Report window, then choose the Window > Report

Simulation 2: Using WaveFormer with ModelSim VHDL 141

SynaptiCAD 2007

menu option.

(Sim) 2.5 Simulate VHDL test bench using ModelSim

First map the standard syncad library, syncad_vhdl_lib, so that ModelSim can locate it in this
project (this step requires that you have previously compiled the syncad library as described at the
beginning of this tutorial). This step only needs to be done once for a project. Next, run the
simulation and generate the vcd results file, you can either use the ModelSim do script included
with this tutorial or manually type the commands.

Map SynaptiCAD library to ModelSim:

· Launch a DOS command prompt and type the following commands:

cd \synapticad\project\add4
vmap syncad_vhdl_lib C:\Synapticad\lib\vhdl\modelsim_vhdl_lib

EITHER run the do script to simulate, by typing from the command prompt:

copy c:\Synapticad\Examples\TutorialFiles\Waveformer2MsimVHDL\add4test.do
.

modelsim -do add4test.do

OR type the following individual commands below

1. To generate library files:

vlib work

2. To compile the source files:

vcom add4.vhd add4test.vhd

3. Select the top level module to simulate (this will launch the ModelSim GUI):

vsim testbench

4. In the console window of the ModelSim GUI, set the name of the vcd dump file:

VSIM> vcd file add4.vcd

5. Specify the signals to dump to the vcd file (top level signals in the design):

VSIM> vcd add /testbench/*

6. Simulate the design+stimulus

VSIM> run –all

7. Exit the simulator (the vcd file will be created by ModelSim at the end of this step):

VSIM> quit –f

SynaptiCAD Tutorials142

SynaptiCAD 2007

(Sim) 2.6 Compare simulation results against expected results

In this step we will compare the simulation results against the expected waveforms that we drew in
an earlier section. The compare feature is an option that can be added on to WaveFormer Pro.

A) Load the Simulation Results file into WaveFormer Pro

· Select the Import/Export > Import Timing Diagram From menu option and load the
add4.vcd file created in the previous step to open the Import Waveforms dialog.

· Check the Collapse to Virtual Buses box, so that the signals will be imported as buses
instead of as individual bits.

· In the left hand pane, select the All signals node then press the => button to move the signals
to the right hand pane. Then press OK to import the diagram.

B) Strip out the Simulation Model Names

Before we can compare the VCD file to the expected results btim file, we must make sure that the

Simulation 2: Using WaveFormer with ModelSim VHDL 143

SynaptiCAD 2007

signal names are the same. During simulation, the model name "testbench." prefix was added to
each of the VCD’s signals. We can either strip out the name from the simulation file or add the
prefix to the expected waveforms. Either way, we can use the Search and Rename Signals dialog
to strip or add a prefix. Here we will strip the prefix from the simulation vcd file.

· Select the Edit > Search and Rename Signals menu to open the Search and Rename
Signals dialog.

· Check Selected Signal Names to make the dialog
operate on the signals. Since we did not have any
signals selected in the diagram, this will operate on all
the signals by default.

· Check Replace to make the dialog do a replace. If we
had decided to add "testbench." to the names in the
timing diagram, we would have to use insert prefix to
add the prefix.

· Set the Old Name pattern to "testbench." making sure
that you include the period after testbench.

· Leave Signal Name Replacement blank, because we
just want to strip out the name.

· Press OK to strip the prefix from the signal names.

C) Compare The Timing Diagrams

To do this step, you will need to have a license for the Compare Feature. This is normally turned
on in the evaluation version, but must be purchased in the full version.

· Choose the File > Compare Timing Diagram menu to open a file dialog and select the file
add4test.btim that you created earlier in the tutorial.

· The differences between the VCD file and the expected results file will show up in red. The
differences are also displayed in list form in the Differences tab in the Report window.

SynaptiCAD Tutorials144

SynaptiCAD 2007

· When drawing the btim file waveforms, you may have some differences with the diagram
shown on the tutorial. These differences will show up as highlighted lines in red in the
comparison diagram. Minor differences can be removed by using the compare tolerances.

· Click the SET ALL button on the compare toolbar to
open the Signal Properties dialog

· Notice that the Name box
is greyed out. This means
that the dialog is operating
on all the compare signals.

· Type in a tolerance of 5 for
both the the –Tol and +Tol
controls. This will allow the
compare feature to ignore
small changes in values.

· Click the OK button to
apply the changes

· Press the Compare All Compare Signals button to re-compare the
waveform signals.

· Below is the resulting diagram. Notice that the thinner lines in red have now disappeared. The

Simulation 2: Using WaveFormer with ModelSim VHDL 145

SynaptiCAD 2007

remaining differences occur at the end of the waveforms because the simulator stops the
simulation as soon as there are no more changes on the waveforms.

· Also look at the Differences tab in Report window, which shows a hyperlinked list of the
differences. If you cannot see the Report window, then choose the Window > Report menu
option to bring it to the front.

(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

Congratulations! You have now learned how to use WaveFormer Pro with ModelTech’s ModelSim
VHDL. In this tutorial we covered how to create a new .hpj project in WaveFormer, adding new
source files to the project, and drawing the necessary stimulus on the input and output signals. We
also learned how to export waveforms to VHDL and how to generate the .vcd file required for
testing through ModelSim. Last, but not least, we learned how to compare the simulation results
against the expected results.

SynaptiCAD Tutorials146

SynaptiCAD 2007

Waveform Comparison Tutorial

Waveform Comparison is an optional module that can be added to all of SynaptiCAD’s products
except Timing Diagrammer Pro. This feature allows comparison between two timing diagrams or
between individual signals in a timing diagram. The results of two simulation runs, or of logic
analyzer data and a simulation run, can be compared very easily using this feature. This tutorial will
describe both types of waveform comparison.

This tutorial will use the following files in the Examples\TutorialFiles\WaveFormComparison
subdirectory of the installation directory (C:\SynaptiCAD by default on Windows):

- singleSignalComparison.btim

- simulationResults.vcd

- analyzerData.txt

- simulationResults_offset.btim

1. Creating Individual Compare Signals

One of SynaptiCAD’s signal types is a Compare signal. This signal type can be used to compare
an individual signal’s waveform to that of another signal (from a simulation result, for example).

1.1 To Create a Compare Signal

1. Open the singleSignalComparison.btim timing diagram. The diagram should look like this:

2. Click the Add Signal button to add a new signal to the diagram.

3. Double click the name of the new signal (SIG0) to open the Signal Properties dialog.

4. Set the Name of the new signal to match the original signal: Signal_To_Compare.

Note: the Compare signal and the original signal must have the same name, otherwise the
product does not know which signals to compare.

5. Select the Compare radio button near the top of the Signal Properties dialog.

6. Notice that the signal name of the compare signal in the label window is blue.

Leave the Signal Properties dialog open for the next section.

Waveform Comparison Tutorial 147

SynaptiCAD 2007

1.2 Draw the Expected Waveform on the Compare Signal

We will use the Waveform Equation generator to create a waveform that is similar to the one on the
original signal.

1. In the Signal Properties dialog, modify the expression in the Wfm Eqn edit drop down so that it
reads:

8ns=Z (3=1 7=0)*5 7=H 10=L 6=V 8=X

2. Click the Wfm Eqn button to drawn the specified waveform.

3. Click the Compare button to compare the two waveforms.

4. Click OK to apply the changes and close the dialog.

Notice that there are now portions of the Compare signal waveform that are highlighted in red.
These are the areas where differences were detected while doing a comparison with the tolerance
set to 0.

1.3 Comparison Using Tolerance

Each Compare signal can have a +Tolerance and a -Tolerance specified. This is one method for
ignoring small differences during a comparison. Next, we will create a second compare signal that
has a tolerance specified.

Add a copy of the original Compare signal and set the tolerance:

1. Select the Compare signal by clicking the red Signal_To_Compare signal name.

2. Press <Ctrl>C on the keyboard to copy the signal.

3. Select the Edit > Paste Signal(s) menu option or press <Ctrl>P to paste a copy of the original
compare signal.

SynaptiCAD Tutorials148

SynaptiCAD 2007

4. Double click the name of the new
Compare signal to open the Signal
Properties dialog.

5. Set the +Tolerance to 2.

6. Click the Compare button to view
the changes.

Note that there is one less difference in the diagram now. If you repeat the steps above, but specify
a Tolerance of 3, then all of the differences disappear except the one at the end of the Compare
signal (where the state is driven longer than the original signal).

The diagram above shows an original Signal (with the black name label), and then compare signals
in the following sequence: Tolerance = 0, Tolerance = 2 and Tolerance = 3.

2. Comparing Timing Diagrams

The timing diagrams that are being compared can be hand drawn or could contain data from a
logic analyzer or another supported timing data format. For this tutorial, a VCD file will be imported
and saved in the btim format. It will be compared to data that is in a Spreadsheet format similar to
that generated by a Tektronix logic analyzer.

2.1 Import VCD Data and Save as a .btim

When comparing two files, the file that is being compared/merged into the reference diagram must
be a SynatiCAD/btim file. Since the timing diagram editor reads many different file formats, it is a
simple operation to translate a waveform file to .btim. In this step we will convert a VCD (Verilog
simulation file) into a .btim file. Then, in the following steps, we will use it to compare to a native
logic analyzer file.

1. Select the Import/Export > Import Timing Diagram From... menu option.

2. Select the Verilog Value Change Dump (*.dump, *.vcd) option from the File of Type: drop
list.

3. Select the file simulationResults.vcd using the Browse functions of the dialog.

4. Click Open to launch the Import WaveForms dialog.

5. Click the All Signals folder in the Available Signals tree control on the left side of the dialog.

6. Click the right arrow button to place these signals in the Signals to Import tree.

Waveform Comparison Tutorial 149

SynaptiCAD 2007

7. Click OK to import the data to a timing diagram.

8. Use the Zoom In button to get a better view of the changing signal edges.

9. Select the File > Save As... menu option to option the Save File dialog.

10. Select Timing Diagram - Binary (*.btim) from the Save as Type drop list.

11. Click the Save button to save the timing diagram in btim format (you may be prompted to
overwrite a file if a file by the same name already exists).

2.2 Open the Logic Analyzer Data File

Next open the logic analyzer file.

1. Use the File Open button to open the Open File dialog.

2. Select Test Vector Spreadsheet (*.txt) from the File of Type drop list.

3. Select the analyzerData.txt test vector spreadsheet file.

4. Click the Open button to open the file in a timing diagram.

2.3 Compare the Two Timing Diagrams

When two diagrams are compared, the signals from one diagram are brought into the other
diagram as compare signals. These signals can either be grouped at the bottom of the open
diagram or the Compare signals can be ’interleaved’ with the original signals. That is, the Compare
signal for a given original signal will be inserted directly under the original signal. This behavior is
controlled using the View > Compare and Merge > Interleave Compare and Merge Signals
menu option. This tutorial will have this feature turned on.

To Compare the two timing diagrams:

1. Select the File > Compare Timing Diagram... menu option to launch the Compare dialog.
Notice that the default file type is Timing Diagram (*.tim, *.btim).

2. Select the simulationResults.btim file.

3. Click Open to compare the two diagrams.

SynaptiCAD Tutorials150

SynaptiCAD 2007

Note that the Compare signals are placed immediately following the signals that they are being
compared to since the Interleave Compare and Merge Signals option is on. Two of the signal
labels, Test.pin2 and Test.pin3, have turned red because there are differences on these signals.

Tip: If the data sets being compared have slightly different naming schemes then the signals will
not properly interleave because the program will not be able to properly match the signals for
comparison. The Edit > Search and Rename Signals feature is handy for modifying one of the
sets of signal names in the case. This feature performs pattern matching on the signal names and
allows you to replace characters in the name, or append/remove a prefix or a suffix to the signal
name.

2.4 Editing all Compare Signal Properties

Typically it is desirable to have the Tolerance range in a comparison of two timing diagrams be
uniform - the same for all of the Compare signals. All of the Compare signals in a diagram can be
edited simultaneously without the need to manually select all of the signals.

Set the Tolerance for all of the Compare signals in the diagram:

1. Click the Set All button or select the
View > Compare and Merge > Edit
Compare Signals menu option. This
will automatically select all of the
Compare signals in the diagram and
launch the Signal Properties dialog. You
can choose to deselect individual
signals prior to modifying the signal
properties - this may be useful if you
want to specify a Tolerance range for all
but one signal, for example.

2. Set the -Tolerance to 2ns.

3. Click the Compare button.

Waveform Comparison Tutorial 151

SynaptiCAD 2007

Notice that with the -Tolerance set at two, the Test.pin2 signal no longer has any differences to
report.

4. Set the -Tolerance back to 0ns for the next section and click the Compare button.

2.5 Methods of Examining the Differences Reported During a Comparison

There are three different ways to examine the differences that are reported:

(1) a tab will be opened in the Report window that displays these differences

(2) a tab delimited text file is saved in the same directory as the diagram used for comparison

(3) the differences can be navigated graphically in the waveform window

(1) The Differences Report Window Tab

If your Report window is not visible, select the Windows > Report Window menu option to bring
the window to the foreground. Click the Differences tab to bring this report to the front of the
Report window.

The differences found during the comparison are reported one per line, starting at time 0. In this
example, the first difference found is on Test.pin3. The difference started at time 2.5ns and ended
at time 3ns. The Reference Signal had state value of 0 while the Compare Signal had a State of 1.
If you double click this line in the Report window, it will highlight the difference being reported.

(2) The Differences File

The data displayed in the Differences tab of the Report window is loaded from a tab-delimited text
file generated during the comparison. This data can be backed up and stored for later reference.
The file in this example is named analyzerData_diff.txt (formed from
<referenceFileName>_diff.txt). You can use the Report window to view this file by selecting the
Report > Open Report Tab menu item to open the file.

SynaptiCAD Tutorials152

SynaptiCAD 2007

(3) Using the Graphical Interface

The Compare toolbar has five buttons. In
order, from left to right, they are:

 Compare: this button performs the same function as the Compare button in the Signal
Properties dialog.

 Move to First Difference: This button will move to the first difference found after time 0 in
the diagram.

 Move Previous: This button will move to the previous difference found in the diagram or on
the signal.

 Move Next: This button will move to the next difference found in the diagram or on the
signal.

 Set All: This button will select all of the Compare signals in the open diagram and open the
Signal Properties to edit the Compare signal properties. This is the easiest way to control
what type of comparison is performed and to set the tolerances for all signals.

3. Performing a Clocked Comparison

A clocked comparison compares the signal states at clock edges instead of continuously. Add a
clock to the current diagram:

1. Click the Add Clock button to add a clock named CLK0 to the timing diagram.

2. Set the Period of the clock to 2ns in the Clock Properties dialog and click OK.

Make the Compare Signals clocked:

3. Click the Set All button on the Compare toolbar to select all of the Compare signals in the
diagram and open the Signal Properties dialog.

4. Set the Clock to CLK0 and set the Edge/Level to pos.

5. Click the Compare button to apply the changes and perform the new comparison.

Notice that there are now only two differences in the diagram. These two differences occur on the

Waveform Comparison Tutorial 153

SynaptiCAD 2007

8ns (on Test.pin3) and 10ns (on Test.pin2) rising edges of the clock. Change the clocking edge
to the negative edges and re-compare:

6. Set the Edge/Level to neg and click the Compare button to perform the new comparison.

There are still two differences in the diagram, but they have moved to the falling clock edges at 3ns
and 7ns - both on Test.pin3.

4. Comparing During Clock Cycle Windows

The clocked comparison described in the previous step provides for comparison on clock edges.
You can use a second clock, offset from the first, to create windows during which to compare
during the high or low segments of the original clock instead.

4.1 Add Offset Clock to Diagram

To create windows comparisons consistent over the clock segments of the original clock we will
use the same frequency and period that the first clock uses and offset the start time for the second
clock.

1. Add a second clock to the diagram and set the following in the Edit Clock Properties dialog:

- Set the Name to Offset_Clock.

- Set the Period to 2ns.

- Set the Starting Offset to .5.

2. Click OK to close the Edit Clock Properties dialog and apply the changes.

The Offset_Clock now starts halfway through the first segment of CLK0.

4.2 Change the Compare Signals to Use the Offset Clock

Next, change the three Compare signals to use the Offset_Clock as the clocking signal and use
the Tolerance settings to create the window for comparison:

1. Click the Set All button to edit the signal properties of all three Compare signals.

2. Set the Clock to Offset_Clock.

3. Set the Edge/Level to pos.

3. Set both Tolerance values to 0.25.

4. Click the Compare button to apply the changes and perform the comparison.

SynaptiCAD Tutorials154

SynaptiCAD 2007

The diagram should now look like this:

You can zoom into the diagram to see a closer view of the window of comparison. In the image be­
low, the starting and ending points of one of the comparison windows are marked, as well as the
triggering clock edge:

5. Masking Clock Segments During Comparison

It is sometimes useful to mask some segments during comparison. In this example, we will create
a Compare_Enable signal that will specify the specific clock segments over which we want the com

parison to be performed.

5.1 Search and Replace Signal Names

First, we will change the names of the signals in the diagram so that when we add the simulated
sig nal, we do not get simulation errors (with the signal names Test.* the simulator will look for a
module that we will not have defined).

1. Press <CTRL>A to select all of the signals in the diagram. The Search and Rename signals
feature will search the selected signals. If no signals are selected, then a dialog will appear
asking if you would like to select all signals in the diagram.

2. Select the Edit > Search and Rename Signals menu option to open the Rename Signals
dialog.

Waveform Comparison Tutorial 155

SynaptiCAD 2007

3. Enter Test. in the Old Name edit box.

4. Enter Test_ in the Signal Name Replacement edit box.

5. Click OK to close the dialog and rename the signals.

5.2 Add the Compare Enable

Next, add a signal to use for the compare enable:

1. Add a new signal named Compare_Enable to the diagram.

2. Draw a Low segment that ends around 4ns.

3. Draw High segment that ends around 8ns.

4. Draw another Low segment that extends beyond 16ns.

In this example the High segment of the Compare_Enable signal represents the time that we will al
low the comparison to be performed. The segments will be masked where this signal is low.

5.3 Add the Simulated Masking Signal

Next, place a simulated signal in the diagram to use as the clocking signal for the comparison:

1. Add a signal to the diagram and
set the following properties in the
Signal Properties dialog:

- Set the Name to
Masking_Signal.

- Select the Simulate radio button
(instead of Drive).

- Enter Offset_Clock and
Compare_Enable in the
Boolean Equation edit box.

2. Click the Simulate Once button to
generate the simulated signal.

Notice that the beginning and ending of the simulated signal’s waveform are low and the middle
seg ment (when the Compare_Enable is high) has the same value as the clock. These are the
clock seg ments that are not masked. The comparison will be performed during these segments.

SynaptiCAD Tutorials156

SynaptiCAD 2007

5.4 Use Masking Signal to Mask Clock Segments

Next we will edit the compare signals so that they use the new Masking_Signal as a clock.

1. Click the Set All button to edit all of the Compare signals in the diagram.

2. Set the Clock: to Masking_Signal.

3. Click Compare to apply the changes and perform the comparison.

Note that the first and last differences that were previously in the diagram have now disappeared -
they are masked from the comparison. The resulting diagram should look something like this:

5.5 Setting up Don't Care Regions

A related function to the masking signals is don’t care regions. Sometimes you may not want to
com pare certain regions in time on a particular signal. One case would be on a bus signal where
the actual data did not matter. If you want the compare function to skip a particular section, then
just turn the waveform into a valid region on the reference signal.

To create a don’t care region:

- On the reference signal (not the compare signal), highlight the section of waveform that you
wish to exempt from comparison by left clicking on it.

- Click on the VAL button in the button bar at the top of the waveform window. This will change
the waveform to a valid waveform.

- Rerun the compare function.

6. Adjusting the Time Difference Between Two Diagrams

The time difference between two timing diagrams can be easily adjusted using the Edit Waveform
Edges dialog. Next we will compare two data sets that have a time offset.

- Close the file you have been working with without saving and re-open the original
analyzerData.txt file as a timing diagram (see Step 2.2: Open the Logic Analyzer Data File).

Note: If you previously saved your diagram during a previous step, simply delete the three
compare waveforms from your diagram.

- Compare to the simulationResults_offset.btim provided (refer to Step 2.3: Compare the Two
Timing Diagrams as needed).

Waveform Comparison Tutorial 157

SynaptiCAD 2007

The resulting diagram should look something like this:

Notice that all three of the compare signals have a longer starting segment than their counterparts.
This causes much of the diagram to show as differences, when in reality the two data sets have a
time offset. This offset can either be removed from the compare signals or it can be added to the
other signals. In this tutorial the offset will be removed.

To modify the time difference between two diagrams:

- Select all three of the compare signals by clicking the names in the Label window.

- Select the Edit > Edit Waveform Edges menu option to open the Edit Waveform Edge dialog.

- Select the Shift Edges in Range radio button and enter the time to shift in the edit box below the
radio button (both postive and negative numbers can be entered).

- Click OK to apply the changes and close the dialog.

Note: If no signals are selected when this operation is performed then all of the signals will be
modified.

- Click the Compare button on the Compare toolbar to recompare the signals.

Now the diagram should look like the first diagram comparison:

Tip: This dialog can also be used to perform frequency multiplication. Section 1.7: Editing
Waveform Edges from an Equation the WaveFormer Pro manual describes this feature more in
depth.

7. Summary

The Waveform Comparison option provides the ability to perform comparisons on individual signals
or between two timing diagrams. The Tolerance settings allows you to watch for signal states to

SynaptiCAD Tutorials158

SynaptiCAD 2007

match during a specified time range, while Clocked Comparisons allow you to compare states at
specific times during the simulation. Without setting either a clocking signal or a tolerance
specification, the comparison will be performed continuously on the signals. Finally, edge
adjustment can be easily performed to manage time offsets between two data sets.

Gigawave and WaveViewer Viewer Tutorial 159

SynaptiCAD 2007

Gigawave and WaveViewer Viewer Tutorial

This tutorial covers the following topics: opening a waveform file, the differences between opening
and importing a file, saving a .btim file, creating a filter file to selectively load sets of signals from a
waveform file, and available licensing options for enhancing WaveViewer.

1. Converting a vcd file into a btim file

When viewing non-native waveform formats, such as VCD files, we recommend first converting the
file to SynaptiCAD’s native BTIM format. The resulting compressed BTIM file will generally be
around 200x smaller than the original file and will load much faster (for example, a BTIM file will
typically load around 500x faster than an equivalent VCD file).

To convert a VCD to a BTIM file, follow the steps below:

· Load the exampleTim.vcd VCD file into the viewer (this is a large file so it may take a few
seconds):

· Choose File > Open Timing Diagram menu option to launch the Open File dialog.

· In the File of type dropdown, choose Verilog Value Change Dump.

· Select the file C:\SynaptiCAD\Examples\exampleTim.vcd.

· Click the open button to load the diagram.

· Save the diagram as a BTIM file

· Choose File >Save As menu option to open the Export Timing Diagram As dialog.

· In the Save as type dropdown, choose Timing diagram – Binary. This will change the
filename to exampleTim.btim.

· Click Save to close the dialog box.

· Close the diagram so we can load a subset of the signals in the next step.

2. Importing a subset of the Waveforms

In the previous section, we loaded an entire waveform file using the File > Open menu. It is also
possible to load a subset of the waveforms in a file by using the Import/Export > Import Timing
Diagram menu.

To import a subset of waveforms from a file:

· Load the exampleTim.btim we created in the previous step using the Import/Export menu:

· Choose the Import/Export > Import Timing Diagram From menu to open the OpenFile
dialog.

· In the File of type dropdown, choose Timing diagram – Binary.

· Select the file c:\SynaptiCAD\Examples\exampleTim.btim.

· Press the Open button to close this dialog and open the Import Waveforms dialog.

· In the Import Waveforms dialog, move the ABUS[7:0], DBUS[7:0], and logfile[31:0] signals
from the Available Signals list to the Signals to Import list by selecting the signal names and
clicking the -> button.

· Note: Signals can be moved in groups by pressing the control button and selecting
several signals at once.

SynaptiCAD Tutorials160

SynaptiCAD 2007

· Note: The Import Waveforms dialog has several useful options that are not covered in the tutorial:
o Checking Alphabetize Signal Order will cause the signals to be alphabetized when they are

displayed in the viewer. Otherwise the signals will appear in the timing diagram in the same
order that they are found in the file they are imported from.

o Checking Collapse signals to buses causes all numbered signals (e.g. bus0, bus1,
bus2) to be collapsed into virtual buses (bus[2:0]).

o The Time Interval section allows waveform data to be limited to only a specific
section of time.

· Click the OK button to close the dialog and load waveforms into WaveViewer

3. Creating a Filter File to selectively load signals

WaveViewer/Gigawave Viewer TutorialWaveViewer_Gigawave_Viewer_Tutorial

Gigawave and WaveViewer Viewer Tutorial 161

SynaptiCAD 2007

3. Creating a Filter File to selectively load signals

The Set Filter File feature provides the user with the ability to specify an optional "filter file" that
controls what signals get imported from a waveform file (e.g. a VCD file) and the order in which
they get imported. The signal properties, such as MSB, LSB, and direction, are also con trolled by
the signal information that is stored in the filter file. Filter files do not contain any waveform data.
Below we will change the ordering of the signals we imported in step 2 and save them into a filter
file.

To create a filter file using WaveViewer:

· Select the File > Save As menu option to open the Save As dialog.

· In the Save As type dropdown, select Waveform filter (*.tim) if it is not already selected.

· Type vcdfilter as the name of the filter file in the File name edit box.

· Click the Save button to create the filter file.

Once a filter file is created, it needs to be set as the current filter file for the Filter file feature to be
enabled:

· Select the Options > Set Filter File menu option to open the Filter Diagram File dialog.

· Check the Use Filter checkbox.

· Select the file by clicking the Browse button and finding where you saved it in the previous
section.

· Click OK to close the dialog.

When a filter file is set, only the filtered signals will be loaded. The filter file will operate on all files
that are loaded, regardless of the file format.

To try this out, let’s load the original BTIM file with the filter enabled:

· Choose the File > Open timing diagram menu option to launch the Open File dialog.

· Select the file C:\SynaptiCAD\Examples\exampleTim.btim.

· Click the Open button to load the diagram. Note that only the signals that match the signal
names in the filter diagram have been loaded.

To disable the Filter file feature:

· Select the Options > Set Filter Diagram File menu option to open the Filter Diagram File
dialog.

· Uncheck the Use Filter checkbox.

· Click OK to close the dialog and disable the Filter File feature. Any diagrams loaded after this
point will load normally, without filtering.

SynaptiCAD Tutorials162

SynaptiCAD 2007

· Close the currently open timing diagram, then choose the File > Open Timing Diagram menu
and reload the exampleTim.btim file again. Note that all signals are loaded from the diagram
because we’ve disabled the filter file.

4. Show and Hide Signals in the display

Instead of selectively loading signals, it’s often easier to load all the signals initially and then hide
all but the signals of interest.

Follow the steps below to hide a set of signals:

· Click on the View>Show and Hide Signals menu option to open the Show or Hide Signals
dialog. The hidden signals are shown on the left side and visible signals (in this case, all
signals) on the right.

· Select signals on the right side (Visible Signals) and press the ßß button, followed by the OK
button to hide these signals.

To make the signals visible again:

· Reopen the dialog and select All Signals from the list on the left side (Available Signals) and
press the àà button, followed by the OK button, and the signals will reappear in the diagram
window.

You can also use the Find edit boxes to select a set of signal names that match a particular regular
expression. Follow the steps below to hide all the signals that have "tbread" in their signal name:

· Type "tbread" in the Find edit box in the Visible Signals section of the dialog and press the All
button to select the matching signals.

· Press the ßß button to move these signals to the list of signals to be hidden.

· Press Ok to hide these signals.

Gigawave and WaveViewer Viewer Tutorial 163

SynaptiCAD 2007

5. Options: Gigawave, Waveform Comparison,Transaction
Tracking

Several optional features can be purchased to extend the power and functionality of the free
WaveViewer:

The GigaWave feature converts WaveViewer into GigaWave Viewer, a high capacity waveform
viewer capable of handling multi-gigabyte VCD files. Without GigaWave, WaveViewer is limited to
diagrams of less than 10,000 signals and less than 1 million waveform state changes. The
GigaWave feature also comes with a PLI-based library that can be integrated with your favorite
simulator to directly generate highly compressed BTIM files (no intermediate dump to VCD is
required). Using direct BTIM waveform dumping can speed up simulation by up to 3x compared to
the same simulation using an ordinary VCD dump because of the reduction in file I/O, and the
resulting files are generally 200x smaller.

The Waveform Comparison feature lets users compare waveforms for two timing diagrams or
individual signals. This feature is exceptionally useful comparing two different simulation runs, as
well as for comparing logic analyzer data to a simulation run. The specific regions where
waveforms differ will turn red when the two waveforms are compared. In addition to standard
waveform comparison, where all differences are detected, the comparison feature also supports
"Clocked comparison" where waveforms are only checked at clock edges. Tolerances can also be
specified to determine what constitutes a significant difference between two waveforms. For more
information on using the Waveform comparison feature, please refer SynaptiCAD On-Line Help >
Bug Hunter Pro and VeriLogger Pro Table of Contents > Chapter 5: Waveforms and Test Bench
Generation > 5.4 Waveform Com parisons (Optional Features)

The new Transaction Tracking feature lets users view waveform data as "transactions" instead of
as just signals. The user specifies PSL Sugar expressions that describe what transactions to
search for, and the transaction tracker search engine finds matching transaction records and
displays them graphically in the timing diagram window.

SynaptiCAD Tutorials164

SynaptiCAD 2007

6. Waveviewer/GigaWave Viewer Tutorial Summary

Congratulations! You have completed the WaveViewer and GigaWave Viewer tutorial. In this
tutorial we introduced various techniques for opening, importing, saving and converting .vcd files
into btim files for faster file loading. We created a filter file and used it to selectively load signals
(filter files can also be used to reorder signals and override the default properties on the loaded
signals). We also covered the differences between GigaWave Viewer and WaveViewer and briefly
discussed the optional Waveform Comparison and Transaction Tracking features. More
information on these topics can be found in the online help.

Transaction Tracker Tutorial 165

SynaptiCAD 2007

Transaction Tracker Tutorial

This tutorial explores semantic differences between some of the most commonly used PSL
operators. The assertions in this tutorial have been kept very simple, so that it is easy to see the
differences between the operators. It is important to understand these distinctions before
attempting to write practical, real world assertions. You will need a Transaction Tracker License to
complete this tutorial

For all the examples in this tutorial, we use two input signals (SIG0 and BUS[7:0]) and all the
assertions are clocked off the positive edge of CLK0. The assertions will make a new match
attempt on each positive edge of CLK0, even though previous match attempts by the assertion are
still in progress. When such overlapping match attempts occur, additional "overflow" signals will be
created to display the resulting transaction records without overlapping them on a single result
signal. These overlap signals are creating dynamically as needed during the simulation, and get
cleaned up automatically at the beginning of any new simulation run.

SynaptiCAD Tutorials166

SynaptiCAD 2007

1) Open the Example File

2) Matching all occurrences of simple pattern one_SIG0 = {SIG0}

3) Match consecutive occurrences with Concatenation Operator two_SIG0 = {SIG0;SIG0}

4) Match with consecutive repetition Operator three_SIG0 = {SIG0[*3]}

5) Match with non-consecutive Repetition Operator three_SIG0_nonconsecutive =
{SIG0[=3]}

Transaction Tracker Tutorial 167

SynaptiCAD 2007

6) Implication operator implication = {{SIG0} |-> {SIG0}}

7) Implication Next-Cycle operator implication_next_cycle = {{SIG0} |=> {SIG0}}

8) PSL Property until_SIG0 = ((BUS > 2) until SIG0)

Return to Tutorial Table of Contents

1) Open the Example File

First, open the timing diagram file c:\SynaptiCAD\Examples\sugar\psltutorial.btim using the
menu option File > Open Timing Diagram. This file contains all the assertions discussed in this
tutorial. As we go over each assertion, you can double click on the associated signal in the timing
diagram to see how the assertion was specified.

2) Match all occurrences of a simple pattern

one_SIG0 = {SIG0}

This sequence matches a single occurrence of SIG0 on the positive edge of CLK0. Since it is a
simple Boolean check, its transaction records have no time width and they display as spikes. It fails
to match at time 100, so the first spike is red, then passes for two cycles because SIG0 is high,
then fails again at time 400.

Double click on one_SIG0 to open the Signal Properties dialog. Note, that under the Equation tab,
the TE Sequence is chosen. Also note that the equation is just {SIG0}.

If you click on the PSL tab, you can see the actual PSL code that is generated from the information
in the TE Sequence equation and the other controls in the Equation tab.

SynaptiCAD Tutorials168

SynaptiCAD 2007

3) Match Consecutive Occurrences with Concatenation Operator

two_SIG0 = {SIG0;SIG0}

This sequence matches two consecutive occurrences of SIG0. The first attempt at time 100 fails
immediately, because SIG0 is low, resulting in a red spike. The second attempt begins to match at
time 200, and then succeeds at time 300, since SIG0 is still high at time 300. A new attempt is also
begun at time 300, creating a transaction record that overlaps with the transaction record that
started at time 200, so the time 300 transaction is placed on an overflow signal (two_SIG1_1).
SIG0 goes low before time 400, so the time 300 transaction fails at time 400. A new transaction is
also began at time 400, which fails immediately, resulting in a red spike at time 400 on two_SIG0.

4) Match with consecutive repetition Operator

three_SIG0 = {SIG0[*3]}

This sequences matches against 3 consecutive matches of SIG0. Note that this sequence could
also have been specified as {SIG0;SIG0;SIG0}, but this gets awkward for specifying large numbers
of repetitions of a pattern. There are no cases where SIG0 is high for 3 consecutive cycles, so all
the match attempts eventually fail. The transaction record at time 200 holds for the first 2 cycles,
then fails in the third cycle. Because it takes 3 clocks to fail, and two new matches are attempted
during this time, two overflow signals are required to display all the transaction records without
overlap.

Transaction Tracker Tutorial 169

SynaptiCAD 2007

5) Match with non-consecutive Repetition Operator

three_SIG0_nonconsecutive = {SIG0[=3]}

This sequence looks for 3 nonconsecutive occurrences of SIG0 since we used [=n] instead of the
consecutive operator [*n]. Note that SIG0 does not have to be true during the first cycle of the
match attempt, this operator only that we eventually see 3 clocks during which SIG0 is true, so we
end up with a large number of successful matches.

6) Bit-slices and the Boolean operators

and_ with_bitslice = {BUS[1:0] & BUS[3:2]}

This assertion uses the bit slice operator to AND together the two least significant bits of BUS with
the next two bits of BUS. The result of this operation is considered true if the value is greater than
0, so for Boolean truth, it is equivalent to: {(BUS[1] & BUS[3]) | (BUS[0] & BUS[2])}

The assertion matches at time 600 (when BUS has a value of 5, so BUS[3:2] =’b01 and BUS[1:0]=’
b01) and at time 800 (when BUS has a value of 7, so BUS[3:2] =’b01 and BUS[1:0]=’b11).

7) Implication operator

implication = {{SIG0} |-> {SIG0}}

The implication operator guarantees that if the left hand operand holds (the sequence specified by
the left hand operand succeeds), then the right hand operand will hold. If the left hand operand
does not hold, the implication operator will succeed regardless of whether the right hand operand
holds.

In this assertion we use the implication operator to ensure that: if SIG0 is true during a clock cycle,
then SIG0 is true during this clock cycle. Therefore, this is not very a useful sequence as the
sequence will always hold and matches immediately, regardless of whether SIG0 is true or false.
Please note how this differs from the earlier {SIG0} assertion, which passes or fail each clock cycle
based on whether SIG0 is true or not.

SynaptiCAD Tutorials170

SynaptiCAD 2007

8) Implication Next-Cycle operator

implication_next_cycle = {{SIG0} |=> {SIG0}}

This assertion looks very similar to the previous one, but the implication operator |-> has been
replaced by the implication_next_cycle operator |=>. So this assertion is equivalent to: {{SIG0} |->
{true;SIG0}}. It checks that if SIG0 is true in the current cycle, it should be true in the next clock
cycle. So if SIG0 is false at the start of a match attempt, that match attempt succeeds immediately.
If SIG0 is true during the start of a match attempt, the match will succeed if SIG0 is true during the
next cycle, or fail if SIG0 is false during the next cycle. Compare this to the operation of the earlier
assertion {SIG0;SIG0} which fails when SIG0 is not true at the beginning of a match attempt.

9) PSL Property

until_SIG0 = ((BUS > 2) until SIG0)

For this signal we used a PSL property instead of an assertion, so the assertion body is
surrounded by parenthesis instead of curly brackets. In the Signal Properties dialog, the equation
edit box is TE Property. The property checks each cycle to see if the value of BUS is greater than
2 until SIG0 becomes true. Note that for the matches attempted at time 500 and 700, SIG0 is true
on the initial clock cycle of the match, so the transaction record succeeds immediately.

Index 171

SynaptiCAD 2007

Index
- A -
Adding 12, 14, 23, 24

clock 12

parameters 24

setups 23

signals 14

Analog 60, 61, 62, 63, 64

CapCharge function 64

CapDischarge function 64

Ramps by a function 62

Ramps with mouse 60

SinEnd function 63

SinStart function 63

Spice output 59

Step signals 61

step voltage export 59

Analog Display checkbox

piecewise linear 59

Analog Signals 59

- B -
Base Time Unit 11

- C -
CapCharge fundtion 64

CapDischarge function 64

Clocks 12, 23

adding 12

adding setup 23

Comparison 154

Masking Segments 154

Compile SynaptiCAD Library Models 134

- D -
Drawing Waveforms 15

- E -
Export Diagram as an HDL Test Bench 90

- L -
Label Equation 62, 63, 64

CapCharge function 64

CapDischarge function 64

Ramp 62

SinEnd function 63

SinStart 63

SinStart function 63

- M -
Masking Segments During Comparison 154

Match all occurrences of a simple pattern 167

Match Consecutive Occurrences with Concatenation
Operator 168

Moving Signals 33

- O -
Open the Example File 167

- P -
Parameters 24

adding 24

- R -
Ramp function 62

Ramp Signals 59

Reordering Signals 33

- S -
Setups 23

adding 23

signals 14, 15, 16, 33

adding 14

drawing waveforms 15

editing waveforms 16

SynaptiCAD Tutorials172

SynaptiCAD 2007

signals 14, 15, 16, 33

moving 33

ramp 59

reordering 33

step 59

SinEnd function 63

SinStart 63

SinStart function 63

Step Signals 59

- W -
Waveform Comparison 154

masking segments 154

Waveforms 15

drawing 15

editing 16

	Timing Diagram Editor 1: Basic Drawing And Timing Analysis
	(TD) 1.1 Timing Diagram Editor Choices
	(TD) 1.2 Set the Base and Dispaly Time Unit
	(TD) 1.3. Add the Clock
	(TD) 1.4 Add the Signals
	(TD) 1.5 Drawing Signal Waveforms
	(TD) 1.6 Editing Signal Waveforms
	(TD) 1.7 Adjust Diagram to Match Figure
	(TD) 1.8 Add the D Flip-Flop Propagation Delay
	(TD) 1.9 Add the Inverter Propagation Delay
	(TD) 1.10 Add the Setup for the Dinput to Clock
	(TD) 1.11 Add a Free Parameter
	(TD) 1.12 Drawing with Equations
	(TD) 1.13 Drawing Virtual Busses
	(TD) 1.14 Drawing Group Buses and Differential Signals
	(TD) 1.15 Working with Drawing Environnment
	(TD) 1.16 Summary

	Timing Diagram Editor 2: Simulated Signals
	(TD) 2.1 Setup for Simulation
	(TD) 2.2 Simulate a Boolean Equation
	(TD) 2.3 Boolean Equations with Delays
	(TD) 2.4 Register and Latch Signals
	(TD) 2.5 Set and Clear Lines
	(TD) 2.6 Multi-bit Equations
	(TD) 2.7 Design a Multi-Bit Counter
	(TD) 2.8 End Diagram Marker Stops Simulation
	(TD) 2.9 Behavioral HDL Code
	(TD) 2.10 Simulated Bus Signals
	(TD) 2.11 Summary of Simulated Signals Tutorial

	Timing Diagram Editor 3: Display and Documentation
	(TD) 3.1 Controlling Parameter Display String
	(TD) 3.2 Repeating Parameters
	(TD) 3.3 Editing Waveform Edges From an Equation
	(TD) 3.4 Drag and Drop Parameter End Points
	(TD) 3.5 Adjusting the Vertical Placement of a Parameter
	(TD) 3.6 Clock Jitter and Display
	(TD) 3.7 Markers
	(TD) 3.8 Edit Text Blocks
	(TD) 3.9 Summary of Display and Documentation Tutorial

	Timing Diagram Editor 4: Analog Signals
	(TD) 4.1 Viewing & Exporting Real Radix Signals as Analog Waveforms
	(TD) 4.2 Creating Analog Signals using the Mouse
	(TD) 4.3 Drawing a Step Signal
	(TD) 4.4 Drawing Analog Ramps
	(TD) 4.5 Generating Sine Waves
	(TD) 4.5.a The SinStart(amplitude, period, duration) Function
	(TD) 4.5.b The Sin(amplitude, period, duration) Function
	(TD) 4.5.c The SinEnd(amplitude, period, duration) Function

	(TD) 4.6 Generating Capacitor Charge and Discharge
	6.1 The CapCharge(amplitude, RC, duration) Function
	6.2 The CapDischarge(amplitude, RC, duration) Function

	(TD) 4.7 Converting between Real and Multi-bit Signals

	Timing Diagram Editor 5: Parameter Libraries
	(TD) 5.1 Adding Libraries to the Project's "Library Search List"
	(TD) 5.2 Setting Library Specifications
	(TD) 5.3 Startup Library Configuration
	(TD) 5.4 Referencing Parameters in Libraries
	(TD) 5.5 Using Macros to Examine Tradeoffs Between Different Libraries

	Timing Diagram Editor 6: Advanced Modeling and Simulation
	(TD) 6.1 Set up a New Timing Diagram
	(TD) 6.2 Generate the Clock, Draw Waveforms, & Use Waveform Equations
	(TD) 6.3 Modeling State Machines
	(TD) 6.4 Checking for Simulation Errors
	(TD) 6.5 Incremental Simulation
	(TD) 6.6 Modeling Combinational Logic
	(TD) 6.7 Entering Direct HDL Code for Simulated Signals
	(TD) 6.8 Modeling n-bit Gates
	(TD) 6.9 Incorporating Pre-written HDL Models into Waveformer Simuations
	(TD) 6.10 Modeling the Incrementor and Latch Circuit
	(TD) 6.11 Modeling Tri-State Gates
	(TD) 6.12 Debugging External Verilog Models
	(TD) 6.13 Verify the Histogram Circuit
	(TD) 6.14 Controlling the Length of the Simulation
	(TD) 6.15 Editing Verilog Source Files
	(TD) 6.16 Simulating Your Model with Traditional Verilog Simulators
	(TD) 6.17 Summary

	Test Bench Generation 1: VHDL-Verilog Stimulus
	(TBench) 1.1 Getting Started
	(TBench) 1.2 Default Mappings: Hex and Binary Translations
	(TBench) 1.3 Generating Verilog Code
	(TBench) 1.4 VHDL - Advanced Data Types
	(TBench) 1.5. Exporting to VHDL

	Test Bench Generation 2: Reactive Test Bench Option
	(TBench) 2.1 The Model Under Test
	(TBench) 2.2 Create Signals
	(TBench) 2.3 Draw Single Write (without waiting on TRDY)
	(TBench) 2.4 Export Diagram as an HDL Test Bench
	(TBench) 2.5 Add Wait for TRDY Assertion
	(TBench) 2.6 Draw Single Read
	(TBench) 2.7 Add a Sample to Verify Data Read From MUT
	(TBench) 2.8 Drive Data Using a "Test Vector Spreadsheet" File
	(TBench) 2.9 Create For-Loop to Perform Multiple Writes and Reads
	(TBench) 2.10 TestBencher Pro Transactor - Add Address Argument
	(TBench) 2.11 Alternatives

	Test Bench Generation 3: TestBencher Pro Basic Tutorial
	(TBench) 3.1 Run TestBencher Pro
	(TBench) 3.2.Create a Project
	(TBench) 3.3 Add the SRAM model to the Project
	(TBench) 3.4 Setup the Template Diagram
	(TBench) 3.5 Create the Write Cycle Transaction Diagram
	(TBench) 3.6 Create the Read Cycle Transaction Diagram
	(TBench) 3.7 Add a Sample to Verify Data
	(TBench) 3.8 Create the Initialize Transaction Diagram
	(TBench) 3.9 Add Transaction Calls to the Sequencer Process
	(TBench) 3.10 Setup the Simulator
	(TBench) 3.11 Generate the Test Bench and Simulate
	(TBench) 3.12 Examine Report Window Results
	(TBench) 3.13 Examine the Stimulus and Results Diagram
	(TBench) 3.14 TestBencher Pro Basic Tutorial Summary

	Simulation 1: VeriLogger Basic Verilog Simulation
	(Sim) 1.1 Simulator Choices
	(Sim) 1.2 Add Files to the Project
	(Sim) 1.3 Build the Tree and Investigate the Project
	(Sim) 1.4 Simulate the Project
	(Sim) 1.5 Prepare for Graphical Test Bench Generation
	(Sim) 1.6 Draw Test Bench in Debug Run Mode
	(Sim) 1.7 Simulate in Auto Run Mode
	(Sim) 1.8 Breakpoints, Stepping and Inspecting
	(Sim) 1.9 Archiving Stimulus and Results
	(Sim) 1.10 Saving the Project files
	(Sim) 1.11 Summary of VeriLogger Basic Verilog Simulation

	Simulation 2: Using WaveFormer with ModelSim VHDL
	(Sim) 2.1 Compile SynaptiCAD Library Models
	(Sim) 2.2 Create a project and extract the ports
	(Sim) 2.3 Draw the test bench waveforms
	(Sim) 2.4 Export Waveforms to VHDL
	(Sim) 2.5 Simulate VHDL test bench using ModelSim
	(Sim) 2.6 Compare simulation results against expected results
	(Sim) 2.7 Summary of Using WaveFormer with ModelSim VHDL

	Waveform Comparison Tutorial
	1. Creating Individual Compare Signals
	1.1 To Create a Compare Signal
	1.2 Draw the Expected Waveform on the Compare Signal
	1.3 Comparison Using Tolerance

	2. Comparing Timing Diagrams
	2.1 Import VCD Data and Save as a .btim
	2.2 Open the Logic Analyzer Data File
	2.3 Compare the Two Timing Diagrams
	2.4 Editing all Compare Signal Properties
	2.5 Methods of Examining the Differences Reported During a Comparison

	3. Performing a Clocked Comparison
	4. Comparing During Clock Cycle Windows
	4.1 Add Offset Clock to Diagram
	4.2 Change the Compare Signals to Use the Offset Clock

	5. Masking Clock Segments During Comparison
	5.1 Search and Replace Signal Names
	5.2 Add the Compare Enable
	5.3 Add the Simulated Masking Signal
	5.4 Use Masking Signal to Mask Clock Segments
	5.5 Setting up Don't Care Regions

	6. Adjusting the Time Difference Between Two Diagrams
	7. Summary

	Gigawave and WaveViewer Viewer Tutorial
	1. Converting a vcd file into a btim file
	2. Importing a subset of the Waveforms
	3. Creating a Filter File to selectively load signals
	4. Show and Hide Signals in the display
	5. Options: Gigawave, Waveform Comparison,Transaction Tracking
	6. Waveviewer/GigaWave Viewer Tutorial Summary

	Transaction Tracker Tutorial
	1) Open the Example File
	2) Match all occurrences of a simple pattern
	3) Match Consecutive Occurrences with Concatenation Operator
	4) Match with consecutive repetition Operator
	5) Match with non-consecutive Repetition Operator
	6) Bit-slices and the Boolean operators
	7) Implication operator
	8) Implication Next-Cycle operator
	9) PSL Property

