
ModelSim® User’s Manual

Software Version 10.4c

© 1991-2015 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth
in the license agreement provided with the software, except for provisions which are contrary to
applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777

Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210

Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback_form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

ModelSim User’s Manual, v10.4c 3

Table of Contents

Chapter 1
Introduction. 27

Operational Structure and Flow. 27
Simulation Task Overview . 28
Basic Steps for Simulation. 29

Files and Map Libraries . 30
Step 1 — Create Work and Resource Libraries . 31
Step 2 — Compile the Design . 33
Step 3 — Load the Design for Simulation . 34
Step 4 — Simulate the Design . 35
Step 5 — Debug the Design . 36

Modes of Operation . 36
Command Line Mode . 38
Batch Mode. 40

Default stdout Messages . 42
Tool Statistics Messages . 42
Controlling the Display of Statistics Messages . 43

Definition of an Object . 45
Standards Supported . 45
Assumptions. 46
Text Conventions . 47
Installation Directory Pathnames. 47

Chapter 2
Protecting Your Source Code . 49

Encryption Envelopes . 49
Creating Encryption Envelopes . 50
Protection Expressions . 53
The `include Compiler Directive (Verilog only) . 54

Compiling with +protect . 57
The Runtime Encryption Model . 59
Language-Specific Usage Models . 59

Usage Models for Protecting Verilog Source Code . 60
Usage Models for Protecting VHDL Source Code. 65

Proprietary Source Code Encryption Tools . 73
Using Proprietary Compiler Directives . 73
Protecting Source Code Using -nodebug . 75

Encryption Reference. 76
Encryption and Encoding Methods. 76
How Encryption Envelopes Work . 78
Using Public Encryption Keys . 78
Using the Mentor Graphics Public Encryption Key . 79

Table of Contents

4 ModelSim User’s Manual, v10.4c

Chapter 3
Projects. 81

What are Projects? . 81
What are the Benefits of Projects? . 81
Project Conversion Between Simulator Versions. 82

Getting Started with Projects . 82
Open a New Project . 82
Add Source Files to the Project . 84
Compile the Files . 86
Change Compile Order . 87
Auto-Generate the Compile Order . 88
Grouping Files . 89
Simulate a Design . 89

The Project Window . 91
Creating a Simulation Configuration . 92
Organizing Projects with Folders. 94

Adding a Project Folder . 94
Set File Properties and Project Settings . 96

File Compilation Properties . 96
Project Settings . 97
Setting Custom Double-click Behavior . 99

Access Projects from the Command Line . 99

Chapter 4
Design Libraries . 101

Design Library Overview . 101
Design Unit Information . 101
Working Library Versus Resource Libraries . 101

Working with Design Libraries . 102
Creating a Library . 102
Library Size. 103
Library Window Contents. 104
Map a Logical Name to a Design Library . 105
Move a Library . 107
Setting Up Libraries for Group Use . 107

Verilog Resource Libraries . 108
Library Search Rules and the vlog Command . 108
Handling Sub-Modules with the Same Name. 109
The LibrarySearchPath Variable. 109

VHDL Resource Libraries . 110
Predefined Libraries . 110
Alternate IEEE Libraries Supplied . 111
Regenerating Your Design Libraries . 111

Importing FPGA Libraries. 112
Protect Source Code. 113

Table of Contents

ModelSim User’s Manual, v10.4c 5

Chapter 5
VHDL Simulation . 115

Basic VHDL Usage . 115
Compilation and Simulation of VHDL . 115

Creating a Design Library for VHDL. 116
Compilation of a VHDL Design—the vcom Command. 116
Simulation of a VHDL Design—the vsim Command . 120

Usage Characteristics and Requirements. 121
Differences Between Supported Versions of the VHDL Standard. 122
Naming Behavior of VHDL for Generate Blocks . 125
Simulator Resolution Limit for VHDL. 126
Default Binding. 126
Delta Delays . 128

The TextIO Package . 130
Syntax for File Declaration. 131
STD_INPUT and STD_OUTPUT Within ModelSim . 132
TextIO Implementation Issues . 132
Alternative Input/Output Files . 134
The TEXTIO Buffer . 135
Input Stimulus to a Design . 135

VITAL Usage and Compliance . 135
VITAL Source Code . 135
VITAL 1995 and 2000 Packages . 135
VITAL Compliance . 136
Compiling and Simulating with Accelerated VITAL Packages . 136

VHDL Utilities Package (util) . 137
Modeling Memory . 140

Examples of Different Memory Models . 141
Effects on Performance by Cancelling Scheduled Events . 150

VHDL Access Object Debugging . 150
Terminology and Naming Conventions . 151
VHDL Access Type . 152
Limitations . 153
Default Behavior—Logging and Debugging Disabled. 153
Logging and Debugging Enabled . 154
The examine and describe Commands . 155

Chapter 6
Verilog and SystemVerilog Simulation. 159

Standards, Nomenclature, and Conventions . 159
Supported Variations in Source Code. 160
for Loops. 160
Naming Macros with Integers. 161

Basic Verilog Usage . 161
Verilog Compilation . 162
Initializing enum Variables. 165
Incremental Compilation . 165
Library Usage . 168

Table of Contents

6 ModelSim User’s Manual, v10.4c

SystemVerilog Multi-File Compilation . 169
Verilog-XL Compatible Compiler Arguments . 171
Verilog Configurations . 174
Verilog Generate Statements . 176

Verilog Simulation. 177
Simulator Resolution Limit (Verilog). 177
Modules Without Timescale Directives . 177
Multiple Timescale Directives . 178
Choosing the Resolution for Verilog . 179
Event Ordering in Verilog Designs. 180
Debugging Event Order Issues . 183
Signal Segmentation Violations . 184
Negative Timing Checks. 186
Force and Release Statements in Verilog . 196
Verilog-XL Compatible Simulator Arguments . 196
Using Escaped Identifiers . 197

Cell Libraries . 198
SDF Timing Annotation . 198
Delay Modes . 198

SystemVerilog System Tasks and Functions. 201
IEEE Std 1800-2012 System Tasks and Functions. 202
Using the $typename Data Query Function . 206
Task and Function Names Without Round Braces ‘()’. 207
Verilog-XL Compatible System Tasks and Functions . 208
String Class Methods for Matching Patterns . 211

Compiler Directives . 213
IEEE Std 1364 Compiler Directives . 214
Verilog-XL Compatible Compiler Directives . 214

Unmatched Virtual Interface Declarations . 215
Verilog PLI and SystemVerilog DPI . 216

Extensions to SystemVerilog DPI . 216
SystemVerilog Class Debugging . 217

Enabling Class Debug. 217
The Class Instance Identifier . 217
Logging Class Types and Class Instances . 218
Working with Class Types . 219
Working with Class Instances. 223
Working with Class Path Expressions . 228
Conditional Breakpoints in Dynamic Code . 233
Stepping Through Your Design . 233
The Run Until Here Feature . 234
Command Line Interface . 234
Class Instance Garbage Collection . 243

Chapter 7
Recording Simulation Results With Datasets. 247

Saving a Simulation to a WLF File . 248
Saving at Intervals with Dataset Snapshot . 249

Table of Contents

ModelSim User’s Manual, v10.4c 7

Saving Memories to the WLF. 250
WLF File Parameter Overview. 251
Limiting the WLF File Size . 253
Opening Datasets . 253

Dataset Structure . 254
Structure Window Columns . 255

Managing Multiple Datasets . 256
Managing Multiple Datasets in the GUI. 256
Managing Multiple Datasets from the Command Line . 256
Restricting the Dataset Prefix Display . 258

Collapsing Time and Delta Steps. 258
Virtual Objects . 259

Virtual Signals . 260
Virtual Functions . 261
Virtual Regions . 262
Virtual Types . 262

Chapter 8
Waveform Analysis. 263

Wave Window Overview. 263
Objects You Can View . 264
Adding Objects to the Wave Window . 265

Inserting Signals in a Specific Location . 266
Working with Cursors . 267

Adding Cursors . 270
Editing Cursor Properties . 270
Jump to a Signal Transition . 270
Measuring Time with Cursors in the Wave Window . 271
Syncing All Active Cursors . 271
Linking Cursors . 272
Understanding Cursor Behavior . 273
Shortcuts for Working with Cursors . 273
Two Cursor Mode . 274

Expanded Time in the Wave Window. 275
Expanded Time Terminology . 275
Recording Expanded Time Information . 276
Viewing Expanded Time Information in the Wave Window . 276
Customizing the Expanded Time Wave Window Display . 279
Expanded Time Display Modes . 280
Switching Between Time Modes . 281
Expanding and Collapsing Simulation Time . 281
Expanded Time with examine and Other Commands . 282

Zooming the Wave Window Display . 283
Zooming with the Menu, Toolbar and Mouse . 283
Saving Zoom Range and Scroll Position with Bookmarks. 284
Editing Bookmarks . 285

Searching in the Wave Window . 286
Searching for Values or Transitions . 286

Table of Contents

8 ModelSim User’s Manual, v10.4c

Search with the Expression Builder . 287
Filtering the Wave Window Display . 291
Formatting the Wave Window. 291

Setting Wave Window Display Preferences . 291
Formatting Objects in the Wave Window . 295
Dividing the Wave Window . 299
Splitting Wave Window Panes . 300

Wave Groups . 301
Creating a Wave Group . 302
Deleting or Ungrouping a Wave Group . 305
Adding Items to an Existing Wave Group . 305
Removing Items from an Existing Wave Group. 305
Miscellaneous Wave Group Features . 306

Composite Signals or Buses . 306
Saving the Window Format . 307
Exporting Waveforms from the Wave window. 308

Exporting the Wave Window as a Bitmap Image. 308
Printing the Wave Window to a Postscript File . 309
Printing the Wave Window on the Windows Platform . 309
Saving Waveform Sections for Later Viewing. 310

Viewing System Verilog Interfaces . 312
Working with Virtual Interfaces . 312

Combining Objects into Buses . 313
Extracting a Bus Slice. 314
Wave Extract/Pad Bus Dialog Box. 315
Splitting a Bus into Several Smaller Buses . 316

Using the Virtual Signal Builder . 316
Creating a Virtual Signal . 318

Miscellaneous Tasks . 320
Examining Waveform Values. 320
Displaying Drivers of the Selected Waveform . 320
Sorting a Group of Objects in the Wave Window . 321

Creating and Managing Breakpoints . 321
Signal Breakpoints . 321
File-Line Breakpoints . 324
Saving and Restoring Breakpoints . 326

Chapter 9
Debugging with the Dataflow Window . 327

Dataflow Window Overview . 327
Dataflow Usage Flow . 328

Live Simulation Debug Flow . 328
Post-Simulation Debug Flow Details . 329

Common Tasks for Dataflow Debugging . 331
Add Objects to the Dataflow Window . 331
Exploring the Connectivity of the Design . 333
Explore Designs with the Embedded Wave Viewer. 337
Tracing Events . 339

Table of Contents

ModelSim User’s Manual, v10.4c 9

Tracing the Source of an Unknown State (StX) . 339
Finding Objects by Name in the Dataflow Window. 341
Automatically Tracing All Paths Between Two Nets. 341

Dataflow Concepts. 343
Symbol Mapping. 343
User-Defined Symbols . 344
Current vs. Post-Simulation Command Output . 346

Dataflow Window Graphic Interface Reference . 346
What Can I View in the Dataflow Window? . 346
How is the Dataflow Window Linked to Other Windows? . 347
How Can I Print and Save the Display? . 347
How Do I Configure Window Options? . 349

Chapter 10
Source Window . 351

Opening Source Files. 351
Changing File Permissions . 351
Updates to Externally Edited Source Files . 352

Navigating Through Your Design . 352
Data and Objects in the Source Window . 353

Object Values and Descriptions . 353
Setting Simulation Time in the Source Window . 354
Search for Source Code Objects . 355

Debugging and Textual Connectivity . 357
Hyperlinked Text . 357
Highlighted Text in the Source Window . 358
Drag Objects Into Other Windows . 358

Breakpoints . 359
Setting Individual Breakpoints in a Source File . 359
Setting Breakpoints with the bp Command . 359
Editing Breakpoints . 360
Saving and Restoring Breakpoints . 362
Setting Conditional Breakpoints . 363
Run Until Here . 365

Source Window Bookmarks . 366
Setting and Removing Bookmarks . 366

Source Window Preferences . 366

Chapter 11
Signal Spy . 367

Signal Spy Concepts . 367
Signal Spy Formatting Syntax . 368
Signal Spy Supported Types. 368

Signal Spy Reference. 369
disable_signal_spy . 370
enable_signal_spy . 372
init_signal_driver . 374
init_signal_spy . 378

Table of Contents

10 ModelSim User’s Manual, v10.4c

signal_force. 382
signal_release . 386

Chapter 12
Generating Stimulus with Waveform Editor . 389

Getting Started with the Waveform Editor . 390
Using Waveform Editor Prior to Loading a Design . 390
Using Waveform Editor After Loading a Design . 391

Accessing the Create Pattern Wizard. 392
Creating Waveforms with Wave Create Command. 393
Editing Waveforms . 393
Selecting Parts of the Waveform . 395

Selection and Zoom Percentage . 396
Auto Snapping of the Cursor . 396
Stretching and Moving Edges. 397

Simulating Directly from Waveform Editor . 397
Exporting Waveforms to a Stimulus File. 397
Driving Simulation with the Saved Stimulus File . 399

Signal Mapping and Importing EVCD Files . 399
Saving the Waveform Editor Commands . 400

Chapter 13
Standard Delay Format (SDF) Timing Annotation. 401

Specifying SDF Files for Simulation. 401
Instance Specification . 401
SDF Specification with the GUI . 402
Errors and Warnings . 402

VHDL VITAL SDF . 403
SDF to VHDL Generic Matching . 403

Verilog SDF. 404
$sdf_annotate . 405
SDF to Verilog Construct Matching . 406

SDF for Mixed VHDL and Verilog Designs . 413
Interconnect Delays . 413
Disabling Timing Checks . 413
Troubleshooting . 414

Specifying the Wrong Instance. 414
Matching a Single Timing Check . 415
Mistaking a Component or Module Name for an Instance Label. 415
Forgetting to Specify the Instance . 415
Reporting Unannotated Specify Path Objects. 416

Chapter 14
Value Change Dump (VCD) Files . 419

Creating a VCD File . 419
Four-State VCD File . 419
Extended VCD File. 420
VCD Case Sensitivity . 420

Table of Contents

ModelSim User’s Manual, v10.4c 11

Using Extended VCD as Stimulus. 421
Simulating with Input Values from a VCD File . 421
Replacing Instances with Output Values from a VCD File . 422
Port Order Issues. 423

VCD Commands and VCD Tasks . 424
Compressing Files with VCD Tasks. 425

VCD File from Source to Output. 425
VHDL Source Code . 425
VCD Simulator Commands . 426

VCD to WLF . 428
Capturing Port Driver Data . 428
Resolving Values . 430

Default Behavior. 430
When force Command is Used . 430
Extended Data Type for VHDL (vl_logic) . 431
Ignoring Strength Ranges . 431

Chapter 15
Tcl and DO Files . 435

Tcl Features . 435
Tcl References . 435

Tcl Command Syntax . 436
If Command Syntax . 438
Command Substitution . 439
Command Separator . 439
Multiple-Line Commands. 439
Evaluation Order. 440
Tcl Relational Expression Evaluation. 440
Variable Substitution . 440
System Commands . 441
ModelSim Replacements for Tcl Commands . 441

Simulator State Variables . 442
Referencing Simulator State Variables. 443
Special Considerations for the now Variable . 443

List Processing . 443
Simulator Tcl Commands . 444

Simulator Tcl Time Commands . 444
Tcl Examples . 446
DO Files . 448

Creating DO Files . 448
Using Parameters with DO Files. 449
Deleting a File from a .do Script. 449
Making Script Parameters Optional . 450
Breakpoint Flow Control in Nested DO files . 451
Useful Commands for Handling Breakpoints and Errors . 453
Error Action in DO File Scripts . 453
Using the Tcl Source Command with DO Files . 454

Table of Contents

12 ModelSim User’s Manual, v10.4c

Appendix A
modelsim.ini Variables . 455

Organization of the modelsim.ini File . 455
Making Changes to the modelsim.ini File . 456
Editing modelsim.ini Variables . 456
Overriding the Default Initialization File . 456
The Runtime Options Dialog . 457

Variables . 461
AccessObjDebug. 462
AddPragmaPrefix . 463
AmsStandard. 464
AppendClose. 465
AssertFile . 466
BatchMode . 467
BatchTranscriptFile. 468
BindAtCompile . 469
BreakOnAssertion. 470
CheckPlusargs. 471
CheckpointCompressMode. 472
CheckSynthesis . 473
ClassDebug . 474
CommandHistory . 475
CompilerTempDir. 476
ConcurrentFileLimit . 477
vlogCreateDirForFileAccess. 478
CreateLib. 479
DatasetSeparator . 480
DefaultForceKind . 481
DefaultLibType. 482
DefaultRadix . 483
DefaultRadixFlags . 484
DefaultRestartOptions. 485
DelayFileOpen . 486
displaymsgmode . 487
DpiOutOfTheBlue. 488
DumpportsCollapse. 489
EnumBaseInit . 490
error. 491
ErrorFile . 492
Explicit . 493
fatal . 494
FlatLibPageSize . 495
FlatLibPageDeletePercentage . 496
FlatLibPageDeleteThreshold . 497
floatfixlib. 498
ForceSigNextIter. 499
ForceUnsignedIntegerToVHDLInteger . 500
FsmImplicitTrans . 501

Table of Contents

ModelSim User’s Manual, v10.4c 13

FsmResetTrans . 502
FsmSingle . 503
FsmXAssign . 504
GCThreshold. 505
GCThresholdClassDebug . 506
GenerateFormat. 507
GenerousIdentifierParsing . 508
GlobalSharedObjectsList . 509
Hazard . 510
ieee . 511
IgnoreError . 512
IgnoreFailure. 513
IgnoreNote . 514
IgnorePragmaPrefix . 515
ignoreStandardRealVector . 516
IgnoreVitalErrors . 517
IgnoreWarning . 518
ImmediateContinuousAssign . 519
IncludeRecursionDepthMax . 520
InitOutCompositeParam . 521
IterationLimit . 522
LargeObjectSilent . 523
LargeObjectSize . 524
LibrarySearchPath. 525
MessageFormat . 526
MessageFormatBreak . 527
MessageFormatBreakLine . 528
MessageFormatError. 529
MessageFormatFail. 530
MessageFormatFatal . 531
MessageFormatNote . 532
MessageFormatWarning . 533
MixedAnsiPorts . 534
modelsim_lib . 535
MsgLimitCount. 536
msgmode . 537
mtiAvm . 538
mtiOvm . 539
MultiFileCompilationUnit . 540
NoCaseStaticError . 541
NoDebug. 542
NoDeferSubpgmCheck . 543
NoIndexCheck . 544
NoOthersStaticError . 545
NoRangeCheck . 546
note . 547
NoVitalCheck . 548
NumericStdNoWarnings. 549
OldVHDLConfigurationVisibility . 550

Table of Contents

14 ModelSim User’s Manual, v10.4c

OldVhdlForGenNames . 551
OnFinish . 552
Optimize_1164 . 553
osvvm . 554
PathSeparator . 555
PedanticErrors. 556
PreserveCase . 557
PrintSimStats . 558
Quiet . 559
RequireConfigForAllDefaultBinding . 560
Resolution . 561
RunLength. 562
SeparateConfigLibrary . 563
Show_BadOptionWarning . 564
Show_Lint. 565
Show_source . 566
Show_VitalChecksWarnings . 567
Show_Warning1 . 568
Show_Warning2 . 569
Show_Warning3 . 570
Show_Warning4 . 571
Show_Warning5 . 572
ShowFunctions . 573
ShutdownFile . 574
SignalForceFunctionUseDefaultRadix . 575
SignalSpyPathSeparator . 576
SmartDbgSym. 577
Startup . 578
Stats. 579
std . 581
std_developerskit . 582
StdArithNoWarnings . 583
suppress. 584
SuppressFileTypeReg . 585
sv_std . 586
SvExtensions. 587
SVFileSuffixes . 589
Svlog . 590
SVPrettyPrintFlags . 591
synopsys . 592
SyncCompilerFiles . 593
TranscriptFile . 594
UnbufferedOutput . 595
UndefSyms . 596
UserTimeUnit . 597
UVMControl . 598
verilog . 599
Veriuser. 600
VHDL93 . 601

Table of Contents

ModelSim User’s Manual, v10.4c 15

VhdlSeparatePduPackage . 602
VhdlVariableLogging . 603
vital2000 . 604
vlog95compat . 605
WarnConstantChange . 606
warning . 607
WaveSignalNameWidth . 608
WildcardFilter . 609
WildcardSizeThreshold. 610
WildcardSizeThresholdVerbose . 611
WLFCacheSize . 612
WLFCollapseMode. 613
WLFCompress . 614
WLFDeleteOnQuit . 615
WLFFileLock . 616
WLFFilename . 617
WLFOptimize . 618
WLFSaveAllRegions . 619
WLFSimCacheSize. 620
WLFSizeLimit . 621
WLFTimeLimit. 622
WLFUpdateInterval . 623
WLFUseThreads . 624

Commonly Used modelsim.ini Variables . 624
Common Environment Variables . 624
Hierarchical Library Mapping . 625
Creating a Transcript File . 625
Using a Startup File . 626
Turn Off Assertion Messages . 626
Turn Off Warnings from Arithmetic Packages. 626
Force Command Defaults . 626
Restart Command Defaults . 627
VHDL Standard . 627
Delay Opening VHDL Files . 628

Appendix B
Location Mapping. 629

Referencing Source Files with Location Maps . 629
Using Location Mapping . 629
Pathname Syntax. 630
How Location Mapping Works . 630

Appendix C
Error and Warning Messages . 631

Message System. 631
Message Format . 631
Getting More Information. 632
Message Severity Level . 632

Table of Contents

16 ModelSim User’s Manual, v10.4c

Syntax Error Debug Flow . 632
Suppression of Warning Messages . 633
Exit Codes . 634
Miscellaneous Messages . 636
Enforcing Strict 1076 Compliance. 639

Appendix D
Verilog Interfaces to C . 643

Implementation Information . 643
GCC Compiler Support for use with C Interfaces . 643
Registering PLI Applications. 643
Registering DPI Applications . 645
DPI Use Flow. 646

DPI and the vlog Command . 648
Deprecated Legacy DPI Flows . 648
When Your DPI Export Function is Not Getting Called . 648
Troubleshooting a Missing DPI Import Function. 649
Simplified Import of Library Functions . 649
Optimizing DPI Import Call Performance . 650
Making Verilog Function Calls from non-DPI C Models . 651
Calling C/C++ Functions Defined in PLI Shared Objects from DPI Code 651

Compiling and Linking C Applications for Interfaces . 652
Windows Platforms — C . 652

Compiling and Linking C++ Applications for Interfaces . 653
For PLI only . 653
Windows Platforms — C++ . 654

Specifying Application Files to Load . 655
PLI and VPI File Loading. 655
DPI File Loading. 655

DPI Example . 656
The PLI Callback reason Argument . 657
The sizetf Callback Function . 658
PLI Object Handles . 658
Support for VHDL Objects . 659
IEEE Std 1364 ACC Routines . 661
IEEE Std 1364 TF Routines. 663
SystemVerilog DPI Access Routines. 663
Verilog-XL Compatible Routines . 664
PLI/VPI Tracing. 664

The Purpose of Tracing Files . 664
Invoking a Trace . 664

Debugging Interface Application Code . 665

Appendix E
System Initialization . 667

Files Accessed During Startup. 667
Initialization Sequence. 667
Environment Variables . 670

Table of Contents

ModelSim User’s Manual, v10.4c 17

Expansion of Environment Variables . 670
Setting Environment Variables . 671
Creating Environment Variables in Windows . 675
Library Mapping with Environment Variables. 676
Node-Locked License File . 676
Referencing Environment Variables. 677
Removal of Temporary Files (VSOUT) . 677

Index

Third-Party Information

End-User License Agreement

18 ModelSim User’s Manual, v10.4c

List of Examples

Example 2-1. Encryption Envelope Contains Design Data to be Protected 51
Example 2-2. Encryption Envelope Contains `include Compiler Directives 52
Example 2-3. Results After Compiling with vlog +protect . 58
Example 2-4. Using the Mentor Graphics Public Encryption Key in Verilog/SystemVerilog 80
Example 5-1. Memory Model Using VHDL87 and VHDL93 Architectures 142
Example 5-2. Conversions Package. 144
Example 5-3. Memory Model Using VHDL02 Architecture . 146
Example 6-1. Incremental Compilation Example . 166
Example 6-2. Sub-Modules with Common Names . 169
Example 6-3. Delay Mode Directives in a Verilog Cell . 200
Example 14-1. VCD Output from vcd dumpports. 433
Example E-1. Node-Locked License Limit Error Message. 676

ModelSim User’s Manual, v10.4c 19

List of Figures

Figure 1-1. Operational Structure and Flow . 28
Figure 1-2. Work Library. 32
Figure 1-3. Compiled Design. 34
Figure 2-1. Create an Encryption Envelope. 51
Figure 2-2. Verilog/SystemVerilog Encryption Usage Flow . 61
Figure 2-3. Delivering IP Code with User-Defined Macros . 63
Figure 2-4. Delivering IP with `protect Compiler Directives . 74
Figure 3-1. Create Project Dialog . 83
Figure 3-2. Project Window Detail . 83
Figure 3-3. Add items to the Project Dialog . 84
Figure 3-4. Create Project File Dialog. 85
Figure 3-5. Add file to Project Dialog . 85
Figure 3-6. Right-click Compile Menu in Project Window . 87
Figure 3-7. Click Plus Sign to Show Design Hierarchy . 87
Figure 3-8. Setting Compile Order . 88
Figure 3-9. Grouping Files. 89
Figure 3-10. Add Simulation Configuration Dialog Box — Design Tab 90
Figure 3-11. Structure WIndow with Projects . 91
Figure 3-12. Project Window Overview . 91
Figure 3-13. Add Simulation Configuration Dialog Box . 93
Figure 3-14. Simulation Configuration in the Project Window. 94
Figure 3-15. Add Folder Dialog. 94
Figure 3-16. Specifying a Project Folder. 95
Figure 3-17. Project Compiler Settings Dialog . 96
Figure 3-18. Specifying File Properties . 97
Figure 3-19. Project Settings Dialog Box . 98
Figure 4-1. Creating a New Library. 103
Figure 4-2. Design Unit Information in the Workspace . 104
Figure 4-3. Edit Library Mapping Dialog . 106
Figure 4-4. Sub-Modules with the Same Name. 109
Figure 4-5. Import Library Wizard . 112
Figure 5-1. VHDL Delta Delay Process . 128
Figure 6-1. Fatal Signal Segmentation Violation (SIGSEGV) . 185
Figure 6-2. Current Process Where Error Occurred . 185
Figure 6-3. Blue Arrow Indicating Where Code Stopped Executing 186
Figure 6-4. Null Values in the Locals Window . 186
Figure 6-5. Classes in the Class Tree Window . 221
Figure 6-6. Class in the Class Graph Window. 222
Figure 6-7. Classes in the Structure Window . 223
Figure 6-8. The Class Instances Window . 224

List of Figures

20 ModelSim User’s Manual, v10.4c

Figure 6-9. Placing Class Instances in the Wave Window . 226
Figure 6-10. Class Information Popup in the Wave Window . 227
Figure 6-11. Class Viewing in the Watch Window . 228
Figure 6-12. Class Path Expressions in the Wave Window. 230
Figure 6-13. /top/a Cast as c1 and c1prime . 231
Figure 6-14. Casting c1 to c1prime . 232
Figure 6-15. Extensions for a Class Type . 242
Figure 6-16. Garbage Collector Configuration . 244
Figure 7-1. Displaying Two Datasets in the Wave Window . 248
Figure 7-2. Dataset Snapshot Dialog Box . 250
Figure 7-3. Open Dataset Dialog Box . 254
Figure 7-4. Structure Tabs . 255
Figure 7-5. The Dataset Browser . 256
Figure 7-6. Virtual Objects Indicated by Orange Diamond. 260
Figure 8-1. The Wave Window . 264
Figure 8-2. Insertion Point Bar . 267
Figure 8-3. Grid and Timeline Properties . 269
Figure 8-4. Find Previous and Next Transition Icons . 270
Figure 8-5. Original Names of Wave Window Cursors . 271
Figure 8-6. Sync All Active Cursors . 272
Figure 8-7. Cursor Linking Menu . 272
Figure 8-8. Configure Cursor Links Dialog. 273
Figure 8-9. Waveform Pane with Collapsed Event and Delta Time 277
Figure 8-10. Waveform Pane with Expanded Time at a Specific Time 277
Figure 8-11. Waveform Pane with Event Not Logged . 278
Figure 8-12. Waveform Pane with Expanded Time Over a Time Range 279
Figure 8-13. Bookmark Properties Dialog. 285
Figure 8-14. Wave Signal Search Dialog Box. 287
Figure 8-15. Expression Builder Dialog Box . 288
Figure 8-16. Selecting Signals for Expression Builder . 289
Figure 8-17. Display Tab of the Wave Window Preferences Dialog Box. 292
Figure 8-18. Grid and Timeline Tab of Wave Window Preferences Dialog Box 294
Figure 8-19. Clock Cycles in Timeline of Wave Window . 295
Figure 8-20. Wave Format Menu Selections . 295
Figure 8-21. Format Tab of Wave Properties Dialog . 296
Figure 8-22. Changing Signal Radix . 297
Figure 8-23. Global Signal Radix Dialog in Wave Window. 298
Figure 8-24. Separate Signals with Wave Window Dividers . 299
Figure 8-25. Splitting Wave Window Panes . 301
Figure 8-26. Wave Groups Denoted by Red Diamond . 303
Figure 8-27. Contributing Signals Group . 304
Figure 8-28. Save Format Dialog. 308
Figure 8-29. Waveform Save Between Cursors . 310
Figure 8-30. Wave Filter Dialog . 311
Figure 8-31. Wave Filter Dataset . 312

List of Figures

ModelSim User’s Manual, v10.4c 21

Figure 8-32. Virtual Interface Objects Added to Wave Window . 313
Figure 8-33. Signals Combined to Create Virtual Bus . 314
Figure 8-34. Wave Extract/Pad Bus Dialog Box . 315
Figure 8-35. Virtual Signal Builder . 317
Figure 8-36. Virtual Signal Builder Help . 318
Figure 8-37. Creating a Virtual Signal. 319
Figure 8-38. Virtual Signal in the Wave Window . 320
Figure 8-39. Modifying the Breakpoints Dialog . 323
Figure 8-40. Signal Breakpoint Dialog . 324
Figure 8-41. Breakpoints in the Source Window. 325
Figure 8-42. File Breakpoint Dialog Box . 326
Figure 9-1. The Dataflow Window (undocked) - ModelSim . 327
Figure 9-2. Dataflow Debugging Usage Flow . 329
Figure 9-3. Dot Indicates Input in Process Sensitivity Lis . 332
Figure 9-4. CurrentTime Label in Dataflow Window . 333
Figure 9-5. Controlling Display of Redundant Buffers and Inverters 335
Figure 9-6. Green Highlighting Shows Your Path Through the Design 336
Figure 9-7. Highlight Selected Trace with Custom Color . 337
Figure 9-8. Wave Viewer Displays Inputs and Outputs of Selected Process 338
Figure 9-9. Unknown States Shown as Red Lines in Wave Window 340
Figure 9-10. Dataflow: Point-to-Point Tracing . 343
Figure 9-11. The Print Postscript Dialog . 348
Figure 9-12. The Print Dialog . 348
Figure 9-13. The Page Setup Dialog . 349
Figure 9-14. Dataflow Options Dialog . 350
Figure 10-1. Setting Context from Source Files . 353
Figure 10-2. Examine Pop Up . 354
Figure 10-3. Current Time Label in Source Window . 354
Figure 10-4. Enter an Event Time Value . 355
Figure 10-5. Bookmark All Instances of a Search. 356
Figure 10-6. Breakpoint in the Source Window . 359
Figure 10-7. Editing Existing Breakpoints . 361
Figure 10-8. Source Code for source.sv. 363
Figure 12-1. Waveform Editor: Library Window . 390
Figure 12-2. Results of Create Wave Operation . 391
Figure 12-3. Opening Waveform Editor from Objects Windows . 391
Figure 12-4. Create Pattern Wizard . 392
Figure 12-5. Wave Edit Toolbar . 394
Figure 12-6. Manipulating Waveforms with the Wave Edit Toolbar and Cursors 396
Figure 12-7. Export Waveform Dialog . 398
Figure 12-8. Evcd Import Dialog. 399
Figure 13-1. SDF Tab in Start Simulation Dialog . 402
Figure 15-1. Breakpoint Flow Control in Nested DO Files. 452
Figure A-1. Runtime Options Dialog: Defaults Tab . 458
Figure A-2. Runtime Options Dialog Box: Message Severity Tab . 459

List of Figures

22 ModelSim User’s Manual, v10.4c

Figure A-3. Runtime Options Dialog Box: WLF Files Tab . 460
Figure D-1. DPI Use Flow Diagram . 647

ModelSim User’s Manual, v10.4c 23

List of Tables

Table 1-1. Simulation Tasks — ModelSim . 29
Table 1-2. Use Modes for ModelSim . 37
Table 1-3. Message Statistics Types . 43
Table 1-4. Message Mode Types . 44
Table 1-5. Commands with Statistics Message Options . 44
Table 1-6. Possible Definitions of an Object, by Language . 45
Table 1-7. Text Conventions . 47
Table 2-1. Compile Options for the -nodebug Compiling . 75
Table 5-1. Using the examine Command to Obtain VHDL Integer Data 156
Table 5-2. Using the examine Command to Obtain VHDL String Data 156
Table 5-3. Using the examine Command to Obtain VHDL Record Data 157
Table 6-1. Evaluation 1 of always Statements . 181
Table 6-2. Evaluation 2 of always Statement . 181
Table 6-3. Utility System Tasks and Functions . 202
Table 6-4. Utility System Functions . 202
Table 6-5. Utility System Math Functions . 203
Table 6-6. Utility System Analysis Tasks and Functions . 203
Table 6-7. Input/Output System Tasks and Functions . 204
Table 6-8. Input/Output System Memory and Argument Tasks . 204
Table 6-9. Input/Output System File I/O Tasks . 204
Table 6-10. Other System Tasks and Functions . 206
Table 6-11. Stepping Within the Current Context. 234
Table 6-12. Garbage Collector Modes . 243
Table 6-13. CLI Garbage Collector Commands and INI Variables 245
Table 7-1. WLF File Parameters . 251
Table 7-2. Structure Tab Columns . 255
Table 7-3. vsim Arguments for Collapsing Time and Delta Steps . 258
Table 8-1. Add Objects to the Wave Window . 265
Table 8-2. Actions for Cursors . 267
Table 8-3. Two Cursor Zoom . 274
Table 8-4. Recording Delta and Event Time Information . 276
Table 8-5. Menu Selections for Expanded Time Display Modes . 280
Table 8-6. Actions for Bookmarks . 285
Table 8-7. Actions for Dividers . 300
Table 9-1. Icon and Menu Selections for Exploring Design Connectivity 333
Table 9-2. Dataflow Window Links to Other Windows and Panes 347
Table 10-1. Open a Source File . 351
Table 11-1. Signal Spy Reference Comparison . 367
Table 12-1. Signal Attributes in Create Pattern Wizard . 393
Table 12-2. Waveform Editing Commands . 394

List of Tables

24 ModelSim User’s Manual, v10.4c

Table 12-3. Selecting Parts of the Waveform . 395
Table 12-4. Wave Editor Mouse/Keyboard Shortcuts . 397
Table 12-5. Formats for Saving Waveforms . 398
Table 12-6. Examples for Loading a Stimulus File . 399
Table 13-1. Matching SDF to VHDL Generics . 403
Table 13-2. Matching SDF IOPATH to Verilog . 406
Table 13-3. Matching SDF INTERCONNECT and PORT to Verilog 406
Table 13-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog 407
Table 13-5. Matching SDF DEVICE to Verilog . 407
Table 13-6. Matching SDF SETUP to Verilog . 407
Table 13-7. Matching SDF HOLD to Verilog . 407
Table 13-8. Matching SDF SETUPHOLD to Verilog . 408
Table 13-9. Matching SDF RECOVERY to Verilog . 408
Table 13-10. Matching SDF REMOVAL to Verilog . 408
Table 13-11. Matching SDF RECREM to Verilog . 408
Table 13-12. Matching SDF SKEW to Verilog . 408
Table 13-13. Matching SDF WIDTH to Verilog . 409
Table 13-14. Matching SDF PERIOD to Verilog . 409
Table 13-15. Matching SDF NOCHANGE to Verilog . 409
Table 13-16. RETAIN Delay Usage (default) . 410
Table 13-17. RETAIN Delay Usage (with +vlog_retain_same2same_on) 410
Table 13-18. Matching Verilog Timing Checks to SDF SETUP . 411
Table 13-19. SDF Data May Be More Accurate Than Model . 411
Table 13-20. Matching Explicit Verilog Edge Transitions to Verilog 411
Table 13-21. SDF Timing Check Conditions . 412
Table 13-22. SDF Path Delay Conditions . 412
Table 13-23. Disabling Timing Checks . 413
Table 14-1. VCD Commands and SystemTasks . 424
Table 14-2. VCD Dumpport Commands and System Tasks . 424
Table 14-3. VCD Commands and System Tasks for Multiple VCD Files 425
Table 14-4. Driver States . 428
Table 14-5. State When Direction is Unknown . 428
Table 14-6. Driver Strength . 429
Table 14-7. VCD Values When Force Command is Used . 430
Table 14-8. Values for file_format Argument . 432
Table 14-9. Sample Driver Data . 433
Table 15-1. Tcl Backslash Sequences . 437
Table 15-2. Changes to ModelSim Commands . 441
Table 15-3. Simulator State Variables . 442
Table 15-4. Tcl List Commands . 443
Table 15-5. Simulator-Specific Tcl Commands . 444
Table 15-6. Tcl Time Conversion Commands . 445
Table 15-7. Tcl Time Relation Commands . 445
Table 15-8. Tcl Time Arithmetic Commands . 446
Table 15-9. Commands for Handling Breakpoints and Errors in DO scripts 453

List of Tables

ModelSim User’s Manual, v10.4c 25

Table A-1. Commands for Overriding the Default Initialization File 457
Table A-2. Runtime Option Dialog: Defaults Tab Contents . 458
Table A-3. Runtime Option Dialog: Message Severity Tab Contents 460
Table A-4. Runtime Option Dialog: WLF Files Tab Contents . 460
Table A-5. MessageFormat Variable: Accepted Values . 526
Table C-1. Severity Level Types . 631
Table C-2. Exit Codes . 634
Table D-1. vsim Arguments for DPI Application Using External Compilation Flows 655
Table D-2. Supported VHDL Objects . 659
Table D-3. Supported ACC Routines . 661
Table D-4. Supported TF Routines . 663
Table D-5. Values for action Argument . 665
Table E-1. Files That ModelSim Accesses During Startup . 667
Table E-2. Add Library Mappings to modelsim.ini File . 676

List of Tables

26 ModelSim User’s Manual, v10.4c

ModelSim User’s Manual, v10.4c 27

Chapter 1
Introduction

Documentation for ModelSim is intended for users of Microsoft Windows.

Not all versions of ModelSim are supported on all platforms.

Operational Structure and Flow
The following graphic illustrates the structure and general usage flow for verifying a design
with ModelSim.

ModelSim User’s Manual, v10.4c28

Introduction
Simulation Task Overview

Figure 1-1. Operational Structure and Flow

Simulation Task Overview
The following table provides a reference for the tasks required for compiling, loading, and
simulating a design in ModelSim.

Simulate

Simulation Output
(for example, vcd)

Debug

.ini or Compile

vlog/

.mpf file

Libraries
Vendor

Design
files

vsim

Interactive Debugging
activities

Analyze/

Verilog/VHDL

Compile

compiled
database

vcom

Analyze/

vmap

VHDL
 Design
Libraries vlib

local work
library

Map libraries

Post-processing Debug

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v10.4c 29

Basic Steps for Simulation
This section describes the types of files and basic procedures needed to simulate your design
using ModelSim.

Table 1-1. Simulation Tasks — ModelSim

Task Example Command Line
Entry

GUI Menu Pull-down GUI Icons

Step 1:
Map libraries

vlib <library_name>
vmap work <library_name>

a. File > New > Project
b. Enter library name
c. Add design files to
project

N/A

Step 2:
Compile the
design

vlog file1.v file2.v ...
(Verilog)
vcom file1.vhd file2.vhd ...
(VHDL)

a. Compile > Compile
or
Compile > Compile All

Compile or
Compile All

Step 3:
Load the
design into the
simulator

vsim <top> a. Simulate > Start
Simulation
b. Click on top design
module
c. Click OK
This action loads the
design for simulation

Simulate icon:

Step 4:
Run the
simulation

run
step

Simulate > Run Run, or
Run continue, or
Run -all

Step 5:
Debug the
design

Common debugging
commands:
bp
describe
drivers
examine
force
log
show

N/A N/A

ModelSim User’s Manual, v10.4c30

Introduction
Basic Steps for Simulation

Files and Map Libraries
You need several files to simulate your design with ModelSim.

• design files (VHDL and/or Verilog), including stimulus for the design.

• libraries, both working and resource.

• modelsim.ini file (automatically created by the library mapping command).

For detailed information about the files accessed during system startup (including the
modelsim.ini file), initialization sequences, and system environment variables, refer to the
“System Initialization” appendix.

What is a Library?
A library is a location on your file system where ModelSim stores data to be used for
simulation. ModelSim uses one or more libraries to manage the creation of data before the data
is needed for simulation. A library also helps to streamline simulation invocation.

You can use libraries in the following ways.

• As a local working library that contains the compiled version of your design

• As a resource library

Resource Libraries
A resource library is typically unchanging, and serves as a parts source for your design. You can
create your own resource libraries, or they may be supplied by another design team or a third
party (for example, a silicon vendor).

Examples of resource libraries:

• Shared information within your group

• Vendor libraries

• Packages

• Previously compiled elements of your own working design

Instead of compiling all design data each time you simulate, ModelSim makes use of pre-
compiled resource libraries supplied in the installation tree. Using the pre-compiled libraries
helps to minimize errors during compilation and simulation startup. Also, if you make changes
to a single Verilog module, ModelSim recompiles only that module, rather than all modules in
the design.

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v10.4c 31

Related Topics

Mapping the Logical Work to the Physical Work Directory
VHDL uses logical library names that can be mapped to ModelSim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components will
not be loaded and simulation will fail. Similarly, compilation can also depend on proper library
mapping.

By default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name to
the pathname of the library.

Step 1 — Create Work and Resource Libraries
Before you can compile your source files, you must create a working library with the vlib
command in which to store the compilation results. The contents of your working library will
change as you update your design and recompile.

Vlib creates a "flat" library type by default. Flat libraries condense library information into a
small collection of files compared to the legacy library type. This remedies performance and
capacity issues seen with very large libraries.

Restrictions and Limitations

The vmake command does not support the flat library type, flows requiring the vmake
command can revert to the legacy library type when you do any of the following:

• Specify "-type directory" in the vlib command.

• Set the DefaultLibType variable in your modelsim.ini file to the value 0.

• Set the shell environment variable MTI_DEFAULT_LIB_TYPE to the value 0.

Use braces ({}) for cases where the path contains multiple items that need to be escaped, such as
spaces in the pathname or backslash characters. For example:

vmap celllib {$LIB_INSTALL_PATH/Documents And Settings/All/celllib}

Prerequisites

• Know the paths to the directories that contain your design files and resource libraries.

Working Library Versus Resource Libraries
Library Window Contents
Working with Design Libraries
Verilog Resource Libraries
VHDL Resource Libraries
Creating a Library

ModelSim User’s Manual, v10.4c32

Introduction
Basic Steps for Simulation

• Start ModelSim

Procedure

1. Select File > Change Directory to open the Browse For Folder dialog box.

2. Navigate to the directory where your source files are located.

3. Create the Logical Work Library with the vlib command in one of the following ways:

• Enter the vlib command in the a UNIX shell or the Transcript window:

vlib work

• File > New > Library from the main menu.

4. Map one or more user provided libraries between a logical library name and a directory
with the vmap command:

vmap <logical_name> <directory_pathname>

Results

Creates a library named work, places it in the current directory and displays the work library in
the Structure window (Figure 1-2).

Figure 1-2. Work Library

Related Topics

The Library Named "work"
Working Library Versus Resource Libraries
Working with Design Libraries
Map a Logical Name to a Design Library

Map a Logical Name to a Design Library
Getting Started with Projects
Creating a Library

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v10.4c 33

Step 2 — Compile the Design
After you have collected the design files and created the working directory, you compile the
design. You must choose the appropriate compiler command based on the programming
language used to writed the design code.

• Verilog and SystemVerilog — compile with the vlog command.

• VHDL — compile with the vcom command.

Prerequisites

• Create the work library and map required resource libraries to the work library. Refer to
Step 1 — Create Work and Resource Libraries for more information.

Procedure

Depending on the language used to create your design, you will use one of the following
ModelSim commands to compile the design:

Results

By default, compilation results are stored in the work library. (Figure 1-3)

If your source files
are written in …

Enter the following in the Transcript window …

Verilog and/or
SystemVerilog

You can compile Verilog files in any order, since they are
not order dependent. For example:

vlog gates.v and2.v cache.v memory.v

VHDL VHDL units are compiled in the order they appear on the
command line. For VHDL, the order of compilation is
important — you must compile any entities or
configurations before an architecture that references them.
Projects may assist you in determining the compile order.
For example:

vcom v_and2.vhd util.vhd set.vhd

ModelSim User’s Manual, v10.4c34

Introduction
Basic Steps for Simulation

Figure 1-3. Compiled Design

Related Topics

Step 3 — Load the Design for Simulation
After compiling the design, you need to load the design with the vsim command using the
names of any top-level modules (many designs contain only one top-level module). For
example, if your top-level modules are named “testbench” and “globals,” then invoke the
simulator.

vsim testbench globals

Prerequisites

• Create the work library and map required resource libraries to the work library. Refer to
Step 1 — Create Work and Resource Libraries for more information.

• Compile the design. Refer to Step 2 — Compile the Design.

Procedure

Enter the following command on the command line:

vsim testbench globals

where testbench and globals are the two top level modules.

Verilog Compilation
Compilation and Simulation of VHDL
Auto-Generate the Compile Order

Introduction
Basic Steps for Simulation

ModelSim User’s Manual, v10.4c 35

Results

After the simulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPs in the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references.

Note
You can incorporate actual delay values to the simulation by applying standard delay
format (SDF) back-annotation files to the design.

Related Topics

Step 4 — Simulate the Design
Once you have successfully loaded the design, simulation time is set to zero, and you must enter
a run command to begin simulation.

The basic commands you use to run a simulation are:

• add wave

• bp

• force

• run

• step

Add Stimulus to the Design

You can add stimulus to your design in several ways.

• Language-based test bench.

• Tcl-based ModelSim interactive commands. For example, force and bp.

• VCD files / commands.

Refer to “Creating a VCD File” and “Using Extended VCD as Stimulus.”

• Third-party test bench generation tools.

Related Topics

Specifying SDF Files for Simulation

Verilog and SystemVerilog Simulation
VHDL Simulation

ModelSim User’s Manual, v10.4c36

Introduction
Modes of Operation

Step 5 — Debug the Design
The ModelSim GUI provides numerous commands, operations, and windows useful in
debugging your design. In addition, you can also use the command line to run the following
basic simulation commands for debugging.

• describe

• drivers

• examine

• force

• log

• show

Modes of Operation
The ModelSim User’s Manual focuses primarily on the Graphical User Interface (GUI) mode of
operation — interacting with your simulation by working in the ModelSim desktop with
windows, menus, and dialog boxes. However, ModelSim also has a Command Line Mode and
Batch Mode for compiling and simulating a design.

Introduction
Modes of Operation

ModelSim User’s Manual, v10.4c 37

The following table provides short descriptions of the three modes.

Table 1-2. Use Modes for ModelSim

Mode ModelSim is invoked: Characteristics Recommended
For

GUI by specifying vsim from the
OS command or shell
prompt

Interactive; has graphical
windows, push-buttons,
menus. Stderr is redirected
to the shell unless stdin is a
file redirection.

Viewing
waveforms and
graphically
based
debugging.

by specifying vsim -gui
from the OS command or
shell prompt

Interactive; has graphical
windows, push-buttons,
menus. Stderr is redirected
to the GUI Transcript
window.

by specifying vsim -i from
the OS command or shell
prompt

Interactive; has graphical
windows, push-buttons,
menus. Stderr is redirected
to the OS shell from which
vsim -i was invoked.

from a Windows desktop
icon

Interactive; has graphical
windows, push-buttons,
menus. Stderr is redirected
to the GUI Transcript
window.

Command
Line
Mode

with the vsim -c argument
at the OS command or shell
prompt
Example:

OS> vsim -c

Non-interactive, no GUI.

Supports all commands that
are not GUI based. 1

1. Refer to the Supported Commands table in the Command Reference Manual to see which
commands are supported for use with vsim -c and vsim -batch.

DO file based
simulations

Executing
commands from
a prompt

Batch
Mode

at OS command or shell
prompt

Example:
OS> vsim -batch

Non-interactive batch
script; no windows or
interactive command line.
Most commands and
command options are
supported. 1

Large, high-
performance
simulations

ModelSim User’s Manual, v10.4c38

Introduction
Modes of Operation

Command Line Mode
Command line simulations are executed from a Windows or UNIX command prompt and can
be either interactive or non-interactive. For the most part, command line simulations operate in
non-interactive mode, for example, when a DO file is being processed or a stdin redirect is
present. Otherwise, the simulator operates in interactive mode, for example, when a DO file
script requires input from the user to continue execution.

Note
You can use the CTRL-C keyboard interrupt to terminate batch simulation in both the
UNIX and Windows environments.

Startup Variable Flow
In command line mode ModelSim executes any startup command specified by the Startup
variable in the modelsim.ini file. If vsim is invoked with the -do "command_string" option, a
DO file is called. A DO file executed in this manner will override any startup command in the
modelsim.ini file.

Stand-alone tools pick up project settings in command-line mode if you invoke them in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODELSIM environment variable to the path to the project
file (<Project_Root_Dir>/<Project_Name>.mpf).

Related Topics

Here-Document Flow
You can use the “here-document” technique to enter a string of commands in a UNIX shell or
Windows command window. You invoke vsim and redirect standard input using the
exclamation character (!) to initiate and terminate a sequence of commands.

The following is an example of the "here-document" technique:

vsim top <<!
log -r *
run 100
do test.do
quit -f
!

The file test.do can run until completion or contain commands that return control of the
simulation to the command line and wait for user input. You can also use this technique to run
multiple simulations.

Startup modelsim.ini Variable
vsim

Introduction
Modes of Operation

ModelSim User’s Manual, v10.4c 39

I/O Redirection Flow
You can use a script with output and input redirection to and from user specified files. The
script can be set up to run interactively or non-interactively.

For example:

vsim -c counter <infile >outfile

where “counter” is the design top, “infile” represents a script containing various ModelSim
commands, and the angle brackets (< >) are redirection indicators.

Use the batch_mode command to verify that you are in Command Line Mode. stdout returns
“1” if you specify batch_mode while you are in Command Line Mode (vsim -c) or Batch Mode
(vsim -batch).

DO Files Generated from Transcript Files

By default, a transcript file is created during simulation and contains stdout messages. A
transcript file may be used as the basis for a DO file if you invoke the transcript command with
the on argument after the design loads (refer to the example below). The transcript on command
writes all of the commands you invoke to the transcript file.

The following series of commands results in a transcript file that can be used for command
input if top is re-simulated (remove the quit -f command from the transcript file if you want to
remain in the simulator).

vsim -c top

library and design loading messages… then execute:

transcript on
force clk 1 50, 0 100 -repeat 100
run 500
run @5000
quit -f

You should rename a transcript file that you intend to use as a DO file. If you do not rename the
file, ModelSim will overwrite it the next time you run vsim. Also, simulator messages are
already commented out with the pound sign (#), but any messages generated from your design
(and subsequently written to the transcript file) will cause the simulator to pause. A transcript
file that contains only valid simulator commands will work fine; comment out anything else
with a pound sign.

Refer to Creating a Transcript File for more information about creating, locating, and saving a
transcript file.

ModelSim User’s Manual, v10.4c40

Introduction
Modes of Operation

Related Topics

Supported Commands for Command Line Mode
GUI based commands are not available for use with vsim -c. Refer to the Supported Commands
table to see which commands are supported for use with vsim -c.

Related Topics

Batch Mode
Batch Mode is an operational mode that provides the user with the ability to perform
simulations without invoking the GUI. The simulations are executed via scripted files from a
Windows command prompt or UNIX shell and do not provide for interaction with the design
during simulation. Data from the simulation run is typically sent to stdout and may be redirected
to a log file.

Simulating with Batch Mode can yield faster simulation times especially for simulations that
generate a large amount of textual output. Refer to Saving Batch Mode Simulation Data for
information about saving transcript data.

The commands supported within a DO file script for Batch Mode simulation are similar to those
available for Command Line Mode (vsim -c) however, not all commands or command options
are supported by vsim -batch. Refer to the Supported Commands table to see which commands
can be used with vsim -batch.

There are two options for enabling Batch Mode:

1. Specifying vsim -batch with scripted simulations via the -do “<command_string>” |
<do_file_name> argument. Running vsim -batch with output redirection is
recommended as it yields the best simulation performance. Refer to Output Redirection
With vsim -batch for more information.

2. Enabling the BatchMode modelsim.ini variable. If this variable is set to 1, vsim runs as if
the vsim -batch option were specified. If this variable is set to 0 (default), vsim runs as if
the vsim -i option were specified. Transcript data is sent to stdout by default. You can

Default stdout Messages
Stats modelsim.ini Variable
vsim command
transcript command
transcript on command
Controlling the Display of Statistics Messages

 Supported Commands

Introduction
Modes of Operation

ModelSim User’s Manual, v10.4c 41

automatically create a log file by enabling the BatchTranscriptFile modelsim.ini
variable.

Note
You will receive a warning message if you specify vsim -batch with the -c, -gui, or the -i
options and -c, -gui, and -i will be ignored. If you enable the BatchMode variable, the
variable is ignored if you specify the -batch, -c, -gui, or -i options to vsim.

Saving Batch Mode Simulation Data
The default behavior when using vsim -batch or the BatchMode modelsim.ini variable is to send
transcript data to stdout and not create a log file. You can save simulation data in one of three
ways:

Procedure

• Specify vsim -batch with output redirection (recommended).

• Specify vsim -batch -logfile <file_name>.

• Enable the BatchTranscriptFile modelsim.ini variable to automatically create a log file.
If you enable BatchTranscriptFile, you can disable log file creation from the command
line or in a DO file by specifying vsim -nolog.

Related Topics

Output Redirection With vsim -batch
You can specify output redirection in Batch Mode with scripts. In the following example, the
-batch argument to vsim is included which prevents the GUI from opening.

vsim -batch counter -do "run -all; quit -f" > outfile

where “outfile” represents a script containing various ModelSim commands, and the angle
bracket (>) is the output redirection indicator.

Simulator Control Variables
As with GUI Mode and Command Line Mode, simulator control for Batch Mode simulation is
governed by which modelsim.ini variables are enabled and each variable’s setting.

BatchMode

AccessObjDebug IgnoreSVAError StdArithNoWarnings

BreakOnAssertion IgnoreSVAFatal UserTimeUnit

CheckpointCompressMode IgnoreSVAInfo PrintSimStats

ModelSim User’s Manual, v10.4c42

Introduction
Default stdout Messages

In addition, simulator behavior is controlled by a number of Tcl variables. Refer to the table
below for the list of default Tcl variables.

Related Topics

Default stdout Messages
By default, the simulator sends information about the simulator, commands executed, start time,
end time, warnings, errors, and other data to stdout.

Tool Statistics Messages
Each time you enter a command, data is printed out and sent to the Transcript window and/or a
logfile.

The data is displayed with the following format:

1 # vsim topopt -c -do "run -all; quit -f" -warning 3053
2 # Start time: 18:06:45 on May 13,2014
3 # // Questa Sim-64
4 # // Version <information>
5 # Loading sv_std.std
6 # Loading work.top(fast)
7 # Loading work.pads(fast)
8 # ** Warning: (vsim-3053) test.sv(2): Illegal output or inout port

connection for "port 'AVSS'".

ClassDebug IgnoreSVAWarning WildcardFilter

DefaultForceKind IgnoreWarning WLFCompress

DefaultRadix IterationLimit WLFFilename

DelayFileOpen NoQuitOnFinish WLFMCL

ForceSigNextIter NumericStdNoWarnings WLFOptimize

GCThreshold OnBreakDefaultAction WLFSizeLimit

IgnoreError OnErrorDefaultAction WLFTimeLimit

IgnoreFailure PathSeparator WLFUseThreads

IgnoreNote RunLength

now library architecture

delta entity resolution

For more information about setting simulator
variables, refer to the modelsim.ini Variables
appendix.

Introduction
Default stdout Messages

ModelSim User’s Manual, v10.4c 43

9 # Region: /top/pads
10 # run -all
11 # 0: Z=1, AVSS=0
12 # quit -f
13 # End time: 18:06:45 on May 13,2014, Elapsed time: 0:00:00
14 # Errors: 0, Warnings: 1

• Line 1 — The command with arguments.

• Line 2 — The Start time and date the command was executed.

Line 3 — The mti_version

• Line 4 — Release information:

Number and letter release

Executable Type — For example, compiler (vlog, vcom). However this information
is not sent to the transcript for the vsim command.

OS version

Build date

• Lines 5 through 12 — Logged messages.

• Line 16 — The end time, date the command finished, and elapsed time.

• Line 17 — The total number of errors and warnings in the following format:

Errors: [number], Warnings [number], Suppressed Errors: [number], Suppressed
Warnings: [number]. For zero suppressed errors and warnings, the corresponding count
message is not displayed.

Controlling the Display of Statistics Messages
All of the above statistics are printed by default. However, you can use the Stats modelsim.ini
variable or the -stats argument to a number of commands to display or suppress each type of
statistical data. The following tables describe the types of data that can be displayed.

Table 1-3. Message Statistics Types

Option Description

all Display all statistics features (cmd, msg, perf, time). Mutually
exclusive with the none option. When specified in a string with
other options, +|-all is applied first.

cmd (default) Echo the command line.

msg (default) Display error and warning summary at the end of
command execution.

ModelSim User’s Manual, v10.4c44

Introduction
Default stdout Messages

.

Modes can be set for a specific feature or globally for all features. To add or subtract a mode for
a specific feature, specify using the plus (+) or minus (-) character with the feature, for example,
vsim -stats=cmd+verbose,perf+list. To add or subtract a mode globally for all features, specify
the modes in a comma-separated list, for example, Stats=time,perf,list,-verbose. You cannot
specify global and feature specific modes together.

Refer to the Stats variable description for more information.

Message Control with the Stats Variable

You can set default message display and mode with the Stats modelsim.ini variable for vcom,
vlog, and vsim.

Refer to the Stats variable description for more information.

Message Control from the Command Line

You can also modify message type and mode from the command line by specifying the -stats
argument and message options with the following commands.

For example,

none Disable all statistics features. Mutually exclusive with all option.
When specified in a string with other options, +|-none is applied
first.

perf Display time and memory performance statistics.

time (default) Display Start, End, and Elapsed times.

Table 1-4. Message Mode Types

Option Description

kb Print memory statistics in Kb units with no auto-scaling.

list Display performance statistics in a Tcl list format when available.

verbose Display verbose performance statistics information when
available.

Table 1-5. Commands with Statistics Message Options

vcom vencrypt vhencrypt vlog

vsim

Table 1-3. Message Statistics Types

Option Description

Introduction
Definition of an Object

ModelSim User’s Manual, v10.4c 45

• Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vcom -stats=time,-cmd,msg

• The first -stats option is ignored. The none option disables all default settings and then
enables the perf option.

vlog -stats=time,cmd,msg -stats=none,perf

Note
Not all Message Statistics Types or Message Mode Types are available with each
command. Refer to the command description for more information.

Definition of an Object
Because ModelSim supports a variety of design languages (Verilog, VHDL, and
SystemVerilog), the word “object” is used to refer to any valid design element in those
languages, whenever a specific language reference is not needed.

Figure 1-6 summarizes the language constructs that an object can refer to.

Standards Supported
Standards documents are sometimes informally referred to as the Language Reference Manual
(LRM). This standards listed here are the complete name of each manual. Elsewhere in this
manual the individual standards are referenced using the IEEE Std number.

The following standards are supported for the ModelSim products:

• VHDL —

o IEEE Std 1076-2008, IEEE Standard VHDL Language Reference Manual.

ModelSim supports the VHDL 2008 standard features with a few exceptions. For
detailed standard support information see the vhdl2008 technote available at

Table 1-6. Possible Definitions of an Object, by Language

Design Language An object can be

VHDL block statement, component instantiation, constant,
generate statement, generic, package, signal, alias,
variable

Verilog function, module instantiation, named fork, named
begin, net, task, register, variable

SystemVerilog In addition to those listed above for Verilog:
class, package, program, interface, array, directive,
property, sequence

ModelSim User’s Manual, v10.4c46

Introduction
Assumptions

<install_dir>/docs/technotes/vhdl2008.note, or from the GUI menu pull-down Help
> Technotes > vhdl2008.

Potential migration issues and mixing use of VHDL 2008 with older VHDL code are
addressed in the vhdl2008migration technote.

o IEEE Std 1164-1993, Standard Multivalue Logic System for VHDL Model
Interoperability

o IEEE Std 1076.2-1996, Standard VHDL Mathematical Packages

Any design developed with ModelSim will be compatible with any other VHDL system
that is compliant with the 1076 specifications.

• Verilog/SystemVerilog —

o IEEE Std 1364-2005, IEEE Standard for Verilog Hardware Description Language

o IEEE Std 1800-2012. IEEE Standard for SystemVerilog -- Unified Hardware
Design, Specification, and Verification Language

Both PLI (Programming Language Interface) and VCD (Value Change Dump) are
supported for ModelSim users.

• SDF and VITAL —

o SDF – IEEE Std 1497-2001, IEEE Standard for Standard Delay Format (SDF) for
the Electronic Design Process

o VITAL 2000 – IEEE Std 1076.4-2000, IEEE Standard for VITAL ASIC Modeling
Specification

o

Assumptions
Using the ModelSim product and its documentation is based on the following assumptions.

• You are familiar with how to use your operating system and its graphical interface.

• You have a working knowledge of the design languages. Although ModelSim is an
excellent application to use while learning HDL concepts and practices, this document is
not written to support that goal.

• You have worked through the appropriate lessons in the ModelSim Tutorial and are
familiar with the basic functionality of ModelSim. You can find the ModelSim Tutorial
by choosing Help from the main menu.

Introduction
Text Conventions

ModelSim User’s Manual, v10.4c 47

Text Conventions
The table below lists the text conventions used in this manual.

Installation Directory Pathnames
When referring to installation paths, this manual uses “<installdir>” as a generic representation
of the installation directory for all versions of ModelSim. The actual installation directory on
your system may contain version information.

Table 1-7. Text Conventions

Text Type Description

italic text provides emphasis and sets off filenames,
pathnames, and design unit names

bold text indicates commands, command options, menu
choices, package and library logical names, as
well as variables, dialog box selections, and
language keywords

monospace type monospace type is used for program and
command examples

The right angle (>) is used to connect menu choices when
traversing menus as in: File > Quit

UPPER CASE denotes file types used by ModelSim (such as
DO, WLF, INI, MPF, PDF.)

ModelSim User’s Manual, v10.4c48

Introduction
Installation Directory Pathnames

ModelSim User’s Manual, v10.4c 49

Chapter 2
Protecting Your Source Code

ModelSim’s encryption solution allows IP authors to deliver encrypted IP code for a wide range
of EDA tools and design flows. You can, for example, make module ports, parameters, and
specify blocks publicly visible while keeping the implementation private.

ModelSim supports VHDL, Verilog, and SystemVerilog IP code encryption by means of
protected encryption envelopes. VHDL encryption is defined by the IEEE Std 1076-2008,
section 24.1 (titled “Protect tool directives”) and Annex H, section H.3 (titled “Digital
envelopes”). Verilog/SystemVerilog encryption is defined by the IEEE Std 1364-2005, section
28 (titled “Protected envelopes”) and Annex H, section H.3 (titled “Digital envelopes”). The
protected envelopes usage model, as presented in Annex H section H.3 of both standards, is the
recommended methodology for users of VHDL’s `protect and Verilog's `pragma protect
compiler directives. We recommend that you obtain these specifications for reference.

In addition, Questa supports the recommendations from the IEEE P1735 working group for
encryption interoperability between different encryption and decryption tools. The current
recommendations are denoted as “version 1” by P1735. They address use model, algorithm
choices, conventions, and minor corrections to the HDL standards to achieve useful
interoperability.

ModelSim also supports encryption using the vcom/vlog -nodebug command.

Encryption Envelopes
Encryption envelopes define a region of textual design data or code to be protected with
protection expressions. The protection expressions specify the encryption algorithm used to
protect the source code, the encryption key owner, the key name, and envelope attributes.

The beginning and ending protection expressions for Verilog/SystemVerilog are `pragma
protect begin and `pragma protect end, respectively.

The beginning and ending protection expressions for VHDL are `protect BEGIN
PROTECTED and `protect END PROTECTED, respectively.

The encryption envelope may contain the code to be encrypted or it may contain `include
compiler directives that point to files containing the code to be encrypted.

Symmetric and asymmetric keys can be combined in encryption envelopes to provide the safety
of asymmetric keys with the efficiency of symmetric keys (see Encryption and Encoding
Methods). Encryption envelopes can also be used by the IP author to produce encrypted source

ModelSim User’s Manual, v10.4c50

Protecting Your Source Code
Encryption Envelopes

files that can be safely decrypted by multiple authors. For these reasons, encryption envelopes
are the preferred method of protection.

Creating Encryption Envelopes
You may configure encryption envelopes to contain the actual code to be encrypted or you may
use `include compiler directives to point to files containing the code to be encrypted.

Prerequisite

Identify the region(s) of code to be encrypted, or the files that contain the code to be
encrypted.

Procedure

1. Enclose the code to be encrypted within protection directives; or, enclose the names of
the files that contain the code to be encrypted within protection directives.

2. Compile your code with ModelSim encryption utilities.

• Use the vencrypt command for Verilog and SystemVerilog design code.

• Use the vhencrypt command for VHDL design code.

• Or, use the vcom/vlog +protect command.

The flow diagram for creating encryption envelopes is shown in Figure 2-1.

Protecting Your Source Code
Encryption Envelopes

ModelSim User’s Manual, v10.4c 51

Figure 2-1. Create an Encryption Envelope

Examples

In Example 2-1 the Verilog design data to be encrypted follows the `pragma protect begin
expression and ends with the `pragma protect end expression. If the design data had been
written in VHDL, the data to be protected would follow a `protect begin expression and would
end with a `protect end expression.

Example 2-1. Encryption Envelope Contains Design Data to be Protected

module test_dff4(output [3:0] q, output err);
parameter WIDTH = 4;
parameter DEBUG = 0;
reg [3:0] d;
reg clk;

dff4 d4(q, clk, d);

assign err = 0;

initial
 begin

$dump_all_vpi;
$dump_tree_vpi(test_dff4);

ModelSim User’s Manual, v10.4c52

Protecting Your Source Code
Encryption Envelopes

$dump_tree_vpi(test_dff4.d4);
$dump_tree_vpi("test_dff4");
$dump_tree_vpi("test_dff4.d4");
$dump_tree_vpi("test_dff4.d", "test_dff4.clk", "test_dff4.q");
$dump_tree_vpi("test_dff4.d4.d0", "test_dff4.d4.d3");
$dump_tree_vpi("test_dff4.d4.q", "test_dff4.d4.clk");

 end
endmodule

module dff4(output [3:0] q, input clk, input [3:0] d);
`pragma protect data_method = "aes128-cbc"
`pragma protect author = "IP Provider"
`pragma protect author_info = "Widget 5 version 3.2"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect begin

dff_gate d0(q[0], clk, d[0]);
dff_gate d1(q[1], clk, d[1]);
dff_gate d2(q[2], clk, d[2]);
dff_gate d3(q[3], clk, d[3]);

endmodule // dff4

module dff_gate(output q, input clk, input d);
wire preset = 1;
wire clear = 1;

nand #5
 g1(l1,preset,l4,l2),
 g2(l2,l1,clear,clk),
 g3(l3,l2,clk,l4),
 g4(l4,l3,clear,d),
 g5(q,preset,l2,qbar),
 g6(qbar,q,clear,l3);

endmodule
`pragma protect end

In Example 2-2, the design data is contained in three files - diff.v, prim.v, and top.v. This
example shows how to configure the encryption envelope so the entire contents of diff.v, prim.v,
and top.v are encrypted.

Example 2-2. Encryption Envelope Contains `include Compiler Directives

`timescale 1ns / 1ps
`cell define

module dff (q, d, clear, preset, clock);
output q;
input d, clear, preset, clock;
reg q;

`pragma protect data_method = "aes128-cbc"
`pragma protect author = "IP Provider", author_info = "Widget 5 v3.2"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

Protecting Your Source Code
Encryption Envelopes

ModelSim User’s Manual, v10.4c 53

`pragma protect begin

`include diff.v
`include prim.v
`include top.v

`pragma protect end

always @(posedge clock)
q = d;

endmodule

`endcelldefine

For a more technical explanation, see How Encryption Envelopes Work and The `include
Compiler Directive (Verilog only).

Protection Expressions
The encryption envelope contains a number of `pragma protect (Verilog/SystemVerilog) or
`protect (VHDL) expressions.

The following protection expressions are expected when creating an encryption envelope:

• data_method — defines the encryption algorithm that will be used to encrypt the
designated source text. ModelSim supports the following encryption algorithms: des-
cbc, 3des-cbc, aes128-cbc, aes256-cbc, blowfish-cbc, cast128-cbc, and rsa.

• key_keyowner — designates the owner of the encryption key.

• key_keyname — specifies the keyowner’s key name.

• key_method — specifies an encryption algorithm that will be used to encrypt the key.

Note
The combination of key_keyowner and key_keyname expressions uniquely identify a
key. The key_method is required with these two expressions to complete the definition of
the key.

• begin — designates the beginning of the source code to be encrypted.

• end — designates the end of the source code to be encrypted

Note
Encryption envelopes cannot be nested. A `pragma protect begin/end pair cannot bracket
another `pragma protect begin/end pair.

ModelSim User’s Manual, v10.4c54

Protecting Your Source Code
Encryption Envelopes

Optional `protect (VHDL) or `pragma protect (Verilog/SystemVerilog) expressions that may
be included are as follows:

• author — designates the IP provider.

• author_info — designates optional author information.

• encoding — specifies an encoding method. The default encoding method, if none is
specified, is “base 64.”

If a number of protection expressions occur in a single protection directive, the expressions are
evaluated in sequence from left to right. In addition, the interpretation of protected envelopes is
not dependent on this sequence occurring in a single protection expression or a sequence of
protection expressions. However, the most recent value assigned to a protection expression
keyword will be the one used.

Unsupported Protection Expressions

Optional protection expressions that are not currently supported include the following:

• any digest_* expression

• decrypt_license

• runtime_license

• viewport

The `include Compiler Directive (Verilog only)
If any `include directives occur within a protected region of Verilog code and you use the vlog
+protect command to compile, the compiler generates a copy of the include file with a “.vp” or
a “.svp” extension and encrypts the entire contents of the include file.

For example, if we have a header file, header.v, with the following source code:

initial begin
a <= b;
b <= c;

end

and the file we want to encrypt, top.v, contains the following source code:

module top;
`pragma protect begin
`include "header.v"
`pragma protect end

endmodule

then, when we use the vlog +protect command to compile, the source code of the header file
will be encrypted. If we could decrypt the resulting work/top.vp file it would look like:

Protecting Your Source Code
Encryption Envelopes

ModelSim User’s Manual, v10.4c 55

module top;
`pragma protect begin
initial begin

a <= b;
b <= c;

end
`pragma protect end

endmodule

In addition, vlog +protect creates an encrypted version of header.v in work/header.vp.

When using the vencrypt compile utility (see Delivering IP Code with Undefined Macros), any
`include statements will be treated as text just like any other source code and will be encrypted
with the other Verilog/SystemVerilog source code. So, if we used the vencrypt utility on the
top.v file above, the resulting work/top.vp file would look like the following (if we could
decrypt it):

module top;
`protect
`include "header.v"
`endprotect

endmodule

The vencrypt utility will not create an encrypted version of header.h.

When you use vlog +protect to generate encrypted files, the original source files must all be
complete Verilog or SystemVerilog modules or packages. Compiler errors will result if you
attempt to perform compilation of a set of parameter declarations within a module. (See also
Compiling with +protect.)

You can avoid such errors by creating a dummy module that includes the parameter
declarations. For example, if you have a file that contains your parameter declarations and a file
that uses those parameters, you can do the following:

module dummy;
`protect
`include "params.v" // contains various parameters
`include "tasks.v" // uses parameters defined in params.v
`endprotect

endmodule

Then, compile the dummy module with the +protect switch to generate an encrypted output file
with no compile errors.

vlog +protect dummy.v

After compilation, the work library will contain encrypted versions of params.v and tasks.v,
called params.vp and tasks.vp. You may then copy these encrypted files out of the work
directory to more convenient locations. These encrypted files can be included within your
design files; for example:

module main

ModelSim User’s Manual, v10.4c56

Protecting Your Source Code
Encryption Envelopes

'include "params.vp"
'include "tasks.vp"
 ...

Portable Encryption for Multiple Tools

An IP author can use the concept of multiple key blocks to produce code that is secure and
portable across any tool that supports Version 1 recommendations from the IEEE P1735
working group. This capability is not language-specific - it can be used for VHDL or Verilog.

To illustrate, suppose the author wants to modify the following VHDL sample file so the
encrypted model can be decrypted and simulated by both ModelSim and by a hypothetical
company named XYZ inc.

========== sample file ==========

-- The entity "ip1" is not protected
...
entity ip1 is
...
end ip1;

-- The architecture "a" is protected
-- The internals of "a" are hidden from the user
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64")
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect KEY_BLOCK
`protect begin
architecture a of ip1 is
...
end a;
`protect end

-- Both the entity "ip2" and its architecture "a" are completely protected
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64")
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect KEY_BLOCK
`protect begin
library ieee;
use ieee.std_logic_1164.all;
entity ip2 is
...
end ip2;
architecture a of ip2 is
...
end a;
`protect end

========== end of sample file ==========

Protecting Your Source Code
Compiling with +protect

ModelSim User’s Manual, v10.4c 57

The author does this by writing a key block for each decrypting tool. If XYZ publishes a public
key, the two key blocks in the IP source code might look like the following:

`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_method = "rsa"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect KEY_BLOCK
`protect key_keyowner = "XYZ inc"
`protect key_method = "rsa"
`protect key_keyname = "XYZ-keyPublicKey"
`protect key_public_key = <public key of XYZ inc.>
`protect KEY_BLOCK

The encrypted code would look very much like the sample file, with the addition of another key
block:

`protect key_keyowner = "XYZ inc"
`protect key_method = "rsa"
`protect key_keyname = "XYZ-keyPublicKey"
`protect KEY_BLOCK
 <encoded encrypted key information for "XYZ inc">

ModelSim uses its key block to determine the encrypted session key and XYZ Incorporated
uses the second key block to determine the same key. Consequently, both implementations
could successfully decrypt the code.

Note
The IP owner is responsible for obtaining the appropriate key for the specific tool(s)
protected IP is intended for, and should validate the encrypted results with those tools to
ensure his IP is protected and will function as intended in those tools.

Compiling with +protect
To encrypt IP code with ModelSim, the +protect argument must be used with either the vcom
command (for VHDL) or the vlog command (for Verilog and SystemVerilog).

Procedure

1. If a Verilog source code file containing encryption envelopes is named encrypt.v,
compile it as follows:

vlog +protect encrypt.v

When +protect is used with vcom or vlog, encryption envelope expressions are
transformed into decryption envelope expressions and decryption content expressions.
Source text within encryption envelopes is encrypted using the specified key and is
recorded in the decryption envelope within a data_block. The new encrypted file is
created with the same name as the original unencrypted file but with a ‘p’ added to the

ModelSim User’s Manual, v10.4c58

Protecting Your Source Code
Compiling with +protect

filename extension. For Verilog, the filename extension for the encrypted file is .vp; for
SystemVerilog it is .svp, and for VHDL it is .vhdp. This encrypted file is placed in the
current work library directory.

2. You can designate the name of the encrypted file using the +protect=<filename>
argument with vcom or vlog as follows:

vlog +protect=encrypt.vp encrypt.v

Example

Example 2-3 shows the resulting source code when the Verilog IP code used in Example 2-1 is
compiled with vlog +protect.

Example 2-3. Results After Compiling with vlog +protect

module test_dff4(output [3:0] q, output err);
parameter WIDTH = 4;
parameter DEBUG = 0;
reg [3:0] d;
reg clk;
dff4 d4(q, clk, d);
assign err = 0;
initial
 begin

$dump_all_vpi;
$dump_tree_vpi(test_dff4);
$dump_tree_vpi(test_dff4.d4);
$dump_tree_vpi("test_dff4");
$dump_tree_vpi("test_dff4.d4");
$dump_tree_vpi("test_dff4.d", "test_dff4.clk", "test_dff4.q");
$dump_tree_vpi("test_dff4.d4.d0", "test_dff4.d4.d3");
$dump_tree_vpi("test_dff4.d4.q", "test_dff4.d4.clk");

 end
endmodule

module dff4(output [3:0] q, input clk, input [3:0] d);
`pragma protect begin_protected

`pragma protect version = 1
`pragma protect encrypt_agent = "Model Technology"
`pragma protect encrypt_agent_info = "6.6a"
`pragma protect author = "IP Provider"
`pragma protect author_info = "Widget 5 version 3.2"
`pragma protect data_method = "aes128-cbc"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect key_method = "rsa"
`pragma protect key_block encoding = (enctype = "base64", line_length =
64, bytes = 128)
SdI6t9ewd9GE4va+2BgfnRuBNc45wVwjyPeSD/5qnojnbAHdpjWa/O/Tyhw0aq1T
NbDGrDg6I5dbzbLs5UQGFtB2lgOBMnE4JTpGRfV0sEqUdibBHiTpsNrbLpp1iJLi
7l4kQhnivnUuCx87GuqXIf5AaoLGBz5rCxKyA47ElQM=
`pragma protect data_block encoding = (enctype = "base64", line_length =
64, bytes = 496)
efkkPz4gJSO6zZfYdr37fqEoxgLZ3oTgu8y34GTYkO0ZZGKkyonE9zDQct5d0dfe

Protecting Your Source Code
The Runtime Encryption Model

ModelSim User’s Manual, v10.4c 59

/BZwoHCWnq4xqUp2dxF4x6cw6qBJcSEifCPDY1hJASoVX+7owIPGnLh5U0P/Wohp
LvkfhIuk2FENGZh+y3rWZAC1vFYKXwDakSJ3neSglHkwYr+T8vGviohIPKet+CPC
d/RxXOi2ChI64KaMY2/fKlerXrnXV7o9ZIrJRHL/CtQ/uxY7aMioR3/WobFrnuoz
P8fH7x/I30taK25KiL6qvuN0jf7g4LiozSTvcT6iTTHXOmB0fZiC1eREMF835q8D
K5lzU+rcb17Wyt8utm71WSu+2gtwvEp39G6R60fkQAuVGw+xsqtmWyyIOdM+PKWl
sqeoVOsBUHFY3x85F534PQNVIVAT1VzFeioMxmJWV+pfT3OlrcJGqX1AxAG25CkY
M1zF77caF8LAsKbvCTgOVsHb7NEqOVTVJZZydVy23VswClYcrxroOhPzmqNgn4pf
zqcFpP+yBnt4UELa63Os6OfsAu7DZ/4kWPAwExyvaahI2ciWs3HREcZEO+aveuLT
gxEFSm0TvBBsMwLc7UvjjC0aF1vUWhDxhwQDAjYT89r2h1G7Y0PGlGOo24s0/A2+
TjdCcOogiGsTDKx6Bxf91g==
`pragma protect end_protected

In this example, the `pragma protect data_method expression designates the encryption
algorithm used to encrypt the Verilog IP code. The key for this encryption algorithm is also
encrypted – in this case, with the RSA public key. The key is recorded in the key_block of the
protected envelope. The encrypted IP code is recorded in the data_block of the envelope.
ModelSim allows more than one key_block to be included so that a single protected envelope
can be encrypted by ModelSim then decrypted by tools from different users.

The Runtime Encryption Model
After you compile with the +protect compile argument, all source text, identifiers, and line
number information are hidden from the end user in the resulting compiled object. ModelSim
cannot locate or display any information of the encrypted regions.

Specifically, this means that:

• a Source window will not display the design units’ source code

• a Structure window will not display the internal structure

• the Objects window will not display internal signals

• the Processes window will not display internal processes

• the Locals window will not display internal variables

• none of the hidden objects may be accessed through the Dataflow window or with
ModelSim commands.

Language-Specific Usage Models
This section includes usage models that are language-specific.

• Usage Models for Protecting Verilog Source Code

o Delivering IP Code with Undefined Macros

o Delivering IP Code with User-Defined Macros

• Usage Models for Protecting VHDL Source Code

ModelSim User’s Manual, v10.4c60

Protecting Your Source Code
Language-Specific Usage Models

o Using the vhencrypt Utility

o Using ModelSim Default Encryption for VHDL

o User-Selected Encryption for VHDL

o Using raw Encryption for VHDL

o Encrypting Several Parts of a VHDL Source File

o Portable Encryption for Multiple Tools

Usage Models for Protecting Verilog Source Code
ModelSim’s encryption capabilities support Verilog and SystemVerilog usage models for IP
authors and their customers.

• IP authors may use the vencrypt utility to deliver Verilog and SystemVerilog code
containing undefined macros and `directives. The IP user can then define the macros and
`directives and use the code in a wide range of EDA tools and design flows. See
Delivering IP Code with Undefined Macros.

• IP authors may use `pragma protect directives to protect Verilog and SystemVerilog
code containing user-defined macros and `directives. The IP code can be delivered to IP
customers for use in a wide range of EDA tools and design flows. See Delivering IP
Code with User-Defined Macros.

Delivering IP Code with Undefined Macros
The vencrypt utility enables IP authors to deliver VHDL and Verilog/ SystemVerilog IP code
(respectively) that contains undefined macros and `directives. The resulting encrypted IP code
can then be used in a wide range of EDA tools and design flows.

The recommended encryption usage flow is shown in Figure 2-2.

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 61

Figure 2-2. Verilog/SystemVerilog Encryption Usage Flow

Procedure

1. The IP author creates code that contains undefined macros and `directives.

2. The IP author creates encryption envelopes (see Encryption Envelopes) to protect
selected regions of code or entire files (see Protection Expressions).

3. The IP author uses ModelSim’s vencrypt utility to encrypt Verilog and SystemVerilog
code contained within encryption envelopes. Macros are not pre-processed before
encryption so macros and other `directives are unchanged.

The vencrypt utility produces a file with a .vp or a .svp extension to distinguish it from
non-encrypted Verilog and SystemVerilog files, respectively. The file extension may be
changed for use with simulators other than ModelSim. The original file extension is
preserved if the -d <dirname> argument is used with vencrypt, or if a `directive is used
in the file to be encrypted.

With the -h <filename> argument for vencrypt the IP author may specify a header file
that can be used to encrypt a large number of files that do not contain the `pragma
protect (or proprietary `protect information - see Proprietary Source Code Encryption
Tools) about how to encrypt the file. Instead, encryption information is provided in the

ModelSim User’s Manual, v10.4c62

Protecting Your Source Code
Language-Specific Usage Models

<filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of files in order to add in the same `pragma protect to every file. For
example,

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

concatenates the information in the encrypt_head file into each verilog file listed. The
encrypt_head file may look like the following:

`pragma protect data_method = "aes128-cbc"
`pragma protect author = "IP Provider"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect encoding = (enctype = "base64")
`pragma protect begin

Notice, there is no `pragma protect end expression in the header file, just the header
block that starts the encryption. The `pragma protect end expression is implied by the
end of the file.

4. The IP author delivers encrypted IP with undefined macros and `directives.

5. The IP user defines macros and `directives.

6. The IP user compiles the design with vlog.

7. The IP user simulates the design with ModelSim or other simulation tools.

Delivering IP Code with User-Defined Macros
IP authors may use `pragma protect expressions to protect proprietary code containing user-
defined macros and `directives. The resulting encrypted IP code can be delivered to customers
for use in a wide range of EDA tools and design flows.

The recommended usage flow for Verilog and SystemVerilog IP is shown in Figure 2-3.

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 63

Figure 2-3. Delivering IP Code with User-Defined Macros

Procedure

1. The IP author creates proprietary code that contains user-defined macros and `directives.

2. The IP author creates encryption envelopes with ̀ pragma protect expressions to protect
regions of code or entire files. See Encryption Envelopes and Protection Expressions.

3. The IP author uses the +protect argument for the vlog command to encrypt IP code
contained within encryption envelopes. The `pragma protect expressions are ignored
unless the +protect argument is used during compile. (See Compiling with +protect.)

The vlog +protect command produces a .vp or a .svp extension for the encrypted file to
distinguish it from non-encrypted Verilog and SystemVerilog files, respectively. The
file extension may be changed for use with simulators other than ModelSim. The
original file extension is preserved if a `directive is used in the file to be encrypted. For
more information, see Compiling with +protect.

4. The IP author delivers the encrypted IP.

5. The IP user simulates the code like any other file.

When encrypting source text, any macros without parameters defined on the command line are
substituted (not expanded) into the encrypted file. This makes certain macros unavailable in the
encrypted source text.

ModelSim User’s Manual, v10.4c64

Protecting Your Source Code
Language-Specific Usage Models

ModelSim takes every simple macro that is defined with the compile command (vlog) and
substitutes it into the encrypted text. This prevents third party users of the encrypted blocks
from having access to or modifying these macros.

Note
Macros not specified with vlog via the +define+ option are unmodified in the encrypted
block.

For example, the code below is an example of an file that might be delivered by an IP provider.
The filename for this module is example00.sv.

`pragma protect data_method = "aes128-cbc"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect author = "Mentor", author_info = "Mentor_author"
`pragma protect begin
`timescale 1 ps / 1 ps

module example00 ();
 `ifdef IPPROTECT
 reg `IPPROTECT ;
 reg otherReg ;
 initial begin
 `IPPROTECT = 1;
 otherReg = 0;

 $display("ifdef defined as true");

 `define FOO 0
 $display("FOO is defined as: ", `FOO);
 $display("reg IPPROTECT has the value: ", `IPPROTECT);
 end
 `else
 initial begin
 $display("ifdef defined as false");
 end
 `endif

endmodule

`pragma protect end

We encrypt the example00.sv module with the vlog command as follows:

vlog +define+IPPROTECT=ip_value +protect=encrypted00.sv example00.sv

This creates an encrypted file called encrypted00.sv. We can then compile this file with a macro
override for the macro “FOO” as follows:

vlog +define+FOO=99 encrypted00.sv

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 65

The macro FOO can be overridden by a customer while the macro IPPROTECT retains the
value specified at the time of encryption, and the macro IPPROTECT no longer exists in the
encrypted file.

Usage Models for Protecting VHDL Source Code
ModelSim’s encryption capabilities for VHDL support a number of usage models.

Supported usage models include:

• IP authors may use `protect directives to create an encryption envelope (see Encryption
Envelopes) for the VHDL code to be protected and use ModelSim’s vhencrypt utility to
encrypt the code. The encrypted IP code can be delivered to IP customers for use in a
wide range of EDA tools and design flows. See Using the vhencrypt Utility.

• IP authors may use `protect directives to create an encryption envelope (see Encryption
Envelopes) for the VHDL code to be protected and use ModelSim’s default encryption
and decryption actions. The IP code can be delivered to IP customers for use in a wide
range of EDA tools and design flows. See Using ModelSim Default Encryption for
VHDL.

• IP authors may use `protect directives to create an encryption envelope for VHDL code
and select encryption methods and encoding other than ModelSim’s default methods.
See User-Selected Encryption for VHDL.

• IP authors may use “raw” encryption and encoding to aid debugging. See Using raw
Encryption for VHDL.

• IP authors may encrypt several parts of the source file, choose the encryption method for
encrypting the source (the data_method), and use a key automatically provided by
ModelSim. See Encrypting Several Parts of a VHDL Source File.

• IP authors can use the concept of multiple key blocks to produce code that is secure and
portable across different simulators. See Portable Encryption for Multiple Tools.

The usage models are illustrated by examples in the sections below.

Note
VHDL encryption requires that the KEY_BLOCK (the sequence of key_keyowner,
key_keyname, and key_method directives) end with a `protect KEY_BLOCK directive.

Using the vhencrypt Utility
The vhencrypt utility enables IP authors to deliver encrypted VHDL IP code to users. The
resulting encrypted IP code can then be used in a wide range of EDA tools and design flows.

ModelSim User’s Manual, v10.4c66

Protecting Your Source Code
Language-Specific Usage Models

Procedure

1. The IP author creates code.

2. The IP author creates encryption envelopes (see Encryption Envelopes) to protect
selected regions of code or entire files (see Protection Expressions).

3. The IP author uses ModelSim’s vhencrypt utility to encrypt code contained within
encryption envelopes.

The vhencrypt utility produces a file with a .vhdp or a .vhdlp extension to distinguish it
from non-encrypted VHDL files. The file extension may be changed for use with
simulators other than ModelSim. The original file extension is preserved if the
-d <dirname> argument is used with vhencrypt.

With the -h <filename> argument for vencrypt the IP author may specify a header file
that can be used to encrypt a large number of files that do not contain the `protect
information about how to encrypt the file. Instead, encryption information is provided in
the <filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of files in order to add in the same `protect to every file. For example,

vhencrypt -h encrypt_head top.vhd cache.vhd gates.vhd memory.vhd

concatenates the information in the encrypt_head file into each VHDL file listed. The
encrypt_head file may look like the following:

`protect data_method = "aes128-cbc"
`protect author = "IP Provider"
`protect encoding = (enctype = "base64")
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_method = "rsa"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect KEY_BLOCK
`protect begin

Notice, there is no `protect end expression in the header file, just the header block that
starts the encryption. The `protect end expression is implied by the end of the file.

4. The IP author delivers encrypted IP.

5. The IP user compiles the design with vcom.

6. The IP user simulates the design with ModelSim or other simulation tools.

Examples

Using ModelSim Default Encryption for VHDL

Suppose an IP author needs to make a design entity, called IP1, visible to the user so the user
can instantiate the design, but the author wants to hide the architecture implementation from the
user. In addition, suppose that IP1 instantiates entity IP2, which the author wants to hide
completely from the user. The easiest way to accomplish this is to surround the regions to be

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 67

protected with `protect begin and `protect end directives and let ModelSim choose default
actions. For this example, all the source code exists in a single file, example1.vhd:

========== file example1.vhd ==========

-- The entity "ip1" is not protected
...
entity ip1 is
...
end ip1;

-- The architecture "a" is protected
-- The internals of "a" are hidden from the user
`protect begin
architecture a of ip1 is
...
end a;
`protect end

-- Both the entity "ip2" and its architecture "a" are completely protected
`protect begin
entity ip2 is
...
end ip2;
architecture a of ip2 is
...
end a;
`protect end

========== end of file example1.vhd ==========

The IP author compiles this file with the vcom +protect command as follows:

vcom +protect=example1.vhdp example1.vhd

The compiler produces an encrypted file, example1.vhdp which looks like the following:

========== file example1.vhdp ==========

-- The entity "ip1" is not protected
...
entity ip1 is
...
end ip1;

-- The architecture "a" is protected
-- The internals of "a" are hidden from the user
`protect BEGIN_PROTECTED
`protect version = 1
`protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect encoding = (enctype = "base64")
`protect KEY_BLOCK
 <encoded encrypted session key>

ModelSim User’s Manual, v10.4c68

Protecting Your Source Code
Language-Specific Usage Models

`protect data_method="aes128-cbc"
`protect encoding = (enctype = "base64" , bytes = 224)
`protect DATA_BLOCK
 <encoded encrypted IP>
`protect END_PROTECTED

-- Both the entity "ip2" and its architecture "a" are completely protected
`protect BEGIN_PROTECTED
`protect version = 1
`protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect encoding = (enctype = "base64")
`protect KEY_BLOCK
 <encoded encrypted session key>
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64" , bytes = 224)
`protect DATA_BLOCK
 <encoded encrypted IP>
`protect END_PROTECTED

========== end of file example1.vhdp ==========

When the IP author surrounds a text region using only `protect begin and `protect end,
ModelSim uses default values for both encryption and encoding. The first few lines following
the `protect BEGIN_PROTECTED region in file example1.vhdp contain the key_keyowner,
key_keyname, key_method and KEY_BLOCK directives. The session key is generated into the
key block and that key block is encrypted using the “rsa” method. The data_method indicates
that the default data encryption method is aes128-cbc and the “enctype” value shows that the
default encoding is base64.

Alternatively, the IP author can compile file example1.vhd with the command:

vcom +protect example1.vhd

Here, the author does not supply the name of the file to contain the protected source. Instead,
ModelSim creates a protected file, gives it the name of the original source file with a 'p' placed
at the end of the file extension, and puts the new file in the current work library directory. With
the command described above, ModelSim creates file work/example1.vhdp. (See Compiling
with +protect.)

The IP user compiles the encrypted file work/example1.vhdp the ordinary way. The +protect
switch is not needed and the IP user does not have to treat the .vhdp file in any special manner.
ModelSim automatically decrypts the file internally and keeps track of protected regions.

If the IP author compiles the file example1.vhd and does not use the +protect argument, then the
file is compiled, various `protect directives are checked for correct syntax, but no protected file
is created and no protection is supplied.

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 69

ModelSim’s default encryption methods provide an easy way for IP authors to encrypt VHDL
designs while hiding the architecture implementation from the user. It should be noted that the
results are only usable by ModelSim tools.

User-Selected Encryption for VHDL

Suppose that the IP author wants to produce the same code as in the example1.vhd file used
above, but wants to provide specific values and not use any default values. To do this the author
adds `protect directives for keys, encryption methods, and encoding, and places them before
each `protect begin directive. The input file would look like the following:

========== file example2.vhd ==========

-- The entity "ip1" is not protected
...
entity ip1 is
...
end ip1;

-- The architecture "a" is protected
-- The internals of "a" are hidden from the user
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64")
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect KEY_BLOCK
`protect begin
architecture a of ip1 is
...
end a;
`protect end

-- Both the entity "ip2" and its architecture "a" are completely protected
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64")
`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_method = "rsa"
`protect KEY_BLOCK
`protect begin
library ieee;
use ieee.std_logic_1164.all;
entity ip2 is
...
end ip2;
architecture a of ip2 is
...
end a;
`protect end

========== end of file example2.vhd ==========

The data_method directive indicates that the encryption algorithm “aes128-cbc” should be used
to encrypt the source code (data). The encoding directive selects the “base64” encoding method,

ModelSim User’s Manual, v10.4c70

Protecting Your Source Code
Language-Specific Usage Models

and the various key directives specify that the Mentor Graphic key named “MGC-VERIF-SIM-
RSA-1” and the “RSA” encryption method are to be used to produce a key block containing a
randomly generated session key to be used with the “aes128-cbc” method to encrypt the source
code. See Using the Mentor Graphics Public Encryption Key.

Using raw Encryption for VHDL

Suppose that the IP author wants to use “raw” encryption and encoding to help with debugging
the following entity:

entity example3_ent is

 port (
 in1 : in bit;
 out1 : out bit);

end example3_ent;

Then the architecture the author wants to encrypt might be this:

========== File example3_arch.vhd

`protect data_method = "raw"
`protect encoding = (enctype = "raw")
`protect begin
architecture arch of example3_ent is

begin

out1 <= in1 after 1 ns;

end arch;
`protect end

========== End of file example3_arch.vhd ==========

If (after compiling the entity) the example3_arch.vhd file were compiled using the command:

vcom +protect example3_arch.vhd

Then the following file would be produced in the work directory

========== File work/example3_arch.vhdp ==========

`protect data_method = "raw"
`protect encoding = (enctype = "raw")
`protect BEGIN_PROTECTED
`protect version = 1
`protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
`protect data_method = "raw"
`protect encoding = (enctype = "raw", bytes = 81)
`protect DATA_BLOCK
architecture arch of example3_ent is

begin

Protecting Your Source Code
Language-Specific Usage Models

ModelSim User’s Manual, v10.4c 71

out1 <= in1 after 1 ns;

end arch;
`protect END_PROTECTED

========== End of file work/example3_arch.vhdp

Notice that the protected file is very similar to the original file. The differences are that `protect
begin is replaced by `protect BEGIN_PROTECTED, `protect end is replaced by `protect
END_PROTECTED, and some additional encryption information is supplied after the BEGIN
PROTECTED directive.

See Encryption and Encoding Methods for more information about raw encryption and
encoding.

Encrypting Several Parts of a VHDL Source File

This example shows the use of symmetric encryption. (See Encryption and Encoding Methods
for more information on symmetric and asymmetric encryption and encoding.) It also
demonstrates another common use model, in which the IP author encrypts several parts of a
source file, chooses the encryption method for encrypting the source code (the data_method),
and uses a key automatically provided by ModelSim. (This is very similar to the proprietary
`protect method in Verilog - see Proprietary Source Code Encryption Tools.)

========== file example4.vhd ==========

entity ex4_ent is

end ex4_ent;

architecture ex4_arch of ex4_ent is
 signal s1: bit;
`protect data_method = "aes128-cbc"
`protect begin
 signal s2: bit;
`protect end
 signal s3: bit;

begin -- ex4_arch

`protect data_method = "aes128-cbc"
`protect begin
s2 <= s1 after 1 ns;
`protect end

s3 <= s2 after 1 ns;

end ex4_arch;

========== end of file example4.vhd

If this file were compiled using the command:

ModelSim User’s Manual, v10.4c72

Protecting Your Source Code
Proprietary Source Code Encryption Tools

vcom +protect example4.vhd

Then the following file would be produced in the work directory:

========== File work/example4.vhdp ==========

entity ex4_ent is

end ex4_ent;

architecture ex4_arch of ex4_ent is
 signal s1: bit;
`protect data_method = "aes128-cbc"
`protect BEGIN_PROTECTED
`protect version = 1
`protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64" , bytes = 18)
`protect DATA_BLOCK
<encoded encrypted declaration of s2>
`protect END_PROTECTED
 signal s3: bit;

begin -- ex4_arch

`protect data_method = "aes128-cbc"
`protect BEGIN_PROTECTED
`protect version = 1
`protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
`protect data_method = "aes128-cbc"
`protect encoding = (enctype = "base64" , bytes = 21)
`protect DATA_BLOCK
<encoded encrypted signal assignment to s2>
`protect END_PROTECTED

s3 <= s2 after 1 ns;

end ex4_arch;

========== End of file work/example4.vhdp

The encrypted example4.vhdp file shows that an IP author can encrypt both declarations and
statements. Also, note that the signal assignment

s3 <= s2 after 1 ns;

is not protected. This assignment compiles and simulates even though signal s2 is protected. In
general, executable VHDL statements and declarations simulate the same whether or not they
refer to protected objects.

Proprietary Source Code Encryption Tools
Mentor Graphics provides two proprietary methods for encrypting source code.

Protecting Your Source Code
Proprietary Source Code Encryption Tools

ModelSim User’s Manual, v10.4c 73

• The `protect / `endprotect compiler directives allow you to encrypt regions within
Verilog and SystemVerilog files.

• The -nodebug argument for the vcom and vlog compile commands allows you to
encrypt entire VHDL, Verilog, or SystemVerilog source files.

Using Proprietary Compiler Directives
The proprietary `protect vlog compiler directive is not compatible with other simulators.
Though other simulators have a `protect directive, the algorithm ModelSim uses to encrypt
Verilog and SystemVerilog source files is different. Therefore, even though an uncompiled
source file with `protect is compatible with another simulator, once the source is compiled in
ModelSim, the resulting .vp or .svp source file is not compatible.

IP authors and IP users may use the `protect compiler directive to define regions of Verilog and
SystemVerilog code to be protected. The code is then compiled with the vlog +protect
command and simulated with ModelSim. The vencrypt utility may be used if the code contains
undefined macros or `directives, but the code must then be compiled and simulated with
ModelSim.

Note
While ModelSim supports both `protect and `pragma protect encryption directives,
these two approaches to encryption are incompatible. Code encrypted by one type of
directive cannot be decrypted by another.

The usage flow for delivering IP with the Mentor Graphics proprietary `protect compiler
directive is as follows:

Figure 2-4. Delivering IP with `protect Compiler Directives

ModelSim User’s Manual, v10.4c74

Protecting Your Source Code
Proprietary Source Code Encryption Tools

Procedure

1. The IP author protects selected regions of Verilog or SystemVerilog IP with the
`protect / `endprotect directive pair. The code in `protect / `endprotect encryption
envelopes has all debug information stripped out. This behaves exactly as if using

vlog -nodebug=ports+pli

except that it applies to selected regions of code rather than the whole file.

2. The IP author uses the vlog +protect command to encrypt IP code contained within
encryption envelopes. The `protect / `endprotect directives are ignored by default
unless the +protect argument is used with vlog.

Once compiled, the original source file is copied to a new file in the current work
directory. The vlog +protect command produces a .vp or a .svp extension to distinguish
it from other non-encrypted Verilog and SystemVerilog files, respectively. For example,
top.v becomes top.vp and cache.sv becomes cache.svp. This new file can be delivered
and used as a replacement for the original source file. (See Compiling with +protect.)

Note
The vencrypt utility may be used if the code also contains undefined macros or
`directives, but the code must then be compiled and simulated with ModelSim.

You can use vlog +protect=<filename> to create an encrypted output file, with the
designated filename, in the current directory (not in the work directory, as in the default
case where [=<filename>] is not specified). For example:

vlog test.v +protect=test.vp

If the filename is specified in this manner, all source files on the command line will be
concatenated together into a single output file. Any `include files will also be inserted
into the output file.

Caution
`protect and `endprotect directives cannot be nested.

If errors are detected in a protected region, the error message always reports the first line
of the protected block.

Protecting Source Code Using -nodebug
Verilog/SystemVerilog and VHDL IP authors and users may use the proprietary vlog -nodebug
or vcom -nodebug command, respectively, to protect entire files. The -nodebug argument for
both vcom and vlog hides internal model data, allowing you to provide pre-compiled libraries
without providing source code and without revealing internal model variables and structure.

Protecting Your Source Code
Proprietary Source Code Encryption Tools

ModelSim User’s Manual, v10.4c 75

Prerequisite

Identify files to be encrypted.

Note
The -nodebug argument encrypts entire files. The `protect compiler directive allows you
to encrypt regions within a file. Refer to Compiler Directives for details.

Procedure

1. Compile VHDL files to be encrypted with the vcom -nodebug command.

2. Compile Verilog/SystemVerilog files to be encrypted with the vlog -nodebug command.

When you compile with -nodebug, all source text, identifiers, and line number
information are stripped from the resulting compiled object, so ModelSim cannot locate
or display any information of the model except for the external pins.

You can access the design units comprising your model via the library, and you may
invoke vsim directly on any of these design units to see the ports. To restrict even this
access in the lower levels of your design, you can use the following -nodebug options
when you compile:

Note
Do not use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no ports will be visible for simulation. Rather, compile all
lower portions of the design with -nodebug=ports first, then compile the top level with
-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

Do not use -nodebug=ports for mixed language designs, especially for Verilog modules
to be instantiated inside VHDL.

Table 2-1. Compile Options for the -nodebug Compiling

Command and Switch Result

vcom -nodebug=ports makes the ports of a VHDL design unit
invisible

vlog -nodebug=ports makes the ports of a Verilog design unit
invisible

vlog -nodebug=pli prevents the use of PLI functions to
interrogate the module for information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports
and -nodebug=pli

ModelSim User’s Manual, v10.4c76

Protecting Your Source Code
Encryption Reference

Encryption Reference
The Encryption Reference includes important information about encryption and encoding
methods, details on how encryption envelopes work, how to use public encryption keys, and
how to use the Mentor Graphics public encryption key.

Encryption and Encoding Methods
There are two basic encryption techniques — symmetric and asymmetric.

• Symmetric encryption uses the same key for both encrypting and decrypting the code
region.

• Asymmetric encryption methods use two keys: a public key for encryption, and a private
key for decryption.

Symmetric Encryption

For symmetric encryption, security of the key is critical and information about the key must be
supplied to ModelSim. Under certain circumstances, ModelSim will generate a random key for
use with a symmetric encryption method or will use an internal key.

The symmetric encryption algorithms ModelSim supports are:

• des-cbc

• 3des-cbc

• aes128-cbc

• aes192-cbc

• aes256-cbc

• blowfish-cbc

• cast128-cbc

The default symmetric encryption method ModelSim uses for encrypting IP source code is
aes128-cbc.

Asymmetric Encryption

For asymmetric encryption, the public key is openly available and is published using some form
of key distribution system. The private key is secret and is used by the decrypting tool, such as
ModelSim. Asymmetric methods are more secure than symmetric methods, but take much
longer to encrypt and decrypt data.

The only asymmetric method ModelSim supports is:

Protecting Your Source Code
Encryption Reference

ModelSim User’s Manual, v10.4c 77

rsa

This method is only supported for specifying key information, not for encrypting IP source code
(i.e., only for key methods, not for data methods).

For testing purposes, ModelSim also supports raw encryption, which doesn't change the
protected source code (the simulator still hides information about the protected region).

All encryption algorithms (except raw) produce byte streams that contain non-graphic
characters, so there needs to be an encoding mechanism to transform arbitrary byte streams into
portable sequences of graphic characters which can be used to put encrypted text into source
files. The encoding methods supported by ModelSim are:

• uuencode

• base64

• raw

Base 64 encoding, which is technically superior to uuencode, is the default encoding used by
ModelSim, and is the recommended encoding for all applications.

Raw encoding must only be used in conjunction with raw encryption for testing purposes.

How Encryption Envelopes Work
Encryption envelopes handle the code you need to protect in a very specific manner.

1. The encrypting tool generates a random key for use with a symmetric method, called a
“session key.”

2. The IP protected source code is encrypted using this session key.

3. The encrypting tool communicates the session key to the decrypting tool —which can
be ModelSim or some other tool — by means of a KEY_BLOCK.

4. For each potential decrypting tool, information about that tool must be provided in the
encryption envelope. This information includes the owner of the key (key_keyowner),
the name of the key (key_keyname), the asymmetric method for encrypting/decrypting
the key (key_method), and sometimes the key itself (key_public_key).

5. The encrypting tool uses this information to encrypt and encode the session key into a
KEY_BLOCK. The occurrence of a KEY_BLOCK in the source code tells the
encrypting tool to generate an encryption envelope.

6. The decrypting tool reads each KEY_BLOCK until it finds one that specifies a key it
knows about. It then decrypts the associated KEY_BLOCK data to determine the
original session key and uses that session key to decrypt the IP source code.

ModelSim User’s Manual, v10.4c78

Protecting Your Source Code
Encryption Reference

Note
VHDL encryption requires that the KEY_BLOCK (the sequence of key_keyowner,
key_keyname, and key_method directives) end with a `protect KEY_BLOCK directive.

Using Public Encryption Keys
If IP authors want to encrypt for third party EDA tools, other public keys need to be specified
with the key_public_key directive as follows.

For Verilog and SystemVerilog:

`pragma protect key_keyowner="Acme"
`pragma protect key_keyname="AcmeKeyName"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvI
f9Tif2emi4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT
80Xs0QgRqkrGYxW1RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

For VHDL:

`protect key_keyowner="Acme"
`protect key_keyname="AcmeKeyName"
`protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvI
f9Tif2emi4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT
80Xs0QgRqkrGYxW1RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

This defines a new key named “AcmeKeyName” with a key owner of “Acme.” The data block
following key_public_key directive is an example of a base64 encoded version of a public key
that should be provided by a tool vendor.

Using the Mentor Graphics Public Encryption Key
Mentor Graphics supplies this public encryption key without exception to support
interoperability across products.

The Mentor Graphics base64 encoded RSA public key is:

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvI
f9Tif2emi4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT
80Xs0QgRqkrGYxW1RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

For Verilog and SystemVerilog applications, copy and paste the entire Mentor Graphics key
block, as follows, into your code:

`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect key_public_key

Protecting Your Source Code
Encryption Reference

ModelSim User’s Manual, v10.4c 79

MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvI
f9Tif2emi4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT
80Xs0QgRqkrGYxW1RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

The vencrypt utility will recognize the Mentor Graphics public key. If vencrypt is not used, you
must use the +protect switch with the vlog command during compile.

For VHDL applications, copy and paste the entire Mentor Graphics key block, as follows, into
your code:

`protect key_keyowner = "Mentor Graphics Corporation"
`protect key_method = "rsa"
`protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvI
f9Tif2emi4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT
80Xs0QgRqkrGYxW1RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

The vhencrypt utility will recognize the Mentor Graphics public key. If vhencrypt is not used,
you must use the +protect switch with the vcom command during compile.

Example 2-4 illustrates the encryption envelope methodology for using this key in
Verilog/SystemVerilog. With this methodology you can collect the public keys from the various
companies whose tools process your IP, then create a template that can be included into the files
you want encrypted. During the encryption phase a new key is created for the encryption
algorithm each time the source is compiled. These keys are never seen by a human. They are
encrypted using the supplied RSA public keys.

Example 2-4. Using the Mentor Graphics Public Encryption Key in
Verilog/SystemVerilog

//
// Copyright 1991-2009 Mentor Graphics Corporation
//
// All Rights Reserved.
//
// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF
// MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS.
//

`timescale 1ns / 1ps
`celldefine

module dff (q, d, clear, preset, clock); output q; input d, clear, preset, clock;
reg q;

`pragma protect data_method = "aes128-cbc"
`pragma protect key_keyowner = "Mentor Graphics Corporation"
`pragma protect key_method = "rsa"
`pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCnJfQb+LLzTMX3NRARsv7A8+LV5SgMEJCvIf9Tif2em
i4z0qtp8E+nX7QFzocTlClC6Dcq2qIvEJcpqUgTTD+mJ6grJSJ+R4AxxCgvHYUwoT80Xs0QgRqkrGYxW1
RUnNBcJm4ZULexYz8972Oj6rQ99n5e1kDa/eBcszMJyOkcGQIDAQAB

`pragma protect key_keyowner = "XYZ inc"

ModelSim User’s Manual, v10.4c80

Protecting Your Source Code
Encryption Reference

`pragma protect key_method = "rsa"
`pragma protect key_keyname = "XYZ-keyPublicKey"
`pragma protect key_public_key
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDZQTj5T5jO1og8ykyaxVg9B+4V+smyCJGW36ZjoqEGq
6jXHxfqB2VAmIC/j9x4xRxtCaOeBxRpcrnIKTP13Y3ydHqpYW0s0+R4h5+cMwCzWqB18Fn0ibSEW+8gW/
/BP4dHzaJApEz2Ryj+IG3UinvvWVNheZd+j0ULHGMgrOQqrwIDAQAB

`pragma protect begin
always @(clear or preset)
 if (!clear)
 assign q = 0;
 else if (!preset)
 assign q = 1;
 else
 deassign q;
`pragma protect end
always @(posedge clock)
 q = d;

endmodule

`endcelldefine

ModelSim User’s Manual, v10.4c 81

Chapter 3
Projects

Projects simplify the process of compiling and simulating a design and are a great tool for
getting started with ModelSim.

What are Projects?
Projects are a collection of entities for designs under specification or test. At a minimum,
projects have a root directory, a work library, and "metadata" which are stored in an .mpf file
located in a project's root directory. The metadata include compiler switch settings, compile
order, and file mappings. Projects may also include the following items.

• Source files or references to source files

• Other files, such as READMEs or other project documentation

• Local libraries

• References to global libraries

• Simulation configurations

• Folders

What are the Benefits of Projects?
Projects offer benefits to both new and advanced users.

• Projects simplify interaction with ModelSim. For example, you don’t need to
understand the intricacies of compiler switches and library mappings

• Projects eliminate the need to remember the conceptual model of the design; the
compile order is maintained for you in the project.

Note
Compile order is maintained for HDL-only designs.

• Projects remove the necessity to re-establish compiler switches and settings for each
new session. Settings and compiler switches are stored in the project metadata as are
mappings to source files.

• Projects allow you to share libraries without copying files to a local directory. For
example, you can establish references to source files that are stored remotely or locally.

ModelSim User’s Manual, v10.4c82

Projects
Getting Started with Projects

• Projects allow you to change individual parameters across multiple files. In previous
versions you could only set parameters one file at a time.

• Projects enable "what-if" analysis. For example, you can copy a project, manipulate the
settings, and rerun it to observe the new results.

• Projects reload the initial settings from the project .mpf file every time the project is
opened.

Related Topics

See Creating a Simulation Configuration and Organizing Projects with Folders.

Project Conversion Between Simulator Versions
Projects are generally not backwards compatible for either number or letter releases. When you
open a project created in an earlier version, you will see a message warning that the project will
be converted to the newer version. You have the option of continuing with the conversion or
cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named <project name>.mpf.bak and is created in the
same directory in which the original project is located.

Getting Started with Projects
You do the intitial set up compile and simulation of a design by working with several windows
and dialog boxes. The following sections show you the necessary steps.

• Open a New Project

• Add Source Files to the Project

• Compile the Files

• Simulate a Design

Open a New Project
This procedure shows you how to do the initital setup necessary for creating a project.

Procedure

1. Select File > New > Project to create a new project. This opens the Create Project
dialog

2. Specify a project name, location, and default library name. You can generally leave the
Default Library Name set to "work." The name you specify will be used to create a

Projects
Getting Started with Projects

ModelSim User’s Manual, v10.4c 83

working library subdirectory within the Project Location. This dialog also allows you to
reference library settings from a selected .ini file or copy them directly into the project.

Figure 3-1. Create Project Dialog

3. Click OK.

Results

A blank Project window opens in the Main window (Figure 3-2)

Figure 3-2. Project Window Detail

and the Add Items to the Project dialog box opens. (Figure 3-3)

ModelSim User’s Manual, v10.4c84

Projects
Getting Started with Projects

Figure 3-3. Add items to the Project Dialog

The name of the current project is displayed at the bottom bar of the Main window.

If you exit ModelSim with a project open, ModelSim automatically opens that same project
upon startup.

You can open a different or existing project by selecting File > Open and choosing Project Files
from the Files of type drop-down.

To close a project file, right-click in the Project window and select Close Project. This closes
the Project window but leaves the Library window open. You cannot close a project while a
simulation is in progress.

Add Source Files to the Project
Once you have created a project, you need to add the design files. You can either write and edit
a new source file or add a pre-existing file.

Procedure

1. Create a new project file

a. Select Project > Add to Project > New File (the Project window must be active).
This will open the Create Project File dialog (Figure 3-4).

Projects
Getting Started with Projects

ModelSim User’s Manual, v10.4c 85

Figure 3-4. Create Project File Dialog

b. Specify a name, file type, and folder location for the new file.

When you select OK, the file is listed in the Project window. If you double-click the
name of the new file in the Project window a Source editor window will open, allowing
you to create source code.

2. Add an existing file

a. Select Project > Add to Project > Existing File.

Figure 3-5. Add file to Project Dialog

b. OK.

Results

The files are added to the Project window.

ModelSim User’s Manual, v10.4c86

Projects
Getting Started with Projects

Note
You can send a list of all project filenames to the Transcript window by entering the
command project filenames. This command only works when a project is open.

Compile the Files
The question marks in the Status column in the Project window indicate that either the files
have not been compiled into the project or the source has changed since the last compile.

Note
Project metadata is updated and stored only for actions taken within the project itself. For
example, if you have a file in a project, and you compile that file from the command line
rather than using the project menu commands, the project will not update to reflect any
new compile settings.

Procedure

Select Compile > Compile All or right click in the Project window and select Compile >
Compile All.

Projects
Getting Started with Projects

ModelSim User’s Manual, v10.4c 87

Figure 3-6. Right-click Compile Menu in Project Window

Results

Once compilation is finished, click the Library window, expand the library work by clicking the
"+", and you will see the compiled design units.

Figure 3-7. Click Plus Sign to Show Design Hierarchy

Change Compile Order
The Compile Order dialog box is functional for HDL-only designs. When you compile all files
in a project, ModelSim by default compiles the files in the order in which they were added to the
project.

ModelSim User’s Manual, v10.4c88

Projects
Getting Started with Projects

You have two alternatives for changing the default compile order:

• Select and compile each file individually

• Specify a custom compile order

Procedure

1. Choose Compile > Compile Order from the main menu or from the context menu in
the Project window.

Figure 3-8. Setting Compile Order

2. Drag the files into the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-Generate the Compile Order
If you have an HDL-only design, you can automatically generate the compile order of its files.

When you click the Auto Generate button in the Compile Order dialog box (Figure 3-8),
ModelSim determines the correct compile order by making multiple passes over the files. It
starts compiling from the top; if a file fails to compile due to dependencies, it moves that file to
the bottom and then recompiles it after compiling the rest of the files. It continues in this manner
until all files compile successfully or until a file(s) can’t be compiled for reasons other than
dependency.

Projects
Getting Started with Projects

ModelSim User’s Manual, v10.4c 89

You can display files in the Project window in alphabetical or in compilation order (by clicking
the column headings). Keep in mind that the order you see in the Project window is not
necessarily the order in which the files will be compiled.

Grouping Files
You can group two or more files in the Compile Order dialog so they are sent to the compiler at
the same time. For example, you might have one file with a bunch of Verilog define statements
and a second file that is a Verilog module. You would want to compile these two files together.

Procedure

1. Select the files you want to group.

Figure 3-9. Grouping Files

2. Click the Group button.

To ungroup files, select the group and click the Ungroup button.

Simulate a Design
After you have finished compiling the files contained in your design, you are ready to perform
simulation.

To simulate a design, do one of the following.

ModelSim User’s Manual, v10.4c90

Projects
Getting Started with Projects

• Double-click the Name of an appropriate design object (such as a test bench module or
entity) in the Library window.

• Right-click the Name of an appropriate design object and choose Simulate from the
popup menu.

• Choose Simulate > Start Simulation from the main menu to open the Add Simulation
Configuration dialog box (Figure 3-10). Select a design unit in the Design tab. Set other
options in the VHDL, Verilog, Libraries, SDF, and Others tabs. Click OK to start the
simulation.

Figure 3-10. Add Simulation Configuration Dialog Box — Design Tab

A new Structure window, named sim, appears that shows the structure of the active simulation
(Figure 3-11).

Projects
The Project Window

ModelSim User’s Manual, v10.4c 91

Figure 3-11. Structure WIndow with Projects

At this point you are ready to run the simulation and analyze your results. You often do this by
adding signals to the Wave window and running the simulation for a given period of time. See
the ModelSim Tutorial for examples.

The Project Window
To access:

• New Project: File > New > Project.

• Saved Project: File > Open > Files of Type > Project File (.mpf)

The Project window contains information about the objects in your project. By default the
window is divided into five columns. You can display this window to create a new project or to
work on an existing project that you have saved

Figure 3-12. Project Window Overview

Fields
• Name – The name of a file or object.

• Status – Identifies whether a source file has been successfully compiled. Applies only to
VHDL or Verilog files. A question mark means the file hasn’t been compiled or the

ModelSim User’s Manual, v10.4c92

Projects
Creating a Simulation Configuration

source file has changed since the last successful compile; an X means the compile
failed; a check mark means the compile succeeded; a checkmark with a yellow triangle
behind it means the file compiled but there were warnings generated.

• Type – The file type as determined by registered file types on Windows or the type you
specify when you add the file to the project.

• Order – The order in which the file will be compiled when you execute a Compile All
command.

• Modified – The date and time of the last modification to the file.

You can hide or show columns by right-clicking on a column title and selecting or deselecting
entries.

Usage Notes
You can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down arrow)
or ascending (up arrow).

Creating a Simulation Configuration
A Simulation Configuration associates a design unit(s) and its simulation options. Ordinarily,
you would have to specify those options each time you load the design. With a Simulation
Configuration, you specify the design and those options and then save the configuration with a
name.

For example, assume you routinely load a particular design and you also have to specify the
simulator resolution limit, generics, and SDF timing files. With a Simulation Configuration,
you would specify the design and those options and then save the configuration and name it
top_config. This name is then listed in the Project window where you can double-click it to load
the design along with its options.

Procedure

1. Add a simulation configuration to the project by doing either of the following:

• Choose Project > Add to Project > Simulation Configuration from the main
menu.

• Right-click the Project window and choose Add to Project > Simulation
Configuration from the popup menu in the Project window.

This displays the dialog box shown in Figure 3-13.

Projects
Creating a Simulation Configuration

ModelSim User’s Manual, v10.4c 93

Figure 3-13. Add Simulation Configuration Dialog Box

2. Specify a name in the Simulation Configuration Name field.

3. Specify the folder in which you want to place the configuration (see Organizing Projects
with Folders).

4. Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.

5. Use the other tabs in the dialog box to specify any required simulation options.

6. Click OK

Results

• The simulation configuration is added to the Project window, as shown in Figure 3-14.

• As noted, the name of the new simulation configuration you have added is verilog_sim.

• To load the design, double-click on verilog_sim.

ModelSim User’s Manual, v10.4c94

Projects
Organizing Projects with Folders

Figure 3-14. Simulation Configuration in the Project Window

Organizing Projects with Folders
The more files you add to a project, the harder it can be to locate the item you need. You can
add "folders" to the project to organize your files.

Adding a Project Folder
Project folders are similar to directories in that they are containers that allow you to organize
multiple levels of folders and sub-folders. However, no actual project directories are created in
the file system—the folders are present only within the project file.

Procedure

1. Select Project > Add to Project > Folder or right-click in the Project window and
select Add to Project > Folder.

Figure 3-15. Add Folder Dialog

Projects
Organizing Projects with Folders

ModelSim User’s Manual, v10.4c 95

2. Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.

Examples

For example, when you add a file, you can select which folder to place it in.

Figure 3-16. Specifying a Project Folder

If you want to move a file into a folder later on, you can do so using the Properties dialog for the
file. Simply right-click on the filename in the Project window and select Properties from the
context menu that appears. This will open the Project Compiler Settings Dialog (Figure 3-17).
Use the Place in Folder field to specify a folder.

ModelSim User’s Manual, v10.4c96

Projects
Set File Properties and Project Settings

Figure 3-17. Project Compiler Settings Dialog

On Windows platforms, you can also just drag-and-drop a file into a folder.

Set File Properties and Project Settings
You can set two types of properties in a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File Compilation Properties
The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options that
affect how a design is compiled and subsequently simulated. You can customize the settings on
individual files or a group of files.

Note
Any changes you make to the compile properties outside of the project, whether from the
command line, the GUI, or the modelsim.ini file, will not affect the properties of files
already in the project.

To customize specific files, select the file(s) in the Project window, right click on the file names,
and select Properties. The resulting Project Compiler Settings dialog (Figure 3-18) varies

Projects
Set File Properties and Project Settings

ModelSim User’s Manual, v10.4c 97

depending on the number and type of files you have selected. If you select a single VHDL or
Verilog file, you will see the General tab, Coverage tab, and the VHDL or Verilog tab,
respectively.

In the General tab, you will see file properties such as Type, Location, and Size. If you select
multiple files, the file properties on the General tab are not listed. Finally, if you select both a
VHDL file and a Verilog file, you will see all tabs but no file information on the General tab.

Figure 3-18. Specifying File Properties

When setting options on a group of files, keep in mind the following:

• If two or more files have different settings for the same option, the checkbox in the
dialog will be "grayed out." If you change the option, you cannot change it back to a
"multi- state setting" without cancelling out of the dialog. Once you click OK,
ModelSim will set the option the same for all selected files.

• If you select a combination of VHDL and Verilog files, the options you set on the
VHDL and Verilog tabs apply only to those file types.

Project Settings
To modify project settings, right-click anywhere within the Project window and choose Project
Settings from the popup menu. This opens the Project Settings Dialog Box.

ModelSim User’s Manual, v10.4c98

Projects
Set File Properties and Project Settings

The Project Settings Dialog Box allows you to select the compile output you want, the location
map, what to do with source files when you open or close a project, and how the double-click
action of your mouse will operate on specific file types.

Figure 3-19. Project Settings Dialog Box

Convert Pathnames to Softnames for Location Mapping
If you are using a location map, you can convert relative pathnames, full pathnames, and
pathnames with an environment variable into a soft pathname.

Tip: The term softname denotes a pathname that uses location mapping using the
MGC_LOCATION_MAP environment variable. The soft pathname looks like a
pathname containing an environment variable, it locates the source using the location
map rather than the environment.

Prerequisites

• Under the Location map section of the Project Settings dialog box (Figure 3-19), enable
the checkbox for Convert pathnames to softnames.

Procedure

1. Right-click anywhere within the Project window and select Project Settings

2. Enable the Convert pathnames to softnames within the Location map area of the
Project Settings dialog box (Figure 3-19).

Projects
Access Projects from the Command Line

ModelSim User’s Manual, v10.4c 99

Results

Once enabled, all pathnames currently in the project and any that are added later are then
converted to softnames.

During conversion, if there is no softname in the mgc location map matching the entry, the
pathname is converted in to a full (hardened) pathname. A pathname is hardened by removing
the environment variable or the relative portion of the path. If this happens, any existing
pathnames that are either relative or use environment variables are also changed: either to
softnames if possible, or to hardened pathnames if not.

Related Topics

See Using Location Mapping.

Setting Custom Double-click Behavior
Use the Project Settings dialog box to control the double-click behavior of the Project
window.

Procedure

1. Select the desired File Type in the Double-click Behavior pane.

2. Select Custom from the Action dropdown.

3. In the Custom text entry box enter a Tcl command, using %f for filename substitution.

Examples

The following example shows how the Custom text entry box could appear.

notepad %f

where the double-click behavior will substitute %f with the filename that was clicked, then
execute the string.

Access Projects from the Command Line
Generally, projects are used from within the ModelSim GUI. However, standalone tools will
use the project file if they are invoked in the project's root directory. If you want to invoke
outside the project directory, set the MODELSIM environment variable with the path to the
project file (<Project_Root_Dir>/<Project_Name>.mpf).

You can also use the project command from the command line to perform common operations
on projects.

ModelSim User’s Manual, v10.4c100

Projects
Access Projects from the Command Line

ModelSim User’s Manual, v10.4c 101

Chapter 4
Design Libraries

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog and SystemVerilog designs simulated within ModelSim are compiled into
libraries as well.

Design Library Overview
A design library is a directory or archive that serves as a repository for compiled design units.
The design units contained in a design library consist of VHDL entities, packages, architectures,
and configurations; Verilog modules and UDPs (user-defined primitives). The design units are
classified in two ways.

• Primary design units — Consist of entities, package declarations, configuration
declarations, modules, and UDPs. Primary design units within a given library must have
unique names.

• Secondary design units — Consist of architecture bodies, and package bodies.
Secondary design units are associated with a primary design unit. Architectures by the
same name can exist if they are associated with different entities or modules.

Design Unit Information
The information stored for each design unit in a design library is:

• retargetable, executable code

• debugging information

• dependency information

Working Library Versus Resource Libraries
Design libraries can be used in two ways.

1. As a local working library that contains the compiled version of your design;

2. As a resource library.

The contents of your working library will change as you update your design and recompile. A
resource library is typically static and serves as a parts source for your design. You can create
your own resource libraries or they may be supplied by another design team or a third party (for
example, a silicon vendor).

ModelSim User’s Manual, v10.4c102

Design Libraries
Working with Design Libraries

Only one library can be the working library.

Any number of libraries can be resource libraries during a compilation. You specify which
resource libraries will be used when the design is compiled, and there are rules to specify in
which order they are searched (refer to Verilog Resource Libraries and VHDL Resource
Libraries).

A common example of using both a working library and a resource library is one in which your
gate-level design and test bench are compiled into the working library and the design references
gate-level models in a separate resource library.

The Library Named "work"
The library named "work" has special attributes within ModelSim — it is predefined in the
compiler and need not be declared explicitly (that is, library work). It is also the library name
used by the compiler as the default destination of compiled design units (that is, it does not need
to be mapped). In other words, the work library is the default working library.

Working with Design Libraries
The implementation of a design library is not defined within standard VHDL or Verilog. Within
ModelSim, design libraries are implemented as directories and can have any legal name allowed
by the operating system, with one exception: extended identifiers are not supported for library
names.

Creating a Library
You need to create a working design library before you run the compiler. This can be done from
either the command line or from the ModelSim graphic interface.

Note
When you create a project, ModelSim automatically creates a working design library.

Procedure

You have two ways to create a working design library:

• From the ModelSim prompt or a UNIX/DOS prompt, use the vlib command:

vlib <directory_pathname>

• With the graphic interface, select File > New > Library.

Design Libraries
Working with Design Libraries

ModelSim User’s Manual, v10.4c 103

Figure 4-1. Creating a New Library

Results

When you click OK, ModelSim creates the specified library directory and writes a specially-
formatted file named _info into that directory. The _info file must remain in the directory to
distinguish it as a ModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. Refer to
modelsim.ini Variables for more information.

Note
Remember that a design library is a special kind of directory. The only way to create a
library is to use the ModelSim GUI or the vlib command. Do not try to create libraries
using UNIX, DOS, or Windows commands.

Related Topics

See Getting Started with Projects and modelsim.ini Variables.

Library Size
The -smartdbgsym option for the vcom and vlog commands helps to reduce the size of
debugging database symbol files generated at compile time from the design libraries. With
-smartdbgsym, most design-units have their debugging symbol files generated on-demand by
vsim.

A companion SmartDbgSym variable in modelsim.ini allows you to permanently enable or
disable this function. By default, the function is disabled and a debugging symbol file database
is generated for all design units.

ModelSim User’s Manual, v10.4c104

Design Libraries
Working with Design Libraries

Related Topics

See vcom and vlog.

Library Window Contents
Library contents can be viewed, deleted, recompiled, edited and so on using either the graphic
interface or command line.

The Library window provides access to design units (configurations, modules, packages,
entities, and architectures) in a library. Various information about the design units is displayed
in columns to the right of the design unit name.

Figure 4-2. Design Unit Information in the Workspace

The Library window has a popup menu with various commands that you access by clicking
your right mouse button.

The context menu includes the following commands:

• Simulate — Loads the selected design unit(s) and opens Structure (sim) and Files
windows. Related command line command is vsim.

• Edit — Opens the selected design unit(s) in the Source window; or, if a library is
selected, opens the Edit Library Mapping dialog (refer to Map a Logical Name to a
Design Library).

• Refresh — Rebuilds the library image of the selected library without using source code.
Related command line command is vcom or vlog with the -refresh argument.

• Recompile — Recompiles the selected design unit(s). Related command line command
is vcom or vlog.

Design Libraries
Working with Design Libraries

ModelSim User’s Manual, v10.4c 105

• Update — Updates the display of available libraries and design units.

Map a Logical Name to a Design Library
VHDL uses logical library names that can be mapped to ModelSim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located elsewhere, you need to map a logical library name to
the pathname of the library.

For Verilog and SystemVerilog libraries, the system searches for the mapping of a logical name
in the following order:

• First the system looks for a modelsim.ini file.

• If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

The compiler generates an error if you specify a logical name that does not resolve to an
existing directory.

You can use the GUI, a command, or a project to assign a logical name to a design library. You
can also map multiple logical names to the same design library.

Mapping a Library with the GUI
You can map a library with the GUI using the Edit Library Mapping dialog box.

Procedure

1. Select the library in the Library window,

2. Right-click your mouse

3. Select Edit from the context menu that appears. This brings up a dialog box that allows
you to edit the mapping.

ModelSim User’s Manual, v10.4c106

Design Libraries
Working with Design Libraries

Figure 4-3. Edit Library Mapping Dialog

The dialog box includes these options:

o Library Mapping Name — The logical name of the library.

o Library Pathname — The pathname to the library.

Mapping a Library from the Command Line
Use the vmap command to map a library from the command line.

Procedure

Use the vmap command. For example:

vmap <logical_name> <directory_pathname>

You may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap command adds the mapping to the library section of the modelsim.ini file.

Modify the modelsim.ini Manually
You can map a library by manually modifying the modelsim.ini file.

Procedure

1. Open the modelsim.ini file with a text editor

2. Add a line under the [Library] section heading using the syntax:

<logical_name> = <directory_pathname>

To map more than one logical name to a single directory:

a. Open the modelsim.ini file with a text editor

Design Libraries
Working with Design Libraries

ModelSim User’s Manual, v10.4c 107

b. Add a library logical name and pathname for the same library under the [Library]
section heading using the syntax. For example:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

This would allow you to use either the logical name work or my_asic in a library or
use clause to refer to the same design library.

You can also create a UNIX symbolic link to the library using the host platform
command. For example:

ln -s <directory_pathname> <logical_name>

The vmap command can also be used to display the mapping of a logical library name to a
directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Related Topics

See modelsim.ini Variables and vmap.

Move a Library
Individual design units in a design library cannot be moved. An entire design library can be
moved, however, by using standard operating system commands for moving a directory or an
archive.

Setting Up Libraries for Group Use
By adding an “others” clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the tool does not find a mapping in the modelsim.ini file, then it will search the
[library] section of the initialization file specified by the “others” clause. For example:

[library]
asic_lib = /cae/asic_lib
work = my_work
others = /usr/modeltech/modelsim.ini

You can specify only one "others" clause in the library section of a given modelsim.ini file.

The “others” clause only instructs the tool to look in the specified modelsim.ini file for a library.
It does not load any other part of the specified file.

If there are two libraries with the same name mapped to two different locations – one in the
current modelsim.ini file and the other specified by the "others" clause – the mapping specified
in the current .ini file will take effect.

ModelSim User’s Manual, v10.4c108

Design Libraries
Verilog Resource Libraries

Verilog Resource Libraries
All modules and UDPs in a Verilog design must be compiled into one or more libraries. One
library is usually sufficient for a simple design, but you may want to organize your modules into
various libraries for a complex design. If your design uses different modules having the same
name, then you need to put those modules in different libraries because design unit names must
be unique within a library.

The following is an example of how to organize your ASIC cells into one library and the rest of
your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
the results in the asiclib library rather than the default work library.

Library Search Rules and the vlog Command
Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded
from the library named work unless you prefix the modules with the <library>. option. All other
Verilog instantiations are resolved in the following order.

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the Verilog-XL uselib Compiler Directive section.

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.

Related Topics

See SystemVerilog Multi-File Compilation.

Design Libraries
Verilog Resource Libraries

ModelSim User’s Manual, v10.4c 109

Handling Sub-Modules with the Same Name
Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Figure 4-4. Sub-Modules with the Same Name

The normal library search rules do not work in this situation. For example, if you load the
design as follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolve to the lib1 version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, ModelSim implements a special interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

The LibrarySearchPath Variable
The LibrarySearchPath variable in the modelsim.ini file (in the [vlog] section) can be used to
define a space-separated list of resource library paths and/or library path variables. This
behavior is identical with the -L argument for the vlog command.

LibrarySearchPath = <path>/lib1 <path>/lib2 <path>/lib3

The default for LibrarySearchPath is:

top

modA modB

modA modB

cellX cellX

lib1: lib2:

ModelSim User’s Manual, v10.4c110

Design Libraries
VHDL Resource Libraries

LibrarySearchPath = mtiAvm mtiOvm mtiUvm mtiUPF

Related Topics

See LibrarySearchPath and vlog.

VHDL Resource Libraries
Within a VHDL source file, you use the VHDL library clause to specify logical names of one
or more resource libraries to be referenced in the subsequent design unit. The scope of a library
clause includes the text region that starts immediately after the library clause and extends to the
end of the declarative region of the associated design unit. It does not extend to the next design
unit in the file.

Note that the library clause is not used to specify the working library into which the design unit
is placed after compilation. The vcom command adds compiled design units to the current
working library. By default, this is the library named work. To change the current working
library, you can use vcom -work and specify the name of the desired target library.

Predefined Libraries
Certain resource libraries are predefined in standard VHDL. The library named std contains the
packages standard, env, and textio, which should not be modified. The contents of these
packages and other aspects of the predefined language environment are documented in the IEEE
Standard VHDL Language Reference Manual, Std 1076.

A VHDL use clause can be specified to select particular declarations in a library or package that
are to be visible within a design unit during compilation. A use clause references the compiled
version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarations in a library or package can be referenced, add the suffix .all to
the library/package name. For example, the use clause above specifies that all declarations in
the package standard, in the design library named std, are to be visible to the VHDL design unit
immediately following the use clause. Other libraries or packages are not visible unless they are
explicitly specified using a library or use clause.

Another predefined library is work, the library where a design unit is stored after it is compiled
as described earlier. There is no limit to the number of libraries that can be referenced, but only
one library is modified during compilation.

Related Topics

Design Libraries
VHDL Resource Libraries

ModelSim User’s Manual, v10.4c 111

See The TextIO Package.

Alternate IEEE Libraries Supplied
The installation directory may contain two or more versions of the IEEE library.

• ieeepure — Contains only IEEE approved packages (accelerated for ModelSim).

• ieee — (default) Contains precompiled Synopsys and IEEE arithmetic packages which
have been accelerated for ModelSim including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, and vital_timing.

You can select which library to use by changing the mapping in the modelsim.ini file.

Regenerating Your Design Libraries
Depending on your current ModelSim version, you may need to regenerate your design libraries
before running a simulation. Check the installation README file to see if your libraries require
an update.

By default, the work library is updated. An important feature of -refresh is that it rebuilds the
library image without using source code. This means that models delivered as compiled
libraries without source code can be rebuilt for a specific release of ModelSim. In general, this
works for moving forwards or backwards on a release. Moving backwards on a release may not
work if the models used compiler switches, directives, language constructs, or features that do
not exist in the older release.

Restrictions and Limitations

You don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you cannot use
the -refresh option to update libraries that were built before the 4.6 release.

You may specify a specific design unit name with the -refresh argument to vcom and vlog in
order to regenerate a library image for only that design, but you may not specify a file name.

Procedure

• From the GUI — Library > Regenerate. Updates the work library.

• From the command line:

o VHDL design units in a library, use vcom with the -refresh argument. Updates the
work library.

o Verilog design units in a library, use vlog with the -refresh argument. Updates the
work library.

ModelSim User’s Manual, v10.4c112

Design Libraries
Importing FPGA Libraries

• Update a different library. — Use either vcom or vlog with the -work <library>
argument to update a different library. For example, if you have a library named mylib
that contains both VHDL and Verilog design units:

vcom -work mylib -refresh

vlog -work mylib -refresh

Related Topics

See Library Window Contents, vcom, and vlog.

Importing FPGA Libraries
ModelSim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct mappings
and target directories.

Prerequisites

The FPGA libraries you import must be pre-compiled. Most FPGA vendors supply pre-
compiled libraries configured for use with ModelSim.

Procedure

1. Select File > Import > Library to open the Import Library Wizard. (Figure 4-5)

Figure 4-5. Import Library Wizard

Design Libraries
Protect Source Code

ModelSim User’s Manual, v10.4c 113

2. Follow the instructions in the wizard to complete the import.

Protect Source Code
The Protecting Your Source Code chapter provides details about protecting your internal model
data. This allows a model supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

Related Topics

See Protecting Your Source Code.

ModelSim User’s Manual, v10.4c114

Design Libraries
Protect Source Code

ModelSim User’s Manual, v10.4c 115

Chapter 5
VHDL Simulation

This chapter provides basic information on how to use VHDL for ModelSim simulation.

• Basic VHDL Usage — A brief outline of the steps for using VHDL in a ModelSim
design.

• Compilation and Simulation of VHDL — How to compile, optimize, and simulate a
VHDL design

• The TextIO Package — Using the TextIO package provided with ModelSim

• VITAL Usage and Compliance — Implementation of the VITAL (VHDL Initiative
Towards ASIC Libraries) specification for ASIC modeling

• VHDL Utilities Package (util) — Using the special built-in utilities package (Util
Package) provided with ModelSim

• Modeling Memory — The advantages of using VHDL variables or protected types
instead of signals for memory designs.

• VHDL Access Object Debugging — Logging an access type variable will automatically
also log any designated objects that the variable value points to during simulation.

Basic VHDL Usage
Using a VHDL design with ModelSim consists of running the vcom and vsim commands to
compile, load, and simulate. Note that you need to be familiar with any setup requirements for
running these commands, such as using the vlib command to create a design library.

The following basic sequence of steps summarizes this process:

1. Compile your VHDL code into one or more libraries using the vcom command. Refer to
Compilation of a VHDL Design—the vcom Command for more information.

2. Load your design with the vsim command. Refer to Simulation of a VHDL Design—the
vsim Command.

3. Simulate the loaded design, then debug as needed.

Compilation and Simulation of VHDL
The basic operations for using VHDL with ModelSim are establishing a library for compilation
results, compilation, and simulation.

ModelSim User’s Manual, v10.4c116

VHDL Simulation
Compilation and Simulation of VHDL

Creating a Design Library for VHDL
Before you can compile your VHDL source files, you must create a library in which to store the
compilation results.

Procedure

Use the vlib command to create a new library. For example:

vlib work

Results

Running the vlib command creates a library named work. By default, compilation results are
stored in the work library.

Caution
The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create a VHDL library as a directory by using a system
command—always use the vlib command.

Related Topics

Compilation of a VHDL Design—the vcom
Command

ModelSim compiles one or more VHDL design units with a single invocation of the vcom
command, which functions as the VHDL compiler. The design units are compiled in the order
that they appear on the command line. For VHDL, the order of compilation is important—you
must compile any entities or configurations before an architecture that references them.

You can simulate a design written with any of the following versions of VHDL:

• 1076-1987

• 1076-1993

• 1076-2002

• 1076-2008

To do so you need to compile units from each VHDL version separately.

Design Libraries

VHDL Simulation
Compilation and Simulation of VHDL

ModelSim User’s Manual, v10.4c 117

The vcom command compiles using 1076 -2002 rules by default; use the -87, -93, or -2008
arguments to compile units written with version 1076-1987, 1076 -1993, or 1076-2008
respectively. You can also change the default by modifying the VHDL93 variable in the
modelsim.ini file (see modelsim.ini Variables for more information).

Note
Only a limited number of VHDL 1076-2008 constructs are currently supported.

Dependency Checking

You must re-analyze dependent design units when you change the design units they depend on
in the library. The vcom command determines whether or not the compilation results have
changed.

For example, if you keep an entity and its architectures in the same source file and you modify
only an architecture and recompile the source file, the entity compilation results will remain
unchanged. This means you do not have to recompile design units that depend on the entity.

VHDL Case Sensitivity

VHDL is a case-insensitive language for all basic identifiers. For example, clk and CLK are
regarded as the same name for a given signal or variable. This differs from the Verilog and
SystemVerilog languages, both of which are case-sensitive.

The vcom command preserves both uppercase and lowercase letters of all user-defined object
names in a VHDL source file.

Usage Notes

• You can make the vcom command convert uppercase letters to lowercase by either of
the following methods:

o Use the -lower argument with the vcom command.

o Set the PreserveCase variable to 0 in your modelsim.ini file.

• The supplied precompiled packages in STD and IEEE have their case preserved. This
results in slightly different version numbers for these packages. As a result, you may
receive out-of-date reference messages when refreshing to the current release. To
resolve this, use vcom -force_refresh instead of vcom -refresh.

• Mixed language interactions

o Design unit names — Because VHDL and Verilog design units are mixed in the
same library, VHDL design units are treated as if they are lowercase. This is for
compatibility with previous releases. This also to provide consistent filenames in the
file system for make files and scripts.

ModelSim User’s Manual, v10.4c118

VHDL Simulation
Compilation and Simulation of VHDL

o Verilog packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion.

o VHDL packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion; VHDL basic identifiers are still converted to lowercase for compatibility
with previous releases.

o FLI — Functions that return names of an object will not have the original case
unless the source is compiled using vcom -lower. Port and Generic names in the
mtiInterfaceListT structure are converted to lowercase to provide compatibility with
programs doing case sensitive comparisons (strcmp) on the generic and port names.

How Case Affects Default Binding

The following rules describe how ModelSim handles uppercase and lowercase names in default
bindings.

1. All VHDL names are case-insensitive, so ModelSim always stores them in the library in
lowercase to be consistent and compatible with older releases.

2. When looking for a design unit in a library, ModelSim ignores the VHDL case and looks
first for the name in lowercase. If present, ModelSim uses it.

3. If no lowercase version of the design unit name exists in the library, then ModelSim
checks the library, ignoring case.

a. If ONE match is found this way, ModelSim selects that design unit.

b. If NO matches or TWO or more matches are found, ModelSim does not select
anything.

The following examples demonstrate these rules. Here, the VHDL compiler needs to find a
design unit named Test. Because VHDL is case-insensitive, ModelSim looks for "test" because
previous releases always converted identifiers to lowercase.

Example 1

Consider the following library:

work
 entity test
 Module TEST

The VHDL entity test is selected because it is stored in the library in lowercase. The original
VHDL could have contained TEST, Test, or TeSt, but the library always contains the entity as
"test."

VHDL Simulation
Compilation and Simulation of VHDL

ModelSim User’s Manual, v10.4c 119

Example 2

Consider the following library:

work
 Module Test

No design unit named "test" exists, but "Test" matches when case is ignored, so ModelSim
selects it.

Example 3

Consider the following library:

work
 Module Test
 Module TEST

No design unit named "test" exists, but both "Test" and "TEST" match when case is ignored, so
ModelSim does not select either one.

Range and Index Checking
A range check verifies that a scalar value defined to be of a subtype with a range is always
assigned a value within its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. You can
disable range checks (potentially offering a performance advantage) using arguments to the
vcom command. Or, you can use the NoRangeCheck and NoIndexCheck variables in the
[vcom] section of the modelsim.ini file to specify whether or not they are performed. Refer to
modelsim.ini Variables for more information.

Generally, these checks are disabled only after the design is known to be error-free. If you run a
simulation with range checking disabled, any scalar values that are out of range are indicated by
showing the value in the following format: ?(N) where N is the current value. For example, the
range constraint for STD_ULOGIC is 'U' to '-'; if the value is reported as ?(25), the value is out
of range because the type STD_ULOGIC value internally is between 0 and 8 (inclusive). A
similar thing will arise for integer subtypes and floating point subtypes. This generally
indicates that there is an error in the design that is not being caught because range checking was
disabled.

Range checks in ModelSim are slightly more restrictive than those specified by the VHDL
Language Reference Manual (LRM). ModelSim requires any assignment to a signal to also be
in range whereas the LRM requires only that range checks be done whenever a signal is

ModelSim User’s Manual, v10.4c120

VHDL Simulation
Compilation and Simulation of VHDL

updated. Most assignments to signals update the signal anyway, and the more restrictive
requirement allows ModelSim to generate better error messages.

Subprogram Inlining
ModelSim attempts to inline subprograms at compile time to improve simulation performance.
This happens automatically and should be largely transparent. However, you can disable
automatic inlining two ways:

• Invoke vcom with the -O0 or -O1 argument

• Use the mti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly, depending on whether inlining occurred.
When single-stepping to a subprogram call that has not been inlined, the simulator stops first at
the line of the call, and then proceeds to the line of the first executable statement in the called
subprogram. If the called subprogram has been inlined, the simulator does not first stop at the
subprogram call, but stops immediately at the line of the first executable statement.

mti_inhibit_inline Attribute
You can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rules to use the attribute:

• Declare the attribute within the design unit's scope as follows:

attribute mti_inhibit_inline : boolean;

• Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (for example, "foo"), add the following attribute
assignment:

attribute mti_inhibit_inline of foo : procedure is true;

To inhibit inlining for a particular package (for example, "pack"), add the following
attribute assignment:

attribute mti_inhibit_inline of pack : package is true;

Do similarly for entities and architectures.

Simulation of a VHDL Design—the vsim Command
A VHDL design is ready for simulation after it has been compiled with vcomYou can then use
the vsim command to invoke the simulator with the name(s) of the configuration or
entity/architecture pair.

VHDL Simulation
Usage Characteristics and Requirements

ModelSim User’s Manual, v10.4c 121

Note
This section discusses invoking simulation from the command line (in UNIX or
Windows/DOS). Alternatively, you can also use a project to simulate (see Getting Started
with Projects) or use the Start Simulation dialog box (choose Simulate > Start
Simulation from the main menu).

The following example uses the vsim command to begin simulation on a design unit that has an
entity named my_asic and an architecture named structure:

vsim my_asic structure

Timing Specification
The vsim command can annotate a design using VITAL-compliant models with timing data
from an SDF file. You can specify delay by invoking vsim with the -sdfmin, -sdftyp, or -sdfmax
arguments.

The following example uses an SDF file named f1.sdf in the current work directory, and an
invocation of vsim annotating maximum timing values for the design unit my_asic:

vsim -sdfmax /my_asic=f1.sdf my_asic

By default, the timing checks within VITAL models are enabled (refer to VITAL Usage and
Compliance). You can disable them with the +notimingchecks argument. For example:

vsim +notimingchecks topmod

If you specify vsim +notimingchecks, the generic TimingChecksOn is set to FALSE for all
VITAL models with the Vital_level0 or Vital_level1 attribute. Setting this generic to FALSE
disables the actual calls to the timing checks along with anything else that is present in the
model's timing check block. In addition, if these models use the generic TimingChecksOn to
control behavior beyond timing checks, this behavior will not occur. This can cause designs to
simulate differently and provide different results.

Usage Characteristics and Requirements
ModelSim supports the use of VHDL in compliance with the IEEE Standard VHDL Language
Reference Manual (IEEE Std 1076), which was originally adopted in 1987. This standard has
undergone several revisions, each of which is identified by a suffix indicating the year of its
approval by the IEEE. There are considerations in using VHDL with ModelSim that are not
explicitly covered by the Language Reference Manual (LRM).

ModelSim User’s Manual, v10.4c122

VHDL Simulation
Usage Characteristics and Requirements

Differences Between Supported Versions of the
VHDL Standard

There are four versions of the VHDL standard (IEEE Std 1076). each consisting of the standard
in effect in the year it was approved by the IEEE: 1076-1987, 1076-1993, 1076-2002, and 1076-
2008. The default language version supported for ModelSim is 1076-2002.

If your VHDL design was written according to the 1987, 1993, or 2008 version, you may need
to update your code or instruct ModelSim to use rules for different version.

To select a specific language version, do one of the following:

• Select the appropriate version from the compiler options menu in the GUI

• Invoke vcom using the argument -87, -93, -2002, or -2008.

• Set the VHDL93 variable in the [vcom] section of the modelsim.ini file to one of the
following values:

- 0, 87, or 1987 for 1076-1987

- 1, 93, or 1993 for 1076-1993

- 2, 02, or 2002 for 1076-2002

- 3, 08, or 2008 for 1076-2008

Incompatibilities Among Versions of the VHDL Standard
The following is a list of language incompatibilities that may cause problems when compiling a
design.

Refer to ModelSim Release Notes for the most current and comprehensive description of
differences between supported versions of the VHDL standard.

• VHDL-93 and VHDL-2002 — The only major problem between VHDL-93 and
VHDL-2002 is the addition of the keyword "PROTECTED". VHDL-93 programs
which use this as an identifier should choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

• VITAL and SDF — It is important to use the correct language version for VITAL.
VITAL2000 must be compiled with VHDL-93 or VHDL-2002. VITAL95 must be
compiled with VHDL-87. A typical error message that indicates the need to compile
under language version VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"

VHDL Simulation
Usage Characteristics and Requirements

ModelSim User’s Manual, v10.4c 123

• Purity of “now” function— In VHDL-93, the function "now" is impure. Consequently,
any function that invokes "now" must also be declared to be impure. Such calls to "now"
occur in VITAL. A typical error message:

"Cannot call impure function 'now' from inside pure function
'<name>'"

• Files — File syntax and usage changed between VHDL-87 and VHDL-93. In many
cases vcom issues a warning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."

This message often involves calls to endfile(<name>) where <name> is a file parameter.

• Files and packages — Each package header and body should be compiled with the
same language version. Common problems in this area involve files as parameters and
the size of type CHARACTER. For example, consider a package header and body with
a procedure that has a file parameter:

procedure proc1 (out_file : out std.textio.text) ...

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as:

"** Error: mixed_package_b.vhd(4): Parameter kinds do not conform
between declarations in package header and body: 'out_file'."

• Direction of concatenation — To solve some technical problems, the rules for
direction and bounds of concatenation were changed from VHDL-87 to VHDL-93. You
won't see any difference in simple variable/signal assignments such as:

v1 := a & b;

But if you (1) have a function that takes an unconstrained array as a parameter, (2) pass
a concatenation expression as a formal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all
arrays have "downto" direction.

• xnor — "xnor" is a reserved word in VHDL-93. If you declare an xnor function in
VHDL-87 (without quotes) and compile it under VHDL-2002, you will get an error
message like the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER

ModelSim User’s Manual, v10.4c124

VHDL Simulation
Usage Characteristics and Requirements

• 'FOREIGN attribute — In VHDL-93 package STANDARD declares an attribute
'FOREIGN. If you declare your own attribute with that name in another package, then
ModelSim issues a warning such as the following:

-- Compiling package foopack

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition
of the attribute foreign to package std.standard. The attribute is
also defined in package 'standard'. Using the definition from
package 'standard'.

• Size of CHARACTER type — In VHDL-87 type CHARACTER has 128 values; in
VHDL-93 it has 256 values. Code which depends on this size will behave incorrectly.
This situation occurs most commonly in test suites that check VHDL functionality. It's
unlikely to occur in practical designs. A typical instance is the replacement of warning
message:

"range nul downto del is null"

by

"range nul downto 'ÿ' is null" -- range is nul downto y(umlaut)

• bit string literals — In VHDL-87 bit string literals are of type bit_vector. In VHDL-93
they can also be of type STRING or STD_LOGIC_VECTOR. This implies that some
expressions that are unambiguous in VHDL-87 now become ambiguous is VHDL-93. A
typical error message is:

** Error: bit_string_literal.vhd(5): Subprogram '=' is ambiguous.
Suitable definitions exist in packages 'std_logic_1164' and
'standard'.

• Sub-element association — In VHDL-87 when using individual sub-element
association in an association list, associating individual sub-elements with NULL is
discouraged. In VHDL-93 such association is forbidden. A typical message is:

"Formal '<name>' must not be associated with OPEN when subelements
are associated individually."

• VHDL-2008 packages — ModelSim does not provide VHDL source for VHDL-2008
IEEE-defined standard packages because of copyright restrictions. You can obtain
VHDL source from http://standards.ieee.org//downloads/1076/1076-2008/ for the
following packages:

IEEE.fixed_float_types
IEEE.fixed_generic_pkg
IEEE.fixed_pkg
IEEE.float_generic_pkg
IEEE.float_pkg
IEEE.MATH_REAL
IEEE.MATH_COMPLEX
IEEE.NUMERIC_BIT
IEEE.NUMERIC_BIT_UNSIGNED
IEEE.NUMERIC_STD

http://standards.ieee.org//downloads/1076/1076-2008/
http://standards.ieee.org//downloads/1076/1076-2008/

VHDL Simulation
Usage Characteristics and Requirements

ModelSim User’s Manual, v10.4c 125

IEEE.NUMERIC_STD_UNSIGNED
IEEE.std_logic_1164
IEEE.std_logic_textio

Naming Behavior of VHDL for Generate Blocks
A VHDL for … generate statement, when elaborated in a design, places a given number of
for … generate equivalent blocks into the scope in which the statement exists; either an
architecture, a block, or another generate block. The simulator constructs a design path name for
each of these for … generate equivalent blocks based on the original generate statement's label
and the value of the generate parameter for that particular iteration.

For example, given the following code:

g1: for I in 1 to Depth generate
L: BLK port map (A(I), B(I+1));

end generate g1

the default names of the blocks in the design hierarchy would be:

g1(1), g1(2), ...

This name appears in the GUI to identify the blocks. You should use this name with any
commands when referencing a block that is part of the simulation environment. The format of
the name is based on the VHDL Language Reference Manual P1076-2008 section 16.2.5
Predefined Attributes of Named Entities.

If the type of the generate parameter is an enumeration type, the value within the parenthesis
will be an enumeration literal of that type; such as: g1(red).

For mixed-language designs, in which a Verilog hierarchical reference is used to reference
something inside a VHDL for … generate equivalent block, the parentheses are replaced with
brackets ([]) to match Verilog syntax. If the name is dependent upon enumeration literals, the
literal will be replaced with its position number because Verilog does not support using
enumerated literals in its for … generate equivalent block.

In releases prior to the 6.6 series, this default name was controlled by the GenerateFormat
modelsim.ini file variable would have appeared as:

g1__1, g1__2, ...

All previously-generated scripts using this old format should work by default. However, if not,
you can use the GenerateFormat and OldVhdlForGenNames modelsim.ini variables to ensure
that the old and current names are mapped correctly.

ModelSim User’s Manual, v10.4c126

VHDL Simulation
Usage Characteristics and Requirements

Simulator Resolution Limit for VHDL
The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit.

The default resolution limit is set to the value specified by the Resolution variable in the
modelsim.ini file. You can view the current resolution by invoking the report command with the
simulator state argument.

Note
In Verilog, this representation of time units is referred to as precision or timescale.

Overriding the Default Resolution
To override the default resolution of ModelSim, specify a value for the -t argument of the vsim
command line or select a different Simulator Resolution in the Simulate dialog box. Available
values of simulator resolution are:

1 fs, 10 fs, 100 fs
1 ps, 10 ps, 100 ps
1 ns, 10 ns, 100 ns
1 us, 10 us, 100 us
1 ms, 10 ms, 100 ms
1 s, 10 s, 100 s

For example, the following command sets resolution to 10 ps:

vsim -t 10ps topmod

Note that you need to take care in specifying a resolution value larger than a delay value in your
design—delay values in that design unit are rounded to the closest multiple of the resolution. In
the example above, a delay of 4 ps would be rounded down to 0 ps.

Choosing a Resolution Value for VHDL
You should specify the coarsest value for time resolution that does not result in undesired
rounding of your delay times. The resolution value should not be unnecessarily small because it
decreases the maximum simulation time limit and can cause longer simulations.

Default Binding
By default, ModelSim performs binding when you load the design with the vsim command. The
advantage of this default binding at load time is that it provides more flexibility for compile
order. Namely, VHDL entities do not necessarily have to be compiled before other
entities/architectures that instantiate them.

VHDL Simulation
Usage Characteristics and Requirements

ModelSim User’s Manual, v10.4c 127

However, you can force ModelSim to perform default binding at compile time instead. This
may allow you to catch design errors (for example, entities with incorrect port lists) earlier in
the flow. Use one of these two methods to change when default binding occurs:

• Specify the -bindAtCompile argument to vcom

• Set the BindAtCompile variable in the modelsim.ini to 1 (true)

Default Binding Rules
When searching for a VHDL entity with which to bind, ModelSim searches the currently visible
libraries for an entity with the same name as the component. ModelSim does this because IEEE
Std 1076-1987 contained a flaw that made it almost impossible for an entity to be directly
visible if it had the same name as the component. This meant if a component was declared in an
architecture, any entity with the same name above that declaration would be hidden because
component/entity names cannot be overloaded. As a result, ModelSim observes the following
rules for determining default binding:

• If performing default binding at load time, search the libraries specified with the -Lf
argument to vsim.

• If a directly visible entity has the same name as the component, use it.

• If an entity would be directly visible in the absence of the component declaration, use it.

• If the component is declared in a package, search the library that contained the package
for an entity with the same name.

• If a configuration declaration contains library and use clauses, use them.

If none of these methods are successful, ModelSim then does the following:

• Search the work library.

• Search all other libraries that are currently visible by means of the library clause.

• If performing default binding at load time, search the libraries specified with the -L
argument to vsim.

Note that these last three searches are an extension to the 1076 standard.

Disabling Default Binding
If an appropriate binding cannot be made between an entity and an architecture, default port,
and generic maps, ModelSim will issue an error or warning. You can disable normal default
binding methods and require a user specified binding by setting the
RequireConfigForAllDefaultBinding variable in the modelsim.ini file to 1 (true) or by
specifying the -ignoredefaultbind argument to vcom.

ModelSim User’s Manual, v10.4c128

VHDL Simulation
Usage Characteristics and Requirements

When you specify the RequireConfigForAllDefaultBinding, ModelSim requires the user to
provide a configuration specification or component configuration in order to bind an entity with
an architecture. You must explicitly bind all components in the design through either
configuration specifications or configurations. If an explicit binding is not fully specified,
defaults for the architecture, port maps, and generic maps will be used as needed.

Delta Delays
Event-based simulators such as ModelSim may process many events at a given simulation time.
Multiple signals may need updating, statements that are sensitive to these signals must be
executed, and any new events that result from these statements must then be queued and
executed as well. The steps taken to evaluate the design without advancing simulation time are
referred to as "delta times" or just "deltas."

Figure 5-1 illustrates the process for VHDL designs. This process continues until the end of
simulation time.

Figure 5-1. VHDL Delta Delay Process

This mechanism in event-based simulators may cause unexpected results. Consider the
following code fragment:

Execute concurrent
statements at
current time

Advance delta time

Any transactions to
process?

No

Yes

Any events to
process?

No

Execute concurrent
statements that are
sensitive to events

Advance simulation
time

Yes

VHDL Simulation
Usage Characteristics and Requirements

ModelSim User’s Manual, v10.4c 129

 clk2 <= clk;

 process (rst, clk)
 begin
 if(rst = '0')then
 s0 <= '0';
 elsif(clk'event and clk='1') then
 s0 <= inp;
 end if;
 end process;

process (rst, clk2)
 begin
 if(rst = '0')then
 s1 <= '0';
 elsif(clk2'event and clk2='1') then
 s1 <= s0;
 end if;
 end process;

In this example , there are two synchronous processes, one triggered with clk and the other with
clk2. Consider the unexpected situation of the signals changing in the clk2 process on the same
edge as they are set in the clk process. As a result, the value of inp appears at s1 rather than s0.

During simulation an event on clk occurs (from the test bench). From this event, ModelSim
performs the "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, ModelSim finds that the process sensitive to clk2 can also be
run. Since there are no delays present, the effect is that the value of inp appears at s1 in the same
simulation cycle.

In order to correct this and get the expected results, you must do one of the following:

• Insert a delay at every output

• Make certain to use the same clock

• Insert a delta delay

To insert a delta delay, you would modify the code like this:

process (rst, clk)
 begin
 if(rst = ’0’)then
 s0 <= ’0’;
 elsif(clk’event and clk=’1’) then
 s0 <= inp;
 end if;
 end process;
 s0_delayed <= s0;
 process (rst, clk2)
 begin
 if(rst = ’0’)then
 s1 <= ’0’;

ModelSim User’s Manual, v10.4c130

VHDL Simulation
The TextIO Package

 elsif(clk2’event and clk2=’1’) then
 s1 <= s0_delayed;
 end if;
 end process;

The best way to debug delta delay problems is observe your signals in the Wave Window or
List Window. There you can see how values change at each delta time.

Detecting Infinite Zero-Delay Loops
If a large number of deltas occur without advancing time, it is usually a symptom of an infinite
zero-delay loop in the design. In order to detect the presence of these loops, ModelSim defines a
limit, the “iteration limit", on the number of successive deltas that can occur. When ModelSim
reaches the iteration limit, it stops the simulatin and issues an error message.

The iteration limit default value is 10 million (10000000).

If you receive an iteration limit error, first increase the iteration limit and try to continue
simulation. and then try single stepping to attempt to determine which instances in the design
may be oscillating or run the simulation again with the vsim +autofindloop argument.

You can set the iteration limit from the Simulate > Runtime Options menu or by modifying
the IterationLimit variable in the modelsim.ini. See modelsim.ini Variables for more
information on modifying the modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which signals
or variables are continuously oscillating. Two common causes are a loop that has no exit, or a
series of gates with zero delay where the outputs are connected back to the inputs.

The TextIO Package
The TextIO package for VHDL is defined within the IEEE Std 1076-2002, IEEE Standard
VHDL Language Reference Manual. This package allows human-readable text input from a
declared source within a VHDL file during simulation.

To access the routines in TextIO, include the following statement in your VHDL source code:

USE std.textio.all;

A simple example using the package TextIO is:

VHDL Simulation
The TextIO Package

ModelSim User’s Manual, v10.4c 131

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN

PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;

BEGIN
WRITE (LLL, i);
WRITELINE (OUTPUT, LLL);
WAIT;

END PROCESS;
END simple_behavior;

Syntax for File Declaration
The syntax supported for Text IO can vary according to the version of IEEE Std 1076 you are
using.

For IEEE Std 1076-1987, the supported syntax for a file declaration is the following:

file identifier : subtype_indication is [mode] file_logical_name ;

where "file_logical_name" must be a string expression.

For newer versions of IEEE Std 1076, supported syntax for a file declaration is the following:

file identifier_list : subtype_indication [file_open_information] ;

where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

You can specify a full or relative path as the file_logical_name. For example (VHDL 1987):

file filename : TEXT is in "usr\rick\myfile";

Normally, if a file is declared within an architecture, process, or package, the file is opened
when you start the simulator and is closed when you exit from it. If a file is declared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNs from the subprogram.

Alternatively, you can delay the opening of files until the first read or write by setting the
DelayFileOpen variable in the modelsim.ini file. Also, you can control the number of
concurrently open files with the ConcurrentFileLimit variable. These variables help you
manage a large number of files during simulation. See modelsim.ini Variables for more details.

ModelSim User’s Manual, v10.4c132

VHDL Simulation
The TextIO Package

STD_INPUT and STD_OUTPUT Within ModelSim
STD_INPUT is a file_logical_name that refers to characters that are entered interactively from
the keyboard, and STD_OUTPUT refers to text that is displayed on the screen. The syntax
supported for STD_INPUT and STD_OUTPUT for Text IO can vary according to the version
of IEEE Std 1076 you are using.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current buffer
from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file appear in the
Transcript.

For IEEE Std 1076-1987, TextIO package contains the following file declarations:

file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

For newer versions of IEEE Std 1076, TextIO package contains these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

TextIO Implementation Issues
Some aspects of using TextIO with ModelSim are not fully supported or can have ambiguous
implementations.

WRITE Procedures for Strings and Aggregates
A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the VHDL
procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the TextIO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT_VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

VHDL Simulation
The TextIO Package

ModelSim User’s Manual, v10.4c 133

The error occurs because the argument "hello" could be interpreted as a string or a bit vector,
but the compiler is not allowed to determine the argument type until it knows which function is
being called.

The following procedure call also generates an error:

WRITE (L, "010101");

This call is even more ambiguous, because the compiler could not determine, even if allowed to,
whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

• Use a qualified expression to specify the type, as in:

WRITE (L, string’("hello"));

• Call a procedure that is not overloaded, as in:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedure in the io_utils
package, which is located in the file
<install_dir>/modeltech/examples/vhdl/io_utils/io_utils.vhd.

Reading and Writing Hexadecimal Numbers
The reading and writing of hexadecimal numbers is not specified in standard VHDL. The Issues
Screening and Analysis Committee of the VHDL Analysis and Standardization Group (ISAC-
VASG) has specified that the TextIO package reads and writes only decimal numbers.

To expand this functionality, ModelSim supplies hexadecimal routines in the package io_utils,
which is located in the file <install_dir>/modeltech/examples/gui/io_utils.vhd. To use these
routines, compile the io_utils package and then include the following use clauses in your VHDL
source code:

use std.textio.all;
use work.io_utils.all;

Dangling Pointers
Dangling pointers are easily created when using the TextIO package, because WRITELINE de-
allocates the access type (pointer) that is passed to it. Following are examples of good and bad
VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

ModelSim User’s Manual, v10.4c134

VHDL Simulation
The TextIO Package

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(L1.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE Function
The ENDLINE function — described in the IEEE Std 1076-2002, IEEE Standard VHDL
Language Reference Manual — contains invalid VHDL syntax and cannot be implemented in
VHDL. This is because access values must be passed as variables, but functions do not allow
variable parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed from the
TextIO package. The following test may be substituted for this function:

(L = NULL) OR (L’LENGTH = 0)

The ENDFILE Function
In the VHDL Language Reference Manuals, the ENDFILE function is listed as:

-- function ENDFILE (L: in TEXT) return BOOLEAN;

Note tht this function is commented out of the standard TextIO package. This is because the
ENDFILE function is implicitly declared, so you can use it with files of any type, not just files
of type TEXT.

Alternative Input/Output Files
You can use the TextIO package to read and write to your own files. To do this, just declare an
input or output file of type TEXT. The following examples show how to do this for an input file.

The VHDL1987 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL1993 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

After making these declarations, you then include the identifier for this file ("myinput" in this
example) in the READLINE or WRITELINE procedure call.

VHDL Simulation
VITAL Usage and Compliance

ModelSim User’s Manual, v10.4c 135

The TEXTIO Buffer
Flushing of the TEXTIO buffer depends on whether VHDL files are open for writing.

The status is controlled by the UnbufferedOutput variable in the modelsim.ini file, which you
can turn on (1) or off (0, default).

Input Stimulus to a Design
You can provide an input stimulus to a design by reading data vectors from a file and assigning
their values to signals. You can then verify the results of this input.

A VHDL test bench has been included as part of the ModelSim installation as an example.
Check for this file in your installation directory:

<install_dir>/examples/gui/stimulus.vhd

VITAL Usage and Compliance
The VITAL (VHDL Initiative Towards ASIC Libraries) modeling specification is sponsored by
the IEEE to promote the development of highly accurate, efficient simulation models for ASIC
(Application-Specific Integrated Circuit) components in VHDL.

The IEEE Std 1076.4-2000, IEEE Standard for VITAL ASIC Modeling Specification is available
from the Institute of Electrical and Electronics Engineers, Inc.

IEEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721

http://www.ieee.org

VITAL Source Code
The source code for VITAL packages is provided in the following ModelSim installation
directories:

/<install_dir>/vhdl_src/vital22b
/vital95
/vital2000

VITAL 1995 and 2000 Packages
VITAL 2000 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 1995 accelerated packages are pre-compiled into the vital1995 library. If you

http://www.ieee.org

ModelSim User’s Manual, v10.4c136

VHDL Simulation
VITAL Usage and Compliance

need to use the older library, you either need to change the ieee library mapping or add a use
clause to your VHDL code to access the VITAL 1995 packages.

To change the ieee library mapping, run the following vmap command:

vmap ieee <modeltech>/vital1995

Or, alternatively, you can add use clauses to your code:

LIBRARY vital1995;
USE vital1995.vital_primitives.all;
USE vital1995.vital_timing.all;
USE vital1995.vital_memory.all;

Note that if your design uses two libraries—one that depends on vital95 and one that depends
on vital2000—then you will have to change the references in the source code to vital2000.
Changing the library mapping will not work.

ModelSim VITAL built-ins are generally updated as new releases of the VITAL packages
become available.

VITAL Compliance
A simulator is VITAL-compliant if it implements the SDF mapping and if it correctly simulates
designs using the VITAL packages—as outlined in the VITAL Model Development
Specification. ModelSim is compliant with IEEE Std 1076.4-2002, IEEE Standard for VITAL
ASIC Modeling Specification. In addition, ModelSim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are functionally
equivalent to the IEEE Std 1076.4 VITAL ASIC Modeling Specification (VITAL 1995 and
2000).

VITAL Compliance Checking
If you are using VITAL 2.2b, you must turn off the compliance checking either by not setting
the attributes, or by invoking vcom with the argument -novitalcheck.

Compiling and Simulating with Accelerated VITAL
Packages

When you run the vcom command, ModelSim automatically recognizes that a VITAL function
is being referenced from the ieee library and generates code to call the optimized built-in
routines.

If you do not want to use the built-in VITAL routines (when debugging for instance), invoke
vcom with the -novital argument. The -novital switch only affects calls to VITAL functions
from the design units currently being compiled. Pre-compiled design units referenced from the

VHDL Simulation
VHDL Utilities Package (util)

ModelSim User’s Manual, v10.4c 137

current design units will still call the built-in functions unless they too are compiled with the
-novital argument.

• To exclude all VITAL functions, use -novital all. For example:

vcom -novital all design.vhd

• To exclude selected VITAL functions, use one or more -novital <fname> arguments.
For example:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

VHDL Utilities Package (util)
The util package contains various VHDL utilities that you can run as ModelSim commands.
The package is part of the modelsim_lib library, which is located in the /modeltech tree of your
installation directory and is mapped in the default modelsim.ini file.

To include the utilities in this package, add the following lines similar to your VHDL code:

library modelsim_lib;
use modelsim_lib.util.all;

get_resolution
The get_resolution utility returns the current simulator resolution as a real number. For
example, a resolution of 1 femtosecond (1 fs) corresponds to 1e-15.

Syntax

resval := get_resolution;

Arguments

None

Return Values

Related functions

• to_real()

• to_time()

Name Type Description

resval real The simulator resolution represented as a
real

ModelSim User’s Manual, v10.4c138

VHDL Simulation
VHDL Utilities Package (util)

Examples

If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

init_signal_driver()
The init_signal_driver() utility drives the value of a VHDL signal or Verilog net onto an
existing VHDL signal or Verilog net. This allows you to drive signals or nets at any level of the
design hierarchy from within a VHDL architecture (such as a test bench).

See init_signal_driver for complete details.

init_signal_spy()
The init_signal_spy() utility mirrors the value of a VHDL signal or Verilog register/net onto an
existing VHDL signal or Verilog register. This allows you to reference signals, registers, or nets
at any level of hierarchy from within a VHDL architecture (such as a test bench).

See init_signal_spy for complete details.

signal_force()
The signal_force() utility forces the value specified onto an existing VHDL signal or Verilog
register or net. This allows you to force signals, registers, or nets at any level of the design
hierarchy from within a VHDL architecture (such as a test bench). A signal_force works the
same as the force command when you set the modelsim.ini variable named ForceSigNextIter to
1. The variable ForceSigNextIter in the modelsim.ini file can be set to honor the signal update
event in next iteration for all force types. Note that the signal_force utility cannot issue a
repeating force.

See signal_force for complete details.

signal_release()
The signal_release() utility releases any force that was applied to an existing VHDL signal or
Verilog register or net. This allows you to release signals, registers, or nets at any level of the
design hierarchy from within a VHDL architecture (such as a test bench). A signal_release
works the same as the noforce command.

See signal_release for complete details.

VHDL Simulation
VHDL Utilities Package (util)

ModelSim User’s Manual, v10.4c 139

to_real()
The to_real() utility converts the physical type time value into a real value with respect to the
current value of simulator resolution. The precision of the converted value is determined by the
simulator resolution.

For example, if you were converting 1900 fs to a real and the simulator resolution was ps, then
the real value would be rounded to 2.0 (that is, 2 ps).

Syntax

realval := to_real(timeval);

Returns

Arguments

Related functions

• get_resolution

• to_time()

Examples

If the simulator resolution is set to ps, and you enter the following function:

realval := to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to be in
units of nanoseconds (ns) instead, you would use the get_resolution function to recalculate the
value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := 1e+15 * (to_real(12.99 ns)) * get_resolution();

Name Type Description

realval real The time value represented as a real with
respect to the simulator resolution

Name Type Description

timeval time The value of the physical type time

ModelSim User’s Manual, v10.4c140

VHDL Simulation
Modeling Memory

to_time()
The to_time() utility converts a real value into a time value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution. For
example, if you converted 5.9 to a time and the simulator resolution was 1 ps, then the time
value would be rounded to 6 ps.

Syntax

timeval := to_time(realval);

Returns

Arguments

Related functions

• get_resolution

• to_real()

Examples

If the simulator resolution is set to 1 ps, and you enter the following function:

timeval := to_time(72.49);

then the value returned to timeval would be 72 ps.

Modeling Memory
If you want to model a memory with VHDL using signals, you may encounter either of the
following common problems with simulation:

• Memory allocation error, which typically means the simulator ran out of memory and
failed to allocate enough storage.

• Very long times to load, elaborate, or run.

Name Type Description

timeval time The real value represented as a physical
type time with respect to the simulator
resolution

Name Type Description

realval real The value of the type real

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v10.4c 141

These problems usually result from the fact that signals consume a substantial amount of
memory (many dozens of bytes per bit), all of which must be loaded or initialized before your
simulation starts.

As an alternative, you can model a memory design using variables or protected types instead of
signals, which provides the following performance benefits:

• Reduced storage required to model the memory, by as much as one or two orders of
magnitude

• Reduced startup and run times

• Elimination of associated memory allocation errors

Examples of Different Memory Models
You should avoid using VHDL signals to model memory. For large memories especially, the
run time for a VHDL model using a signal is many times longer than using variables in the
memory process or as part of the architecture. A signal also uses and uses much more memory.

Example 5-1 shown below uses different VHDL architectures for the entity named memory to
provide the following models for storing RAM:

• bad_style_87 — uses a VHDL signal

• style_87 — uses variables in the memory process

• style_93 — uses variables in the architecture

To implement this model, you will need functions that convert vectors to integers. To use it, you
will probably need to convert integers to vectors.

Converting an Integer Into a bit_vector
The following code shows how to convert an integer variable into a bit_vector.

ModelSim User’s Manual, v10.4c142

VHDL Simulation
Modeling Memory

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
 signal s1 : bit_vector(7 downto 0);
 signal int : integer := 45;
begin
 p:process
 begin
 wait for 10 ns;
 s1 <= bit_vector(to_signed(int,8));
 end process p;
end only;

Examples Using VHDL1987, VHDL1993, and VHDL2002
Architectures

The VHDL code for the examples demonstrating the approaches to modeling memory are
provided below.

• Example 5-1 contains two VHDL architectures that demonstrate recommended memory
models: style_93 uses shared variables as part of a process, style_87 uses For
comparison, a third architecture, bad_style_87, shows the use of signals.

The style_87 and style_93 architectures work with equal efficiency for this example.
However, VHDL 1993 offers additional flexibility because the RAM storage can be
shared among multiple processes. This example shows a second process that initializes
the memory—you could add other processes to create a multi-ported memory.

• Example 5-2 is a package (named conversions) that is included by the memory model in
Example 5-1.

• Example 5-3 is provided for completeness—it shows protected types using VHDL 2002.
Note that using protected types offers no advantage over shared variables.

Example 5-1. Memory Model Using VHDL87 and VHDL93 Architectures

Example functions are provided below in package “conversions.”

-- Source: memory.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Provides three different architectures

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v10.4c 143

library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
 generic(add_bits : integer := 12;
 data_bits : integer := 32);
 port(add_in : in std_ulogic_vector(add_bits-1 downto 0);
 data_in : in std_ulogic_vector(data_bits-1 downto 0);
 data_out : out std_ulogic_vector(data_bits-1 downto 0);
 cs, mwrite : in std_ulogic;
 do_init : in std_ulogic);
 subtype word is std_ulogic_vector(data_bits-1 downto 0);
 constant nwords : integer := 2 ** add_bits;
 type ram_type is array(0 to nwords-1) of word;
end;

architecture style_93 of memory is

 shared variable ram : ram_type;

begin
memory:
process (cs)
 variable address : natural;
 begin
 if rising_edge(cs) then
 address := sulv_to_natural(add_in);
 if (mwrite = '1') then
 ram(address) := data_in;
 end if;
 data_out <= ram(address);
 end if;
 end process memory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)
 variable address : natural;
 begin
 if rising_edge(do_init) then
 for address in 0 to nwords-1 loop
 ram(address) := data_in;
 end loop;
 end if;
 end process initialize;
end architecture style_93;

ModelSim User’s Manual, v10.4c144

VHDL Simulation
Modeling Memory

architecture style_87 of memory is
begin
memory:
process (cs)

 variable ram : ram_type;

 variable address : natural;
 begin
 if rising_edge(cs) then
 address := sulv_to_natural(add_in);
 if (mwrite = '1') then
 ram(address) := data_in;
 end if;
 data_out <= ram(address);
 end if;
 end process;
end style_87;

architecture bad_style_87 of memory is

 signal ram : ram_type;

begin
memory:
process (cs)
 variable address : natural := 0;
 begin
 if rising_edge(cs) then
 address := sulv_to_natural(add_in);
 if (mwrite = '1') then
 ram(address) <= data_in;
 data_out <= data_in;
 else
 data_out <= ram(address);
 end if;
 end if;
 end process;
end bad_style_87;

Example 5-2. Conversions Package

library ieee;
use ieee.std_logic_1164.all;

package conversions is
 function sulv_to_natural(x : std_ulogic_vector) return
 natural;
 function natural_to_sulv(n, bits : natural) return
 std_ulogic_vector;
end conversions;

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v10.4c 145

package body conversions is

 function sulv_to_natural(x : std_ulogic_vector) return
 natural is
 variable n : natural := 0;
 variable failure : boolean := false;
 begin
 assert (x'high - x'low + 1) <= 31
 report "Range of sulv_to_natural argument exceeds
 natural range"
 severity error;
 for i in x'range loop
 n := n * 2;
 case x(i) is
 when '1' | 'H' => n := n + 1;
 when '0' | 'L' => null;
 when others => failure := true;
 end case;
 end loop;

 assert not failure
 report "sulv_to_natural cannot convert indefinite
 std_ulogic_vector"
 severity error;

 if failure then
 return 0;
 else
 return n;
 end if;
 end sulv_to_natural;

 function natural_to_sulv(n, bits : natural) return
 std_ulogic_vector is
 variable x : std_ulogic_vector(bits-1 downto 0) :=
 (others => '0');
 variable tempn : natural := n;
 begin
 for i in x'reverse_range loop
 if (tempn mod 2) = 1 then
 x(i) := '1';
 end if;
 tempn := tempn / 2;
 end loop;
 return x;
 end natural_to_sulv;

end conversions;

ModelSim User’s Manual, v10.4c146

VHDL Simulation
Modeling Memory

Example 5-3. Memory Model Using VHDL02 Architecture

-- Source: sp_syn_ram_protected.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Various VHDL examples: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY sp_syn_ram_protected IS
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);

END sp_syn_ram_protected;

ARCHITECTURE intarch OF sp_syn_ram_protected IS

TYPE mem_type IS PROTECTED
 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);

 addr : IN unsigned(addr_width-1 DOWNTO 0));
 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))

RETURN
 std_logic_vector;

 END PROTECTED mem_type;

TYPE mem_type IS PROTECTED BODY
 TYPE mem_array IS ARRAY (0 TO 2**addr_width-1) OF

 std_logic_vector(data_width-1 DOWNTO 0);
 VARIABLE mem : mem_array;

 PROCEDURE write (data : IN std_logic_vector(data_width-1 downto 0);
 addr : IN unsigned(addr_width-1 DOWNTO 0)) IS

 BEGIN
 mem(to_integer(addr)) := data;

 END;

 IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))
RETURN

 std_logic_vector IS
 BEGIN
 return mem(to_integer(addr));
 END;

 END PROTECTED BODY mem_type;

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v10.4c 147

 SHARED VARIABLE memory : mem_type;

BEGIN

 ASSERT data_width <= 32
 REPORT "### Illegal data width detected"
 SEVERITY failure;

 control_proc : PROCESS (inclk, outclk)

 BEGIN
 IF (inclk'event AND inclk = '1') THEN
 IF (we = '1') THEN
 memory.write(data_in, addr);
 END IF;
 END IF;

 IF (outclk'event AND outclk = '1') THEN
 data_out <= memory.read(addr);
 END IF;
 END PROCESS;

END intarch;

-- Source: ram_tb.vhd
-- Component: VHDL test bench for RAM memory example
-- Remarks: Simple VHDL example: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram_tb IS
END ram_tb;

ARCHITECTURE testbench OF ram_tb IS

 -- Component declaration single-port RAM

 COMPONENT sp_syn_ram_protected
 GENERIC (
 data_width : positive := 8;
 addr_width : positive := 3
);
 PORT (
 inclk : IN std_logic;
 outclk : IN std_logic;
 we : IN std_logic;
 addr : IN unsigned(addr_width-1 DOWNTO 0);
 data_in : IN std_logic_vector(data_width-1 DOWNTO 0);
 data_out : OUT std_logic_vector(data_width-1 DOWNTO 0)
);
 END COMPONENT;

ModelSim User’s Manual, v10.4c148

VHDL Simulation
Modeling Memory

 -- Intermediate signals and constants

 SIGNAL addr : unsigned(19 DOWNTO 0);
 SIGNAL inaddr : unsigned(3 DOWNTO 0);
 SIGNAL outaddr : unsigned(3 DOWNTO 0);
 SIGNAL data_in : unsigned(31 DOWNTO 0);
 SIGNAL data_in1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL data_sp1 : std_logic_vector(7 DOWNTO 0);
 SIGNAL we : std_logic;
 SIGNAL clk : std_logic;
 CONSTANT clk_pd : time := 100 ns;

BEGIN

 -- instantiations of single-port RAM architectures.
 -- All architectures behave equivalently, but they
 -- have different implementations. The signal-based
 -- architecture (rtl) is not a recommended style.

 spram1 : entity work.sp_syn_ram_protected
 GENERIC MAP (
 data_width => 8,
 addr_width => 12)
 PORT MAP (
 inclk => clk,
 outclk => clk,
 we => we,
 addr => addr(11 downto 0),
 data_in => data_in1,
 data_out => data_sp1);

 -- clock generator

 clock_driver : PROCESS
 BEGIN
 clk <= '0';
 WAIT FOR clk_pd / 2;
 LOOP
 clk <= '1', '0' AFTER clk_pd / 2;
 WAIT FOR clk_pd;
 END LOOP;
 END PROCESS;

 -- data-in process

 datain_drivers : PROCESS(data_in)
 BEGIN
 data_in1 <= std_logic_vector(data_in(7 downto 0));
 END PROCESS;

 -- simulation control process

 ctrl_sim : PROCESS

VHDL Simulation
Modeling Memory

ModelSim User’s Manual, v10.4c 149

 BEGIN
 FOR i IN 0 TO 1023 LOOP
 we <= '1';
 data_in <= to_unsigned(9000 + i, data_in'length);
 addr <= to_unsigned(i, addr'length);
 inaddr <= to_unsigned(i, inaddr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(7 + i, data_in'length);
 addr <= to_unsigned(1 + i, addr'length);
 inaddr <= to_unsigned(1 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(3, data_in'length);
 addr <= to_unsigned(2 + i, addr'length);
 inaddr <= to_unsigned(2 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 data_in <= to_unsigned(30330, data_in'length);
 addr <= to_unsigned(3 + i, addr'length);
 inaddr <= to_unsigned(3 + i, inaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 we <= '0';
 addr <= to_unsigned(i, addr'length);
 outaddr <= to_unsigned(i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(1 + i, addr'length);
 outaddr <= to_unsigned(1 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(2 + i, addr'length);
 outaddr <= to_unsigned(2 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 addr <= to_unsigned(3 + i, addr'length);
 outaddr <= to_unsigned(3 + i, outaddr'length);
 WAIT UNTIL clk'EVENT AND clk = '0';
 WAIT UNTIL clk'EVENT AND clk = '0';

 END LOOP;
 ASSERT false
 REPORT "### End of Simulation!"
 SEVERITY failure;
 END PROCESS;

END testbench;

ModelSim User’s Manual, v10.4c150

VHDL Simulation
VHDL Access Object Debugging

Effects on Performance by Cancelling Scheduled
Events

Simulation performance is likely to get worse if events are scheduled far into the future but then
cancelled before they take effect. This situation acts like a memory leak and slows down
simulation.

In VHDL, this situation can occur several ways. The most common are waits with time-out
clauses and projected waveforms in signal assignments.

The following shows a wait with a time-out:

signal synch : bit := '0';
...
p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goes to 1 at 10 ns, the event at
10 ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms + 10ns. The
cancelled events are not reclaimed until time 10ms is reached and the cancelled event is
processed. As a result, there will be 500000 (10ms/20ns) cancelled but un-deleted events. Once
10ms is reached, memory will no longer increase because the simulator will be reclaiming
events as fast as they are added.

For projected waveforms, the following would behave the same way:

signals synch : bit := '0';
...
p: process(synch)
begin
 output <= '0', '1' after 10ms;
end process;

synch <= not synch after 10 ns;

VHDL Access Object Debugging
VHDL is a strongly typed language with a rich set of types. Although VHDL does not have an
objected-oriented modeling capability, VHDL variables of access type allow you to use
ModelSim to log and display dynamic simulation data. You enable this logging by specifying
vsim -accessobjdebug.

When logging a VHDL variable of an access type, ModelSim also automatically logs any
designated objects that the variable value points to as the simulation progresses. By default,

VHDL Simulation
VHDL Access Object Debugging

ModelSim User’s Manual, v10.4c 151

these objects are unnamed, in accordance with the VHDL LRM (IEEE Std-1076). When you
enable logging, each object is given a unique generated name that you can manipulate as a
design pathname. The conceptual difference is that the name is not rooted at any particular place
in the design hierarchy. Various windows in the GUI display (such as the Wave window,
Objects window, Locals window, Watch window, and Memory window) can display both the
access variable and any such designated objects.

Tip: You can use the examine and the describe commands in the normal manner for
variables and objects displayed in a ModelSim window.

In general, such designated objects have a limited lifespan, which corresponds to the VHDL
allocator "new." This allocator creates one at a particular time, and the deallocate() procedure
that destroys one at a particular time, as the simulation runs. Each designated object receives its
unique name when the new allocation occurs; the name is unique over the life of the simulation.

Terminology and Naming Conventions
Using VHDL access type variables for logging dynamic data entails various names and
descriptors.

• access variable — A VHDL variable declared to be of an access type. An access
variable can be either a shared variable or not.

NOTE: The VHDL LRM defines “access value” to mean the value of such a variable.
This value can be either NULL, or it can denote (point to) some unnamed object, which
is the "designated object" and is referred to as an “access object.” That is, when an
access variable has a value that is not NULL, then it points to an access object.

• access object — Thus, the term "access object" means the designated object of an access
variable. An access object is created with the VHDL allocator “new,” which returns the
access value. This value is then assigned to an access variable, either in an assignment
statement or an association element in a subprogram call.

• AIID — access instance identifier. Each access object gets a unique identifier, its access
instance identifier, which is unfortunately named in the manner of class instance
identifier (CIID) for SystemVerilog (which is also known as a handle—refer to
SystemVerilog Class Debugging).

• DOID — dynamic object identifier. The name of a VHDL an access object. The terms
DOID and AIID are interchangeable. Access object names have two different forms,
depending on whether or not the vsim-accessobjdebug command is in effect. Refer to
Default Behavior—Logging and Debugging Disabled and Logging and Debugging
Enabled.

• deep logging — If an access variable is logged, then the DOID of any access object that
it points to during the simulation is also logged automatically. Any embedded access
type subelements of an access type are also logged automatically. Similarly, logging an

ModelSim User’s Manual, v10.4c152

VHDL Simulation
VHDL Access Object Debugging

access object by name (its access instance identifier) will log not only the access object
itself but any embedded access objects (if the outer access object is of a composite type
that contains a subelement of an access type).

• prelogging — The logging of an access object by name, even if you have not declared it
(that is, it does not yet exist at the time an "add log" command is issued but you can still
log it by name). This produces useful results only if you use a DOID (dynamic object
identifier) that matches the name of an access object that will exist at some future
simulation time.

VHDL Access Type
Once you have declared an access type, you can declare an access variable within a process or
subprogram. In using an access type to create dynamic data in VHDL, the usual strict rules
apply to assignment of newly constructed objects to an access type. For instance, there is no
implicit casting and no such thing as an access that can point to anything (such as a void * in C).

For example, any VHDL subtype "foo" may be used to declare an access type, which is a
pointer to objects of type foo. This can be a fully constrained type but it is also legal to point to
an unconstrained or partially constrained type.

In this example, subtype foo is called the designated subtype, and the base type of the
designated subtype is called the designated type. The designated type of an access type cannot
be a file type or a protected type. Note that composite types cannot contain elements that are of
file types or protected types, so if the designated type of an access type is a composite type, it
will not have any file type or protected type subelements.

Lifespan of an Access Object

You construct a dynamic access object in VHDL with a "new" operator and destroy it with a
"deallocate" procedure. They are only referenced through pointers declared by the HDL author.
An access object can be assigned a value of NULL, or the value of another compatible access
type object, or the result of the new operator that constructs a compatible object. The only way
to track an access object is during this lifespan; otherwise, only the access variable is available.

Restrictions and Requirements

• Beginning with VHDL 2002, shared variables technically must be of a protected type
and cannot be of an access type, but ModelSim usage does not enforce this restriction.
This means that an access variable can be a shared variable, which presents a different
set of implementation details. This is because shared variables are context tree items,
and non-shared variables (local PROCESS statement variables, local subprogram
variables, and class VARIABLE subprogram formals, in general) are debug section
objects and not context tree items.

• You cannot point to an elaborated object of the same type as a dynamic object—access
types point only to objects constructed by new. (There is no address_of operator.)

VHDL Simulation
VHDL Access Object Debugging

ModelSim User’s Manual, v10.4c 153

• According to the formal definition, dynamic objects have no simple name. That means
logging and debugging requires the generation of an internal, authoritative name for the
table of contents of any logging database.

• Only a VHDL variable (ordinary or shared) may be declared as an access type, not
signals or constants. This access variable has a value of either the literal NULL (which
means there is no designated object), or an AIID, which is a pointer to the designated
object, which we will call the access object. An access variable is of an access type, and
an access object is of the designated type of that access type (not of an access type itself
in general). Note that an access variable, when it is not NULL, will always point to an
access object. Conversely, an access object, when it is pointed to, will be pointed to by
an access variable. However, an access object does not have to be pointed to by an
access variable, except when it is originally created with "new". That is, while it is not a
good idea to "orphan" an access object, it is possible. The simulator is free to deallocate
such an orphaned access object by using (perhaps) some garbage collection method, but
is not required to do so—ModelSim does not.

Limitations
It is not possible to log a variable (access variable or not) that is declared in the declarative
region of a FUNCTION or PROCEDURE. This is not really a limitation of this new access
object debug, but it is a general limitation. Thus, only shared variables and variables that are
declared in a PROCESS declarative region can be logged (whether access variables or not).

The List window can display the value of an access variable, but cannot display the
corresponding access objects.

Currently, while variables of type STD.TEXTIO.LINE can be logged, the access objects, which
will be of type STD.STANDARD.STRING, will not be logged if such a variable is logged.
Thus, "deep logging" of variables of type LINE does not occur.

Default Behavior—Logging and Debugging
Disabled

By default, logging access objects by name is not turned on. This means that while access
variables themselves can be logged and displayed in the various display windows, the access
object(s) that they point to will not be logged. That is, the value of an access variable (the
"name" of the access object it points to) is suitable only for displaying and cannot be used as a
way for a command to reference it.

ModelSim User’s Manual, v10.4c154

VHDL Simulation
VHDL Access Object Debugging

Default behavior is applied by either of the following methods:

• In modelsim.ini ([vsim] section), set AccessObjDebug = 0.

• Run vsim -noaccessobjdebug (overrides AccessObjDebug variable).

You can use and update the value of the access object by using the VHDL keyword “all” as a
suffix to the access variable name.

Examples

• Declare an access variable “v1” that designates some access object. The value of v1 will
display as [10001]. This name is for display only—it cannot be used as input to any
command that expects an object name. However, it is a unique identifier for any access
object that the design may produce. Note that this value replaces any hexadecimal
address-based value that may have been displayed in previous versions of ModelSim.

• Use variable v1 with the VHDL keyword “all” as an argument to the examine command,
which returns the current value of the access object. This essentially dereferences the
object.

examine v1.all

Logging and Debugging Enabled
Logging an access variable will log both the variable value and any access object that the
variable happens to point to during the simulation.

Access object logging and debugging behavior is applied by either of the following
methods:

• In modelsim.ini, set AccessObjDebug = 1.

• Run vsim -accessobjdebug (overrides AccessObjDebug variable).

With logging enabled for a VHDL access variable, display-only names (such as [10001]) take
on a different form, as follows:

• the initial character, @

• the name of the access type or subtype

• another @

• a unique integer N that represents the sequence number (starting with 1) of the objects of
that designated type that were created with the VHDL allocator called new.

VHDL Simulation
VHDL Access Object Debugging

ModelSim User’s Manual, v10.4c 155

Displaying Objects in ModelSim Windows

When an access variable is displayed in the Wave window, the wave trace is not expandable
(there is no "+" next to the variable name). When the access variable points to an access object,
such that a DOID (such as @ptr@1) appears in the values column of the Wave window, you can
then right-click to add the access object under the cursor pointer. This allows adding composite
type access objects to the Wave window.

Tip: An alternative method would be to use the add wave command with the DOID of
the access object. For example:

add wave @ptr@1

Example

An example of a logged access variable in this form:

@ptr@1

Related Topics

The examine and describe Commands
Whether access logging is enabled or disabled, you can use the examine command with a
declared access variable to obtain a display of the current value of its access object. However,
the returned value will be different for each mode.

Disabled The returned value of the access object will be its display-only DOID (as per
Default Behavior—Logging and Debugging Disabled).

Enabled The returned value of the access object will be the logged name that you
assigned (as per Logging and Debugging Enabled).

Tip: You can also use the describe command with an access variable in a similar way as
with the examine command (for example, describe v1.all). This command returns a more
qualitative description of the variable’s characteristics.

Depending on the data type of the access object, you can use the examine command in different
ways to obtain a variety of access object values. In particular, you can use examine to obtain
object values for the following VHDL data types:

 Waveform Analysis in the User’s Manual

Wave Window in the GUI Reference Manual

ModelSim User’s Manual, v10.4c156

VHDL Simulation
VHDL Access Object Debugging

• Integer

• String

• Record

The following examples show how to use access variables of these different types to specify
arguments to the examine command, with access object logging disabled and enabled. Each
example uses an access variable named v1, declared as one of these data types, and an access
object named @ptr@1.

Integer

Table 5-1 shows examples of how to use v1 and @ptr@1 as arguments to the examine
command to obtain the current value of the access object, @ptr@1, which is an integer.

Here, the current integer value is 5. Note that an error results when attempting to use @ptr@1 as
an examine argument with access object logging disabled.

String

Table 5-2 shows examples of how to use v1 and @ptr@1 as arguments to the examine
command to obtain the current value of the access object, @ptr@1, which is a string.

Table 5-1. Using the examine Command to Obtain VHDL Integer Data

Command Value Returned
withLogging Disabled
(vsim -noaccessobjdebug)

Value Returned
withLogging Enabled
(vsim -accessobjdebug)

examine v1 [10001] @ptr@1

examine v1.all 5 5

examine @ptr@1 error 5

Table 5-2. Using the examine Command to Obtain VHDL String Data

Command Value Returned
withLogging Disabled
(vsim -noaccessobjdebug)

Value Returned
withLogging Enabled
(vsim -accessobjdebug)

examine v1 [10001] @ptr@1

examine v1.all "abcdef" "abcdef"

examine v1(4) ‘d’ ‘d’

examine v1.all(4) ‘d’ ‘d’

examine @ptr@1 error "abcdef"

examine @ptr@1(4) error ‘d’

VHDL Simulation
VHDL Access Object Debugging

ModelSim User’s Manual, v10.4c 157

Here, the value of the entire string is abcdef. Note that specifying an index of 4 in the string
obtains the fourth character of the string, d. Also, note that an error results when attempting to
use @ptr@1 as an examine argument with access object logging disabled.

Record

A VHDL record is composite data type, consisting of multiple fields (also referred to as
elements) each of which contains its own separate data. Record fields may be of the same or of
different types.

Table 5-3 shows examples of using the examine command on a record object with an integer
field (f1) and a string field (f2).

Here, the current value of integer field f1 is 5, and the current value of string field f2 is abcdef.
Note that an error results when attempting to use @ptr@1 as an examine argument with access
object logging disabled.

Related Topics

Table 5-3. Using the examine Command to Obtain VHDL Record Data

Command Value Returned with
Logging Disabled
(vsim -noaccessobjdebug)

Value Returned
withLogging Enabled
(vsim -accessobjdebug)

examine v1 [10001] @ptr@1

examine v1.all {5, "abcdef"} {5, "abcdef"}

examine v1.f1 5 5

examine v1.all.f1 5 5

examine @ptr@1.f1 error 5

The describe command

The examine command

ModelSim User’s Manual, v10.4c158

VHDL Simulation
VHDL Access Object Debugging

ModelSim User’s Manual, v10.4c 159

Chapter 6
Verilog and SystemVerilog Simulation

This chapter describes how to compile and simulate Verilog and SystemVerilog designs with
ModelSim.

This chapter covers the following topics:

• Basic Verilog Usage — A brief outline of the steps for using Verilog in a ModelSim
design.

• Verilog Compilation — Information on the requirements for compiling Verilog designs
and libraries.

• Verilog Simulation — Information on the requirements for running simulation.

• Cell Libraries — Criteria for using Verilog cell libraries from ASIC and FPGA vendors
that are compatible with ModelSim.

• SystemVerilog System Tasks and Functions — System tasks and functions that are built
into the simulator.

• Compiler Directives — Verilog compiler directives supported for ModelSim.

• Unmatched Virtual Interface Declarations — Allowing virtual interfaces to exist even
when the underlying interface design unit does not exist, even in the design libraries.

• Verilog PLI and SystemVerilog DPI — Verilog and SystemVerilog interfaces that you
can use to define tasks and functions that communicate with the simulator through a C
procedural interface.

• SystemVerilog Class Debugging — Information on debugging SV Class objects.

Standards, Nomenclature, and Conventions
SystemVerilog is built “on top of” IEEE Std 1364 for the Verilog HDL and improves the
productivity, readability, and reusability of Verilog-based code. The language enhancements in
SystemVerilog provide more concise hardware descriptions, while still providing an easy route
with existing design and verification products into current hardware implementation flows.

ModelSim implements the Verilog and SystemVerilog languages as defined by the following
standards:

• IEEE 1364-2005 and 1364-1995 (Verilog)

• IEEE 1800-2012, 1800-2009 and 1800-2005 (SystemVerilog)

ModelSim User’s Manual, v10.4c160

Verilog and SystemVerilog Simulation
Standards, Nomenclature, and Conventions

Note
ModelSim supports partial implementation of SystemVerilog IEEE Std 1800-2012.
For release-specific information on currently supported implementation, refer to the
following text file located in the ModelSim installation directory:

<install_dir>/docs/technotes/sysvlog.note

The standard for SystemVerilog specifies extensions for a higher level of abstraction for
modeling and verification with the Verilog hardware description language (HDL).

In this chapter, the following terms apply:

• “Verilog” refers to IEEE Std 1364 for the Verilog HDL.

• “Verilog-1995” refers to IEEE Std 1364-1995 for the Verilog HDL.

• “Verilog-2001” refers to IEEE Std 1364-2001 for the Verilog HDL.

• “Verilog-2005” refers to IEEE Std 1364-2005 for the Verilog HDL.

• “SystemVerilog” refers to the extensions to the Verilog standard (IEEE Std 1364) as
defined in IEEE Std 1800-2012.

Note
The term “Language Reference Manual” (or LRM) is often used informally to refer to the
current IEEE standard for Verilog or SystemVerilog.

Supported Variations in Source Code
It is possible to use syntax variations of constructs that are not explicitly defined as being
supported in the Verilog LRM (such as “shortcuts” supported for similar constructs in another
language).

for Loops
ModelSim allows using Verilog syntax that omits any or all three specifications of a for loop —
initialization, termination, increment. This is similar to allowed usage in C and is shown in the
following examples.

Note
If you use this variation, a suppressible warning (2252) is displayed, which you can
change to an error if you use the vlog -pedanticerrors command.

• Missing initializer (in order to continue where you left off):

for (; incr < foo; incr++) begin ... end

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 161

• Missing incrementer (in order to increment in the loop body):

for (ii = 0; ii <= foo;) begin ... end

• Missing initializer and terminator (in order to implement a while loop):

for (; goo < foo;) begin ... end

• Missing all specifications (in order to create an infinite loop):

for (;;) begin ... end

Naming Macros with Integers
The vlog command will compile macros named with integers in addition to identifiers.

For example:

`define 11 22
`define q(s) `" s `"
module defineIdent;

string s2 = `q(`11);
int i = `11;
initial begin

$display("i: %d\n", i);
#10;
$display("s2: %s\n", s2);

end
endmodule

Also, the following compiler directives accept integer names as well as IEEE-1800 Language
Reference Manual macro names:

‘define
‘else
‘elsif
‘endif
‘fdef
‘undefine

You can disable this functionality with vlog -pedanticerrors.

Basic Verilog Usage
Basic Verilog usage consists of a few simple steps that include compiling, optimizing, loading,
and simulating.

The Verilog usage flow generally consists of the following steps:

ModelSim User’s Manual, v10.4c162

Verilog and SystemVerilog Simulation
Basic Verilog Usage

1. Compile your Verilog code into one or more libraries using the vlog command. See
Verilog Compilation for details.

2. Load your design with the vsim command. Refer to Verilog Simulation.

3. Simulate the loaded design and debug as needed.

Verilog Compilation
Compiling your Verilog design for the first time is a two-step process.

1. Create a working library with the vlib command, or select File > New > Library.

2. Compile the design using the vlog command, or select Compile > Compile.

Creating a Working Library
Before you can compile your design, you must create a library in which to store the compilation
results.

Procedure

1. Use the vlib command or select File > New > Library to create a new library.

For example, the command vlib work creates a library named work. By default
compilation results are stored in the work library.

The work library is actually a subdirectory named work. This subdirectory contains a
special file named _info. Do not create libraries using UNIX commands – always use the
vlib command.

See Design Libraries for additional information on working with libraries.

Invoking the Verilog Compiler
The Verilog compiler compiles Verilog source code into retargetable, executable code. You can
then simulate your design on any supported platform without having to recompile your design;
the library format is also compatible across all platforms.

Prerequisite

Create a working library.

Procedure

Use the vlog command or the Compile > Compile menu selection to invoke the Verilog
compiler.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 163

As the design compiles, the resulting object code for modules and user-defined
primitives (UDPs) is generated into a library. As noted above, the compiler places
results into the work library by default. You can specify an alternate library with the
-work argument of the vlog command.

The following example shows how to use the vlog command to invoke the Verilog
compiler:

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vlog searches the vlog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
implies filenames with a .v or .u suffix (any combination of suffixes may be used). Only
referenced definitions are compiled. Compressed SystemVerilog source files (.gz
extension, compressed with zlib) are accepted.

Verilog Case Sensitivity
Note that Verilog and SystemVerilog are case-sensitive languages. For example, clk and CLK
are regarded as different names that you can apply to different signals or variables. This differs
from VHDL, which is case-insensitive.

Parsing SystemVerilog Keywords
With standard Verilog files (<filename>.v), vlog does not automatically parse SystemVerilog
keywords.

SystemVerilog keywords are parsed when either of the following situations exists:

• Any file within the design contains the .sv file extension

• You use the -sv argument with the vlog command

The following examples of the vlog command show how to enable SystemVerilog features and
keywords in ModelSim:

vlog testbench.sv top.v memory.v cache.v

vlog -sv testbench.v proc.v

In the first example, the .sv extension for testbench automatically causes ModelSim to parse
SystemVerilog keywords. In the second example, the -sv argument enables SystemVerilog
features and keywords.

Keyword Compatibility

One of the primary goals of SystemVerilog standardization has been to ensure full backward
compatibility with the Verilog standard. Questa recognizes all reserved keywords listed in
Table B-1 in Annex B of IEEE Std 1800-2012.

ModelSim User’s Manual, v10.4c164

Verilog and SystemVerilog Simulation
Basic Verilog Usage

The following reserved keywords have been added since IEEE Std 1800-2009:

If you use or produce SystemVerilog code that uses any identifiers from a previous release in
which they were not considered reserved keywords, you can do either of the following to avoid
a compilation error:

• Use a different set of strings in your design. You can add one or more characters as a
prefix or suffix (such as an underscore, _) to the string, which will cause the string to be
read in as an identifier and not as a reserved keyword.

• Use the SystemVerilog pragmas `begin_keywords and `end_keywords to define
regions where only the older keywords are recognized.

Recognizing SystemVerilog Files by File Name Extension
If you use the -sv argument with the vlog command, then ModelSim assumes that all input files
are SystemVerilog, regardless of their respective filename extensions.

If you do not use the -sv argument with the vlog command, then ModelSim assumes that only
files with the extension .sv, .svh, or .svp are SystemVerilog.

File extensions of include files

Similarly, if you do not use the -sv argument while reading in a file that uses an `include
statement to specify an include file, then the file extension of the include file is ignored and the
language is assumed to be the same as the file containing the `include. For example, if you do
not use the -sv argument:

If a.v included b.sv, then b.sv would be read as a Verilog file.
If c.sv included d.v, then d.v would be read as a SystemVerilog file.

File extension settings in modelsim.ini

You can define which file extensions indicate SystemVerilog files with the SVFileExtensions
variable in the modelsim.ini file. By default, this variable is defined in modelsim.ini as follows:

; SVFileExtensions = sv svp svh

For example, the following command:

vlog a.v b.sv c.svh d.v

reads in a.v and d.v as a Verilog files and reads in b.sv and c.svh as SystemVerilog files.

implements interconnect nettype

soft

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 165

File types affecting compilation units

Note that whether a file is Verilog or SystemVerilog can affect when ModelSim changes from
one compilation unit to another.

By default, ModelSim instructs the compiler to treat all files within a compilation command line
as separate compilation units (single-file compilation unit mode, which is the equivalent of
using vlog -sfcu).

vlog a.v aa.v b.sv c.svh d.v

ModelSim would group these source files into three compilation units:

Files in first unit — a.v, aa.v, b.sv

File in second unit — c.svh

File in third unit — d.v

This behavior is governed by two basic rules:

• Anything read in is added to the current compilation unit.

• A compilation unit ends at the close of a SystemVerilog file.

Initializing enum Variables
By default, ModelSim initializes enum variables using the default value of the base type instead
of the leftmost value.

However, you can change this so that ModelSim sets the initial value of an enum variable to the
left most value in the following ways:

• Run vlog -enumfirstinit when compiling and run vsim -enumfirstinit when simulating.

• Set EnumBaseInit = 0 in the modelsim.ini file.

Incremental Compilation
ModelSim supports incremental compilation of Verilog designs—there is no requirement to
compile an entire design in one invocation of the compiler.

You are not required to compile your design in any particular order (unless you are using
SystemVerilog packages; see Note below) because all module and UDP instantiations and
external hierarchical references are resolved when the design is loaded by the simulator.

ModelSim User’s Manual, v10.4c166

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Note
Compilation order may matter when using SystemVerilog packages. As stated in the
section Referencing data in packages of IEEE Std 1800-2005: “Packages must exist in
order for the items they define to be recognized by the scopes in which they are
imported.”

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules that
were referenced but not compiled, incorrect port connections, and incorrect hierarchical
references.

Example 6-1. Incremental Compilation Example

Contents of testbench.sv

module testbench;
timeunit 1ns;
timeprecision 10ps;
bit d=1, clk = 0;
wire q;
initial

for (int cycles=0; cycles < 100; cycles++)
#100 clk = !clk;

design dut(q, d, clk);
endmodule

Contents of design.v:

module design(output bit q, input bit d, clk);
timeunit 1ns;
timeprecision 10ps;
always @(posedge clk)

q = d;
endmodule

Compile the design incrementally as follows:

ModelSim> vlog testbench.sv
.
Top level modules:
testbench
ModelSim> vlog -sv test1.v
.
Top level modules:
dut

Note that the compiler lists each module as a top-level module, although, ultimately, only
testbench is a top-level module. If a module is not referenced by another module compiled in
the same invocation of the compiler, then it is listed as a top-level module. This is just an
informative message that you can ignore during incremental compilation.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 167

The message is more useful when you compile an entire design in one invocation of the
compiler and need to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Automatic Incremental Compilation with -incr

The most efficient method of incremental compilation is to manually compile only the modules
that have changed. However, this is not always convenient, especially if your source files have
compiler directive interdependencies (such as macros). In this case, you may prefer to compile
your entire design along with the -incr argument. This causes the compiler to automatically
determine which modules have changed and generate code only for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top
-- Skipping module and2
-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in a recompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note
Changes to your source code that do not change functionality but that do affect source
code line numbers (such as adding a comment line) will cause all affected modules to be
recompiled. This happens because debug information must be kept current so that
ModelSim can trace back to the correct areas of the source code.

ModelSim User’s Manual, v10.4c168

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Library Usage
All modules and UDPs in a Verilog design must be compiled into one or more libraries. One
library is usually sufficient for a simple design, but you may want to organize your modules into
various libraries for a complex design. If your design uses different modules having the same
name, then you need to put those modules in different libraries because design unit names must
be unique within a library.

The following is an example of how to organize your ASIC cells into one library and the rest of
your design into another:

% vlib work
% vlib asiclib
% vlog -work asiclib and2.v or2.v
-- Compiling module and2
-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v
-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
the results in the asiclib library rather than the default work library.

Library Search Rules for the vlog Command
Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded
from the library named work unless you prefix the modules with the <library>. option.

All other Verilog instantiations are resolved in the following order:

• Search libraries specified with -Lf arguments in the order they appear on the command
line.

• Search the library specified in the Verilog-XL uselib Compiler Directive section.

• Search libraries specified with -L arguments in the order they appear on the command
line.

• Search the work library.

• Search the library explicitly named in the special escaped identifier instance name.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 169

Handling Sub-Modules with Common Names

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Example 6-2. Sub-Modules with Common Names

The normal library search rules fail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolve to the lib1 version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, ModelSim implements a special interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the example above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

SystemVerilog Multi-File Compilation
ModelSim allows you to compile multiple SystemVerilog files at a time.

Declarations in Compilation Unit Scope
SystemVerilog allows the declaration of types, variables, functions, tasks, and other constructs
in compilation unit scope ($unit). The visibility of declarations in $unit scope does not extend

top

modA modB

modA modB

cellX cellX

lib1: lib2:

ModelSim User’s Manual, v10.4c170

Verilog and SystemVerilog Simulation
Basic Verilog Usage

outside the current compilation unit. Thus, it is important to understand how compilation units
are defined by the simulator during compilation.

By default, vlog operates in Single File Compilation Unit mode (SFCU). This means the
visibility of declarations in $unit scope terminates at the end of each source file. Visibility does
not carry forward from one file to another, except when a module, interface, or package
declaration begins in one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the declaration to the file containing the end of the
declaration.

The vlog command also supports a non-default mode called Multi File Compilation Unit
(MFCU). In MFCU mode, vlog compiles all files on the command line into one compilation
unit. You can invoke vlog in MFCU mode as follows:

• For a specific, one-time compilation: vlog -mfcu.

• For all compilations: set the variable MultiFileCompilationUnit = 1 in the
modelsim.ini file.

By using either of these methods, you allow declarations in $unit scope to remain in effect
throughout the compilation of all files.

If you have made MFCU the default behavior by setting MultiFileCompilationUnit = 1 in
your modelsim.ini file, you can override this default behavior on a specific compilation by
using vlog -sfcu.

Macro Definitions and Compiler Directives in Compilation
Unit Scope

According to the IEEE Std 1800-2005, the visibility of macro definitions and compiler
directives span the lifetime of a single compilation unit. By default, this means the definitions of
macros and settings of compiler directives terminate at the end of each source file. They do not
carry forward from one file to another, except when a module, interface, or package declaration
begins in one file and ends in another file. In that case, the compilation unit spans from the file
containing the beginning of the definition to the file containing the end of the definition.

See Declarations in Compilation Unit Scope for instructions on how to control vlog's handling
of compilation units.

Note
Compiler directives revert to their default values at the end of a compilation unit.

If a compiler directive is specified as an option to the compiler, this setting is used for all
compilation units present in the current compilation.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 171

Verilog-XL Compatible Compiler Arguments
The compiler arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to ModelSim.

See the vlog command for a description of each argument.

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero
-f <filename>
+incdir+<directory>
+mindelays
+maxdelays
+nowarn<mnemonic>
+typdelays
-u

Arguments Supporting Source Libraries
The compiler arguments listed below support source libraries in the same manner as Verilog-
XL.

Note that these source libraries are very different from the libraries that the ModelSim compiler
uses to store compilation results. You may find it convenient to use these arguments if you are
porting a design to ModelSim or if you are familiar with these arguments and prefer to use
them.

Source libraries are searched after the source files on the command line are compiled. If there
are any unresolved references to modules or UDPs, then the compiler searches the source
libraries to satisfy them. The modules compiled from source libraries may in turn have
additional unresolved references that cause the source libraries to be searched again. This
process is repeated until all references are resolved or until no new unresolved references are
found. Source libraries are searched in the order they appear on the command line.

-v <filename>
-y <directory>
+libext+<suffix>
+librescan
+nolibcell
-R [<simargs>]

Related Topics

See the vlog command for a description of each argument.

ModelSim User’s Manual, v10.4c172

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Verilog-XL uselib Compiler Directive
The `uselib compiler directive is an alternative source library management scheme to the -v, -y,
and +libext compiler arguments. It has the advantage that a design may reference different
modules having the same name.

You compile designs that contain `uselib directive statements using the -compile_uselibs
argument (described below) with the vlog command.

The syntax for the `uselib directive is:

`uselib <library_reference>...

where <library_reference> can be one or more of the following:

• dir=<library_directory>, which is equivalent to the command line argument:

-y <library_directory>

• file=<library_file>, which is equivalent to the command line argument:

-v <library_file>

• libext=<file_extension>, which is equivalent to the command line argument:

+libext+<file_extension>

• lib=<library_name>, which references a library for instantiated objects, specifically
modules, interfaces and program blocks, but not packages. You must ensure the correct
mappings are set up if the library does not exist in the current working directory. The
-compile_uselibs argument does not affect this usage of `uselib.

For example, the following directive

`uselib dir=/h/vendorA libext=.v

is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Since the `uselib directives are embedded in the Verilog source code, there is more flexibility in
defining the source libraries for the instantiations in the design. The appearance of a `uselib
directive in the source code explicitly defines how instantiations that follow it are resolved,
completely overriding any previous `uselib directives.

An important feature of ‘uselib is to allow a design to reference multiple modules having the
same name, therefore independent compilation of the source libraries referenced by the `uselib
directives is required.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 173

Each source library should be compiled into its own object library. The compilation of the code
containing the `uselib directives only records which object libraries to search for each module
instantiation when the design is loaded by the simulator.

Because the `uselib directive is intended to reference source libraries, the simulator must infer
the object libraries from the library references. The rule is to assume an object library named
work in the directory defined in the library reference:

dir=<library_directory>

or the directory containing the file in the library reference

file=<library_file>

The simulator will ignore a library reference libext=<file_extension>. For example, the
following `uselib directives infer the same object library:

‘uselib dir=/h/vendorA
‘uselib file=/h/vendorA/libcells.v

In both cases the simulator assumes that the library source is compiled into the object library:

/h/vendorA/work

The simulator also extends the `uselib directive to explicitly specify the object library with the
library reference lib=<library_name>. For example:

‘uselib lib=/h/vendorA/work

The library name can be a complete path to a library, or it can be a logical library name defined
with the vmap command.

-compile_uselibs Argument

Use the -compile_uselibs argument to vlog to reference `uselib directives. The argument finds
the source files referenced in the directive, compiles them into automatically created object
libraries, and updates the modelsim.ini file with the logical mappings to the libraries.

When using -compile_uselibs, ModelSim determines into which directory to compile the object
libraries by choosing, in order, from the following three values:

• The directory name specified by the -compile_uselibs argument. For example,

-compile_uselibs=./mydir

• The directory specified by the MTI_USELIB_DIR environment variable (see
Environment Variables)

• A directory named mti_uselibs that is created in the current working directory

ModelSim User’s Manual, v10.4c174

Verilog and SystemVerilog Simulation
Basic Verilog Usage

The following code fragment and compiler invocation show how two different modules that
have the same name can be instantiated within the same design:

module top;
 `uselib dir=/h/vendorA libext=.v
 NAND2 u1(n1, n2, n3);
 `uselib dir=/h/vendorB libext=.v
 NAND2 u2(n4, n5, n6);
endmodule

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

uselib is Persistent

As mentioned above, the appearance of a `uselib directive in the source code explicitly defines
how instantiations that follow it are resolved. This may result in unexpected consequences. For
example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a `uselib directive. Since srtr.v is compiled after dut.v, the `uselib
directive is still in effect. When srtr is loaded it is using the `uselib directive from dut.v to
decide where to locate modules. If this is not what you intend, then you need to put an empty
`uselib at the end of dut.v to “close” the previous `uselib statement.

Verilog Configurations
The Verilog 2001 specification added configurations. Configurations specify how a design is
“assembled” during the elaboration phase of simulation. Configurations actually consist of two
pieces: the library mapping and the configuration itself. The library mapping is used at compile
time to determine into which libraries the source files are to be compiled.

Here is an example of a simple library map file:

library work ../top.v;
library rtlLib lrm_ex_top.v;
library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Here is an example of a library map file that uses the -incdir argument:

library lib1 src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map file is arbitrary. You specify the library map file using the -libmap
argument to the vlog command. Alternatively, you can specify the file name as the first item on
the vlog command line, and the compiler reads it as a library map file.

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ModelSim User’s Manual, v10.4c 175

Tip: You can use vlog -mfcu to compile macros for all files in a given testbench.
Any macros already defined before the -libmap argument appears are still defined for use
by the -libmap files. That is, -mfcu macros are applied to the other libraries in library
mapping files.

The library map file must be compiled along with the Verilog source files. Multiple map files
are allowed but each must be preceded by the -libmap argument.

The library map file and the configuration can exist in the same or different files. If they are
separate, only the map file needs the -libmap argument. The configuration is treated as any
other Verilog source file.

Configurations and the Library Named work
ModelSim trreats the library named “work” in a special way for Verilog configurations.

Consider the following code example:

config cfg;
 design top;
 instance top.u1 use work.u1;
endconfig

In this case, work.u1 indicates to load u1 from the current library.

To create a configuration that loads an instance from a library other than the default work
library, do the following:

1. Make sure the library has been created using the vlib command. For example:

vlib mylib

2. Define this library (mylib) as the new current (working) library:

vlog -work mylib

3. Load instance u1 from the current library, which is now mylib:

config cfg;
 design top;
 instance top.u1 use mylib.u1;
endconfig

Related Topics

See The Library Named "work" for details.

ModelSim User’s Manual, v10.4c176

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Verilog Generate Statements
ModelSim implements the rules adopted for Verilog 2005, because the Verilog 2001 rules for
generate statements had numerous inconsistencies and ambiguities. Most of the 2005 rules are
backwards compatible, but there is one key difference related to name visibility.

Name Visibility in Generate Statements
Consider the following code example.

module m;
parameter p = 1;

generate
if (p)

integer x = 1;
else

real x = 2.0;
endgenerate

initial $display(x);
endmodule

This example is legal under 2001 rules. However, it is illegal under the 2005 rules and causes an
error in ModelSim. Under the new rules, you cannot hierarchically reference a name in an
anonymous scope from outside that scope. In the example above, x does not propagate its
visibility upwards, and each condition alternative is considered to be an anonymous scope.

For this example to simulate properly in ModelSim, change it to the following:

module m;
parameter p = 1;

if (p) begin:s
integer x = 1;

end
else begin:s

real x = 2.0;
end

initial $display(s.x);
endmodule

Because the scope is named in this example (begin:s), normal hierarchical resolution rules
apply and the code runs without error.

In addition, note that the keyword pair generate - endgenerate is optional under the 2005
rules and are excluded in the second example.

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 177

Verilog Simulation
A Verilog design is ready for simulation after it has been compiled with vlog. The simulator
may then be invoked with the names of the top-level modules. (Many designs contain only one
top-level module).

. . For example, if your top-level modules are “testbench” and “globals”, then invoke the
simulator as follows:

vsim testbench globals

After the simulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPs in the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references. By default all modules and UDPs are loaded from the library named
work. Modules and UDPs from other libraries can be specified using the -L or -Lf arguments to
vsim (see Library Usage for details).

On successful loading of the design, the simulation time is set to zero, and you must enter a run
command to begin simulation. Commonly, you enter run -all to run until there are no more
simulation events or until $finish is executed in the Verilog code. You can also run for specific
time periods (for example, run 100 ns). Enter the quit command to exit the simulator.

Simulator Resolution Limit (Verilog)
The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time (also known as the simulator resolution limit). The resolution limit
defaults to the smallest time units that you specify among all of the `timescale compiler
directives in the design.

Here is an example of a `timescale directive:

`timescale 1 ns / 100 ps

The first number (1 ns) is the time units; the second number (100 ps) is the time precision,
which is the rounding factor for the specified time units. The directive above causes time values
to be read as nanoseconds and rounded to the nearest 100 picoseconds.

Time units and precision can also be specified with SystemVerilog keywords as follows:

timeunit 1 ns
timeprecision 100 ps

Modules Without Timescale Directives
Unexpected behavior may occur if your design contains some modules with timescale directives
and others without. An elaboration error is issued in this situation and it is highly recommended

ModelSim User’s Manual, v10.4c178

Verilog and SystemVerilog Simulation
Verilog Simulation

that all modules having delays also have timescale directives to make sure that the timing of the
design operates as intended.

Timescale elaboration errors may be suppressed or reduced to warnings however, there is a risk
of improper design behavior and reduced performance. The vsim +nowarnTSCALE or
-suppress options may be used to ignore the error, while the -warning option may be used to
reduce the severity to a warning.

-timescale Option

The -timescale option can be used with the vlog command to specify the default timescale in
effect during compilation for modules that do not have an explicit `timescale directive. The
format of the -timescale argument is the same as that of the `timescale directive:

-timescale <time_units>/<time_precision>

where <time_units> is <n> <units>. The value of <n> must be 1, 10, or 100. The value of
<units> must be fs, ps, ns, us, ms, or s. In addition, the <time_units> must be greater than or
equal to the <time_precision>.

For example:

-timescale "1ns / 1ps"

The argument above needs quotes because it contains white space.

Design units that do not have a timescale set in the HDL source, or with vlog -timescale will
generate an error similar to the following:

** Error (suppressible): (vsim-3009) [TSCALE] - Module 'top2' does not
have a timeunit/timeprecision specification in effect, but other modules
do.
Time: 0 ps Iteration: 0 Instance: /top2 File: t2.sv
Loading work.dut2(fast)

but the error can be suppressed causing vsim to use the simulator time resolution.

Multiple Timescale Directives
As previously noted, a design can have multiple timescale directives. Separately compiled
modules can also have different timescales. The simulator determines the smallest timescale of
all the modules in a design and uses that as the simulator resolution.

The timescale directive takes effect where it appears in a source file and applies to all Verilog
source files (.v files) that follow in the same vlog command.

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 179

Note
For SystemVerilog source files (.sv files), this requires that you use either the -mfcu
argument or the -mfcu=macro argument with the vlog command.

timescale, -t, and Rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation. If
the resolution set by -t is larger than the precision set in a module, the time values in that
module are rounded up. If the resolution set by -t is smaller than the precision of the module, the
precision of that module remains whatever is specified by the `timescale directive.

Consider the following code:

`timescale 1 ns / 100 ps

module foo;

 initial
 #12.536 $display

The list below shows three possibilities for -t and how the delays in the module are handled in
each case:

• -t not set

The delay is rounded to 12.5 as directed by the module’s ‘timescale directive.

• -t is set to 1 fs

The delay is rounded to 12.5. Again, the module’s precision is determined by the
‘timescale directive. ModelSim does not override the module’s precision.

• -t is set to 1 ns

The delay will be rounded to 13. The module’s precision is determined by the -t setting.
ModelSim can only round the module’s time values because the entire simulation is
operating at 1 ns.

Choosing the Resolution for Verilog
You should choose the coarsest simulator resolution limit possible that does not result in
undesired rounding of your delays. For example, values smaller than the current Time Scale
will be truncated to zero (0) and a warning issued. However, the time precision should also not
be set unnecessarily small, because in some cases performance will be degraded.

ModelSim User’s Manual, v10.4c180

Verilog and SystemVerilog Simulation
Verilog Simulation

Event Ordering in Verilog Designs
Event-based simulators such as ModelSim may process multiple events at a given simulation
time. The Verilog language is defined such that you cannot explicitly control the order in which
simultaneous events are processed. Unfortunately, some designs rely on a particular event
order, and these designs may behave differently than you expect.

Event Queues
Section 11 of IEEE Std 1364-2005 defines several event queues that determine the order in
which events are evaluated.

At the current simulation time, the simulator has the following pending events:

• active events

• inactive events

• non-blocking assignment update events

• monitor events

• future events

o inactive events

o non-blocking assignment update events

The Standard (LRM) dictates that events are processed as follows:

1. All active events are processed.

2. Inactive events are moved to the active event queue and then processed.

3. Non-blocking events are moved to the active event queue and then processed.

4. Monitor events are moved to the active queue and then processed.

5. Simulation advances to the next time where there is an inactive event or a non-blocking
assignment update event.

Within the active event queue, the events can be processed in any order, and new active events
can be added to the queue in any order. In other words, you cannot control event order within
the active queue. The example below illustrates potential ramifications of this situation.

Assume that you have these four statements:

• always@(q) p = q;

• always @(q) p2 = not q;

• always @(p or p2) clk = p and p2;

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 181

• always @(posedge clk)

with current variable values: q = 0, p = 0, p2=1

The tables below show two of the many valid evaluations of these statements. Evaluation events
are denoted by a number where the number is the statement to be evaluated. Update events are
denoted <name>(old->new) where <name> indicates the reg being updated and new is the
updated value.\

Again, both evaluations are valid. However, in Evaluation 1, clk has a glitch on it; in Evaluation
2, clk does not. This indicates that the design has a zero-delay race condition on clk.

Table 6-1. Evaluation 1 of always Statements

Event being processed Active event queue

q(0 -> 1)

q(0 -> 1) 1, 2

1 p(0 -> 1), 2

p(0 -> 1) 3, 2

3 clk(0 -> 1), 2

clk(0 -> 1) 4, 2

4 2

2 p2(1 -> 0)

p2(1 -> 0) 3

3 clk(1 -> 0)

clk(1 -> 0) <empty>

Table 6-2. Evaluation 2 of always Statement

Event being processed Active event queue

q(0 -> 1)

q(0 -> 1) 1, 2

1 p(0 -> 1), 2

2 p2(1 -> 0), p(0 -> 1)

p(0 -> 1) 3, p2(1 -> 0)

p2(1 −> 0) 3

3 <empty> (clk does not change)

ModelSim User’s Manual, v10.4c182

Verilog and SystemVerilog Simulation
Verilog Simulation

Controlling Event Queues with Blocking or Non-Blocking
Assignments

The only control you have over event order is to assign an event to a particular queue. You do
this by using blocking or non-blocking assignments.

Blocking Assignments

Blocking assignments place an event in the active, inactive, or future queues depending on what
type of delay they have:

• a blocking assignment without a delay goes in the active queue

• a blocking assignment with an explicit delay of 0 goes in the inactive queue

• a blocking assignment with a nonzero delay goes in the future queue

Non-Blocking Assignments

A non-blocking assignment goes into either the non-blocking assignment update event queue or
the future non-blocking assignment update event queue. (Non-blocking assignments with no
delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This ensures that all
outputs of flip-flops do not change until after all flip-flops have been evaluated. Attempting to
use non-blocking assignments in combinational logic paths to remove race conditions may only
cause more problems. (In the preceding example, changing all statements to non-blocking
assignments would not remove the race condition.) This includes using non-blocking
assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

gen1: always @(master)
 clk1 = master;

gen2: always @(clk1)
 clk2 = clk1;

f1 : always @(posedge clk1)
 begin
 q1 <= d1;
 end

f2: always @(posedge clk2)
 begin
 q2 <= q1;
 end

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 183

If written this way, a value on d1 always takes two clock cycles to get from d1 to q2.
If you change clk1 = master and clk2 = clk1 to non-blocking assignments or q2 <= q1 and q1
<= d1 to blocking assignments, then d1 may get to q2 is less than two clock cycles.

Debugging Event Order Issues
Since many models have been developed on Verilog-XL, ModelSim tries to duplicate Verilog-
XL event ordering to ease the porting of those models to ModelSim. However, ModelSim does
not match Verilog-XL event ordering in all cases, and if a model ported to ModelSim does not
behave as expected, then you should suspect that there are event order dependencies.

ModelSim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the vlog command for descriptions of -compat and -hazards.

Hazard Detection
The -hazards argument for the vsim command detects event order hazards involving
simultaneous reading and writing of the same register in concurrently executing processes.

ModelSim detects the following kinds of hazards:

• WRITE/WRITE — Two processes writing to the same variable at the same time.

• READ/WRITE — One process reading a variable at the same time it is being written to
by another process. ModelSim calls this a READ/WRITE hazard if it executed the read
first.

• WRITE/READ — Same as a READ/WRITE hazard except that ModelSim executed the
write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable and
the two processes involved. You can have the simulator break on the statement where the
hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog with the -hazards argument when you compile
your source code and you must also invoke vsim with the -hazards argument when you
simulate.

Note
Enabling -hazards implicitly enables the -compat argument. As a result, using this
argument may affect your simulation results.

ModelSim User’s Manual, v10.4c184

Verilog and SystemVerilog Simulation
Verilog Simulation

Hazard Detection and Optimization Levels
In certain cases hazard detection results are affected by the optimization level used in the
simulation. Some optimizations change the read/write operations performed on a variable if the
transformation is determined to yield equivalent results. Because the hazard detection algorithm
cannot determine whether the read/write operations can affect the simulation results, the
optimizations can result in different hazard detection results. Generally, the optimizations
reduce the number of false hazards by eliminating unnecessary reads and writes, but there are
also optimizations that can produce additional false hazards.

Limitations of Hazard Detection

• Reads and writes involving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects is too
high.

• A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

• A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

• Glitches on nets caused by non-guaranteed event ordering are not detected.

• A non-blocking assignment is not treated as a WRITE for hazard detection purposes.
This is because non-blocking assignments are not normally involved in hazards. (In fact,
they should be used to avoid hazards.)

• Hazards caused by simultaneous forces are not detected.

Signal Segmentation Violations
If you attempt to access a SystemVerilog object that has not been constructed with the new
operator, you will receive a fatal error called a signal segmentation violation (SIGSEGV).

For example, the following code produces a SIGSEGV fatal error:

class C;
int x;

endclass

C obj;
initial obj.x = 5;

This attempts to initialize a property of obj, but obj has not been constructed. The code is
missing the following:

C obj = new;

The new operator performs three distinct operations:

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 185

• Allocates storage for an object of type C

• Calls the “new” method in the class or uses a default method if the class does not define
“new”

• Assigns the handle of the newly constructed object to “obj”

If the object handle obj is not initialized with new, there will be nothing to reference. ModelSim
sets the variable to the value null and the SIGSEGV fatal error will occur.

To debug a SIGSEGV error, first look in the transcript. Figure 6-1 shows an example of a
SIGSEGV error message in the Transcript window.

Figure 6-1. Fatal Signal Segmentation Violation (SIGSEGV)

The Fatal error message identifies the filename and line number where the code violation
occurred (in this example, the file is top.sv and the line number is 19).

ModelSim sets the active scope to the location where the error occurred. In the Processes
window, the current process is highlighted (Figure 6-2).

Figure 6-2. Current Process Where Error Occurred

Double-click the highlighted process to open a Source window. A blue arrow will point to the
statement where the simulation stopped executing (Figure 6-3).

ModelSim User’s Manual, v10.4c186

Verilog and SystemVerilog Simulation
Verilog Simulation

Figure 6-3. Blue Arrow Indicating Where Code Stopped Executing

Next, look for null values in the ModelSim Locals window (Figure 6-4), which displays data
objects declared in the local (current) scope of the active process.

Figure 6-4. Null Values in the Locals Window

The null value in Figure 6-4 indicates that the object handle for obj was not properly
constructed with the new operator.

Negative Timing Checks
ModelSim automatically detects cells with negative timing checks and causes timing checks to
be performed on the delayed versions of input ports (used when there are negative timing check
limits).

Negative timing syntax is defined in the IEEE Standard for Verilog Hardware Description
Language, specifically Chapter 15 “Timing Checks”.

The negative timing check algorithm is enabled by default. To explicitly enable the algorithm,
use the +delayed_timing_checks with the vsim command. If you want to disable the
functionality, add the +no_autodtc to the vsim command line.

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 187

vsim Arguments Related to Timing Checks
The vsim command supports several timing check-related arguments:

• vsim +delayed_timing_checks — (on by default) Instructs the simulator to
automatically detect cells with negative timing checks.

• vsim +no_autodtc — Disables the default behavior of the +delayed_timing_checks
option

• vsim +no_neg_tchk — Forces all negative timing check limits to a zero value.

• vsim +ntc_warn — Enables messaging for negative timing checks.

• vsim +notimingchecks — Removes all timing check entries from the design as it is
parsed

Commands Supporting Negative Timing Check Limits
By default, ModelSim supports negative timing check limits in Verilog $setuphold and $recrem
system tasks.

Using the +no_neg_tchk argument with the vsim command causes all negative timing check
limits to be set to zero.

Models that support negative timing check limits must be written properly if they are to be
evaluated correctly. These timing checks specify delayed versions of the input ports, which are
used for functional evaluation. The correct syntax for $setuphold and $recrem is as follows.

$setuphold
The $setuphold check determine whether signals obey the timing constraints.

Syntax
$setuphold (reference_event , data_event , timing_check_limit , timing_check_limit ,

[notifier] , [stamptime_condition] , [checktime_condition] , [delayed_reference] ,
[delayed_data]) ;

Arguments
• reference_event — (required) Specifies a transition in a reference signal that establishes the

reference time for tracking timing violations on the data_event. Since $setuphold combines

ModelSim User’s Manual, v10.4c188

Verilog and SystemVerilog Simulation
Verilog Simulation

the functionality of the $setup and $hold system tasks, the reference_event sets the lower
bound event for $hold and the upper bound event for $setup.

• data_event — (required) Specifies a transition of a data signal that initiates the timing
check. The data_event sets the upper bound event for $hold and the lower bound limit for
$setup.

• timing_check_limit (both instances are required) — Specifies a constant expression or
specparam that specifies the minimum interval between:

First instance — the data_event and the clk_event. Any change to the data signal within
this interval results in a timing violation.

Second instance — the interval between the clk_event and the data_event. Any change
to the data signal within this interval results in a timing violation.

• notifier — (optional) Specifies a register whose value is updated whenever a timing
violation occurs. The notifier can be used to define responses to timing violations.

• stamptime_condition — (optional) Conditions the data_event for the setup check and the
reference_event for the hold check. This alternate method of conditioning precludes
specifying conditions in the reference_event and data_event arguments.

• checktime_condition — (optional) Conditions the data_event for the hold check and the
reference_event for the setup check. This alternate method of conditioning precludes
specifying conditions in the reference_event and data_event arguments.

• delayed_reference — (optional) Specifies a net that is continuously assigned the value of
the net specified in the reference_event. The delay is determined by the simulator and may
be nonzero depending on all the timing check limits.

• delayed_data — (optional) Specifies a net that is continuously assigned the value of the net
specified in the data_event. The delay is determined by the simulator and may be nonzero
depending on all the timing check limits.

$recrem
The $recrem timing check determine whether signals obey the timing constraints.

Syntax
$recrem (reference_event , data_event , timing_check_limit , timing_check_limit ,

[notifier] , [stamptime_condition] , [checktime_condition] , [delayed_reference] ,
[delayed_data]) ;

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 189

Arguments
• reference_event — (required) Specifies an asynchronous control signal with an edge

identifier to indicate the release from an active state.

• data_event — (required) Specifies a clock or gate signal with an edge identifier to indicate
the active edge of the clock or the closing edge of the gate.

• timing_check_limit (both instances are required) — Specifies a minimum interval between:

First instance — the release of the asynchronous control signal and the active edge of
the clock event. Any change to a signal within this interval results in a timing
violation.

Second instance — the active edge of the clock event and the release of the
asynchronous control signal. Any change to a signal within this interval results in a
timing violation.

• notifier — (optional) Specifies a register whose value is updated whenever a timing
violation occurs. The notifier can be used to define responses to timing violations.

• stamptime_condition — (optional) Conditions the data_event for the removal check and the
reference_event for the recovery check. This alternate method of conditioning precludes
specifying conditions in the reference_event and data_event arguments.

• checktime_condition — (optional) Conditions the data_event for the recovery check and the
reference_event for the removal check. This alternate method of conditioning precludes
specifying conditions in the reference_event and data_event arguments.

• delayed_reference — (optional) Specifies a net that is continuously assigned the value of
the net specified in the reference_event. The delay is determined by the simulator and may
be nonzero depending on all the timing check limits.

• delayed_data — (optional) Specifies a net that is continuously assigned the value of the net
specified in the data_event. The delay is determined by the simulator and may be nonzero
depending on all the timing check limits.

Timing Check Syntactical Conventions
Your $setuphold() or $recrem() timing checks must follow the LRM defined syntax exactly.
The simulator will behave in the following ways based on your commands.

The two timing_check_limit values are your delayed reference and delayed data values,
respectively, which can be negative values. In all cases, you must ensure that the sum of these
two values must be greater than zero (0). If they do not meet this requirement, the simulator
silently sets any negative values to zero (0) during elaboration or SDF annotation. You can
force the simulator to show a warning (vsim-3616) in this case with the +ntc_warn argument to
the vsim command.

** Warning: (vsim-3616) cells.v(x): Instance 'dff0' - Bad $setuphold
constraints: 5 ns and -6 ns. Negative limit(s) set to zero.

The internal timing check algorithm will determine the proper delay values, specifically a
negative hold requires the shifting of your DATA signal and a negative setup requires the

ModelSim User’s Manual, v10.4c190

Verilog and SystemVerilog Simulation
Verilog Simulation

shifting of your CLOCK. In some rare cases, typically due to bad SDF values, the timing check
algorithm can not create convergence. Use the +ntc_warn argument to the vsim command to
receive additional warning messages.

The LRM does not allow for you to specify a reference_event or data_event condition using the
&&& operator and also specify a stamptime_condition or checktime_condition. When this does
occur, the simulator issues a warning and ignores the condition defined in either event. For
example, in the task:

$setuphold(posedge clk &&& cond1, posedge d, 10, -5, notifier, cond2, ,
dclk, dd);

the condition “cond1” will be ignored.

The delayed_reference and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model's logic should reference the
delayed_reference and delayed_data nets in place of the normal reference and data nets. This
ensures that the correct data is latched in the presence of negative constraints. The simulator
automatically calculates the delays for delayed_reference and delayed_data such that the correct
data is latched as long as a timing constraint has not been violated. See Using Delayed Inputs
for Timing Checks for more information.

Negative Timing Constraint Algorithm
The ModelSim negative timing constraint algorithm attempts to find a set of delays such that
the data net is valid when the clock or control nets transition and the timing checks are satisfied.
The algorithm is iterative because a set of delays that satisfies all timing checks for a pair of
inputs can cause mis-ordering of another pair (where both pairs of inputs share a common
input). When a set of delays that satisfies all timing checks is found, the delays are said to
converge.

When none of the delay sets cause convergence, the algorithm pessimistically changes the
timing check limits to force convergence. Basically, the algorithm zeroes the smallest negative
$setup/$recovery limit. If a negative $setup/$recovery doesn't exist, then the algorithm zeros the
smallest negative $hold/$removal limit. After zeroing a negative limit, the delay calculation
procedure is repeated. If the delays do not converge, the algorithm zeros another negative limit,
repeating the process until convergence is found.

For example, in this timing check,

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 191

dCLK is the delayed version of the input CLK and dD is the delayed version of D. This posedge
D-Flipflop module has a negative setup limit of -10 time units, which allows posedge CLK to
occur up to 10 time units before the stable value of D is latched.

Without delaying CLK by 11, an old value for D could be latched. Note that an additional time
unit of delay is added to prevent race conditions.

The inputs look like this:

Because the posedge CLK transition is delayed by the amount of the negative setup limit (plus
one time unit to prevent race conditions) no timing violation is reported and the new value of D
is latched.

However, the effect of this delay could also affect other inputs with a specified timing
relationship to CLK. The simulator is responsible for calculating the delay between all inputs
and their delayed versions. The complete set of delays (delay solution convergence) must
consider all timing check limits together so that whenever timing is met the correct data value is
latched.

Consider the following timing checks specified relative to CLK:

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

$setuphold(posedge CLK, negedge RST, -30, 45, notifier,,, dCLK, dRST);

20

CLK

D violation -10
region

0

XXXXXXXXXX

CLK

D

0

9

dD
9

dCLK
11

. . . resulting in delayed inputs of . . .

ModelSim User’s Manual, v10.4c192

Verilog and SystemVerilog Simulation
Verilog Simulation

To solve the timing checks specified relative to CLK the following delay values are necessary:

The simulator's intermediate delay solution shifts the violation regions to overlap the reference
events.

Notice that no timing is specified relative to negedge CLK, but the dCLK falling delay is set to
the dCLK rising delay to minimize pulse rejection on dCLK. Pulse rejection that occurs due to
delayed input delays is reported by:

"WARNING[3819] : Scheduled event on delay net dCLK was cancelled"

Now, consider the following case where a new timing check is added between D and RST and
the simulator cannot find a delay solution. Some timing checks are set to zero. In this case, the
new timing check is not annotated from an SDF file and a default $setuphold limit of 1, 1 is
used:

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

$setuphold(posedge CLK, negedge RST, -30, 45, notifier,,, dCLK, dRST);

$setuphold(negedge RST, D, 1, 1, notifier,,, dRST, dD);

Rising Falling

dCLK 31 31

dD 20 20

dRST 0 0

20

CLK

D violation

100

XXXXXXXXXX

4030
RST violation \ \ \ \ \ \ \ \ \ \ \ \

20

dCLK

dD violation

100

XXXXXXXXXX

4030
dRST violation \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

45

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 193

As illustrated earlier, to solve timing checks on CLK, delays of 20 and 31 time units were
necessary on dD and dCLK, respectively.

The simulator's intermediate delay solution is:

But this is not consistent with the timing check specified between RST and D. The falling RST
signal can be delayed by additional 10, but that is still not enough for the delay solution to
converge.

Rising Falling

dCLK 31 31

dD 20 20

dRST 0 0

Rising Falling

dCLK 31 31

dD 20 20

dRST 0 10

20

CLK

D violation

100

XXXXXXXXXX

4530
RST violation \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

RST

D violation XX
1 1

40

21

CLK

D violation

100

XXXXXXXXXX

4530
RST violation \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

RST

D violation XX

4023

ModelSim User’s Manual, v10.4c194

Verilog and SystemVerilog Simulation
Verilog Simulation

As stated above, if a delay solution cannot be determined with the specified timing check limits
the smallest negative $setup/$recovery limit is zeroed and the calculation of delays repeated. If
no negative $setup/$recovery limits exist, then the smallest negative $hold/$removal limit is
zeroed. This process is repeated until a delay solution is found.

If a timing check in the design was zeroed because a delay solution was not found, a summary
message like the following will be issued:

** Warning: (vsim-3316) No solution possible for some delayed timing
check nets. 1 negative limits were zeroed. Use +ntc_warn for more info.

Invoking vsim with the +ntc_warn option identifies the timing check that is being zeroed.

Finally consider the case where the RST and D timing check is specified on the posedge RST.

$setuphold(posedge CLK, D, -10, 20, notifier,,, dCLK, dD);

$setuphold(posedge CLK, negedge RST, -30, 45, notifier,,, dCLK, dRST);

$setuphold(posedge RST, D, 1, 1, notifier,,, dRST, dD);

In this case the delay solution converges when an rising delay on dRST is used.

Rising Falling

dCLK 31 31

21

CLK

D violation

100

XXXXXXXXXX

5530
RST violation \ \ \ \ \ \ \ \ \ \ \ \

RST

D violation XX

4023

20

CLK

D violation

100

XXXXXXXXXX

4530
RST violation \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

RST

D violation XX
1 1

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 195

Using Delayed Inputs for Timing Checks
By default ModelSim performs timing checks on inputs specified in the timing check. If you
want timing checks performed on the delayed inputs, use the +delayed_timing_checks
argument with the vsim command.

Consider an example. This timing check:

$setuphold(posedge clk, posedge t, 20, -12, NOTIFIER,,, clk_dly, t_dly);

reports a timing violation when posedge t occurs in the violation region:

When performed on the delayed inputs, the violation region between the delayed inputs is:

Although the check is performed on the delayed inputs, the timing check violation message is
adjusted to reference the undelayed inputs. Only the report time of the violation message is
noticeably different between the delayed and undelayed timing checks.

By far the greatest difference between these modes is evident when there are conditions on a
delayed check event because the condition is not implicitly delayed. Also, timing checks
specified without explicit delayed signals are delayed, if necessary, when they reference an
input that is delayed for a negative timing check limit.

dD 20 20

dRST 20 10

Rising Falling

21

CLK

D violation

100

XXXXXXXXXX

4530
RST violation \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

RST

D violation XX

4023

-12

clk

 20
t

0

1

clk_dly

 7
t_dly

0

ModelSim User’s Manual, v10.4c196

Verilog and SystemVerilog Simulation
Verilog Simulation

Other simulators perform timing checks on the delayed inputs. To be compatible, ModelSim
supports both methods. By default timing checks are performed on the delayed inputs. This can
be disabled using the +no_autodtc switch.

Force and Release Statements in Verilog
The Verilog Language Reference Manual IEEE Std 1800-2009. section 10.6.2, states that the
left-hand side of a force statement cannot be a bit-select or part-select. Questa deviates from the
LRM standard by supporting forcing of bit-selects, part-selects, and field-selects in your source
code. The right-hand side of these force statements may not be a variable.

Related Topics

Refer to the force command for more information.

Verilog-XL Compatible Simulator Arguments
The simulator arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of a design to ModelSim.

See the vsim command for a description of each argument.

+alt_path_delays
-l <filename>
+maxdelays
+mindelays
+multisource_int_delays
+no_cancelled_e_msg
+no_neg_tchk
+no_notifier
+no_path_edge
+no_pulse_msg
-no_risefall_delaynets
+no_show_cancelled_e
+nosdfwarn
+nowarn<mnemonic>
+ntc_warn
+pulse_e/<percent>
+pulse_e_style_ondetect
+pulse_e_style_onevent
+pulse_int_e/<percent>
+pulse_int_r/<percent>
+pulse_r/<percent>
+sdf_nocheck_celltype
+sdf_verbose
+show_cancelled_e
+transport_int_delays
+transport_path_delays
+typdelays

Verilog and SystemVerilog Simulation
Verilog Simulation

ModelSim User’s Manual, v10.4c 197

Using Escaped Identifiers
ModelSim recognizes and maintains Verilog escaped identifier syntax. Prior to version 6.3,
Verilog escaped identifiers were converted to VHDL-style extended identifiers with a backslash
at the end of the identifier. Verilog escaped identifiers then appeared as VHDL extended
identifiers in simulation output and in command line interface (CLI) commands.

For example, a Verilog escaped identifier like the following:

\/top/dut/03

had to be displayed as follows:

\/top/dut/03\

Starting in version 6.3, all object names inside the simulator appear identical to their names in
original HDL source files.

Sometimes, in mixed language designs, hierarchical identifiers might refer to both VHDL
extended identifiers and Verilog escaped identifiers in the same fullpath. For example,
top/\VHDL*ext\/\Vlog*ext /bottom (assuming the PathSeparator variable is set to '/'), or
top.\VHDL*ext\.\Vlog*ext .bottom (assuming the PathSeparator variable is set to '.')

Any fullpath that appears as user input to the simulator (such as on the vsim command line, or in
a .do file) should be composed of components with valid escaped identifier syntax.

A modelsim.ini variable called GenerousIdentifierParsing can control parsing of identifiers. If
this variable is on (the variable is on by default: value = 1), either VHDL extended identifiers or
Verilog escaped identifier syntax may be used for objects of either language kind. This provides
backward compatibility with older .do files, which often contain pure VHDL extended identifier
syntax, even for escaped identifiers in Verilog design regions.

Note that SDF files are always parsed in “generous mode.” Signal Spy function arguments are
also parsed in “generous mode.”

Tcl and Escaped Identifiers
In Tcl, the backslash is one of a number of characters that have a special meaning.

For example,

\n

creates a new line.

When a Tcl command is used in the command line interface, the TCL backslash should be
escaped by adding another backslash. For example:

force -freeze /top/ix/iy/\\yw\[1\]\\ 10 0, 01 {50 ns} -r 100

ModelSim User’s Manual, v10.4c198

Verilog and SystemVerilog Simulation
Cell Libraries

The Verilog identifier, in this example, is \yw[1]. Here, backslashes are used to escape the
square brackets ([]), which have a special meaning in Tcl.

For a more detailed description of special characters in Tcl and how backslashes should be used
with those characters, click Help > Tcl Syntax in the menu bar, or simply open the
docs/tcl_help_html/TclCmd directory in your QuestaSim installation.

Cell Libraries
Mentor Graphics has passed the Verilog test bench from the ASIC Council and achieved the
“Library Tested and Approved” designation from Si2 Labs. This test bench is designed to
ensure Verilog timing accuracy and functionality and is the first significant hurdle to complete
on the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors’ Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog “specify blocks” that describe the path delays and
timing constraints for the cells. See Section 14 in the IEEE Std 1364-2005 for details on specify
blocks, and Section 15 for details on timing constraints. ModelSim Verilog fully implements
specify blocks and timing constraints as defined in IEEE Std 1364 along with some Verilog-XL
compatible extensions.

SDF Timing Annotation
ModelSim Verilog supports timing annotation from Standard Delay Format (SDF) files.

Related Topics

See Standard Delay Format (SDF) Timing Annotation for details.

Delay Modes
Verilog models may contain both distributed delays and path delays. Distributed delays appear
on primitives, UDPs, and continuous assignments; path delays are the port-to-port delays
specified in specify blocks. These delays interact to determine the actual delay observed. Most
Verilog cells use path delays exclusively, with no distributed delays specified.

The following code shows a simple two-input AND gate cell, where no distributed delay is
specified for the AND primitive.

Verilog and SystemVerilog Simulation
Cell Libraries

ModelSim User’s Manual, v10.4c 199

module and2(y, a, b);
input a, b;
output y;
and(y, a, b);
specify

(a => y) = 5;
(b => y) = 5;

endspecify
endmodule

For cells such as this, the actual delays observed on the module ports are taken from the path
delays. This is typical for most cells, though more complex cells may require nonzero
distributed delays to work properly.

Delay Modes and the Verilog Standard
The Verilog standard (LRM, IEEE Std 1364-2005) states that if a module contains both path
delays and distributed delays, then the larger of the two delays for each path shall be used
(Section 14.4).

This is the default behavior; however, you can specify alternate delay modes using compiler
directives and arguments to the vlog command:

• Distributed Delay Mode

• Path Delay Mode

• Unit Delay Mode

• Zero Delay Mode

Delay mode arguments to the vlog command take precedence over delay mode directives
in the source code.

Note that these directives and arguments are compatible with Verilog-XL. However, using these
modes results in behavior that is not clearly defined by the Verilog standard—the delays that are
set to zero can vary from one simulator to another (some simulators zero out only some delays).

Example 6-3 shows the 2-input AND gate cell using a different compiler directive to apply each
delay mode. In particular, ModelSim does the following:

• The `delay_mode_zero directive sets both the continuous assignment delay (assign #2 c
= b) and the primitive delay (and #3 (y, a,c)) to zero.

• The `delay_mode_unit directive converts both of these nonzero delays (continuous
assignment and primitive) to 1.

ModelSim User’s Manual, v10.4c200

Verilog and SystemVerilog Simulation
Cell Libraries

Example 6-3. Delay Mode Directives in a Verilog Cell

The following instances of a 2-input AND gate cell (and2_1, and2_2, and2_3, and2_4) use
compiler directives to apply each delay mode.

`delay_mode_zero
module and2_1(y, a, b);
 input a, b;
 output y;
 wire c;
 assign #2 c = b;

 and #3(y, a, c);
 specify
 (a => y) = 5;
 (b => y) = 5;
 endspecify
endmodule

`delay_mode_unit
module and2_2(y, a, b);
 input a, b;
 output y;
 wire c;
 assign #2 c = b;

 and #3(y, a, c);
 specify
 (a => y) = 5;
 (b => y) = 5;
 endspecify
endmodule

`delay_mode_distributed
module and2_3(y, a, b);
 input a, b;
 output y;
 wire c;
 assign #2 c = b;

 and #3(y, a, c);
 specify
 (a => y) = 5;
 (b => y) = 5;
 endspecify
endmodule

`delay_mode_path
module and2_4(y, a, b);
 input a, b;
 output y;
 wire c;
 assign #2 c = b;

 and #3(y, a, c);
 specify
 (a => y) = 5;

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 201

 (b => y) = 5;
 endspecify
endmodule

Distributed Delay Mode
In distributed delay mode, the specify path delays are ignored in favor of the distributed delays.
You can specify this delay mode with the +delay_mode_distributed compiler argument or the
`delay_mode_distributed compiler directive.

Path Delay Mode
In path delay mode, the distributed delays are set to zero in any module that contains a path
delay. You can specify this delay mode with the +delay_mode_path compiler argument or the
`delay_mode_path compiler directive.

Unit Delay Mode
In unit delay mode, the nonzero distributed delays are set to one unit of simulation resolution
(determined by the minimum time_precision argument in all ‘timescale directives in your
design or the value specified with the -t argument to vsim), and the specify path delays and
timing constraints are ignored. You can specify this delay mode with the +delay_mode_unit
compiler argument or the `delay_mode_unit compiler directive.

Zero Delay Mode
In zero delay mode, the distributed delays are set to zero, and the specify path delays and timing
constraints are ignored. You can specify this delay mode with the +delay_mode_zero compiler
argument or the `delay_mode_zero compiler directive.

SystemVerilog System Tasks and Functions
The system tasks and functions listed in this section are built into the simulator, although some
designs depend on user-defined system tasks implemented with the various programming and
procedural interfaces.

If the simulator issues warnings regarding undefined system tasks or functions, then it is likely
that these tasks or functions are defined by a interface application that must be loaded by the
simulator.

ModelSim supports SystemVerilog system tasks and functions as follows:

• Most system tasks and functions defined in SystemVerilog IEEE Std 1800-2012

• Several system tasks and functions that are specific to ModelSim

ModelSim User’s Manual, v10.4c202

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

• Several non-standard, Verilog-XL system tasks

IEEE Std 1800-2012 System Tasks and Functions
The following system tasks and functions are supported by ModelSim and are described more
completely in the Language Reference Manual (LRM) for SystemVerilog, IEEE Std
1800-2012.

Note
You can use the change command to modify local variables in Verilog and
SystemVerilog tasks and functions.

Utility System Tasks and Functions

Table 6-3. Utility System Tasks and Functions

Simulator control
tasks

Simulation time
functions

Timescale tasks Data query functions

$finish $realtime $printtimescale $bits

$stop $stime $timeformat $isunbounded

$exit $time $typename

Table 6-4. Utility System Functions

Conversion
functions

Array querying
functions

Bit vector system
functions

$bitstoreal $dimensions countbits

$bitstoshortreal $left countones

$realtobits $right $onehot

$shortrealtobits $low $onehot0

$itor $high $isunknown

$rtoi $increment

$signed $size

$unsigned

$cast

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 203

Table 6-5. Utility System Math Functions

Math Functions

$clog2 $floor $acos $cosh

$ln $ceil $atan $tanh

$log10 $sin $atan2 $asinh

$exp $cos $hypot $acosh

$sqrt $tan $sinh $atanh

$pow $asin

Table 6-6. Utility System Analysis Tasks and Functions

Probabilistic
distribution
functions

Stochastic analysis
tasks and functions

PLA modeling tasks Miscellaneous tasks
and functions

$dist_chi_square $q_add $async$and$array $system

$dist_erlang $q_exam $async$nand$array

$dist_exponential $q_full $async$or$array

$dist_normal $q_initialize $async$nor$array

$dist_poisson $q_remove $async$and$plane

$dist_t $async$nand$plane

$dist_uniform $async$or$plane

$random $async$nor$plane

$sync$and$array

$sync$nand$array

$sync$or$array

$sync$nor$array

$sync$and$plane

$sync$nand$plane

$sync$or$plane

$sync$nor$plane

ModelSim User’s Manual, v10.4c204

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

Input/Output System Tasks and Functions

Table 6-7. Input/Output System Tasks and Functions

Display tasks Value change dump
(VCD) file tasks

$display $dumpall

$displayb $dumpfile

$displayh $dumpflush

$displayo $dumplimit

$monitor $dumpoff

$monitorb $dumpon

$monitorh $dumpvars

$monitoro

$monitoroff

$monitoron

$strobe

$strobeb

$strobeh

$strobeo

$write

$writeb

$writeh

$writeo

Table 6-8. Input/Output System Memory and Argument Tasks

Memory load tasks Memory dump tasks Command line input

$readmemb $writememb $test$plusargs

$readmemh $writememh $value$plusargs

Table 6-9. Input/Output System File I/O Tasks

File I/O tasks

$fclose $fmonitoro $fwriteo

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 205

$fdisplay $fopen $rewind

$fdisplayb $fread $sdf_annotate

$fdisplayh $fscanf $sformatf

$fdisplayo $fseek $sscanf

$feof $fstrobe $swrite

$ferror $fstrobeb $swriteb

$fflush $fstrobeh $swriteh

$fgetc $fstrobeo $swriteo

$fgets $ftell $ungetc

$fmonitor $fwrite

$fmonitorb $fwriteb

$fmonitorh $fwriteh

Table 6-9. Input/Output System File I/O Tasks (cont.)

File I/O tasks

ModelSim User’s Manual, v10.4c206

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

Other System Tasks and Functions

Using the $typename Data Query Function
The type name string returned by $typename() will not include class, struct and enum members,
nor any class extensions.

This default behavior can be overwritten using any of the following predefined macros as the
optional second argument to $typename():

• `mtiTypenameExpandSuper — Extensions are included in type name.

• `mtiTypenameExpandMembers — Class, struct and enum members are included.

• `mtiTypenameExpandAll — Members and extensions are both included.

Example Usage

$typename(a, `mtiTypenameExpandAll);

The various form of $typename() output for a parametrized class "vector" which extends
another parametrized class "vector_base", both of which are defined in the module
scope "typename_parameterized_class":

$typename(a) will return:

class typename_parameterized_class/vector #(10, reg, 0)

Table 6-10. Other System Tasks and Functions

Timing check tasks Random number functions Other functions

$hold $urandom $root

$nochange $urandom_range $unit

$period

$recovery

$setup

$setuphold

$skew

$width1

1. Verilog-XL ignores the threshold argument even though it is part of the Verilog spec.
ModelSim does not ignore this argument. Be careful that you do not set the threshold
argument greater-than-or-equal to the limit argument as that essentially disables the $width
check. Also, note that you cannot override the threshold argument by using SDF annotation.

$removal

$recrem

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 207

$typename(a, `mtiTypenameExpandSuper) will return:

class typename_parameterized_class/vector #(10, reg, 0) extends class
typename_parameterized_class/vector_base #(reg)

$typename(a, `mtiTypenameExpandMembers) will return:

class typename_parameterized_class/vector #(10, reg, 0){reg b; reg$[9:0] a;}

$typename(a, `mtiTypenameExpandAll) will return:

class typename_parameterized_class/vector #(10, reg, 0){reg b; reg$[9:0] a;} extends
class typename_parameterized_class/vector_base #(reg){reg b;}

Old behavior of $typename(a):

class {reg b;reg$[9:0] a;}/typename_parameterized_class/vector::vector #(10, logic, 0) extends
class {reg b;}/typename_parameterized_class/vector_base::vector_base #(logic)

Task and Function Names Without Round Braces
‘()’

Strict compliance with the Language Reference Manual IEEE Std 1364 requires that all
hierarchical task and function names have round braces “()” following the name to call the task
or function. In ModelSim 10.3 and later you may use hierarchical task and function names
without round braces.

The compiler will use the following rules for interpreting task and function names without
round braces:

1. Non class tasks/functions (static or non static) will be interpreted as a search in the scope
of the function and not a function call.

2. Non-static class methods will be treated as a function call.

3. Static class methods will be treated as a lookup in the function scope.

4. Once a function call is made for a hierarchical name, all subsequent function names will
be treated as function calls whether the type of function is static or non-static.

Examples

module top;
 class CTest1 ;
 string s;
 static function CTest1 g();
 static CTest1 s = new();
 CTest1 t = new();
 $display ("hello_static") ;
 return t;
 endfunction

ModelSim User’s Manual, v10.4c208

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

 function CTest1 f();
 static string s;
 CTest1 t = new();
 $display ("hello_auto") ;
 return t;
 endfunction
 endclass;
CTest1 t1 = new();

initial t1.g.s.f.g.s="hello";

endmodule

In the above code, the dotted name:

t1.g.s.f.g.s

is interpreted by the fourth rule above as:

t1.g.s.f().g().s

The first g is treated as a scope lookup, since it is a static function. Since f is an automatic
function, it is treated as a function call. The next g is treated as a function call g() since
according to rule 4, once an automatic function gets called, all subsequent names in the list
which are Function names, whether static or automatic, are treated as function calls.

Verilog-XL Compatible System Tasks and
Functions

ModelSim supports a number of Verilog-XL specific system tasks and functions.

Supported Tasks and Functions Mentioned in IEEE Std
1364

The following supported system tasks and functions, though not part of the IEEE standard, are
described in an annex of the IEEE Std 1364.

$countdrivers
$getpattern
$sreadmemb
$sreadmemh

Supported Tasks and Functions Not Described in IEEE
Std 1364

The following system tasks are also provided for compatibility with Verilog-XL, though they
are not described in the IEEE Std 1364.

$deposit(variable, value);

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 209

This system task sets a Verilog net to the specified value. variable is the net to be
changed; value is the new value for the net. The value remains until there is a
subsequent driver transaction or another $deposit task for the same net. This system task
operates identically to the ModelSim force -deposit command.

$disable_warnings("<keyword>"[,<module_instance>...]);

This system task instructs ModelSim to disable warnings about timing check violations
or triregs that acquire a value of ‘X’ due to charge decay. <keyword> may be decay or
timing. You can specify one or more module instance names. If you do not specify a
module instance, ModelSim disables warnings for the entire simulation.

$enable_warnings("<keyword>"[,<module_instance>...]);

This system task enables warnings about timing check violations or triregs that acquire a
value of ‘X’ due to charge decay. <keyword> may be decay or timing. You can specify
one or more module instance names. If you do not specify a module_instance,
ModelSim enables warnings for the entire simulation.

$system("command");

This system function takes a literal string argument, executes the specified operating
system command, and displays the status of the underlying OS process. Double quotes
are required for the OS command. For example, to list the contents of the working
directory on Unix:

$system("ls -l");

Return value of the $system function is a 32-bit integer that is set to the exit status code
of the underlying OS process.

Note
There is a known issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin on the gcc command line.

$systemf(list_of_args)

This system function can take any number of arguments. The list_of_args is treated
exactly the same as with the $display() function. The OS command that runs is the final
output from $display() given the same list_of_args. Return value of the $systemf
function is a 32-bit integer that is set to the exit status code of the underlying OS
process.

ModelSim User’s Manual, v10.4c210

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

Note
There is a known issue in the return value of this system function on the win32 platform.
If the OS command is built with a cygwin compiler, the exit status code may not be
reported correctly when an exception is thrown, and thus the return code may be wrong.
The workaround is to avoid building the application using cygwin or to use the switch
-mno-cygwin in cygwin on the gcc command line.

$test$plusargs("plus argument")

This system function tests for the presence of a specific plus argument on the simulator's
command line. It returns 1 if the plus argument is present; otherwise, it returns 0. For
example, to test for +verbose:

if ($test$plusargs("verbose"))
$display("Executing cycle 1");

Extensions to Supported System Tasks
Additional functionality has been added to the $fopen, $setuphold, and $recrem system tasks.

New Directory Path With $fopen
The $fopen systemtask has been extended to create a new directory path if the path does not
currently exist.

You must set the vlogCreateDirForFileAccess modelsim.ini variable to '1' to enable this feature.
For example: your current directory contains the directory “dir_1 with no other directories
below it and the CreateDirForFileAccess variable is set to “1”. Executing the following line of
code:

fileno = $fopen("dir_1/nodir_2/nodir_3/testfile", "w");

creates the directory path nodir_2/nodir_3 and opens the file “testfile” in write mode.

Negative Timing Checks With $setuphold and $recrem
The $setuphold and $recrem system tasks have been extended to provide additional
functionality for negative timing constraints and an alternate method of conditioning, as in
Verilog-XL.

Related Topics

Refer to Commands Supporting Negative Timing Check Limits for more information.

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

ModelSim User’s Manual, v10.4c 211

Unsupported Verilog-XL System Tasks
The following system tasks are Verilog-XL system tasks that are not implemented in ModelSim
Verilog, but have equivalent simulator commands.

$input("filename")

This system task reads commands from the specified filename. The equivalent simulator
command is do <filename>.

$list[(hierarchical_name)]

This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the Structure (sim) window. The
corresponding source code is displayed in a Source window.

$reset

This system task resets the simulation back to its time 0 state. The equivalent simulator
command is restart.

$restart("filename")

This system task sets the simulation to the state specified by filename, saved in a
previous call to $save. The equivalent simulator command is restore <filename>.

$save("filename")

This system task saves the current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hierarchical_name)

This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes

This system task displays a list of scopes defined in the current interactive scope. The
equivalent simulator command is show.

$showvars

This system task displays a list of registers and nets defined in the current interactive
scope. The equivalent simulator command is show.

String Class Methods for Matching Patterns
This group of functions are not a part of the SystemVerilog LRM. However, the ModelSim
simulator supports their use, unless you inlcude the -pedanticerrors argument to vlog, in which
case you will receive an error.

The regular expressions for these functions use Perl pattern syntax.

ModelSim User’s Manual, v10.4c212

Verilog and SystemVerilog Simulation
SystemVerilog System Tasks and Functions

• search() — This function searches for a pattern in the string and returns the integer index
to the beginning of the pattern.

search(string pattern);

where pattern must be a string. For example:

integer i;
string str = "ABCDEFGHIJKLM";
i = str.search("HIJ");
printf("%d \n", i);

results in printing out “8”.

• match () — This function processes a regular expression pattern match, returning a 1 if
the expression is found or a 0 if the expression is not found or if there is an error in the
regular expression.

match (string pattern);

where pattern must be a regular expression. For example:

integer i;
string str;
str = "ABCDEFGHIJKLM";
i = str.match("CDE”);

results assigning the value 1 to integer i because the pattern CDE exists within string str.

• prematch() — This function returns the string before a match, based on the result of the
last match() function call.

prematch();

Based on the example for match(), the following:

str1 = str.prematch();

would be assigned the string “AB”

• postmatch() — This function returns the string after a match, based on the result of the
last match() function call.

postmatch();

Based on the example for match(), the following:

str2 = str.postmatch();

would be assigned the string “FGHIJKLM”

• thismatch() — This function returns matched string, based on the result of the last
match() function call.

thismatch();

Verilog and SystemVerilog Simulation
Compiler Directives

ModelSim User’s Manual, v10.4c 213

Based on the example for match(), the following:

str3 = str.thismatch();

would be assigned the string “CDE”

• backref() — This function returns matched patterns, based on the last match() function
call.

backref(integer index);

where index is the integer number of the expression being matched (indexing starts at 0).
For example:

integer i;
string str, patt, str1, str2;
str = "12345ABCDE"
patt = "([0-9]+) ([a-zA-Z .]+)";
i = str.match(patt);
str1 = str.backref(0);
str2 = str.backref(1);

results in assigning the value “12345” to the string str1 because of the match to the
expression “[0-9]+”. It also results in assigning the value “ABCDE” to the string str2
because of the match to the expression “[a-zA-Z .]+”.

You can specify any number of additional Perl expressions in the definition of patt and
then call them using sequential index numbers.

Compiler Directives
ModelSim Verilog supports all of the compiler directives defined in the IEEE Std 1364, some
Verilog-XL compiler directives, and some that are proprietary.

Many of the compiler directives (such as `timescale) take effect at the point they are defined in
the source code and stay in effect until the directive is redefined or until it is reset to its default
by a `resetall directive. The effect of compiler directives spans source files, so the order of
source files on the compilation command line could be significant. For example, if you have a
file that defines some common macros for the entire design, then you might need to place it first
in the list of files to be compiled.

The `resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the IEEE Std 1364):

ModelSim User’s Manual, v10.4c214

Verilog and SystemVerilog Simulation
Compiler Directives

`celldefine
‘default_decay_time
`default_nettype
`delay_mode_distributed
`delay_mode_path
`delay_mode_unit
`delay_mode_zero
`protect
`timescale
`unconnected_drive
`uselib

ModelSim Verilog implicitly defines the following macro:

`define QUESTA

IEEE Std 1364 Compiler Directives
The following compiler directives are described in detail in the IEEE Std 1364.

`celldefine
`default_nettype
`define
`else
`elsif
`endcelldefine
`endif
`ifdef
‘ifndef
`include
‘line
`nounconnected_drive
`resetall
`timescale
`unconnected_drive
`undef

Verilog-XL Compatible Compiler Directives
The following compiler directives are provided for compatibility with Verilog-XL.

‘default_decay_time <time>

This directive specifies the default decay time to be used in trireg net declarations that
do not explicitly declare a decay time. The decay time can be expressed as a real or
integer number, or as “infinite” to specify that the charge never decays.

`delay_mode_distributed

This directive disables path delays in favor of distributed delays. See Delay Modes for
details.

`delay_mode_path

Verilog and SystemVerilog Simulation
Unmatched Virtual Interface Declarations

ModelSim User’s Manual, v10.4c 215

This directive sets distributed delays to zero in favor of path delays. See Delay Modes
for details.

`delay_mode_unit

This directive sets path delays to zero and nonzero distributed delays to one time unit.
See Delay Modes for details.

`delay_mode_zero

This directive sets path delays and distributed delays to zero. See Delay Modes for
details.

`uselib

This directive is an alternative to the -v, -y, and +libext source library compiler
arguments. See Verilog-XL uselib Compiler Directive for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog. Many
of these directives are irrelevant to ModelSim Verilog, but may appear in code being ported
from Verilog-XL.

`accelerate
`autoexpand_vectornets
`disable_portfaults
`enable_portfaults
`expand_vectornets
`noaccelerate
`noexpand_vectornets
`noremove_gatenames
`noremove_netnames
`nosuppress_faults
`remove_gatenames
`remove_netnames
`suppress_faults

The following Verilog-XL compiler directives produce warning messages in ModelSim
Verilog. These are not implemented in ModelSim Verilog, and any code containing these
directives may behave differently in ModelSim Verilog than in Verilog-XL.

`default_trireg_strength
`signed
`unsigned

Unmatched Virtual Interface Declarations
The [1800-2012 SV] LRM does not address the relationship between interfaces as design
elements and virtual interfaces as types. The ModelSim flow allows substantial flexibility in
allowing virtual interfaces to exist even when the underlying interface design unit doesn't exist,
even in the design libraries.

When no matching interface exists, a virtual interface necessarily has a null value throughout
simulation as any incompatible assignment causes an error. In all cases of accessing data during

ModelSim User’s Manual, v10.4c216

Verilog and SystemVerilog Simulation
Verilog PLI and SystemVerilog DPI

simulation through such a virtual interface, an error results due to dereferencing a null virtual
interface.

However, there are a few situations in which types from such references can participate in the
design without requiring a dereference of the virtual interface pointer. This is extremely rare in
practice, but due to ModelSims overall elaboration and simulation flow, it is not possible for
ModelSim to determine whether such type references will actually be exercised during
simulation. So, for these cases, you can allow vsim to elaborate the design by adding the
following argument to vsim:

vsim -permit_unmatched_virtual_intf

Important: When using the -permit_unmatched_virtual_intf argument, take care to
ensure that no simulation time operations occur through unmatched virtual interfaces.

Related Topics

vsim

Verilog PLI and SystemVerilog DPI
ModelSim supports the use of several interfaces.

The interfaces include:

• Verilog PLI (Programming Language Interface)

• SystemVerilog DPI (Direct Programming Interface).

These interfaces provide a mechanism for defining tasks and functions that communicate with
the simulator through a C procedural interface.

Extensions to SystemVerilog DPI
This section describes extensions to the SystemVerilog DPI for ModelSim.

• SystemVerilog DPI extension to support automatic DPI import tasks and functions.

You can specify the automatic lifetime qualifier to a DPI import declaration in order to
specify that the DPI import task or function can be reentrant.

ModelSim supports the following addition to the SystemVerilog DPI import tasks and
functions (additional support is in bold):

dpi_function_proto ::= function_prototype

function_prototype ::= function [lifetime] data_type_or_void
function_identifier ([tf_port_list])

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 217

dpi_task_proto ::= task_prototype

task_prototype ::= task [lifetime] task_identifier
([tf_port_list])

lifetime ::= static | automatic

The following are a couple of examples:

import DPI-C cfoo = task automatic foo(input int p1);
import DPI-C context function automatic int foo (input int p1);

SystemVerilog Class Debugging
Debugging your design starts with an understanding of how the design is put together, the
hierarchy, the environments, the class types. ModelSim gives you a number of avenues for
exploring your design, finding the areas of the design that are causing trouble, pinpointing the
specific part of the code that is at fault, making the changes necessary to fix the code, then
running the simulation again.

This section describes the steps you take to enable the class debugging features and the
windows and commands that display information about the classes in your design.

Enabling Class Debug
You can enable visibility of class instances in your design in two ways.

Procedure

1. Use the vsim -classdebug option.

2. Set the ClassDebug modelsim.ini variable to 1.

The Class Instance Identifier
The Class Instance Identifier (CIID or Handle) is a unique name for every class instance created
during a simulation. The CIID format is @<class-type>@<n> where <class_type> is the name
of the class and <n> is the nth instance of that class. For example: @packet@134 is the 134th
instance of the class type packet.

The class type name alone may be used in the CIID if the class type name is unique in the
design. However, if the class type name is not unique the full path to the type declaration is
necessary.

The CIID may be used in commands such as examine, describe, add wave, add list.

ModelSim User’s Manual, v10.4c218

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Note
A CIID is unique for a given simulation. Modifying a design, or running the same design
with different parameters, randomization seeds, or other configurations that change the
order of operations, may result in a class instance changing. For example, @packet@134
in one simulation run may not be the same @packet@134 in another simulation run if the
design has changed.

Obtaining the CIID with the examine Command
You can use the examine -handle command to return the CIID to the transcript.

Procedure

Enter the following command at the command line:

examine -handle <filename>

Obtaining the CIID With a System Function
The built in system function $get_id_from_handle(class_ref) may be used to obtain the string
representing the class instance id for the specified class reference.

Procedure

The procedure is best illustrated with an example. The following code snippet will display the
CIID of the class item referenced by var.

myclass var;

initial begin

 #10

 var = new();

 $display("%t : var = %s", $time, $get_id_from_handle(var));

end

Results

10 : var = @myclass@1

Logging Class Types and Class Instances
You must log class variables, class types, or class instances in order to view them in the Wave
and List windows, and to view them post-simulation. The data recorded depends on the type of
class object you log.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 219

1. Log the class variable to create a record of all class objects the variable references from
the time they are assigned to the variable to when they are destroyed. For example:

log sim:/top/simple

You can find the correct syntax for the class variable by dragging and dropping the class
variable from the Objects window into the Transcript.

2. Log a class type to create a contiguous record of each instance of that class type from the
time the instance first comes into existence to the time the instance is destroyed with the
log -class command. For example:

log -class sim:/mem_agent_pkg::mem_item

Refer to Finding the Class Type Syntax for more information.

3. Log a specific instance of a class until it is destroyed by specifying the class identifier
for the specific class instance. For example:

log @myclass@7

Refer to The Class Instance Identifier for more information about finding and specifying
a class instance identifier.

4. Log a Class Path Expression. Refer to Working with Class Path Expressions for more
information.

Working with Class Types
You can view the class types in your design in the Class Tree, Class Graph, Structure, and other
windows.

Authoritative and Descriptive Class Type Names
ModelSim maintains two representations for class names: the authoritative class type name and
the descriptive class type name. This name mapping is specifically to support parameterized
class specializations.

Authoritative Class Type Names
Authoritative names end with "__n" where 'n' is an integer. For example: /pkg::mypclass__6.
Authoritative names offer a shorter, well-formed name, for a parameterized class specialization.
Authoritative names are used in most places in the user interface. They are also used as input to
commands that take a class type argument.

Descriptive Class Type Names
Descriptive names more closely resemble the class definition, but are longer (sometimes much
longer) and are sometimes difficult to read and parse. For example: /pkg::mypclass #(class

ModelSim User’s Manual, v10.4c220

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

inputclass, 128, class report__2). Descriptive names are used in error messages and are shown
in some places in the GUI such as in the class tree window.

The classinfo descriptive command will translate an authoritative name to a descriptive name.
For example:

VSIM> classinfo descriptive /pkg::mypclass__6

Class /pkg::mypclass__6 maps to /pkg::mypclass #(class inputclass, 128,
class report__2)

In this example, one of the parameters in the descriptive name is also a specialization of a
parameterized class.

Finding the Class Type Syntax
The <class_type> may be specified using the specific class type name or any path that resolves
to the class type. For example: @packet@134 may also be specified as
@/test_pkg::packet@134 assuming the class packet is defined in /test_pkg.

You can use the classinfo types -n command to determine whether or not a type name is unique
and return the requisite full class type name to the transcript. For example, the following
command returns all the shortest usable names for all class type names containing the string
"foo" :

VSIM> classinfo types -n *foo*

my_foo
foo2
/top/mod1/foo
/top/mod2/foo

In the output, my_foo and foo2 are unique class types. However, the last two entries show that
there are two distinct class types with the name 'foo'; one defined in mod1 and the other in
mod2. To specify an instance of type 'foo', the full path of the specific “foo” is required, for
example @/top/mod2/foo@19.

You can also find the correct syntax for a class type by dragging and dropping the class type
from the Structure window into the Transcript window.

Viewing Class Types in the GUI
You can view class types in several windows, including the Structure, Class Tree, and Class
Graph windows.

The Class Tree Window
The Class Tree window displays the class inheritance tree in various forms. You can expand
objects to see parent/child relationships, properties, and methods. You can organize by extended
class (default) or base class.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 221

The Class Tree window can help with an overview of your environment and architecture. It also
helps you view information about an object that is both a base and extended class. (Figure 6-5)

Figure 6-5. Classes in the Class Tree Window

Refer to the Class Tree Window section for more information.

The Class Graph Window
The Class Graph window displays interactive relationships between SystemVerilog classes in a
graphical form and includes extensions of other classes and related methods and properties. You
can organize by extended class (default) or by base class. Use it to show all of the relationships
between the classes in your design.

ModelSim User’s Manual, v10.4c222

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-6. Class in the Class Graph Window

Refer to the Class Graph Window section for more information.

The Structure Window
The Structure window displays the class types in your design. You must select a class type in
the Structure window to view that class type’s instances in the Class Instances window.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 223

Figure 6-7. Classes in the Structure Window

Working with Class Instances
Viewing class instances is helpful for finding class, OVM, and UVM components or subtypes
that have been instantiated. You can see how many of the instances have been created in the
Class Instances window or with the classinfo report and classinfo instances commands. You can
search through the list of components or transactions for an object with a specific value in the
Objects window.

The Class Instances Window
The Class Instances window displays information about all instances of a selected class type
that exist at the current simulation time.

You can open the Class Instances window by selecting View > Class Browser > Class
Instances or by specifying view classinstances on the command line. (Figure 6-8)

ModelSim User’s Manual, v10.4c224

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-8. The Class Instances Window

Prerequisites

The class debug feature must be enabled to use the Class Instances window. Refer to Enabling
Class Debug for more information.

The Class Instances window is dynamically populated by selecting SystemVerilog classes in
the Structure (sim) window. All currently active instances of the selected class are displayed in
the Class Instances window. Class instances that have not yet come into existence or have been
destroyed are not displayed. Refer to The classinfo Commands for more information about
verifying the current state of a class instance.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 225

Once you have chosen the design unit you want to observe, you can lock the Class Instances
window on that design unit by selecting File > Environment > Fix to Current Context when
the Class Instances window is active.

Viewing Class Instances in the Wave Window
The suggested workflow for logging SystemVerilog class objects in the Wave window is as
follows.

1. Log the class objects you are interested in viewing (refer to Logging Class Types and
Class Instances for more information)

2. Select a design unit or testbench System Verilog class type in the Structure Window that
contains the class instances you want to see. The class type will be identified as a
System Verilog class object in the Design Unit column. All currently existing class
instances associated with that class type or testbench item are displayed in the Class
Instances window. (Open the Class Instances window by selecting View > Class
Browser > Class Instances from the menus or use the view class instances command.)

3. Place the class objects in the Wave window once they exist by doing one of the
following:

• Drag a class instance from the Class Instances window or the Objects window and
drop it into the Wave window (refer to Figure 6-9).

• Select multiple objects in the Class Instances window, click and hold the Add
Selected to Window button in the Standard toolbar, then select the position of the
placement; the top of the Wave window, the end of the Wave window, or above the
anchor location. The group of class instances are arranged with the most recently
created instance at the top. You can change the order of the class instances to show
the first instance at the top of the window by selecting View > Sort > Ascending.

ModelSim User’s Manual, v10.4c226

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-9. Placing Class Instances in the Wave Window

You can hover the mouse over any class waveform to display information about the class
variable (Figure 6-10).

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 227

Figure 6-10. Class Information Popup in the Wave Window

The Locals Window
The Locals window displays data objects that are immediately visible at the current execution
point of the selected context. Clicking in the objects window or Structure window might make
you lose the current context. The Locals window is synchronized with the Call-Stack window
and the contents are updated as you move through the design.

Related Topics

Refer to the Locals Window section for more information.

The Watch Window
The Watch window displays signal or variable values at the current simulation time. It helps
you view a subset of local or class variables when stopped on a breakpoint.

Use the Watch window when the Locals window is crowded. You can drag and drop objects
from the Locals window into the Watch window (Figure 6-11).

ModelSim User’s Manual, v10.4c228

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-11. Class Viewing in the Watch Window

Refer to the Watch Window section for more information.

The Call Stack Window
The Call Stack window is useful for viewing your design when you are stopped at a breakpoint.
You can go up the call stack to see the locals context at each stage of your design.

Related Topics

Refer to the Call Stack Window section for more information.

Working with Class Path Expressions
A class path expression is a hierarchical path through a class hierarchy.

Class path expressions:

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 229

• allow you to view class properties in the Wave and Watch windows, and return data
about class properties with the examine command. You can see how the class properties
change over time even when class references within the path expression change values.

• may be added to the Wave window even when they do not exist.

• may be expanded inline in the Wave window without having to add class objects to the
Wave window individually.

• may be cast to the legal types for the expression. In the Wave window, the casting
options are restricted to the set of types of objects actually assigned to the references.

• are automatically logged once the expression is added to the Wave window.

Class Path Expression Syntax
Class path expressions require a specific syntax.

For example, a correct path expression is written as follows:

/top/myref.xarray[2].prop

where

myref is a class variable

xarray is an array of class references

prop is a property in the xarray element class type

In this case the expression allows you to watch the value of prop even if myref changes to point
to a different class object, or if the reference in element [2] of xarray changes.

Adding a Class Path Expression to the Wave Window
You can add a class path expression to the Wave window with the add wave command.

For example:

add wave /top/myref.ref_array[0].prop

Class Path Expression Values
A class path expression may have one of several possible values.

• The expression may have a standard value of the type of the leaf element in the
expression.

• The expression may have a value of ‘Null’ if the leaf element is a class reference and its
value is null.

ModelSim User’s Manual, v10.4c230

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

• The expression may have a value of ‘Does Not Exist’ in the case that an early part of the
expression has a null value. In the earlier example, /top/myref.xarray[2].prop, if myref is
null then prop does not exist.

Figure 6-12. Class Path Expressions in the Wave Window

Casting a Class Variable to a Specific Type
You can cast a class variable to any of the class types that have been assigned to that class
variable. the default is the declared type of the class variable.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 231

Figure 6-13. /top/a Cast as c1 and c1prime

Procedure

1. Right-click (RMB) the class variable waveform and select Cast to.

2. RMB over the name/value of the class reference in the Pathnames or the Values Pane of
the Wave window to open a popup menu. Select Cast to > <class_type>. The current
value will have check mark next to it. (Figure 6-14)

ModelSim User’s Manual, v10.4c232

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-14. Casting c1 to c1prime

Class Objects vs Class Path Expressions
By default, a path that includes a class reference will be interpreted in the user interface as a
path expression. There are cases where the interpreted object is what is desired and not the path
expression.

For example,

add wave /top/myref.prop

will add the class path expression to the wave window. The expression will be evaluated
regardless of what class object is referenced by myref.

Using the -obj argument to the add wave command will cause the command to interpret the
expression immediately and add the specific class object to the Wave window instead of the
class path expression. For example:

add wave -obj /top/myref.prop

will add the currently class object and property to the Wave window, in this case,
@myref@19.prop. @myref@19 is the specific object at the time the command was executed.

Disabling Class Path Expressions
Setting the MTI_DISABLE_PATHEXPR environment variable will disable the interpretations
of all class path expressions. This is equivalent to the behavior in version 10.2 and earlier.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 233

Conditional Breakpoints in Dynamic Code
You can set a breakpoint or a conditional breakpoint at any place in your source code.

Examples

• Conditional breakpoint in dynamic code

bp mem_driver.svh 60 -cond {this.id == 9}

• Stop on a specific instance ID.

a. Enter the command:

examine -handle

b. Drag and drop the object from the Objects window into the Transcript window.
ModelSim adds the full path to the command.

examine –handle
{sim:/uvm_pkg::uvm_top.top_levels[0].super.m_env.m_mem_agent.m_driver}

c. Press Enter

Returns the class instance ID in the form @<class_type>@<n>:

@mem_driver@1

d. Enter the class instance ID as the condone in the breakpoint.

bp mem_driver.svh 60 -cond {this == @mem_driver@1}

• Stop on a more complex condition:

bp bfm.svh 50 {

set handle [examine -handle this];

set x_en_val [examine this.x_en_val];

if {($handle != @my_bfm@7) || ($x_en_val != 1)}{

 continue

}

}

Refer to Setting Conditional Breakpoints or more information about conditional breakpoints.

Stepping Through Your Design
Stepping through your design is helpful once you have pinpointed the area of the design where
you think there’s a problem. In addition to stepping to the next line, statement, function or
procedure, you have the ability to step within the current context (process or thread). This is

ModelSim User’s Manual, v10.4c234

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

helpful when debugging class based code since the next step may take you to a different thread
or section of your code rather than to the next instance of a class type.

For example:

Table 6-11. Stepping Within the Current Context.

Refer to the Step Toolbar section for a complete description of the stepping features.

The Run Until Here Feature
To quickly and easily run to a specific line of code, you can use the ‘Run Until Here’ feature.
When you invoke Run Until Here, the simulation will run from the current simulation time and
stop on the specified line of code unless

• The simulator encounters a breakpoint.

• The Run Length preference variable causes the simulation run to stop.

• The simulation encounters a bug.

To specify Run Until Here, right-click on the line where you want the simulation to stop and
select Run Until Here from the pop up context menu. The simulation starts running the
moment the right mouse button releases.

Refer to Run Until Here for more information.

Command Line Interface
Enter commands on the Vsim command line in the Transcript window. This allows you to work
with data for class types, their scopes, paths, names, and so forth. You can call SystemVerilog
static functions and class functions with the call command. Commands also help you find the
proper name syntax for referencing class based objects in the GUI.

Step the simulation into the next statement,
remaining within the current context.

Step the simulation over a function or
procedure remaining within the current
context. Executes the function or procedure
call without stepping into it.

Step the simulation out of the current function
or procedure, remaining within the current
context.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 235

Class Instance Values
The examine command returns current values for classes or variables to the transcript while
debugging. The examine command can help you debug by displaying the name of a class
instance or the field values for a class instance before setting a conditional breakpoint.

Examples

• Print the current values of a class instance.

examine /ovm_pkg::ovm_test_top

• Print the values when stopped at a breakpoint within a class.

examine this

• Print the unique ID of a specific class instance using the full path to the object.

examine –handle /ovm_pkg::ovm_test_top.i_btn_env

• Print the unique handle of the class object located at the current breakpoint.

examine –handle this

• Print the value of a specific class instance.

examine @mem_item@9

Class Instance Properties
Use the describe command to display data members, properties, methods, tasks, inheritance,
and other information about class instances, and print it in the transcript window.

• Display data for the class instance @questa_messagelogger_report_server@1

describe @questa_messagelogger_report_server@1

Returns:

class /questa_uvm_pkg::questa_messagelogger_report_server extends
/uvm_pkg::uvm_report_server
static /questa_uvm_pkg::questa_messagelogger_report_server
m_q;
function new;
static function message_logger;
function compose_message;
function process_report;
static function get;
static function init;
endclass

• Display data for the class type mailbox__1

describe mailbox__1

Returns:

ModelSim User’s Manual, v10.4c236

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

class /std::mailbox::mailbox__1
Queue items;
int maxItems;
chandle read_awaiting;
chandle write_awaiting;
chandle qtd;
/std::semaphore read_semaphore;
/std::semaphore write_semaphore;
function new;
task put;
function try_put;
task get;
function try_get;
task peek;
function try_peek;
function post_randomize;
function pre_randomize;
function constraint_mode;
endclass

Calling Functions
The call command calls SystemVerilog static functions, class functions directly from the vsim
command line in live simulation mode and Verilog interface system tasks and system functions.
Tasks are not supported.

Function return values are returned to the vsim shell as a Tcl string. Returns the class instance
ID when a function returns a class reference.

Call a static function or a static 0 time task from the command line.

Examples:

call /ovm_pkg::ovm_top.find my_comp
call @ovm_root@1.find my_comp
call @ovm_root@1.print_topology
call /uvm_pkg::factory.print

The classinfo Commands
The classinfo commands give you high level information about the class types and class
instances in your design.

Finding the Full Path and Name of a Class Type
The classinfo descriptive command returns the descriptive class type name given the
authoritative class type name.

The authoritative class type name (e.g. mypclass__9) has a corresponding descriptive name
that may be more useful in determining the actual class type and the details of it's specialization.
This command allows you to see the mapping from the authoritative name to the descriptive
name.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 237

Prerequisites

Specify the -classdebug argument with the vsim command.

Procedure

Enter the classinfo descriptive command for the desired class type.

classinfo descriptive <class_type>

Examples

• Display the descriptive class type name for /std::mailbox::mailbox__1

classinfo descriptive /std::mailbox::mailbox__1

Returns:

Class /std::mailbox::mailbox__1 maps to mailbox #(class uvm_phase)

Related Topics

Refer to Authoritative and Descriptive Class Type Names for more information, and see the
classinfo descriptive command.

Determining the Current State of a Class Instance
The classinfo find command searches the currently active dataset for the state of the specified
Class Instance Identifier, whether it exists, has not yet been created, or has been destroyed. You
can specify an alternate dataset for the search and save the results of the search to a text file or to
the transcript as a tcl string.

Procedure

Enter the classinfo find command with the desired class instance.

classinfo find <class_instance>

Examples

• Verify the existence of the class instance @mem_item@87

classinfo find @mem_item@87

Returns:

@mem_item@87 exists

or

@mem_item@87 not yet created

ModelSim User’s Manual, v10.4c238

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

or

@mem_item@87 has been destroyed

Related Topics

See the classinfo find command.

Finding All Instances of a Class Type
The classinfo instances command reports the list of existing class instances for a specific class
type. This could be useful in determining what class instances to log or examine. It may also
help in debugging problems where class instances are not being cleaned up as they should be
resulting in run-away memory usage.

Procedure

Enter the classinfo instances command with the desired class type.

classinfo instances <classname>

Examples

• List the currently active instances of the class type mem_item.

classinfo instances mem_item

Returns:

@mem_item@140
@mem_item@139
@mem_item@138
@mem_item@80
@mem_item@76
@mem_item@72
@mem_item@68
@mem_item@64

Related Topics

See the classinfo instances command.

Reporting Statistics for All Class Instances
The classinfo report command prints detailed statistics about class instances.

The report includes:

• full relative path

• class instance name

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 239

• total number of instances of the named class

• maximum number of instances of a named class that existed simultaneously at any time
in the simulation

• current number of instances of the named class

The columns may be arranged, sorted, or eliminated using the command arguments.

Procedure

Enter the classinfo report command at the command line.

classinfo report

Examples

• Create a report of all class instances in descending order in the Total column. Print the
Class Names, Total, Peak, and Current columns. List only the first six lines of that
report.

classinfo report -s dt -c ntpc -m 6

Returns:

Class Name Total Peak Current
uvm_pool__11 318 315 315
uvm_event 286 55 52
uvm_callback_iter__1 273 3 2
uvm_queue__3 197 13 10
uvm_object_string_pool__1 175 60 58
mem_item 140 25 23

Related Topics

See the classinfo report command.

Reporting Class Instance Statistics for a Simulation Run
The classinfo stats command reports statistics about the total number of class types and total,
peak, and current class instance counts during the simulation.

Procedure

Enter the classinfo stats command at the command line.

classinfo stats

ModelSim User’s Manual, v10.4c240

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Examples

• Display the current number of class types, the maximum number, peak number and
current number of all class instances.

classinfo stats

Returns:

class type count 451
class instance count (total) 2070
class instance count (peak) 1075
class instance count (current) 1058

Related Topics

See the classinfo stats command.

Reporting Active References to a Class Instance
The classinfo trace command displays the active references to the specified class instance. This
is very useful in debugging situations where class instances are not being destroyed as expected
because something in the design is still referencing the class instance. Finding those references
may lead to uncovering bugs in managing these class references which often lead to large
memory savings.

Procedure

Enter the classinfo trace command with the desired class instance.

classinfo trace <class_instance>

Examples

• Return the first active reference to @my_report_server@1

classinfo trace @my_report_server@1

Returns:

top.test.t_env.m_rh.m_srvr

Related Topics

See the classinfo trace command.

Finding Class Type Inheritance
The classinfo ancestry command shows the inheritance of a specific class type. With some
designs and methodologies class hierarchy can become quite deep. This command will show all
of the super classes of a class type back to it's base class.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 241

Procedure

Enter the classinfo ancestry command with the desired class type.

classinfo ancestry <class_type>

Examples

• Return the inheritance for mem_item.

classinfo ancestry mem_item

Returns:

class /mem_agent_pkg::mem_item extends /uvm_pkg::uvm_sequence_item
class /uvm_pkg::uvm_sequence_item extends /uvm_pkg::uvm_transaction
class /uvm_pkg::uvm_transaction extends /uvm_pkg::uvm_object
class /uvm_pkg::uvm_object extends /uvm_pkg::uvm_void
class /uvm_pkg::uvm_void

Related Topics

See the classinfo ancestry command.

Listing Classes Derived or Extended From a Class Type
The classinfo command lists the classes derived from the specified class type. When one class
(X) extends another class (Y), class X inherits the characteristics of class Y. Class X, therefore,
'isa' class Y. Class X is also a class X, of course. Class Y, however, is not a class X.

Consider a simple example of a class called Fruit (Figure 6-15Extensions for a Class Type).
Class Apple extends Fruit, and class Pear extends Fruit. Further, classes HoneyCrisp,
GoldenDelicious, and Gravenstein extend Apple. The classes Bosc and and Bartlett extend
Pear.

ModelSim User’s Manual, v10.4c242

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

Figure 6-15. Extensions for a Class Type

Asking the question [classinfo isa Apple] would return Apple, HoneyCrisp, GoldenDelicious,
and Gravenstein. Asking [classinfo isa Pear] would return Pear, Bosc, and Bartlett. And finally,
[classinfo isa Fruit] would return Fruit, Apple, Pear, HoneyCrisp, GoldenDelicious,
Gravenstein, Bosc, and Bartlett.This command could be useful for determining all the types
extended from a particular methodology sequencer, for example.

Examples

• Find all extensions for the class type mem_item.

classinfo isa mem_item

Returns:

/mem_agent_pkg::mem_item
/mem_agent_pkg::mem_item_latency4_change_c
/mem_agent_pkg::mem_item_latency2_change_c
/mem_agent_pkg::mem_item_latency6_change_c
/mem_agent_pkg::mem_item_latency_random_c

Analyzing Class Types
The classinfo types command searches for and analyses class types by matching a regular
expression. Returns the inheritance hierarchy for classes, class extensions, and determines the
full path of class types.

class fruit extends fruit extends apple

class apple

class fruit

HoneyCrisp

class pear

GoldenDelicious

Gravenstein

Bosc

Bartlett

extends pear

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 243

Procedure

Enter the classinfo types command with the desired class type.

classinfo types <class_type>

Examples

• List the full path of the class types that do not match the pattern *uvm*. The scope and
instance name returned are in the format required for logging classes and when setting
some types of breakpoints,

classinfo types -x *uvm*

Returns:

/environment_pkg::test_predictor
/environment_pkg::threaded_scoreboard
/mem_agent_pkg::mem_agent
/mem_agent_pkg::mem_config
/mem_agent_pkg::mem_driver

Related Topics

See the classinfo types command.

Class Instance Garbage Collection
As your simulation run progresses, class instances are created and destroyed and the data stored
in memory. Though a class instance ceases to be referenced, the data for that instance is retained
in memory. The garbage collector (GC) deletes all un-referenced class objects from memory.

Default Garbage Collector Settings
Automatic execution of the garbage collector is dependent upon how your design is simulated.

The default settings for execution of the garbage collector are optimized to balance performance
and memory usage for either mode. The garbage collector executes when one of the following
events occurs depending on the mode:

• After the total of all class objects in memory reaches a specified size in Megabytes.

• At the end of each run command.

Table 6-12. Garbage Collector Modes

Mode Modelsim.ini Variable vsim argument

Class debug disabled ClassDebug = 0 vsim -noclassdebug
(default)

Class debug enabled ClassDebug = 1 vsim -classdebug

ModelSim User’s Manual, v10.4c244

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

• After each step operation.

GC Settings in Class Debug Disbled Mode

• Memory threshold = 100 megabytes

• At the end of each run command: Off

• At the end of each step command: Off

GC Settings in Class Debug Enabled Mode

• Memory threshold = 5 megabytes

• At the end of each run command: On

• At the end of each step command: Off

Changing the Garbage Collector Configuration
You can change the default garbage collector settings for the current simulation in the Garbage
Collector Configuration dialog box, on the command line, via modelsim.ini variables, or with
vsim command arguments.

Procedure

To open the Garbage Collector Configuration dialog, select Tools > Garbage Collector >
Configure to open the dialog box.

Figure 6-16. Garbage Collector Configuration

The default settings are loaded automatically and set based on whether you have specified the
-classdebug or the -noclassdebug argument with the vsim command.

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 245

Related Topics

Refer to CLI Garbage Collector Commands and INI Variables for garbage collector commands,
modelsim.ini variables and vsim command arguments.

To view the current garbage collector settings, enter gc configure without arguments.

Running the Garbage Collector
You can run the garbage collector at any time.

Procedure

Enter gc run at the command line.

Table 6-13. CLI Garbage Collector Commands and INI Variables

Action Commands INI Variable vsim Arguments

Set memory
threshold

gc configure
-threshold <value>

GCThreshold or
GCThresholdClassDebug

vsim
-gcthreshold <value>

Execute after
each run
command

gc configure
-onrun 0 |1

vsim -gconrun/
-nogconrun

Execute after
each step
command

gc configure
-onstep 0 | 1

vsim -gconstep/
-nogconstep

ModelSim User’s Manual, v10.4c246

Verilog and SystemVerilog Simulation
SystemVerilog Class Debugging

ModelSim User’s Manual, v10.4c 247

Chapter 7
Recording Simulation Results With Datasets

This chapter describes how to save the results of a ModelSim simulation and use them in your
simulation flow. In general, any recorded simulation data that has been loaded into ModelSim is
called a dataset.

One common example of a dataset is a wave log format (WLF) file. In particular, you can save
any ModelSim simulation to a wave log format (WLF) file for future viewing or comparison to
a current simulation. You can also view a wave log format file during the currently running
simulation.

A WLF file is a recording of a simulation run that is written as an archive file in binary format
and used to drive the debug windows at a later time. The files contain data from logged objects
(such as signals and variables) and the design hierarchy in which the logged objects are found.
You can record the entire design or choose specific objects.

A WLF file provides you with precise in-simulation and post-simulation debugging capability.
You can reload any number of WLF files for viewing or comparing to the active simulation.

You can also create virtual signals that are simple logical combinations or functions of signals
from different datasets. Each dataset has a logical name to indicate the dataset to which a
command applies. This logical name is displayed as a prefix. The current, active simulation is
prefixed by “sim:” WLF datasets are prefixed by the name of the WLF file by default.

Figure 7-1 shows two datasets in the Wave window. The current simulation is shown in the top
pane along the left side and is indicated by the “sim” prefix. A dataset from a previous
simulation is shown in the bottom pane and is indicated by the “gold” prefix.

ModelSim User’s Manual, v10.4c248

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

Figure 7-1. Displaying Two Datasets in the Wave Window

The simulator resolution (see Simulator Resolution Limit (Verilog) or Simulator Resolution
Limit for VHDL) must be the same for all datasets you are comparing, including the current
simulation. If you have a WLF file that is in a different resolution, you can use the wlfman
command to change it.

Saving a Simulation to a WLF File
If you add objects to the debugging windows in the graphic interface, or log objects with the log
command, the results of each simulation run are automatically saved to a WLF file called
vsim.wlf in the current directory.

 If you then run a new simulation in the same directory, the vsim.wlf file is overwritten with the
new results.

If you want to save the WLF file and not have it be overwritten, select the Structure tab and then
select File > Save. Or, you can use the -wlf <filename> argument to the vsim command or the
dataset save command.

Also, datasets can be saved at intervals, each with unique filenames, with the dataset snapshot
command. See “Saving at Intervals with Dataset Snapshot” for GUI instructions.

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

ModelSim User’s Manual, v10.4c 249

Note
If you do not use either the dataset save or dataset snapshot command, you must end a
simulation session with a quit or quit -sim command in order to produce a valid WLF
file. If you do not end the simulation in this manner, the WLF file will not close properly,
and ModelSim may issue the error message "bad magic number" when you try to open an
incomplete dataset in subsequent sessions. If you end up with a damaged WLF file, you
can try to repair it using the wlfrecover command.

Saving at Intervals with Dataset Snapshot
Dataset Snapshot lets you periodically copy data from the current simulation WLF file to
another file. This is useful for taking periodic "snapshots" of your simulation or for clearing the
current simulation WLF file based on size or elapsed time.

Procedure

1. Log objects of interest with the log command.

2. Select the Wave window to make it active.

3. Select Tools > Dataset Snapshot to open the Dataset Snapshot dialog box (Figure 7-2).

4. Select Enabled for the Dataset Snapshot State.

5. Set the simulation time or the wlf file size.

6. Choose whether the snapshot will contain only data since previous snapshot or all
previous data.

7. Designate the snapshot directory and file.

8. Choose whether to replace the existing snapshot file or use an incrementing suffix if a
file by the same name exists.

9. Click the OK button to create the dataset snapshot.

ModelSim User’s Manual, v10.4c250

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

Figure 7-2. Dataset Snapshot Dialog Box

You can customize the datasets either to contain all previous data, or only the data since
the previous snapshot. You can also set the dataset to overwrite previous snapshot files,
or increment the names of the files with a suffix.

Saving Memories to the WLF
By default, memories are not saved in the WLF file when you issue a "log -r /*" command.

Procedure

1. To get memories into the WLF file you will need to explicitly log them. For example:

log /top/dut/i0/mem

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

ModelSim User’s Manual, v10.4c 251

2. It you want to use wildcards, then you will need to remove memories from the
WildcardFilter list. To see what is currently in the WildcardFilter list, use the following
command:

set WildcardFilter

If "Memories" is in the list, reissue the set WildcardFilter command with all items in the
list except "Memories." For details, see Using the WildcardFilter Preference Variable.

Note
For post-process debug, you can add the memories into the Wave or List windows but the
Memory List window is not available.

WLF File Parameter Overview
There are a number of WLF file parameters that you can control via the modelsim.ini file or a
simulator argument.

This section summarizes the various parameters.

Table 7-1. WLF File Parameters

Feature modelsim.ini modelsim.ini
Default

vsim argument

WLF Cache Sizea WLFCacheSize = <n> 0 (no reader cache)

WLF Collapse
Mode

WLFCollapseModel = 0|1|2 1 (-wlfcollapsedelta) -nowlfcollapse
-wlfcollapsedelta
-wlfcollapsetime

WLF Compression WLFCompress = 0|1 1 (-wlfcompress) -wlfcompress
-nowlfcompress

WLF Delete on
Quita

WLFDeleteOnQuit = 0|1 0 (-wlfdeleteonquit) -wlfdeleteonquit
-nowlfdeleteonquit

WLF File Lock WLFFileLock = 0|1 0 (-nowlflock) -wlflock
-nowlflock

WLF File Name WLFFilename=<filename> vsim.wlf -wlf <filename>

WLF Index WLFIndex 0|1 1 (-wlfindex)

WLF Optimization1 WLFOptimize = 0|1 1 (-wlfopt) -wlfopt
-nowlfopt

WLF Sim Cache
Size

WLFSimCacheSize = <n> 0 (no reader cache)

WLF Size Limit WLFSizeLimit = <n> no limit -wlfslim <n>

WLF Time Limit WLFTimeLimit = <t> no limit -wlftlim <t>

ModelSim User’s Manual, v10.4c252

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

• WLF Cache Size — Specify the size in megabytes of the WLF reader cache. WLF
reader cache size is zero by default. This feature caches blocks of the WLF file to reduce
redundant file I/O. If the cache is made smaller or disabled, least recently used data will
be freed to reduce the cache to the specified size.

• WLF Collapse Mode —WLF event collapsing has three settings: disabled, delta, time:

o When disabled, all events and event order are preserved.

o Delta mode records an object's value at the end of a simulation delta (iteration) only.
Default.

o Time mode records an object's value at the end of a simulation time step only.

• WLF Compression — Compress the data in the WLF file.

• WLF Delete on Quit — Delete the WLF file automatically when the simulation exits.
Valid for current simulation dataset (vsim.wlf) only.

• WLF File Lock — Control overwrite permission for the WLF file.

• WLF Filename — Specify the name of the WLF file.

• WLF Indexing — Write additional data to the WLF file to enable fast seeking to specific
times. Indexing makes viewing wave data faster, however performance during
optimization will be slower because indexing and optimization require significant
memory and CPU resources. Disabling indexing makes viewing wave data slow unless
the display is near the start of the WLF file. Disabling indexing also disables
optimization of the WLF file but may provide a significant performance boost when
archiving WLF files. Indexing and optimization information can be added back to the
file using wlfman optimize. Defaults to on.

• WLF Optimization — Write additional data to the WLF file to improve draw
performance at large zoom ranges. Optimization results in approximately 15% larger
WLF files.

• WLFSimCacheSize — Specify the size in megabytes of the WLF reader cache for the
current simulation dataset only. This makes it easier to set different sizes for the WLF
reader cache used during simulation and those used during post-simulation debug. If
WLFSimCacheSize is not specified, the WLFCacheSize settings will be used.

• WLF Size Limit — Limit the size of a WLF file to <n> megabytes by truncating from
the front of the file as necessary.

• WLF Time Limit — Limit the size of a WLF file to <t> time by truncating from the
front of the file as necessary.

1. These parameters can also be set using the dataset config command.

Recording Simulation Results With Datasets
Saving a Simulation to a WLF File

ModelSim User’s Manual, v10.4c 253

Limiting the WLF File Size
You can easily limit the WLF file size by setting a simulation control variable or with a vsim
command switch.

Limit the WLF file size with the WLFSizeLimit simulation control variable in the modelsim.ini
file or with the -wlfslim switch for the vsim command. Either method specifies the number of
megabytes for WLF file recording.

A WLF file contains event, header, and symbol portions. The size restriction is placed on the
event portion only. When ModelSim exits, the entire header and symbol portion of the WLF file
is written. Consequently, the resulting file will be larger than the size specified with -wlfslim. If
used in conjunction with -wlftlim, the more restrictive of the limits takes precedence.

The WLF file can be limited by time with the WLFTimeLimit simulation control variable in the
modelsim.ini file or with the -wlftlim switch for the vsim command. Either method specifies the
duration of simulation time for WLF file recording. The duration specified should be an integer
of simulation time at the current resolution; however, you can specify a different resolution if
you place curly braces around the specification. For example,

vsim -wlftlim {5000 ns}

sets the duration at 5000 nanoseconds regardless of the current simulator resolution.

The time range begins at the current simulation time and moves back in simulation time for the
specified duration. In the example above, the last 5000ns of the current simulation is written to
the WLF file.

If used in conjunction with -wlfslim, the more restrictive of the limits will take effect.

The -wlfslim and -wlftlim switches were designed to help users limit WLF file sizes for long or
heavily logged simulations. When small values are used for these switches, the values may be
overridden by the internal granularity limits of the WLF file format. The WLF file saves data in
a record-like format. The start of the record (checkpoint) contains the values and is followed by
transition data. This continues until the next checkpoint is written. When the WLF file is limited
with the -wlfslim and -wlftlim switches, only whole records are truncated. So if, for example,
you are were logging only a couple of signals and the amount of data is so small there is only
one record in the WLF file, the record cannot be truncated; and the data for the entire run is
saved in the WLF file.

Opening Datasets
ModelSim allows you to open existing datasets.

Procedure

To open a dataset, do one of the following:

ModelSim User’s Manual, v10.4c254

Recording Simulation Results With Datasets
Dataset Structure

• Select File > Open to open the Open File dialog box and set the “Files of type” field to
Log Files (*.wlf). Then select the .wlf file you want and click the Open button.

• Select File > Datasets to open the Dataset Browser; then click the Open button to open
the Open Dataset dialog box (Figure 7-3).

Figure 7-3. Open Dataset Dialog Box

• Use the dataset open command to open either a saved dataset or to view a running
simulation dataset: vsim.wlf. Running simulation datasets are automatically updated.

The Open Dataset dialog box includes the following options:

o Dataset Pathname — Identifies the path and filename of the WLF file you want to
open.

o Logical Name for Dataset — This is the name by which the dataset will be referred.
By default this is the name of the WLF file.

Dataset Structure
Each dataset you open creates a structure tab in the Main window. The tab is labeled with the
name of the dataset and displays a hierarchy of the design units in that dataset.

The graphic below shows three structure tabs: one for the active simulation (sim) and one each
for two datasets (test and gold).

Recording Simulation Results With Datasets
Dataset Structure

ModelSim User’s Manual, v10.4c 255

Figure 7-4. Structure Tabs

If you have too many tabs to display in the available space, you can scroll the tabs left or right
by clicking the arrow icons at the bottom right-hand corner of the window.

Structure Window Columns
Structural information about datasets is presented in the Structure window.

Table 7-2 lists the columns displayed in each Structure window, by default.

You can hide or show columns by right-clicking a column name and selecting the name on the
list.

Table 7-2. Structure Tab Columns

Column name Description

Instance the name of the instance

Design unit the name of the design unit

Design unit type the type (for example, Module, Entity, and so
forth) of the design unit

ModelSim User’s Manual, v10.4c256

Recording Simulation Results With Datasets
Managing Multiple Datasets

Managing Multiple Datasets
ModelSim allows you to manage multiple datasets using menu selections from the graphic
interface or from the command line.

Managing Multiple Datasets in the GUI
When you have one or more datasets open, you can manage them using the Dataset Browser.

Procedure

Open the Dataset Browser by selecting File > Datasets.

Figure 7-5. The Dataset Browser

From the Dataset Browser you can open a selected dataset, save it, reload it, close it, make it the
active dataset, or rename it.

Managing Multiple Datasets from the Command
Line

You can open multiple datasets when the simulator is invoked by specifying more than one
vsim -view <filename> option. By default the dataset prefix will be the filename of the WLF
file.

Procedure

1. You can specify a different dataset name as an optional qualifier to the vsim -view
switch on the command line using the following syntax:

Recording Simulation Results With Datasets
Managing Multiple Datasets

ModelSim User’s Manual, v10.4c 257

-view <dataset>=<filename>

For example:

vsim -view foo=vsim.wlf

ModelSim designates one of the datasets to be the active dataset, and refers all names
without dataset prefixes to that dataset. The active dataset is displayed in the context
path at the bottom of the Main window. When you select a design unit in a dataset’s
Structure window, that dataset becomes active automatically. Alternatively, you can use
the Dataset Browser or the environment command to change the active dataset.

2. Design regions and signal names can be fully specified over multiple WLF files by
using the dataset name as a prefix in the path. For example:

sim:/top/alu/out

view:/top/alu/out

golden:.top.alu.out

Dataset prefixes are not required unless more than one dataset is open, and you want to
refer to something outside the active dataset. When more than one dataset is open,
ModelSim will automatically prefix names in the Wave and List windows with the
dataset name. You can change this default by selecting:

• List Window active: List > List Preferences; Window Properties tab > Dataset Prefix
pane

• Wave Window active: Wave > Wave Preferences; Display tab > Dataset Prefix
Display pane

3. ModelSim also remembers a "current context" within each open dataset. You can toggle
between the current context of each dataset using the environment command, specifying
the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to as just "current context") is
used for finding objects specified without a path.

4. You can lock the Objects window to a specific context of a dataset. Being locked to a
dataset means that the pane updates only when the content of that dataset changes. If
locked to both a dataset and a context (such as test: /top/foo), the pane will update only
when that specific context changes. You specify the dataset to which the pane is locked
by selecting File > Environment.

ModelSim User’s Manual, v10.4c258

Recording Simulation Results With Datasets
Collapsing Time and Delta Steps

Restricting the Dataset Prefix Display
You can turn dataset prefix viewing on or off by setting the value of a preference variable called
DisplayDatasetPrefix. Setting the variable value to 1 displays the prefix, setting it to 0 does not.
It is set to 1 by default.

Procedure

To change the value of this variable, do the following:

1. Choose Tools > Edit Preferences... from the main menu.

2. In the Preferences dialog box, click the By Name tab.

3. Scroll to find the Preference Item labeled Main and click [+] to expand the listing of
preference variables.

4. Select the DisplayDatasetPrefix variable then click the Change Value... button.

5. In the Change Preference Value dialog box, type a value of 0 or 1, where

o 0 = turns off prefix display

o 1 = turns on prefix display (default)

6. Click OK; click OK.

Additionally, you can prevent display of the dataset prefix by using the environment -nodataset
command to view a dataset. To enable display of the prefix, use the environment -dataset
command (note that you do not need to specify this command argument if the
DisplayDatasetPrefix variable is set to 1). These arguments of the environment command
override the value of the DisplayDatasetPrefix variable.

Collapsing Time and Delta Steps
By default ModelSim collapses delta steps. This means each logged signal that has events
during a simulation delta has its final value recorded to the WLF file when the delta has expired.
The event order in the WLF file matches the order of the first events of each signal.

You can configure how ModelSim collapses time and delta steps using arguments to the vsim
command or by setting the WLFCollapseMode variable in the modelsim.ini file. The table
below summarizes the arguments and how they affect event recording.

Table 7-3. vsim Arguments for Collapsing Time and Delta Steps

vsim argument effect modelsim.ini setting

-nowlfcollapse All events for each logged signal are
recorded to the WLF file in the exact order
they occur in the simulation.

WLFCollapseMode = 0

Recording Simulation Results With Datasets
Virtual Objects

ModelSim User’s Manual, v10.4c 259

When a run completes that includes single stepping or hitting a breakpoint, all events are
flushed to the WLF file regardless of the time collapse mode. It’s possible that single stepping
through part of a simulation may yield a slightly different WLF file than just running over that
piece of code. If particular detail is required in debugging, you should disable time collapsing.

Virtual Objects
Virtual objects are signal-like or region-like objects created in the GUI that do not exist in the
ModelSim simulation kernel.

ModelSim supports the following kinds of virtual objects:

• Virtual Signals

• Virtual Functions

• Virtual Regions

• Virtual Types

Virtual objects are indicated by an orange diamond as illustrated by Bus1 in Figure 7-6:

-wlfcollapsedelta Each logged signal which has events during a
simulation delta has its final value recorded
to the WLF file when the delta has expired.
Default.

WLFCollapseMode = 1

-wlfcollapsetime Same as delta collapsing but at the timestep
granularity.

WLFCollapseMode = 2

Table 7-3. vsim Arguments for Collapsing Time and Delta Steps (cont.)

vsim argument effect modelsim.ini setting

ModelSim User’s Manual, v10.4c260

Recording Simulation Results With Datasets
Virtual Objects

Figure 7-6. Virtual Objects Indicated by Orange Diamond

Virtual Signals
Virtual signals are aliases for combinations or subelements of signals written to the WLF file by
the simulation kernel. They can be displayed in the Objects, List, Watch, and Wave windows,
accessed by the examine command, and set using the force command.

You can create virtual signals using the Wave or List > Combine Signals menu selections or
by using the virtual signal command. Once created, virtual signals can be dragged and dropped
from the Objects pane to the Wave, Watch, and List windows. In addition, you can create
virtual signals for the Wave window using the Virtual Signal Builder (refer to Using the Virtual
Signal Builder).

Virtual signals are automatically attached to the design region in the hierarchy that corresponds
to the nearest common ancestor of all the elements of the virtual signal. The virtual signal
command has an -install <region> option to specify where the virtual signal should be
installed. This can be used to install the virtual signal in a user-defined region in order to
reconstruct the original RTL hierarchy when simulating and driving a post-synthesis, gate-level
implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. The virtual hide command can be used to hide the display of the broken-down
bits if you don't want them cluttering up the Objects window.

If the virtual signal has elements from more than one WLF file, it will be automatically installed
in the virtual region virtuals:/Signals.

Recording Simulation Results With Datasets
Virtual Objects

ModelSim User’s Manual, v10.4c 261

Virtual signals are not hierarchical – if two virtual signals are concatenated to become a third
virtual signal, the resulting virtual signal will be a concatenation of all the scalar elements of the
first two virtual signals.

The definitions of virtuals can be saved to a DO file using the virtual save command. By
default, when quitting, ModelSim will append any newly-created virtuals (that have not been
saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave or
List format, you will need to execute the virtuals.do file (or some other equivalent) to restore
the virtual signal definitions before you re-load the Wave or List format during a later run.
There is one exception: "implicit virtuals" are automatically saved with the Wave or List
format.

Implicit and Explicit Virtuals

An implicit virtual is a virtual signal that was automatically created by ModelSim without your
knowledge and without you providing a name for it. An example would be if you expand a bus
in the Wave window, then drag one bit out of the bus to display it separately. That action creates
a one-bit virtual signal whose definition is stored in a special location, and is not visible in the
Objects pane or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual Functions
Virtual functions behave in the GUI like signals but are not aliases of combinations or elements
of signals logged by the kernel. They consist of logical operations on logged signals and can be
dependent on simulation time.

Virtual functions can be displayed in the Objects, Wave, and List windows and accessed by the
examine command, but cannot be set by the force command.

Examples of virtual functions include the following:

• a function defined as the inverse of a given signal

• a function defined as the exclusive-OR of two signals

• a function defined as a repetitive clock

• a function defined as "the rising edge of CLK delayed by 1.34 ns"

You can also use virtual functions to convert signal types and map signal values.

The result type of a virtual function can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these types.

ModelSim User’s Manual, v10.4c262

Recording Simulation Results With Datasets
Virtual Objects

Verilog types are converted to VHDL 9-state std_logic equivalents and Verilog net strengths
are ignored.

To create a virtual function, use the virtual function command.

Virtual functions are also implicitly created by ModelSim when referencing bit-selects or part-
selects of Verilog registers in the GUI, or when expanding Verilog registers in the Objects,
Wave, or List window. This is necessary because referencing Verilog register elements requires
an intermediate step of shifting and masking of the Verilog "vreg" data structure.

Virtual Regions
User-defined design hierarchy regions can be defined and attached to any existing design region
or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in a gate-level
design and to locate virtual signals. Thus, virtual signals and virtual regions can be used in a
gate-level design to allow you to use the RTL test bench.

To create and attach a virtual region, use the virtual region command.

Virtual Types
User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual type is then used in a type conversion expression
to convert a signal to values of the new type. When the converted signal is displayed in any of
the windows, the value will be displayed as the enumeration string corresponding to the value of
the original signal.

To create a virtual type, use the virtual type command.

ModelSim User’s Manual, v10.4c 263

Chapter 8
Waveform Analysis

The Wave window is the most commonly used tool for analyzing and debugging your design
after simulation. It displays all signals in your design as waveforms and signal values and
provides a suite of graphical tools for debugging.

Wave Window Overview. 263

Objects You Can View. 264

Adding Objects to the Wave Window . 265

Inserting Signals in a Specific Location. 266

Working with Cursors. 267

Expanded Time in the Wave Window . 275

Zooming the Wave Window Display . 283

Searching in the Wave Window . 286

Filtering the Wave Window Display . 291

Filtering the Wave Window Display . 291

Formatting the Wave Window . 291

Wave Groups . 301

Composite Signals or Buses . 306

Saving the Window Format . 307

Exporting Waveforms from the Wave window. 308

Viewing System Verilog Interfaces. 312

Combining Objects into Buses . 313

Using the Virtual Signal Builder . 316

Miscellaneous Tasks . 320

Creating and Managing Breakpoints. 321

Wave Window Overview
The Wave window opens in the Main window. Like all other windows, it may be undocked
from the Main window by clicking the Undock button in the window header. When the Wave
window is docked in the Main window, all menus and icons that were in the undocked Wave
window move into the Main window menu bar and toolbar tabs.

ModelSim User’s Manual, v10.4c264

Waveform Analysis
Objects You Can View

Figure 8-1. The Wave Window

For more information about the graphic features of the Wave window, see the Wave Window
section of the GUI Reference Manual.

Objects You Can View
The list below identifies the types of objects that you can view in the Wave window. Each
object type is indicated by its own color-coded shape (such as a diamond or a triangle).

• VHDL objects (dark blue diamond) —

signals, aliases, process variables, shared variables

• Verilog and SystemVerilog objects (light blue diamond) —

nets, registers, variables, named events, interfaces, classes

• Virtual objects (orange diamond) —

virtual signals, buses, functions
Refer to Virtual Objects for more information.

Waveform Analysis
Adding Objects to the Wave Window

ModelSim User’s Manual, v10.4c 265

Related Topics
See “Using the WildcardFilter Preference Variable” for more information on using wild cards.

Adding Objects to the Wave Window
You can add objects to the Wave window with mouse actions, menu selections, commands, and
with a window format file.

Table 8-1. Add Objects to the Wave Window

To Add Using ... Do the Following:

Mouse Actions • Drag and drop objects into the Wave window from the Structure,
Processes, Memory, List, Objects, Source, or Locals windows.
When objects are dragged into the Wave window, the add wave
command is echoed in the Transcript window. Depending on what
you select, all objects or any portion of the design can be added.

• Place the cursor over an individual object or selected objects in
the Objects or Locals windows, then click the middle mouse
button to place the object(s) in the Wave window.

Menu Selections • Add > window — Add objects to the Wave window or Log file.
• Add Selected to Window Button — Add objects to the Wave,

Dataflow, Schematic, List, or Watch windows.
You can also add objects using right-click popup menus. For
example, if you want to add all signals in a design to the Wave
window you can do one of the following:
• Right-click a design unit in a Structure (sim) window and select

Add > To Wave > All Items in Design from the popup context
menu.

• Right-click anywhere in the Objects window and select Add > To
Wave > Signals in Design from the popup context menu.

• Right-click on a Verilog virtual interface waveform and select
Add Wave > <interface_name/*> from the popup menu.

Commands Use the add wave command to add objects from the command line.
For example:

VSIM> add wave /proc/a

Adds signal /proc/a to the Wave window.
VSIM> add wave -r /*

Adds all objects in the design to the Wave window.

Refer to the section “Using the WildcardFilter Preference Variable”
for information on controlling the information that is added to the
Wave window when using wild cards.

ModelSim User’s Manual, v10.4c266

Waveform Analysis
Adding Objects to the Wave Window

Inserting Signals in a Specific Location
New signals are inserted above the Insertion Point Bar located at the bottom of the Pathname
Pane. You can change the location of the Insertion Point Bar by using the Insertion Point
Column of the Pathname Pane.

Restrictions and Limitations

By default, new signals are added above the Insertion Point Bar. You can change the default
location for insertion by setting the PrefWave(InsertMode) preference variable to one of the
following:

• insert — (default) Places new object(s) above the Insertion Pointer Bar.

• append — Places new object(s) below the Insertion Pointer Bar.

• top — Places new object(s) at the top of the Wave window.

• end — Places new object(s) at the bottom of the Wave window.

Prerequisites

There must be at least one signal in the Wave window.

Procedure

1. Click on the vertical white bar on the left-hand side of the active Wave window to select
where signals should be added. (Figure 8-2)

2. Your cursor will change to a double-tail arrow and a green bar will appear. Clicking in
the vertical white bar next to a signal places the Insertion Point Bar below the indicated
signal. Alternatively, you can Ctrl+click in the white bar to place the Insertion Point Bar
below the indicated signal.

A Window Format
File

Select File > Load and specify a previously saved format file. Refer
to Saving the Window Format for details on how to create a format
file.

Table 8-1. Add Objects to the Wave Window

To Add Using ... Do the Following:

Waveform Analysis
Working with Cursors

ModelSim User’s Manual, v10.4c 267

Figure 8-2. Insertion Point Bar

3. Select an instance in the Structure (sim) window or an object in the Objects window.

4. Use the hot key Ctrl+w to add all signals of the instance or the specific object to the
Wave window in the location of the Insertion Point Bar.

Related Topics

See Insertion Point Bar and Pathname Pane.

Working with Cursors
Cursors mark simulation time in the Wave window. When ModelSim first draws the Wave
window, it places one cursor at time zero. Clicking anywhere in the waveform display brings
the nearest cursor to the mouse location. You can use cursors to find transitions, a rising or
falling edge, and to measure time intervals.

The Cursor and Timeline Toolbox on the left side of the cursor pane gives you quick access to
cursor and timeline settings.

Table 8-2 summarizes common cursor actions you can perform with the icons in the toolbox, or
with menu selections.

Table 8-2. Actions for Cursors

Icon Action Menu path or command
(Wave window docked)

Menu path or command
(Wave window undocked)

Toggle leaf names
<-> full names

Wave > Wave Preferences >
Display Tab

Tools > Wave Preferences >
Display Tab

Edit grid and
timeline properties

Wave > Wave Preferences >
Grid and Timeline Tab

Tools > Wave Preferences >
Grid and Timeline Tab

ModelSim User’s Manual, v10.4c268

Waveform Analysis
Working with Cursors

The Toggle leaf names <-> full names icon allows you to switch from displaying full
pathnames (the default) to displaying leaf or short names in the Pathnames Pane. You can also
control the number of path elements in the Wave Window Preferences dialog. Refer to
Hiding/Showing Path Hierarchy.

The Edit grid and timeline properties icon opens the Wave Window Properties dialog box to
the Grid & Timeline tab (Figure 8-3).

Add cursor Add > To Wave > Cursor Add > Cursor

Edit cursor Wave > Edit Cursor Edit > Edit Cursor

Delete cursor Wave > Delete Cursor Edit > Delete Cursor

Lock cursor Wave > Edit Cursor Edit > Edit Cursor

NA Select a cursor Wave > Cursors View > Cursors

NA Zoom In on Active
Cursor

Wave > Zoom > Zoom
Cursor

View > Zoom > Zoom Cursor

NA Zoom between
Cursors

Debug Toolbar Tab only Debug Toolbar Tab only.

NA Two Cursor Mode Wave > Mouse Mode > Two
Cursor Mode

Wave > Mouse Mode > Two
Cursor Mode

Table 8-2. Actions for Cursors (cont.)

Icon Action Menu path or command
(Wave window docked)

Menu path or command
(Wave window undocked)

Waveform Analysis
Working with Cursors

ModelSim User’s Manual, v10.4c 269

Figure 8-3. Grid and Timeline Properties

• The Grid Configuration selections allow you to set grid offset, minimum grid spacing,
and grid period. You can also reset these grid configuration settings to their default
values.

• The Timeline Configuration selections give you change the time scale. You can display
simulation time on a timeline or a clock cycle count. If you select Display simulation
time in timeline area, use the Time Units dropdown list to select one of the following as
the timeline unit:

fs, ps, ns, us, ms, sec, min, hr

Note
The time unit displayed in the Wave window (default: ns) does not reflect the simulation
time that is currently defined.

The current configuration is saved with the wave format file so you can restore it later.

• The Show frequency in cursor delta box causes the timeline to display the difference
(delta) between adjacent cursors as frequency. By default, the timeline displays the delta
between adjacent cursors as time.

ModelSim User’s Manual, v10.4c270

Waveform Analysis
Working with Cursors

Adding Cursors
To add cursors when the Wave window is active you can do one of the following.

Procedure
1. Click the Insert Cursor icon.

2. Choose Add > To Wave > Cursor from the menu bar.

3. Press the “A” key while the mouse pointer is located in the cursor pane.

4. Right click in the cursor pane and select New Cursor @ <time> ns to place a new
cursor at a specific time.

Editing Cursor Properties
After adding a cursor, you can alter its properties by using the Cursor Properties dialog box.

Procedure
1. Right-click the cursor you want to edit and select Cursor Properties. (You can also use

the Edit this cursor icon in the cursor toolbox)

2. From the Cursor Properties dialog box, alter any of the following properties:

o Cursor Name — the name that appears in the Wave window.

o Cursor Time — the time location of the cursor.

o Cursor Color — the color of the cursor.

o Locked Cursor Color — the color of the cursor when it is locked to a specific time
location.

o Lock cursor to specified time — disables relocation of the cursor.

Jump to a Signal Transition
You can move the active (selected) cursor to the next or previous transition on the selected
signal using these two toolbar icons located in the Debug Toolbar Tab. Refer to the following
table.

Figure 8-4. Find Previous and Next Transition Icons

Find Previous Transition
locate the previous signal value
change for the selected signal

Waveform Analysis
Working with Cursors

ModelSim User’s Manual, v10.4c 271

These actions will not work on locked cursors.

Related Topics
See the Debug Toolbar Tab.

Measuring Time with Cursors in the Wave Window
ModelSim uses cursors to measure time in the Wave window. Cursors extend a vertical line
over the waveform display and identify a specific simulation time.

When the Wave window is first drawn it contains two cursors — the Now cursor, and Cursor 1
(Figure 8-5).

Figure 8-5. Original Names of Wave Window Cursors

The Now cursor is always locked to the current simulation time and it is not manifested as a
graphical object (vertical cursor bar) in the Wave window.

Cursor 1 is located at time zero. Clicking anywhere in the waveform display moves the Cursor
1 vertical cursor bar to the mouse location and makes this cursor the selected cursor. The
selected cursor is drawn as a bold solid line; all other cursors are drawn with thin lines.

Syncing All Active Cursors
You can synchronize the active cursors within all open Wave windows and the Wave viewers in
the Dataflow and Schematic windows.

Procedure
Right-click the time value of the active cursor in any window and select Sync All Active
Cursors from the popup menu (Figure 8-6).

Find Next Transition
locate the next signal value
change for the selected signal

ModelSim User’s Manual, v10.4c272

Waveform Analysis
Working with Cursors

Figure 8-6. Sync All Active Cursors

When all active cursors are synced, moving a cursor in one window will automatically move the
active cursors in all opened Wave windows to the same time location. This option is also
available by selecting Wave > Cursors > Sync All Active Cursors in the menu bar when a
Wave window is active.

Linking Cursors
Cursors within the Wave window can be linked together, allowing you to move two or more
cursors together across the simulation timeline. You simply click one of the linked cursors and
drag it left or right on the timeline. The other linked cursors will move by the same amount of
time.

Procedure

You can link all displayed cursors by right-clicking the time value of any cursor in the timeline,
as shown in Figure 8-7, and selecting Cursor Linking > Link All.

Figure 8-7. Cursor Linking Menu

Waveform Analysis
Working with Cursors

ModelSim User’s Manual, v10.4c 273

You can link and unlink selected cursors by selecting the time value of any cursor and selecting
Cursor Linking > Configure to open the Configure Cursor Links dialog (Figure 8-8).

Figure 8-8. Configure Cursor Links Dialog

Understanding Cursor Behavior
The following list describes how cursors behave when you click in various panes of the Wave
window unless you are in Two Cursor Mode:

• If you click in the waveform pane, the closest unlocked cursor to the mouse position is
selected and then moved to the mouse position.

• Clicking in a horizontal track in the cursor pane selects that cursor and moves it to the
mouse position.

• Cursors snap to the nearest waveform edge to the left if you click or drag a cursor along
the selected waveform to within ten pixels of a waveform edge. You can set the snap
distance in the Display tab of the Window Preferences dialog. Select Tools > Options >
Wave Preferences when the Wave window is docked in the Main window MDI frame.
Select Tools > Window Preferences when the Wave window is a stand-alone,
undocked window.

• You can position a cursor without snapping by dragging a cursor in the cursor pane
below the waveforms.

Shortcuts for Working with Cursors
There are a number of useful keyboard and mouse shortcuts related to the actions listed above:

• Select a cursor by clicking the cursor name.

• Jump to a hidden cursor (one that is out of view) by double-clicking the cursor name.

• Name a cursor by right-clicking the cursor name and entering a new value. Press
<Enter> on your keyboard after you have typed the new name.

ModelSim User’s Manual, v10.4c274

Waveform Analysis
Working with Cursors

• Move a locked cursor by holding down the <shift> key and then clicking-and-dragging
the cursor.

• Move a cursor to a particular time by right-clicking the cursor value and typing the value
to which you want to scroll. Press <Enter> on your keyboard after you have typed the
new value.

Two Cursor Mode
Two Cursor Mode places two active cursors in the Wave window. Where default Wave window
cursor behavior is for the closest cursor to snap to the location of the mouse when the left mouse
button is pressed, in Two Cursor Mode the left mouse button controls movement of the first
cursor and the middle mouse button controls the second cursor regardless of the proximity of
the pointer to the closest cursor. Additional cursors may be added but are locked upon insertion.

Enable Two Cursor Mode
You can enable Two Cursor Mode by selecting Wave > Mouse Mode > Two Cursor
Mode, or by selecting the Two Cursor Mode button in the Debug Toolbar Tab.

You can return to standard Wave Window behavior by selecting Wave > Mouse Mode > and
choosing one of the other menu picks or by selecting a different button in the Debug Toolbar
Tab.

Related Topics
See the Debug Toolbar Tab.

Additional Mouse Actions
Both cursors snap to the position of the mouse pointer when the mouse button controling the
cursor is released. Holding down a button and dragging changes the action from cursor
placement to zooming in or out in the waveform pane:

The zoom amount is displayed at the mouse cursor. A zoom operation must be more than 10
pixels to activate.

To zoom with the scroll-wheel of your mouse, hold down the Ctrl key at the same time to scroll
in and out. The waveform pane will zoom in and out, centering on your mouse cursor.

Table 8-3. Two Cursor Zoom

Mouse Action

Down-Right or Down-Left Zoom Area (In)

Up- Right Zoom Out

Up-Left Zoom to Fit

Waveform Analysis
Expanded Time in the Wave Window

ModelSim User’s Manual, v10.4c 275

Expanded Time in the Wave Window
When analyzing a design using ModelSim, you can see a value for each object at any time step
in the simulation. If logged in the .wlf file, the values at any time step prior to and including the
current simulation time are displayed in the Wave window or by using the examine command.

Some objects can change values more than once in a given time step. These intermediate values
are of interest when debugging glitches on clocked objects or race conditions. With a few
exceptions (viewing delta time steps with the examine command), the values prior to the final
value in a given time step cannot be observed.

The expanded time function makes these intermediate values visible in the Wave window.
Expanded time shows the actual order in which objects change values and shows all transitions
of each object within a given time step.

Expanded Time Terminology
The following list provides definitions of the basic terms used when discussing expanded time
in the Wave window.

• Simulation Time — the basic time step of the simulation. The final value of each object
at each simulation time is what is displayed by default in the Wave window.

• Delta Time — the time intervals or steps taken to evaluate the design without advancing
simulation time. Object values at each delta time step are viewed by using the -delta
argument of the examine command. Refer to Delta Delays for more information.

• Event Time — the time intervals that show each object value change as a separate event
and that shows the relative order in which these changes occur

During a simulation, events on different objects in a design occur in a particular order or
sequence. Typically, this order is not important and only the final value of each object
for each simulation time step is important. However, in situations like debugging
glitches on clocked objects or race conditions, the order of events is important. Unlike
simulation time steps and delta time steps, only one object can have a single value
change at any one event time. Object values and the exact order which they change can
be saved in the .wlf file.

• Expanded Time — the Wave window feature that expands single simulation time steps
to make them wider, allowing you to see object values at the end of each delta cycle or at
each event time within the simulation time.

• Expand — causes the normal simulation time view in the Wave window to show
additional detailed information about when events occurred during a simulation.

• Collapse — hides the additional detailed information in the Wave window about when
events occurred during a simulation.

ModelSim User’s Manual, v10.4c276

Waveform Analysis
Expanded Time in the Wave Window

Recording Expanded Time Information
You can use the vsim command, or the WLFCollpseMode variable in the modelsim.ini file, to
control recording of expanded time information in the .wlf file.

Unlike delta times (which are explicitly saved in the .wlf file), event time information exists
implicitly in the .wlf file. That is, the order in which events occur in the simulation is the same
order in which they are logged to the .wlf file, but explicit event time values are not logged.

You can choose not to record event time or delta time information to the .wlf file by using the
-wlfcollapsetime argument with vsim, or by setting WLFCollapseMode to 2. This will prevent
detailed debugging but may reduce the size of the .wlf file and speed up the simulation.

Viewing Expanded Time Information in the Wave
Window

Expanded time information is displayed in the Debug Toolbar Tab, the right portion of the
Messages bar, the Waveform pane, the time axis portion of the Cursor pane, and the Waveform
pane horizontal scroll bar as described below.

• Expanded Time Buttons— The Expanded Time buttons are displayed in the Debug
Toolbar Tab in both the undocked Wave window the Main window when the Wave
window is docked. It contains three exclusive toggle buttons for selecting the Expanded
Time mode (see Toolbar Selections for Expanded Time Modes) and four buttons for
expanding and collapsing simulation time.

• Messages Bar — The right portion of the Messages Bar is scaled horizontally to align
properly with the Waveform pane and the time axis portion of the Cursor pane.

Table 8-4. Recording Delta and Event Time Information

vsim command argument modelsim.ini setting effect

-nowlfcollapse WLFCollapseMode = 0 Saves multiple value changes of an
object during a single time step or
single delta cycle, All events for each
logged signal are recorded to the .wlf
file in the exact order they occur in
the simulation.

-wlfcollapsedelta WLFCollapseMode = 1
(Default)

Each logged signal that has events
during a simulation delta has its final
value recorded in the .wlf file when
the delta has expired.

-wlfcollapsetime WLFCollapseMode = 2 Similar to delta collapsing but at the
simulation time step granularity.

Waveform Analysis
Expanded Time in the Wave Window

ModelSim User’s Manual, v10.4c 277

• Waveform Pane Horizontal Scroll Bar — The position and size of the thumb in the
Waveform pane horizontal scroll bar is adjusted to correctly reflect the current state of
the Waveform pane and the time axis portion of the Cursor pane.

• Waveform Pane and the Time Axis Portion of the Cursor Pane — By default, the
Expanded Time is off and simulation time is collapsed for the entire time range in the
Waveform pane. When the Delta Time mode is selected, simulation time remains
collapsed for the entire time range in the Waveform pane. A red dot is displayed in the
middle of all waveforms at any simulation time where multiple value changes were
logged for that object.

Figure 8-9 illustrates the appearance of the Waveform pane when viewing collapsed event time
or delta time. It shows a simulation with three signals, s1, s2, and s3. The red dots indicate
multiple transitions for s1 and s2 at simulation time 3ns.

Figure 8-9. Waveform Pane with Collapsed Event and Delta Time

Figure 8-10 shows the Waveform pane and the timescale from the Cursors pane after expanding
simulation time at time 3ns. The background color is blue for expanded sections in Delta Time
mode and green for expanded sections in Event Time mode.

Figure 8-10. Waveform Pane with Expanded Time at a Specific Time

ModelSim User’s Manual, v10.4c278

Waveform Analysis
Expanded Time in the Wave Window

In Delta Time mode, more than one object may have an event at the same delta time step. The
labels on the time axis in the expanded section indicate the delta time steps within the given
simulation time.

In Event Time mode, only one object may have an event at a given event time. The exception to
this is for objects that are treated atomically in the simulator and logged atomically.

Labels on the time axis in the expanded section indicate the order of events from all of the
objects added to the Wave window. If an object that had an event at a particular time but it is not
in the viewable area of the Waveform panes, then there will appear to be no events at that time.

Depending on which objects have been added to the Wave window, a specific event may
happen at a different event time. For example, if s3 shown in Figure 8-10, had not been added to
the Wave window, the result would be as shown in Figure 8-11.

Figure 8-11. Waveform Pane with Event Not Logged

Now the first event on s2 occurs at event time 3ns + 2 instead of event time 3ns + 3. If s3 had
been added to the Wave window (whether shown in the viewable part of the window or not) but
was not visible, the event on s2 would still be at 3ns + 3, with no event visible at 3ns + 2.

Figure 8-12 shows an example of expanded time over the range from 3ns to 5ns. The expanded
time range displays delta times as indicated by the blue background color. (If Event Time mode
is selected, a green background is displayed.)

Waveform Analysis
Expanded Time in the Wave Window

ModelSim User’s Manual, v10.4c 279

Figure 8-12. Waveform Pane with Expanded Time Over a Time Range

When scrolling horizontally, expanded sections remain expanded until you collapse them, even
when scrolled out of the visible area. The left or right edges of the Waveform pane are viewed
in either expanded or collapsed sections.

Expanded event order or delta time sections appear in all panes when multiple Waveform panes
exist for a Wave window. When multiple Wave windows are used, sections of expanded event
or delta time are specific to the Wave window where they were created.

For expanded event order time sections when multiple datasets are loaded, the event order time
of an event will indicate the order of that event relative to all other events for objects added to
that Wave window for that object’s dataset only. That means, for example, that signal sim:s1
and gold:s2 could both have events at time 1ns+3.

Note
The order of events for a given design will differ for optimized versus unoptimized
simulations, and between different versions of ModelSim. The order of events will be
consistent between the Wave window and the List window for a given simulation of a
particular design, but the event numbering may differ. See Expanded Time Viewing in
the List Window.

You may display any number of disjoint expanded times or expanded ranges of times.

Related Topics

See the Debug Toolbar Tab.

Customizing the Expanded Time Wave Window
Display

As noted above, the Wave window background color is blue instead of black for expanded
sections in Delta Time mode and green for expanded sections in Event Time mode.

The background colors for sections of expanded event time are changed as follows:

ModelSim User’s Manual, v10.4c280

Waveform Analysis
Expanded Time in the Wave Window

Procedure

1. Select Tools > Edit Preferences from the menus. This opens the Preferences dialog.

2. Select the By Name tab.

3. Scroll down to the Wave selection and click the plus sign (+) for Wave.

4. Change the values of the Wave Window variables waveDeltaBackground and
waveEventBackground.

Expanded Time Display Modes
There are three Wave window expanded time display modes: Event Time mode, Delta Time
mode, and Expanded Time off. These display modes are initiated by menu selections, toolbar
selections, or via the command line.

Menu Selections for Expanded Time Display Modes
The following table shows the menu selections for initiating expanded time display modes.

Select Delta Time Mode or Event Time Mode from the appropriate menu according to Table 8-
5 to have expanded simulation time in the Wave window show delta time steps or event time
steps respectively. Select Expanded Time Off for standard behavior (which is the default).

Toolbar Selections for Expanded Time Modes
There are three exclusive toggle buttons in the Debug Toolbar Tab for selecting the time mode
used to display expanded simulation time in the Wave window.

• The "Expanded Time Deltas Mode" button displays delta time steps.

• The "Expanded Time Events Mode" button displays event time steps.

• The "Expanded Time Off" button turns off the expanded time display in the Wave
window.

Table 8-5. Menu Selections for Expanded Time Display Modes

action menu selection with Wave window docked or undocked

select Delta Time mode docked: Wave > Expanded Time > Delta Time Mode
undocked: View > Expanded Time > Delta Time Mode

select Event Time mode docked: Wave > Expanded Time > Event Time Mode
undocked: View > Expanded Time > Event Time Mode

disable Expanded Time docked: Wave > Expanded Time > Expanded Time Off
undocked: View > Expanded Time > Expanded Time Off

Waveform Analysis
Expanded Time in the Wave Window

ModelSim User’s Manual, v10.4c 281

Clicking any one of these buttons on toggles the other buttons off. This serves as an immediate
visual indication about which of the three modes is currently being used. Choosing one of these
modes from the menu bar or command line also results in the appropriate resetting of these
three buttons. The "Expanded Time Off" button is selected by default.

In addition, there are four buttons in the Debug Toolbar Tab for expanding and collapsing
simulation time.

• The “Expand All Time” button expands simulation time over the entire simulation time
range, from time 0 to the current simulation time.

• The “Expand Time At Active Cursor” button expands simulation time at the simulation
time of the active cursor.

• The “Collapse All Time” button collapses simulation time over entire simulation time
range.

• The “Collapse Time At Active Cursor” button collapses simulation time at the
simulation time of the active cursor.

Related Topics
See the Debug Toolbar Tab.

Command Selection of Expanded Time Mode
The command syntax for selecting the time mode used to display objects in the Wave window
is:

wave expand mode [-window <win>] none | deltas | events

Use the wave expand mode command to select which mode is used to display expanded time in
the wave window. This command also results in the appropriate resetting of the three toolbar
buttons.

Switching Between Time Modes
If one or more simulation time steps have already been expanded to view event time or delta
time, then toggling the Time mode by any means will cause all of those time steps to be
redisplayed in the newly selected mode.

Expanding and Collapsing Simulation Time
Simulation time may be expanded to view delta time steps or event time steps at a single
simulation time or over a range of simulation times. Simulation time may be collapsed to hide
delta time steps or event time steps at a single simulation time or over a range of simulation
times. You can expand or collapse the simulation time with menu selections, toolbar selections,
via commands, or with the mouse cursor.

ModelSim User’s Manual, v10.4c282

Waveform Analysis
Expanded Time in the Wave Window

Procedure

Expanded Time with examine and Other
Commands

The Wave window can expand time to show delta delays. You can use the examine, searchlog,
and seetime commands to manipulate expanded time data.

• examine — The -event <event> option to the examine command behaves in the same
manner as the -delta <delta> option. When the -event option is used, the event time
given will refer to the event time relative to events for all signals in the objects dataset at
the specified time. This may be misleading as it may not correspond to event times
displayed in the List or Wave windows.

• searchlog — The -event <event> option to the searchlog command behaves in the same
manner as the -delta <delta> option.

To expand or collapse
simulation time with…

Do the following:

Menu Selections Select Wave > Expanded Time when the Wave window is
docked, and View > Expanded Time when the Wave
window is undocked. You can expand/collapse over the full
simulation time range, over a specified time range, or at the
time of the active cursor,.

Toolbar Selections There are four buttons in the Debug Toolbar Tab for
expanding and collapsing simulation time in the Wave
window: Expand Full, Expand Cursor, Collapse Full, and
Collapse Cursor.

 Commands There are six commands for expanding and collapsing
simulation time in the Wave window.
• wave expand all
• wave expand range
• wave expand cursor
• wave collapse all
• wave collapse range
• wave collapse cursor

These commands have the same behavior as the
corresponding menu and toolbar selections. If valid times are
not specified, for wave expand range or wave collapse range,
no action is taken. These commands affect all Waveform
panes in the Wave window to which the command applies.

Waveform Analysis
Zooming the Wave Window Display

ModelSim User’s Manual, v10.4c 283

Zooming the Wave Window Display
Zooming lets you change the simulation range in the waveform pane. You can zoom using the
context menu, toolbar buttons, mouse, keyboard, or commands. You can also save a specific
zoom range and scroll position with Wave window bookmarks.

Zooming with the Menu, Toolbar and Mouse
You can access Zoom commands in any of the following ways:

• From the Wave > Zoom menu selections in the Main window when the Wave window
is docked

• From the View menu in the Wave window when the Wave window is undocked

• Right-clicking in the waveform pane of the Wave window

These zoom buttons are available on the Debug Toolbar Tab:

To zoom with the mouse, first enter zoom mode by selecting View > Zoom > Mouse Mode >
Zoom Mode. The left mouse button then offers 3 zoom options by clicking and dragging in
different directions:

 Zoom In 2x
zoom in by a factor of two from the current view

 Zoom In on Active Cursor
centers the active cursor in the waveform display and
zooms in

Zoom between Cursors
zoom window in or out to show the range between the last
two active cursors

 Zoom Mode
change mouse pointer to zoom mode; see below

Zoom Out 2x
zoom out by a factor of two from current view

Zoom Full
zoom out to view the full range of the simulation from
time 0 to the current time

ModelSim User’s Manual, v10.4c284

Waveform Analysis
Zooming the Wave Window Display

• Down-Right or Down-Left: Zoom Area (In)

• Up-Right: Zoom Out

• Up-Left: Zoom Fit

Also note the following about zooming with the mouse:

• The zoom amount is displayed at the mouse cursor. A zoom operation must be more
than 10 pixels to activate.

• You can enter zoom mode temporarily by holding the <Ctrl> key down while in select
mode.

• With the mouse in the Select Mode, the middle mouse button will perform the above
zoom operations.

To zoom with the scroll-wheel of your mouse, hold down the Ctrl key at the same time to scroll
in and out. The waveform pane will zoom in and out, centering on your mouse cursor.

Saving Zoom Range and Scroll Position with
Bookmarks

Bookmarks save a particular zoom range and scroll position. This lets you return easily to a
specific view later. You save the bookmark with a name and then access the named bookmark
from the Bookmark menu. Bookmarks are saved in the Wave format file and are restored when
the format file is read.

To add a bookmark, follow these steps:

Procedure

1. Zoom the Wave window as you see fit using one of the techniques discussed in
Zooming the Wave Window Display.

2. If the Wave window is docked, select Add > Wave > Bookmark. If the Wave window
is undocked, select Add > Bookmark.

Waveform Analysis
Zooming the Wave Window Display

ModelSim User’s Manual, v10.4c 285

Figure 8-13. Bookmark Properties Dialog

3. Give the bookmark a name and click OK.

The table below summarizes actions you can take with bookmarks.

Editing Bookmarks
Once a bookmark exists, you can change its properties by selecting Wave > Bookmarks >
Bookmarks if the Wave window is docked; or by selecting Tools > Bookmarks if the Wave
window is undocked.

Table 8-6. Actions for Bookmarks

Action Menu commands
(Wave window
docked)

Menu commands
(Wave window
undocked)

Command

Add bookmark Add > To Wave >
Bookmark

Add > Bookmark bookmark add wave

View bookmark Wave > Bookmarks >
<bookmark_name>

View > Bookmarks >
<bookmark_name>

bookmark goto wave

Delete bookmark Wave > Bookmarks >
Bookmarks > <select
bookmark then Delete>

View > Bookmarks >
Bookmarks > <select
bookmark then Delete>

bookmark delete wave

ModelSim User’s Manual, v10.4c286

Waveform Analysis
Searching in the Wave Window

Searching in the Wave Window
The Wave window provides two methods for locating objects:

1. Finding signal names:

o Select Edit > Find.

o Click the Find toolbar button (binoculars icon) in the Home Toolbar Tab when the
Wave window is active

o Use the find command.

The first two of these options will open a Find mode toolbar at the bottom of the Wave
window. By default, the “Search For” option is set to “Name.” For more information,
see Find and Filter Functions.

2. Search for values or transitions:

o Select Edit > Signal Search

o Click the Find toolbar button (binoculars icon) and select Search For > Value from
the Find toolbar that appears at the bottom of the Wave window.

Wave window searches can be stopped by clicking the “Stop Drawing” or “Break” toolbar
buttons.

Searching for Values or Transitions
The search command lets you search for transitions or values on selected signals. When you
select Edit > Signal Search, the Wave Signal Search dialog appears.

Waveform Analysis
Searching in the Wave Window

ModelSim User’s Manual, v10.4c 287

Figure 8-14. Wave Signal Search Dialog Box

One option of note is Search for Expression. The expression can involve more than one signal
but is limited to signals currently in the window. Expressions can include constants, variables,
and DO files. Refer to Expression Syntax for more information.

Any search terms or settings you enter are saved from one search to the next in the current
simulation. To clear the search settings during debugging click the Reset To Initial Settings
button. The search terms and settings are cleared when you close ModelSim.

Search with the Expression Builder
The Expression Builder is a feature of the Wave Signal Search dialog box. You can use it to
create a search expression that follows the GUI_expression_format, save an expression to a Tcl
variable and use it in the Expression Builder to perform a search, and search for when a signal
reaches a particular value.

Using the Expression Builder for Expression Searches
You can create a search expression that follows the GUI_expression_format.

ModelSim User’s Manual, v10.4c288

Waveform Analysis
Searching in the Wave Window

Procedure

1. Choose Wave > Signal Search... from the main menu. This displays the Wave Signal
Search dialog box.

2. Select Search for Expression.

3. Click the Builder button. This displays the Expression Builder dialog box shown in
Figure 8-15

Figure 8-15. Expression Builder Dialog Box

You click the buttons in the Expression Builder dialog box to create a GUI expression. Each
button generates a corresponding element of Expression Syntax and is displayed in the
Expression field.

In addition, you can use the Selected Signal button to create an expression from signals you
select from the associated Wave window. For example, instead of typing in a signal name, you
can select signals in a Wave window and then click Selected Signal in the Expression Builder.
This displays the Select Signal for Expression dialog box shown in Figure 8-16.

Waveform Analysis
Searching in the Wave Window

ModelSim User’s Manual, v10.4c 289

Figure 8-16. Selecting Signals for Expression Builder

Note that the buttons in this dialog box allow you to determine the display of signals you want
to put into an expression:

• List only Select Signals — list only those signals that are currently selected in the
parent window.

• List All Signals — list all signals currently available in the parent window.

Once you have selected the signals you want displayed in the Expression Builder, click OK.

Other buttons will add operators of various kinds (see Expression Syntax), or you can type them
in.

Related Topics

See the GUI_expression_format.

Saving an Expression to a Tcl Variable
Clicking the Save button in the Expression Builder will save the expression to a Tcl variable.
Once saved, this variable can be used in place of the expression. For example, say you save an
expression to the variable "foo." Here are some operations you could do with the saved variable:

• Read the value of foo with the set command:

set foo

• Put $foo in the Expression: entry box for the Search for Expression selection.

• Issue a searchlog command using foo:

ModelSim User’s Manual, v10.4c290

Waveform Analysis
Searching in the Wave Window

searchlog -expr $foo 0

Searching for a Particular Value
You can use the Expression Builder to search for when a signal reaches a particular value.

Procedure

1. Select a signal of interest in the Wave window.

2. Choose Wave > Signal Search from the main menu to open the Wave Signal Search
dialog box.

3. Select Search for Expression radio button.

4. Click the Builder button to open the Expression Builder.

5. Click the Selected Signal button to open the Select Signal for Expression dialog box.

6. Click the List only Selected Signals radio button.

7. Highlight the desired signal and click the OK button. This closes the Select Signal for
Expression dialog box and places the selected signal in the Expression field of the
Expression Builder.

8. Click the == button.

9. Click the value buttons or type a value.

10. Click OK to close the Expression Builder.

11. Click the Search Forward or the Search Reverse button to perform the search.

Evaluating Only on Clock Edges
You can use the Expression Builder to evaluate search expressions only on clock edges.

Procedure

1. Select the clock signal in the Wave window.

2. Choose Wave > Signal Search from the main menu to open the Wave Signal Search
dialog box.

3. Select Search for Expression radio button.

4. Click the Builder button to open the Expression Builder.

5. Click the Selected Signal button to open the Select Signal for Expression dialog box.

6. Click the List All Signals radio button.

Waveform Analysis
Filtering the Wave Window Display

ModelSim User’s Manual, v10.4c 291

7. Highlight the desired signal you want to search and click the OK button. This closes the
Select Signal for Expression dialog box and places the selected signal in the
Expression field of the Expression Builder.

8. Click 'rising. You can also select the falling edge or both edges. Or, click the &&
button to AND this condition with the rest of the expression.

9. Click the Search Forward or the Search Reverse button to perform the search.

Filtering the Wave Window Display
The Wave window includes a filtering function that allows you to filter the display to show only
the desired signals and waveforms.

Procedure

To activate the filtering function:

1. Select Edit > Find in the menu bar (with the Wave window active) or click the
Find icon in the Home Toolbar Tab. This opens a “Find” toolbar at the bottom of
the Wave window.

2. Click the binoculars icon in the Find field to open a popup menu and select Contains.
This enables the filtering function.

Related Topics

For more information see Find and Filter Functions.

Formatting the Wave Window
The primary tool for formatting the Wave Window to fit your environment is the Wave
Window Preferences dialog box.

Setting Wave Window Display Preferences
You can set Wave window display preferences by selecting Wave > Wave Preferences (when
the window is docked) or Tools > Window Preferences (when the window is undocked).

These menu selections open the Wave Window Preferences dialog (Figure 8-17).

ModelSim User’s Manual, v10.4c292

Waveform Analysis
Formatting the Wave Window

Figure 8-17. Display Tab of the Wave Window Preferences Dialog Box

Hiding/Showing Path Hierarchy
You can set how many elements of the object path display by changing the Display Signal Path
value in the Wave Window Preferences dialog.

Zero specifies the full path, 1 specifies the leaf name, and any other positive number specifies
the number of path elements to be displayed (Figure 8-17).

Double-Click Behavior in the Wave Window
You can set the default behavior for double-clicking a waveform in the Wave window.

Procedure

1. In the Wave Window Preferences dialog box, select the Display tab.

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v10.4c 293

2. In the Enable/Disable section, click on the button after “Double-click will:” and choose
one of the following actions from the popup menu:

• Do Nothing — Double-clicking on a waveform does nothing.

• Show Drivers in Dataflow — Double-clicking on a waveform traces the event for
the specified signal and time back to the process causing the event. The results of the
trace are placed in a Dataflow Window that includes a waveform viewer below.

• Find Immediate Driver — Double-clicking a waveform traces to the immediate
driver for that signal.

• Find Active Driver — Double-clicking on a waveform traces the event for the
specified signal and time back to the process causing the event. The source file
containing the line of code is opened and the driving signal code is highlighted.

• Find Root Cause — Double-clicking on a waveform traces the event for the
specified signal and time back to the root cause of the event.

• Find All Drivers — Double-clicking on a waveform traces to all drivers for the
event.

Setting the Timeline to Count Clock Cycles
You can set the timeline of the Wave window to count clock cycles rather than elapsed time.

Procedure

1. If the Wave window is docked, open the Wave Window Preferences dialog by
selecting Wave > Wave Preferences from the Main window menus.

If the Wave window is undocked, select Tools > Window Preferences from the Wave
window menus. This opens the Wave Window Preferences dialog box.

2. In the dialog, select the Grid & Timeline tab.

3. Enter the period of your clock in the Grid Period field and select “Display grid period
count (cycle count)” (Figure 8-18).

ModelSim User’s Manual, v10.4c294

Waveform Analysis
Formatting the Wave Window

Figure 8-18. Grid and Timeline Tab of Wave Window Preferences Dialog Box

Results

The timeline will now show the number of clock cycles, as shown in Figure 8-19.

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v10.4c 295

Figure 8-19. Clock Cycles in Timeline of Wave Window

Formatting Objects in the Wave Window
You can adjust various object properties to create the view you find most useful.

Select one or more objects in the Wave window pathnames pane and then select Wave >
Format from the menu bar (Figure 8-20).

Figure 8-20. Wave Format Menu Selections

Or, you can right-click the selected object(s) and select Format from the popup menu.

If you right-click the and selected object(s) and select Properties from the popup menu, you
can use the Format tab of the Wave Properties dialog to format selected objects (Figure 8-21).

ModelSim User’s Manual, v10.4c296

Waveform Analysis
Formatting the Wave Window

Figure 8-21. Format Tab of Wave Properties Dialog

Changing Radix (base) for the Wave Window
One common adjustment is changing the radix (base) of selected objects in the Wave window.
When you right-click a selected object, or objects, and select Properties from the popup menu,
the Wave Properties dialog appears.

You can change the radix of the selected object(s) in the View tab (Figure 8-22).

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v10.4c 297

Figure 8-22. Changing Signal Radix

The default radix is hexadecimal, which means the value pane lists the hexadecimal values of
the object. For the other radices - binary, octal, decimal, unsigned, hexadecimal, or ASCII - the
object value is converted to an appropriate representation in that radix.

Note
When the symbolic radix is chosen for SystemVerilog reg and integer types, the values
are treated as binary. When the symbolic radix is chosen for SystemVerilog bit and int
types, the values are considered to be decimal.

Aside from the Wave Properties dialog, there are three other ways to change the radix:

• Change the default radix for all objects in the current simulation using Simulate >
Runtime Options (Main window menu).

• Change the default radix for the current simulation using the radix command.

• Change the default radix permanently by editing the DefaultRadix variable in the
modelsim.ini file.

Setting the Global Signal Radix for Selected Objects
The Global Signal Radix feature allows you to change the radix for a selected object or objects
in the Wave window and in every other window where the object appears.

ModelSim User’s Manual, v10.4c298

Waveform Analysis
Formatting the Wave Window

Procedure

1. Select an object or objects in the Wave window.

2. Right-click to open a popup menu.

3. Select Radix > Global Signal Radix from the popup menu. This opens the Global
Signal Radix dialog, where you can set the radix for the Wave window and other
windows where the selected object(s) appears.

Figure 8-23. Global Signal Radix Dialog in Wave Window

Sfixed and Ufixed indicate “signed fixed” and “unsigned fixed,” respectively. To
display an object as Sfixed or Ufixed the object must be an array of std_ulogic elements
between 2 and 64 bits long with a descending range. The binary point for the value is
implicitly located between the 0th and -1st elements of the array. The index range for the
type need not include 0 or -1, for example (-4 downto -8) in which case the value will be
extended for conversion, as appropriate. If the type does not meet these criteria the value
will be displayed as decimal or unsigned, respectively.

Waveform Analysis
Formatting the Wave Window

ModelSim User’s Manual, v10.4c 299

Dividing the Wave Window
Dividers serve as a visual aid for debugging, allowing you to separate signals and waveforms
for easier viewing. In the graphic below, a bus is separated from the two signals above it with a
divider called "Bus."

Figure 8-24. Separate Signals with Wave Window Dividers

The following procedure shows how to insert a divider.

Procedure

1. Select the signal above which you want to place the divider.

2. If the Wave pane is docked, select Add > To Wave > Divider from the Main window
menu bar. If the Wave window stands alone, undocked from the Main window, select
Add > Divider from the Wave window menu bar.

3. Specify the divider name in the Wave Divider Properties dialog. The default name is
New Divider. Unnamed dividers are permitted. Simply delete "New Divider" in the
Divider Name field to create an unnamed divider.

4. Specify the divider height (default height is 17 pixels) and then click OK.

You can also insert dividers with the -divider argument to the add wave command.

ModelSim User’s Manual, v10.4c300

Waveform Analysis
Formatting the Wave Window

Related Topics

The table below summarizes several actions you can take with dividers:

Splitting Wave Window Panes
The pathnames, values, and waveform panes of the Wave window display can be split to
accommodate signals from one or more datasets.

Procedure

To split the window, select Add > Window Pane.

In the illustration below, the top split shows the current active simulation with the prefix "sim,"
and the bottom split shows a second dataset with the prefix "gold."

The active split is denoted with a solid white bar to the left of the signal names. The active split
becomes the target for objects added to the Wave window.

Table 8-7. Actions for Dividers

Action Method

Move a divider Click-and-drag the divider to the desired location

Change a divider’s
name or size

Right-click the divider and select Divider Properties

Delete a divider Right-click the divider and select Delete

Waveform Analysis
Wave Groups

ModelSim User’s Manual, v10.4c 301

Figure 8-25. Splitting Wave Window Panes

Related Topics

For more information on viewing multiple simulations, see Recording Simulation Results With
Datasets.

Wave Groups
You can create a wave group to collect arbitrary groups of items in the Wave window. Wave
groups have the following characteristics:

• A wave group may contain 0, 1, or many items.

• You can add or remove items from groups either by using a command or by dragging
and dropping.

• You can drag a group around the Wave window or to another Wave window.

• You can nest multiple wave groups, either from the command line or by dragging and
dropping. Nested groups are saved or restored from a wave.do format file, restart and
checkpoint/restore.

• You can create a group that contains the input signals to the process that drives a
specified signal.

ModelSim User’s Manual, v10.4c302

Waveform Analysis
Wave Groups

Creating a Wave Group
There are three ways to create a wave group:

• Grouping Signals through Menu Selection

• Grouping Signals with the add wave Command

• Grouping Signals with a Keyboard Shortcut

Grouping Signals through Menu Selection
If you’ve already added some signals to the Wave window, you can create a group of signals
using the following procedure.

Procedure

1. Select a set of signals in the Wave window.

2. Select the Wave > Group menu item.

The Wave Group Create dialog appears.

3. Complete the Wave Group Create dialog box:

• Group Name — specify a name for the group. This name is used in the wave
window.

• Group Height — specify an integer, in pixels, for the height of the space used for
the group label.

4. Ok

Results

The selected signals become a group denoted by a red diamond in the Wave window pathnames
pane (Figure 8-26), with the name specified in the dialog box.

Waveform Analysis
Wave Groups

ModelSim User’s Manual, v10.4c 303

Figure 8-26. Wave Groups Denoted by Red Diamond

Adding a Group of Contributing Signals
You can select a signal and create a group that contains the input signals to the process that
drives the selected signal.

Procedure

1. Select a signal for which you want to view the contributing signals.

2. Click the Add Contributing Signals button in the Wave toolbar.

Results

A group with the name Contributors:<signal_name> is placed below the selected signal in the
Wave window pathnames pane (Figure 8-27).

ModelSim User’s Manual, v10.4c304

Waveform Analysis
Wave Groups

Figure 8-27. Contributing Signals Group

Grouping Signals with the add wave Command
Add grouped signals to the Wave window from the command line use the following procedure.

Procedure

1. Determine the names of the signals you want to add and the name you want to assign to
the group.

2. From the command line, use the add wave and the -group argument.

Examples

• Create a group named mygroup containing three items:

add wave -group mygroup sig1 sig2 sig3

• Create an empty group named mygroup:

add wave -group mygroup

Grouping Signals with a Keyboard Shortcut
If you’ve already added some signals to the Wave window, you can create a group of signals
using the following procedure.

Procedure

1. Select the signals you want to group.

2. Ctrl-g

Waveform Analysis
Wave Groups

ModelSim User’s Manual, v10.4c 305

Results

The selected signals become a group with a name that references the dataset and common
region, for example: sim:/top/p.

If you use Ctrl-g to group any other signals, they will be placed into any existing group for their
region, rather than creating a new group of only those signals.

Deleting or Ungrouping a Wave Group
If a wave group is selected and cut or deleted the entire group and all its contents will be
removed from the Wave window.

Likewise, the delete wave command will remove the entire group if the group name is specified.

If a wave group is selected and the Wave > Ungroup menu item is selected the group will be
removed and all of its contents will remain in the Wave window in existing order.

Adding Items to an Existing Wave Group
There are three ways to add items to an existing wave group.

1. Using the drag and drop capability to move items outside of the group or from other
windows into the group. The insertion indicator will show the position the item will be
dropped into the group. If the cursor is moved over the lower portion of the group item
name a box will be drawn around the group name indicating the item will be dropped
into the last position in the group.

2. After selecting an insertion point within a group, place the cursor over the object to be
inserted into the group, then click the middle mouse button.

3. After selecting an insertion point within a group, select multiple objects to be inserted
into the group, then click the Add Selected to Window button in the Standard
Toolbar.

4. The cut/copy/paste functions may be used to paste items into a group.

5. Use the add wave -group command.

The following example adds two more signals to an existing group called mygroup.

add wave -group mygroup sig4 sig5

Removing Items from an Existing Wave Group
You can use any of the following methods to remove an item from a wave group.

1. Use the drag and drop capability to move an item outside of the group.

ModelSim User’s Manual, v10.4c306

Waveform Analysis
Composite Signals or Buses

2. Use menu or icon selections to cut or delete an item or items from the group.

3. Use the delete wave command to specify a signal to be removed from the group.

Note
The delete wave command removes all occurrences of a specified name from the Wave
window, not just an occurrence within a group.

Miscellaneous Wave Group Features
Dragging a wave group from the Wave window to the List window will result in all of the items
within the group being added to the List window.

Dragging a group from the Wave window to the Transcript window will result in a list of all of
the items within the group being added to the existing command line, if any.

Composite Signals or Buses
You can create a composite signal or bus from arbitrary groups of items in the Wave window.
Composite signals have the following characteristics:

• Composite signals may contain 0, 1, or many items.

• You can drag a group around the Wave window or to another Wave window.

Creating Composite Signals through Menu Selection
If you’ve already added some signals to the Wave window, you can create a composite signal or
bus using the following procedure.

Procedure

1. Select signals to combine:

• Shift-click on signal pathnames to select a contiguous set of signals, records, and/or
busses.

• Control-click on individual signal, record, and/or bus pathnames.

2. Select Wave > Combine Signals

3. Complete the Combine Selected Signals dialog box.

• Name — Specify the name of the new combined signal or bus.

• Order to combine selected items — Specify the order of the signals within the new
combined signal.

• Top down— (default) Signals ordered from the top as selected in the Wave window.

Waveform Analysis
Saving the Window Format

ModelSim User’s Manual, v10.4c 307

• Bottom Up — Signals ordered from the bottom as selected in the Wave window.

• Order of Result Indexes — Specify the order of the indexes in the combined signal.

• Ascending — Bits indexed [0 : n] starting with the top signal in the bus.

• Descending — (default) Bits indexed [n : 0] starting with the top signal in the bus.

• Remove selected signals after combining — Saves the selected signals in the
combined signal only.

• Reverse bit order of bus items in result — Reverses the bit order of busses that are
included in the new combined signal.

• Flatten Arrays — (default) Moves elements of arrays to be elements of the new
combined signal. If arrays are not flattened the array itself will be an element of the
new combined signal.

• Flatten Records — Moves fields of selected records and signals to be elements of
the new combined signal. If records are not flattened the record itself will be an
element of the new combined signal.

Related Topics

For more information, refer to Virtual Signals, Virtual Objects, Using the Virtual Signal
Builder. and Concatenation of Signals or Subelements.

Saving the Window Format
By default, all Wave window information is lost once you close the window. If you want to
restore the window to a previously configured layout, you must save a window format file with
the following procedure.

Procedure

1. Add the objects you want to the Wave window.

2. Edit and format the objects to create the view you want.

3. Save the format to a file by selecting File > Save. This opens the Save Format dialog
box (Figure 8-28), where you can save waveform formats in a .do file.

ModelSim User’s Manual, v10.4c308

Waveform Analysis
Exporting Waveforms from the Wave window

Figure 8-28. Save Format Dialog

To use the format file, start with a blank Wave window and run the DO file in one of two ways:

• Invoke the do command from the command line:

VSIM> do <my_format_file>

• Select File > Load.

Note
Window format files are design-specific. Use them only with the design you were
simulating when they were created.

In addition, you can use the write format restart command to create a single .do file that will
recreate all debug windows and breakpoints (see Saving and Restoring Breakpoints) when
invoked with the do command in subsequent simulation runs. The syntax is:

write format restart <filename>

If the ShutdownFile modelsim.ini variable is set to this .do filename, it will call the write format
restart command upon exit.

Exporting Waveforms from the Wave window
This section describes ways to save or print information from the Wave window.

Exporting the Wave Window as a Bitmap Image
You can export the current view of the Wave window to a Bitmap (.bmp) image with the
following procedure.

Procedure

1. Select File > Export > Image from the Main menus

2. Complete the Save Image dialog box.

Waveform Analysis
Exporting Waveforms from the Wave window

ModelSim User’s Manual, v10.4c 309

Results

The saved bitmap image only contains the current view; it does not contain any signals not
visible in the current scroll region.

Note that you should not select a new window in the GUI until the export has completed,
otherwise your image will contain information about the newly selected window.

Printing the Wave Window to a Postscript File
You can export the contents of the Wave window to a Postscript (.ps) or Extended Postscript
file with the following procedure.

Procedure

1. Select File > Print Postscript from the Main menus.

2. Complete the Write Postscript dialog box.

The Write Postscript dialog box allows you to control the amount of information
exported.

• Signal Selection — allows you to select which signals are exported

• Time Range — allows you to select the time range for the given signals.

Note that the output is a simplified black and white representation of the wave window.

You can also perform this action with the write wave command.

Printing the Wave Window on the Windows
Platform

You can print the contents of the Wave window to a networked printer with the following
procedure.

Procedure

1. Select File > Print from the Main menus.

2. Complete the Print dialog box.

The Print dialog box allows you to control the amount of information exported.

• Signal Selection — allows you to select which signals are exported

• Time Range — allows you to select the time range for the given signals.

Note that the output is a simplified black and white representation of the wave window.

ModelSim User’s Manual, v10.4c310

Waveform Analysis
Exporting Waveforms from the Wave window

Saving Waveform Sections for Later Viewing
You can choose one or more objects or signals in the waveform pane and save a section of the
generated waveforms to a separate WLF file for later viewing. Saving selected portions of the
waveform pane allows you to create a smaller dataset file.

Saving Waveforms Between Two Cursors
You can save a waveform section between two cursors.

Procedure

1. Place the first cursor (Cursor 1 in Figure 8-29) at one end of the portion of simulation
time you want to save.

2. Click the Insert Cursor icon to insert a second cursor (Cursor 2).

3. Move Cursor 2 to the other end of the portion of time you want to save. Cursor 2 is now
the active cursor, indicated by a bold yellow line and a highlighted name.

4. Right-click the time indicator of the inactive cursor (Cursor 1) to open a drop menu.

Figure 8-29. Waveform Save Between Cursors

5. Select Filter Waveform to open the Wave Filter dialog box. (Figure 8-30)

Waveform Analysis
Exporting Waveforms from the Wave window

ModelSim User’s Manual, v10.4c 311

Figure 8-30. Wave Filter Dialog

6. Select Selected Signals in Wave Window to save the selected objects or signals. You
can also choose to save all waveforms displayed in the Wave window between the
specified start and end time or all of the logged signals.

7. Enter a name for the file using the .wlf extension. Do not use vsim.wlf since it is the
default name for the simulation dataset and will be overwritten when you end your
simulation.

Viewing Saved Waveforms
Call up and view saved waveform sections with the following procedure.

Procedure

1. Open the saved .wlf file by selecting File > Open to open the Open File dialog and set
the “Files of type” field to Log Files (*.wlf). Then select the .wlf file you want and click
the Open button. Refer to Opening Datasets for more information.

2. Select the top instance in the Structure window

3. Select Add > To Wave > All Items in Region and Below.

4. Scroll to the simulation time that was saved. (Figure 8-31)

ModelSim User’s Manual, v10.4c312

Waveform Analysis
Viewing System Verilog Interfaces

Figure 8-31. Wave Filter Dataset

Working With Multiple Cursors
You can save a portion of your waveforms in a simulation that has multiple cursors set. The new
dataset will start and end at the times indicated by the two cursors chosen, even if the time span
includes another cursor.

Viewing System Verilog Interfaces
You can log and display scalar and array virtual interface values in the Wave and List windows.

Working with Virtual Interfaces
You can perform the following actions with virtual interfaces:

• Log the virtual interface with the log command. For example:

log /test2/virt

• Add a virtual interface to the List window with the add list command.

• Add a virtual interface to the Wave window with the add wave command. For example:

add wave /test2/virt

Adding Virtual Interface References to the Wave Window
You can add the real interfaces that are referenced by a virtual interface.

Procedure

1. Right-click the portion of the virtual interface waveform you are interested in.

Waveform Analysis
Combining Objects into Buses

ModelSim User’s Manual, v10.4c 313

2. Select Add wave <virtual_interface>/*.

Results

The real interface objects are added to the Wave window and logged from the time they are
added.

Examples

Figure 8-32 shows the virtual interface /test2/virt logged in the Wave window with the real
interface /test2/bi1/* added at 75 ns. The nets, array and so forth in the interface /test2/bi2/* are
about to be added.

Figure 8-32. Virtual Interface Objects Added to Wave Window

Combining Objects into Buses
You can combine signals in the Wave window into buses. A bus is a collection of signals
concatenated in a specific order to create a new virtual signal with a specific value.

A virtual compare signal (the result of a comparison simulation) is not supported for
combination with any other signal.

To combine signals into a bus, use one of the following methods:

ModelSim User’s Manual, v10.4c314

Waveform Analysis
Combining Objects into Buses

• Select two or more signals in the Wave window and then choose Tools > Combine
Signals from the menu bar. A virtual signal that is the result of a comparison simulation
is not supported for combining with any other signal.

• Use the virtual signal command at the Main window command prompt.

In the illustration below, four signals have been combined to form a new bus called "Bus1."
Note that the component signals are listed in the order in which they were selected in the Wave
window. Also note that the value of the bus is made up of the values of its component signals,
arranged in a specific order.

Figure 8-33. Signals Combined to Create Virtual Bus

Extracting a Bus Slice
You can create a new bus containing a slice of a selected bus using the following procedure.
This action uses the virtual signal command.

Procedure

1. In the Wave window, locate the bus and select the range of signals that you want to
extract.

2. Select Wave > Extract/Pad Slice (Hotkey: Ctrl+e) to display the Wave Extract/Pad Bus
Dialog Box.

Waveform Analysis
Combining Objects into Buses

ModelSim User’s Manual, v10.4c 315

Figure 8-34. Wave Extract/Pad Bus Dialog Box

By default, the dialog box is prepopulated with information based on your selection and
will create a new bus based on this information.

This dialog box also provides you options to pad the selected slice into a larger bus.

3. Click OK to create a group of the extracted signals based on your changes, if any, to the
dialog box.

The new bus, by default, is added to the bottom of the Wave window. Alternatively, you
can follow the directions in Inserting Signals in a Specific Location.

Wave Extract/Pad Bus Dialog Box
Use the Wave > Extract/Pad Slice menu selection to open the Wave Extract/Pad Bus dialog
box.

The features of the Wave Extract/Pad Bus dialog box (Figure 8-34) are as follows:

• Source — The name of the bus from which you selected the signals.

• Result Name — A generated name based on the source name and the selected signals.
You can change this to a different value.

• Slice Range — The range of selected signals.

• Padding — These options allow you to create signal padding around your extraction.

ModelSim User’s Manual, v10.4c316

Waveform Analysis
Using the Virtual Signal Builder

o Left Pad / Value — An integer that represents the number of signals you want to
pad to the left of your extracted signals, followed by the value of those signals.

o Right Pad / Value — An integer that represents the number of signals you want to
pad to the right of your extracted signals, followed by the value of those signals.

• Transcript Commands — During creation of the bus, the virtual signal command to
create the extraction is written to the Transcript window.

Splitting a Bus into Several Smaller Buses
You can split a bus into several equal-sized buses using the following procedure. This action
uses the virtual signal command.

Procedure

1. In the Wave window, select the top level of the bus you want to split.

2. Select Wave > Split Bus (Hotkey: Ctrl+p) to display the Wave Split Bus dialog box.

3. Edit the settings of the Wave Split dialog box

o Source — (cannot edit) Shows the name of the selected signal and its range.

o Prefix — Specify the prefix to be used for the new buses.

The resulting name is of the form: <prefix><n>, where n increments for each group.

o Split Width — Specify the width of the new buses, which must divide equally into
the bus width.

Using the Virtual Signal Builder
You can create, modify, and combine virtual signals and virtual functions and add them to the
Wave window with the Virtual Signal Builder dialog box.Virtual signals are also added to the
Objects window and can be dragged to the List, and Watch windows once they have been added
to the Wave window.

The Virtual Signal Builder dialog box is accessed by selecting Wave > Virtual Builder when
the Wave window is docked or selecting Tools > Virtual Builder when the Wave window is
undocked. (Figure 8-35)

Waveform Analysis
Using the Virtual Signal Builder

ModelSim User’s Manual, v10.4c 317

Figure 8-35. Virtual Signal Builder

• The Name field allows you to enter the name of the new virtual signal or select an
existing virtual signal from the drop down list. Use alpha, numeric, and underscore
characters only, unless you are using VHDL extended identifier notation.

• The Editor field is a regular text box. You can enter text directly, copy and paste, or drag
a signal from the Objects, Locals, Source , or Wave window and drop it in the Editor
field.

• The Operators field allows you to select from a list of operators. Double-click an
operator to add it to the Editor field.

• The Help button provides information about the Name, Clear, and Add Text buttons,
and the Operators field (Figure 8-36).

ModelSim User’s Manual, v10.4c318

Waveform Analysis
Using the Virtual Signal Builder

Figure 8-36. Virtual Signal Builder Help

• The Clear button deletes the contents of the Editor field.

• The Add button places the virtual signal in the Wave window in the default location.
Refer to Inserting Signals in a Specific Location for more information.

• The Test button tests the syntax of your virtual signal.

Creating a Virtual Signal
Use the following procedure to create a virtual signal with the Virtual Signal Builder.

Prerequisites

• An active simulation or open dataset.

• An active Wave window with objects loaded in the Pathname pane

Procedure

1. Select Wave >Virtual Builder from the main menu to open the Virtual Signal Builder
dialog box.

2. Drag one or more objects from the Wave or Object window into the Editor field.

3. Modify the object by double-clicking on items in the Operators field or by entering text
directly.

Waveform Analysis
Using the Virtual Signal Builder

ModelSim User’s Manual, v10.4c 319

Tip: Select the Help button then place your cursor in the Operator field to view syntax
usage for some of the available operators. Refer to Figure 8-35

4. Enter a string in the Name field. Use alpha, numeric, and underscore characters only,
unless you are using VHDL extended identifier notation.

5. Select the Test button to verify the expression syntax is parsed correctly.

6. Select Add to place the new virtual signal in the Wave window at the default insertion
point. Refer to Inserting Signals in a Specific Location for more information.

Figure 8-37. Creating a Virtual Signal.

ModelSim User’s Manual, v10.4c320

Waveform Analysis
Miscellaneous Tasks

Results

The virtual signal is added to the Wave window and the Objects window. An orange diamond
marks the location of the virtual signal in the wave window. (Figure 8-38)

Figure 8-38. Virtual Signal in the Wave Window

Related Topics

For more information see Virtual Objects, Virtual Signals, and the GUI_expression_format. Se
also the virtual signal command and the virtual function command.

Miscellaneous Tasks
The Wave window allows you to perform a wide variety of tasks, from examining waveform
values, to displaying signal drivers and readers, to sorting objects.

Examining Waveform Values
You can use your mouse to display a dialog that shows the value of a waveform at a particular
time.

You can do this two ways:

• Rest your mouse pointer on a waveform. After a short delay, a dialog will pop-up that
displays the value for the time at which your mouse pointer is positioned. If you’d prefer
that this popup not display, it can be toggled off in the display properties. See Setting
Wave Window Display Preferences.

• Right-click a waveform and select Examine. A dialog displays the value for the time at
which you clicked your mouse.

Displaying Drivers of the Selected Waveform
You can display the drivers of a signal selected in the Wave window in the Dataflowwindow.

Waveform Analysis
Creating and Managing Breakpoints

ModelSim User’s Manual, v10.4c 321

Procedure

You can display the signal in one of three ways:

• Select a waveform and click the Show Drivers button on the toolbar.

• Right-click a waveform and select Show Drivers from the shortcut menu

• Double-click a waveform edge (you can enable/disable this option in the display
properties dialog; see Setting Wave Window Display Preferences)

This operation opens the Dataflow window and displays the drivers of the signal selected in the
Wave window. A Wave pane also opens in the Dataflow window to show the selected signal
with a cursor at the selected time. The Dataflow window shows the signal(s) values at the Wave
pane cursor position.

Sorting a Group of Objects in the Wave Window
You can easily sort objects in the Wave window.

Procedure

Select View > Sort to sort the objects in the pathname and values panes.

Creating and Managing Breakpoints
ModelSim supports both signal (that is, when conditions) and file-line breakpoints. Breakpoints
can be set from multiple locations in the GUI or from the command line.

Signal Breakpoints
Signal breakpoints (“when” conditions) instruct ModelSim to perform actions when the
specified conditions are met. For example, you can break on a signal value or at a specific
simulator time. When a breakpoint is hit, a message in the Main window transcript identifies the
signal that caused the breakpoint.

Setting Signal Breakpoints with the when Command
ModelSim allows you to set a breakpoint with a simple command line instruction.

Procedure

1. Use the when command to set a signal breakpoint from the VSIM> prompt.

ModelSim User’s Manual, v10.4c322

Waveform Analysis
Creating and Managing Breakpoints

Examples

The command:

when {errorFlag = '1' OR $now = 2 ms} {stop}

adds 2 ms to the simulation time at which the “when” statement is first evaluated, then stops.
The white space between the value and time unit is required for the time unit to be understood
by the simulator.

Related Topics

See the when command in the Command Reference for additional details and examples.

Setting Signal Breakpoints with the GUI
Signal breakpoints are most easily set in the Objects and Wave windows.

Procedure

Right-click a signal and select Insert Breakpoint from the context menu.

Results

A breakpoint is set on that signal and will be listed in the Modify Breakpoints dialog
accessible by selecting Tools > Breakpoints from the Main menu bar.

Modifying Signal Breakpoints
You can easily modify the signal breakpoints you have created.

Procedure

Select Tools > Breakpoints from the Main menus.

This will open the Modify Breakpoints dialog (Figure 8-39), which displays a list of all
breakpoints in the design.

Waveform Analysis
Creating and Managing Breakpoints

ModelSim User’s Manual, v10.4c 323

Figure 8-39. Modifying the Breakpoints Dialog

When you select a signal breakpoint from the list and click the Modify button, the Signal
Breakpoint dialog (Figure 8-40) opens, allowing you to modify the breakpoint.

ModelSim User’s Manual, v10.4c324

Waveform Analysis
Creating and Managing Breakpoints

Figure 8-40. Signal Breakpoint Dialog

File-Line Breakpoints
File-line breakpoints are set on executable lines in your source files. When the line is hit, the
simulator stops and the Source window opens to show the line with the breakpoint. You can
change this behavior by editing the PrefSource(OpenOnBreak) variable.

Setting File-Line Breakpoints Using the bp Command
ModelSim allows you to set a file-line breakpoint with a simple command line instruction.

Procedure

Use the bp command to set a file-line breakpoint from the VSIM> prompt.

Examples

The command

bp top.vhd 147

sets a breakpoint in the source file top.vhd at line 147.

Related Topics

See Simulator GUI Preferences for details on setting preference variables.

Setting File-Line Breakpoints Using the GUI
File-line breakpoints are most easily set using your mouse in the Source window.

Waveform Analysis
Creating and Managing Breakpoints

ModelSim User’s Manual, v10.4c 325

Procedure

1. Position your mouse cursor in the line number column next to a red line number (which
indicates an executable line) and click the left mouse button. A red ball denoting a
breakpoint will appear (Figure 8-41).

Figure 8-41. Breakpoints in the Source Window

2. The breakpoints are toggles. Click the left mouse button on the red breakpoint marker to
disable the breakpoint. A disabled breakpoint will appear as a black ball. Click the
marker again to enable it.

3. Right-click the breakpoint marker to open a context menu that allows you to
Enable/Disable, Remove, or Edit the breakpoint. create the colored diamond; click
again to disable or enable the breakpoint.

Related Topics

Source Window

Modifying a File-Line Breakpoint
You can easily modify a file-line breakpoints.

Procedure

1. Select Tools > Breakpoints from the Main menus. This will open the Modify
Breakpoints dialog (Figure 8-39), which displays a list of all breakpoints in the design.

2. When you select a file-line breakpoint from the list and click the Modify button, the File
Breakpoint dialog (Figure 8-42) opens, allowing you to modify the breakpoint.

ModelSim User’s Manual, v10.4c326

Waveform Analysis
Creating and Managing Breakpoints

Figure 8-42. File Breakpoint Dialog Box

Saving and Restoring Breakpoints
Command line instructions allow you to save and restore breakpoints.

Procedure

Use the write format restart command to create a .do file that will recreate all debug windows,
all file/line breakpoints, and all signal breakpoints created with the when command. The syntax
is:

write format restart <filename>

If the ShutdownFile modelsim.ini variable is set to this .do filename, it will call the write format
restart command upon exit.

Results

The file created is primarily a list of add list or add wave commands, though a few other
commands are included. This file may be invoked with the do command to recreate the window
format on a subsequent simulation run.

ModelSim User’s Manual, v10.4c 327

Chapter 9
Debugging with the Dataflow Window

This chapter discusses how to use the Dataflow window for tracing signal values, browsing the
physical connectivity of your design, and performing post-simulation debugging operations.

Dataflow Window Overview
The Dataflow window allows you to explore the "physical" connectivity of your design.

Note
This version of ModelSim has limited Dataflow functionality. Many of the features
described below will operate differently. The window will show only one process and its
attached signals or one signal and its attached processes, as displayed in Figure 9-1.

Figure 9-1. The Dataflow Window (undocked) - ModelSim

ModelSim User’s Manual, v10.4c328

Debugging with the Dataflow Window
Dataflow Usage Flow

Dataflow Usage Flow
The Dataflow window can be used to debug the design currently being simulated, or to perform
post-simulation debugging of a design. For post-simulation debugging, a database is created at
design load time, immediately after elaboration, and used later.

Note
The -postsimdataflow option must be used with the vsim command for the Dataflow
window to be available for post simulation debug operations.

Live Simulation Debug Flow
The usage flow for debugging the live simulation is as follows.

Procedure

1. Compile the design using the vlog and/or vcom commands.

2. Load the design with the vsim command:

vsim <design_name>

3. Run the simulation.

4. Debug your design.

Figure 9-2 illustrates the current and post-sim usage flows for Dataflow debugging.

Debugging with the Dataflow Window
Dataflow Usage Flow

ModelSim User’s Manual, v10.4c 329

Figure 9-2. Dataflow Debugging Usage Flow

Post-Simulation Debug Flow Details
The post-sim debug flow for Dataflow analysis is most commonly used when performing
simulations of large designs in simulation farms, where simulation results are gathered over
extended periods and saved for analysis at a later date. In general, the process consists of two
steps: creating the database and then using it.

Create the Post-Sim Debug Database
Use the following procedure to create a post-simulation debug database.

compile design

run simulation

save and quit simulation

create database for
post-sim debug?

load design with
vsim -postsimdataflow

run simulation

debug

load design with
vsim command

recall post-sim
debug database with

dataset open command

debug

create
post-sim
debug
database

use
post-sim
debug
database

YESNO

-debugdb command

ModelSim User’s Manual, v10.4c330

Debugging with the Dataflow Window
Dataflow Usage Flow

Procedure
1. Compile the design using the vlog and/or vcom commands.

2. Load the design with the following commands:

vsim -postsimdataflow -debugdb=<db_pathname> -wlf <db_pathname>
add log -r /*

By default, the Dataflow window is not available for post simulation debug operations.
You must use the -postsimdataflow argument to vsim to make the Dataflow window
available during post-sim debug.

Specify the post-simulation database file name with the -debugdb=<db_pathname>
argument to the vsim command. If a database pathname is not specified, ModelSim
creates a database with the file name vsim.dbg in the current working directory. This
database contains dataflow connectivity information.

Specify the dataset that will contain the database with -wlf <db_pathname>. If a dataset
name is not specified, the default name will be vsim.wlf.

The debug database and the dataset that contains it should have the same base name
(db_pathname).

The add log -r /* command instructs ModelSim to save all signal values generated when
the simulation is run.

3. Run the simulation.

4. Quit the simulation.

The -debugdb=<db_pathname> argument for the vsim command only needs to be used once
after any structural changes to a design. After that, you can reuse the vsim.dbg file along with
updated waveform files (vsim.wlf) to perform post simulation debug.

A structural change is any change that adds or removes nets or instances in the design, or
changes any port/net associations. This also includes processes and primitive instances.
Changes to behavioral code are not considered structural changes. ModelSim does not
automatically detect structural changes. This must be done by the user.

Use the Post-Simulation Debug Database
You can use the saved dataset to view objects and trace connectivity. Use the following
procedure to open a saved dataset.

Procedure
1. Start ModelSim by typing vsim at a UNIX shell prompt; or double-click a ModelSim

icon in Windows.

2. Select File > Change Directory and change to the directory where the post-simulation
debug database resides.

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 331

3. Recall the post-simulation debug database with the following:

dataset open <db_pathname.wlf>

ModelSim opens the .wlf dataset and its associated debug database (.dbg file with the
same basename), if it can be found. If ModelSim cannot find db_pathname.dbg, it will
attempt to open vsim.dbg.

Common Tasks for Dataflow Debugging
Common tasks for current and post-simulation Dataflow debugging include:

• Add Objects to the Dataflow Window

• Exploring the Connectivity of the Design

• Explore Designs with the Embedded Wave Viewer

• Tracing Events

• Tracing the Source of an Unknown State (StX)

• Finding Objects by Name in the Dataflow Window

Add Objects to the Dataflow Window
You can use any of the following methods to add objects to the Dataflow window:

• Drag and drop objects from other windows.

• Use the Add > To Dataflow menu options.

• Select the objects you want placed in the Dataflow Window, then click-and-hold the
Add Selected to Window Button in the Standard toolbar and select Add to Dataflow.

• Use the add dataflow command.

The Add > To Dataflow menu offers four commands that will add objects to the window:

• View region — clear the window and display all signals from the current region

• Add region — display all signals from the current region without first clearing the
window

• View all nets — clear the window and display all signals from the entire design

• Add ports — add port symbols to the port signals in the current region

When you view regions or entire nets, the window initially displays only the drivers of the
added objects. You can view readers as well by right-clicking a selected object, then selecting
Expand net to readers from the right-click popup menu.

ModelSim User’s Manual, v10.4c332

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

The Dataflow window provides automatic indication of input signals that are included in the
process sensitivity list. In Figure 9-3, the dot next to the state of the input clk signal for the
#ALWAYS#155 process. This dot indicates that the clk signal is in the sensitivity list for the
process and will trigger process execution. Inputs without dots are read by the process but will
not trigger process execution, and are not in the sensitivity list (will not change the output by
themselves).

Figure 9-3. Dot Indicates Input in Process Sensitivity Lis

The Dataflow window displays values at the current “active time,” which is set a number of
different ways:

• with the selected cursor in the Wave window

• with the selected cursor in the Dataflow window’s embedded Wave viewer

• with the Current Time label in the Source or Dataflow windows.

Figure 9-4 shows the CurrentTime label in the upper right corner of the Dataflow window.
(This label is turned on by default. If you want to turn it off, select Dataflow > Preferences to
open the Dataflow Options Dialog and check the “Current Time label” box.) Refer to Current
Time Label for more information.

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 333

Figure 9-4. CurrentTime Label in Dataflow Window

Exploring the Connectivity of the Design
A primary use of the Dataflow window is exploring the "physical" connectivity of your design.
One way of doing this is by expanding the view from process to process. This allows you to see
the drivers/readers of a particular signal, net, or register.

You can expand the view of your design using menu commands or your mouse. To expand with
the mouse, simply double click a signal, register, or process. Depending on the specific object
you click, the view will expand to show the driving process and interconnect, the reading
process and interconnect, or both.

Alternatively, you can select a signal, register, or net, and use one of the toolbar buttons or drop
down menu commands described in Table 9-1.

As you expand the view, the layout of the design may adjust to show the connectivity more
clearly. For example, the location of an input signal may shift from the bottom to the top of a
process.

Table 9-1. Icon and Menu Selections for Exploring Design Connectivity

Expand net to all drivers
display driver(s) of the selected signal, net, or
register

Right-click in the Dataflow
window > Expand Net to Drivers

Expand net to all drivers and readers
display driver(s) and reader(s) of the selected
signal, net, or register

Right-click in the Dataflow
window > Expand Net

Expand net to all readers
display reader(s) of the selected signal, net, or
register

Right-click in the Dataflow
window > Expand Net to Readers

ModelSim User’s Manual, v10.4c334

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Analyzing a Scalar Connected to a Wide Bus
During design analysis you may need to trace a signal to a reader or driver through a wide bus.
To prevent the Dataflow window from displaying all of the readers or drivers of the bus follow
this procedure:

1. You must be in a live simulation; you can not perform this action post-simulation.

2. Select a scalar net in the Dataflow window (you must select a scalar)

3. Right-click and select one of the Expand > Expand Bit ... options.

After internally analyzing your selection, the dataflow will then show the connected
net(s) for the scalar you selected without showing all the other parts of the bus. This
saves in processing time and produces a more compact image in the Dataflow window
as opposed to using the Expand > Expand Net ... options, which will show all readers
or drivers that are connected to any portion of the bus.

Control the Display of Readers and Nets
Some nets (such as a clock) in a design can have many readers. This can cause the display to
draw numerous processes that you may not want to see when expanding the selected signal, net,
or register. By default, nets with undisplayed readers or drivers are represented by a dashed line.
If all the readers and drivers for a net are shown, the new will appear as a solid line. To draw the
undisplayed readers or drivers, double-click on the dashed line.

Limiting the Display of Readers
The Dataflow Window limits the number of readers that are added to the display when you click
the Expand Net to Readers button. By default, the limit is 10 readers, but you can change this
limit with the "sproutlimit" Dataflow preference as follows:

Procedure
1. Open the Preferences dialog box by selecting Tools > Edit Preferences.

2. Click the By Name tab.

3. Click the ‘+’ sign next to “Dataflow” to see the list of Dataflow preference items.

4. Select “sproutlimit” from the list and click the Change Value button.

5. Change the value and click the OK button to close the Change Dataflow Preference
Value dialog box.

6. Click OK to close the Preferences dialog box and apply the changes.

The sprout limit is designed to improve performance with high fanout nets such as clock
signals. Each subsequent click of the Expand Net to Readers button adds the sprout limit of
readers until all readers are displayed.

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 335

Note
This limit does not affect the display of drivers.

Limit the Display of Readers and Drivers
To restrict the expansion of readers and/or drivers to the hierarchical boundary of a selected
signal select Dataflow > Dataflow Options to open the Dataflow Options dialog box then
check Stop on port in the Miscellaneous field.

Controlling the Display of Redundant Buffers and
Inverters

The Dataflow window automatically traces a signal through buffers and inverters. This can
cause chains of redundant buffers or inverters to be displayed in the Dataflow window. You can
collapse these chains of buffers or inverters to make the design displayed in the Dataflow
window more compact.

To change the display of redundant buffers and inverters: select Dataflow > Dataflow
Preferences > Options to open the Dataflow Options dialog. The default setting is to display
both redundant buffers and redundant inverters. (Figure 9-5)

Figure 9-5. Controlling Display of Redundant Buffers and Inverters

Track Your Path Through the Design
You can quickly traverse through many components in your design. To help mark your path, the
objects that you have expanded are highlighted in green.

ModelSim User’s Manual, v10.4c336

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-6. Green Highlighting Shows Your Path Through the Design

You can clear this highlighting using the Dataflow > Remove Highlight menu
selection or by clicking the Remove All Highlights icon in the toolbar. If you click
and hold the Remove All Highlights icon a dropdown menu appears, allowing you to
remove only selected highlights.

You can also highlight the selected trace with any color of your choice by right-clicking
Dataflow window and selecting Highlight Selection from the popup menu (Figure 9-7).

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 337

Figure 9-7. Highlight Selected Trace with Custom Color

You can then choose from one of five pre-defined colors, or Customize to choose from the
palette in the Preferences dialog box.

Explore Designs with the Embedded Wave Viewer
Another way of exploring your design is to use the Dataflow window’s embedded wave viewer.
This viewer closely resembles, in appearance and operation, the stand-alone Wave window.

The wave viewer is opened using the Dataflow > Show Wave menu selection or by
clicking the Show Wave icon.

When wave viewer is first displayed, the visible zoom range is set to match that of the last
active Wave window, if one exists. Additionally, the wave viewer's moveable cursor (Cursor 1)
is automatically positioned to the location of the active cursor in the last active Wave window.
The Current Time label in the upper right of the Dataflow window automatically displays the
time of the currently active cursor. Refer to Current Time Label for information about working
with the Current Time label.

ModelSim User’s Manual, v10.4c338

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

One common scenario is to place signals in the wave viewer and the Dataflow panes, run the
design for some amount of time, and then use time cursors to investigate value changes. In other
words, as you place and move cursors in the wave viewer pane (see Measuring Time with
Cursors in the Wave Window for details), the signal values update in the Dataflow window.

Figure 9-8. Wave Viewer Displays Inputs and Outputs of Selected Process

Another scenario is to select a process in the Dataflow pane, which automatically adds to the
wave viewer pane all signals attached to the process.

Related Topics

See Waveform Analysis and Tracing Events.

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 339

Tracing Events
You can use the Dataflow window to trace an event to the cause of an unexpected output. This
feature uses the Dataflow window’s embedded wave viewer. First, you identify an output of
interest in the dataflow pane, then use time cursors in the wave viewer pane to identify events
that contribute to the output.

Procedure
1. Log all signals before starting the simulation (add log -r /*).

2. After running a simulation for some period of time, open the Dataflow window and the
wave viewer pane.

3. Add a process or signal of interest into the dataflow pane (if adding a signal, find its
driving process). Select the process and all signals attached to the selected process will
appear in the wave viewer pane.

4. Place a time cursor on an edge of interest; the edge should be on a signal that is an
output of the process.

5. Right-click and select Trace Next Event.

A second cursor is added at the most recent input event.

6. Keep selecting Trace Next Event until you've reached an input event of interest. Note
that the signals with the events are selected in the wave viewer pane.

7. Right-click and select Trace Event Set.

The Dataflow display "jumps" to the source of the selected input event(s). The operation
follows all signals selected in the wave viewer pane. You can change which signals are
followed by changing the selection.

8. To continue tracing, go back to step 5 and repeat.

If you want to start over at the originally selected output, right-click and select Trace Event
Reset.

Related Topics

See Explore Designs with the Embedded Wave Viewer.

Tracing the Source of an Unknown State (StX)
Another useful Dataflow window debugging tool is the ability to trace an unknown state (StX)
back to its source. Unknown values are indicated by red lines in the Wave window (Figure 6-9)
and in the wave viewer pane of the Dataflow window.

ModelSim User’s Manual, v10.4c340

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Figure 9-9. Unknown States Shown as Red Lines in Wave Window

Procedure
1. Load your design.

2. Log all signals in the design or any signals that may possibly contribute to the unknown
value (log -r /* will log all signals in the design).

3. Add signals to the Wave window or wave viewer pane, and run your design the desired
length of time.

4. Put a Wave window cursor on the time at which the signal value is unknown (StX). In
Figure 9-9, Cursor 1 at time 2305 shows an unknown state on signal t_out.

5. Add the signal of interest to the Dataflow window by doing one of the following:

o Select the signal in the Wave Window, select Add Selected to Window in the
Standard toolbar > Add to Dataflow.

o right-click the signal in the Objects window and select Add > To Dataflow >
Selected Signals from the popup menu,

o select the signal in the Objects window and select Add > To Dataflow > Selected
Items from the menu bar.

6. In the Dataflow window, make sure the signal of interest is selected.

7. Trace to the source of the unknown by doing one of the following:

o If the Dataflow window is docked, make one of the following menu selections:
Tools > Trace > TraceX,
Tools > Trace > TraceX Delay,

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

ModelSim User’s Manual, v10.4c 341

Tools > Trace > ChaseX, or
Tools > Trace > ChaseX Delay.

o If the Dataflow window is undocked, make one of the following menu selections:
Trace > TraceX,
Trace > TraceX Delay,
Trace > ChaseX, or
Trace > ChaseX Delay.

These commands behave as follows:

• TraceX / TraceX Delay— TraceX steps back to the last driver of an X value.
TraceX Delay works similarly but it steps back in time to the last driver of an X
value. TraceX should be used for RTL designs; TraceX Delay should be used
for gate-level netlists with back annotated delays.

• ChaseX / ChaseX Delay — ChaseX jumps through a design from output to
input, following X values. ChaseX Delay acts the same as ChaseX but also
moves backwards in time to the point where the output value transitions to X.
ChaseX should be used for RTL designs; ChaseX Delay should be used for
gate-level netlists with back annotated delays.

Finding Objects by Name in the Dataflow Window
Select Edit > Find from the menu bar, or click the Find icon in the toolbar, to search
for signal, net, or register names or an instance of a component. This opens the search
toolbar at the bottom of the Dataflow window.

With the search toolbar you can limit the search by type to instances or signals. You select
Exact to find an item that exactly matches the entry you’ve typed in the Find field. The Match
case selection will enforce case-sensitive matching of your entry. And the Zoom to selection
will zoom in to the item in the Find field.

The Find All button allows you to find and highlight all occurrences of the item in the Find
field. If Zoom to is checked, the view will change such that all selected items are viewable. If
Zoom to is not selected, then no change is made to zoom or scroll state.

Automatically Tracing All Paths Between Two Nets
This behavior is referred to as point-to-point tracing. It allows you to visualize all paths
connecting two different nets in your dataflow.

Prerequisites
• This feature is available during a live simulation, not when performing post-simulation

debugging.

ModelSim User’s Manual, v10.4c342

Debugging with the Dataflow Window
Common Tasks for Dataflow Debugging

Procedure
Use one of the following procedures to trace or modify the paths between two nets:

Results
After beginning the point-to-point tracing, the Dataflow window highlights your design as
shown in Figure 9-10:

• All objects become gray

• The source net becomes yellow

• The destination net becomes red

• All intermediate processes and nets become orange.

If you want to... Do the following:

Trace a path between two
nets

1. Select Source — Click on the net to be your source
2. Select Destination — Shift-click on the net to be your

destination
3. Run point-to-point tracing — Right-click in the Dataflow

window and select Point to Point.

Perform point-to-point
tracing from the command
line

1. Determine the names of the nets
2. Use the add dataflow command with the -connect switch.

for example:
add data -connect /test_ringbuf/pseudo
/test_ringbuf/ring_inst/txd

where /test_ringbuf/pseudo is the source net and
/test_ringbuf/ring_inst/txd is the destination net.

Change the limit of
highlighted processes —
There is a limit of 400
processes that will be
highlighted

1. Tools > Edit Preferences
2. By Name tab
3. Dataflow > p2plimit option

Remove the point-to-point
tracing

1. Right-click in the Dataflow window
2. Erase Highlights

Debugging with the Dataflow Window
Dataflow Concepts

ModelSim User’s Manual, v10.4c 343

Figure 9-10. Dataflow: Point-to-Point Tracing

Dataflow Concepts
This section provides an introduction to the following important Dataflow concepts:

• Symbol Mapping

• Current vs. Post-Simulation Command Output

Symbol Mapping
The Dataflow window has built-in mappings for all Verilog primitive gates (for example, AND,
OR, and so forth). You can also map VHDL entities and Verilog/SystemVerilog modules that
represent a cell definition, or processes, to built-in gate symbols.

The mappings are saved in a file where the default filename is dataflow.bsm (.bsm stands for
"Built-in Symbol Map") The Dataflow window looks in the current working directory and
inside each library referenced by the design for the file. It will read all files found. You can also
manually load a .bsm file by selecting Dataflow > Dataflow Preferences > Load Built in
Symbol Map.

The dataflow.bsm file contains comments and name pairs, one comment or name per line. Use
the following Backus-Naur Format naming syntax:

ModelSim User’s Manual, v10.4c344

Debugging with the Dataflow Window
Dataflow Concepts

Syntax
<bsm_line> ::= <comment> | <statement>

Arguments
• <comment> ::= "#" <text> <EOL>

• <statement> ::= <name_pattern> <gate>

• <name_pattern> ::= [<library_name> "."] <du_name> ["(" <specialization> ")"]
[","<process_name>]

• <gate> ::= "BUF"|"BUFIF0"|"BUFIF1"|"INV"|"INVIF0"|"INVIF1"|"AND"|"NAND"|
"NOR"|"OR"|"XNOR"|"XOR"|"PULLDOWN"|"PULLUP"|"NMOS"|"PMOS"|"CMOS"|"T
RAN"| "TRANIF0"|"TRANIF1"

Examples
• Example 1

org(only),p1 OR
andg(only),p1 AND
mylib,andg.p1 AND
norg,p2 NOR

• Entities and modules representing cells are mapped the same way:

AND1 AND
A 2-input and gate
AND2 AND
mylib,andg.p1 AND
xnor(test) XNOR

Note
For primitive gate symbols, pin mapping is automatic.

User-Defined Symbols
You can also define your own symbols using an ASCII symbol library file format for defining
symbol shapes. This capability is delivered via Concept Engineering’s NlviewTM widget Symlib
format. The symbol definitions are saved in the dataflow.sym file.

The formal BNF format for the dataflow.sym file format is:

Syntax
<sym_line> ::= <comment> | <statement>

Arguments
<comment> ::= "#" <text> <EOL>

<statement> ::= "symbol" <name_pattern> "*" "DEF" <definition>

Debugging with the Dataflow Window
Dataflow Concepts

ModelSim User’s Manual, v10.4c 345

<name_pattern> ::= [<library_name> "."] <du_name> ["(" <specialization> ")"]
[","<process_name>]

<gate> ::= "port" | "portBus" | "permute" | "attrdsp" | "pinattrdsp" | "arc" | "path" | "fpath"
| "text" | "place" | "boxcolor"

Note
The port names in the definition must match the port names in the entity or module
definition or mapping will not occur.

The Dataflow window will search the current working directory, and inside each library
referenced by the design, for the file dataflow.sym. Any and all files found will be given to the
Nlview widget to use for symbol lookups. Again, as with the built-in symbols, the DU name and
optional process name is used for the symbol lookup. Here's an example of a symbol for a full
adder:

symbol adder(structural) * DEF \
port a in -loc -12 -15 0 -15 \
pinattrdsp @name -cl 2 -15 8 \
port b in -loc -12 15 0 15 \
pinattrdsp @name -cl 2 15 8 \
port cin in -loc 20 -40 20 -28 \
pinattrdsp @name -uc 19 -26 8 \
port cout out -loc 20 40 20 28 \
pinattrdsp @name -lc 19 26 8 \
port sum out -loc 63 0 51 0 \
pinattrdsp @name -cr 49 0 8 \
path 10 0 0 7 \
path 0 7 0 35 \
path 0 35 51 17 \
path 51 17 51 -17 \
path 51 -17 0 -35 \
path 0 -35 0 -7 \
path 0 -7 10 0

Port mapping is done by name for these symbols, so the port names in the symbol definition
must match the port names of the Entity|Module|Process (in the case of the process, it’s the
signal names that the process reads/writes).

When you create or modify a symlib file, you must generate a file index. This index is how the
Nlview widget finds and extracts symbols from the file. To generate the index, select Dataflow
> Dataflow Preferences > Create Symlib Index (Dataflow window) and specify the symlib
file. The file will be rewritten with a correct, up-to-date index. If you save the file as
dataflow.sym the Dataflow window will automatically load the file. You can also manually load
a .sym file by selecting Dataflow > Dataflow Preferences > Load Symlib Library.

ModelSim User’s Manual, v10.4c346

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Note
When you map a process to a gate symbol, it is best to name the process statement within
your HDL source code, and use that name in the .bsm or .sym file. If you reference a
default name that contains line numbers, you will need to edit the .bsm and/or .sym file
every time you add or subtract lines in your HDL source.

Current vs. Post-Simulation Command Output
ModelSim includes driver and readers commands that can be invoked from the command line to
provide information about signals displayed in the Dataflow window. In live simulation mode,
the drivers and readers commands will provide both topological information and signal values.
In post-simulation mode, however, these commands will provide only topological information.
Driver and reader values are not saved in the post-simulation debug database.

Related Topics

See the drivers and readers commands.

Dataflow Window Graphic Interface Reference
This section answers several common questions about using the Dataflow window’s graphic
user interface:

• What Can I View in the Dataflow Window?

• How is the Dataflow Window Linked to Other Windows?

• How Can I Print and Save the Display?

• How Do I Configure Window Options?

What Can I View in the Dataflow Window?
The Dataflow window displays processes, signals, nets, and registers.

The window has built-in mappings for all Verilog primitive gates (for example, AND, OR, and
so forth). For components other than Verilog primitives, you can define a mapping between
processes and built-in symbols. See Symbol Mapping for details.

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

ModelSim User’s Manual, v10.4c 347

How is the Dataflow Window Linked to Other
Windows?

The Dataflow window is dynamically linked to other debugging windows and panes as
described in the Table below.

How Can I Print and Save the Display?
You can print the Dataflow window display from a saved .eps file in UNIX, or by simple menu
selections in Windows. The Page Setup dialog allows you to configure the display for printing.

Save a .eps File and Printing the Dataflow Display from
UNIX

With the Dataflow window active, select File > Print Postscript to setup and print the
Dataflow display in UNIX, or save the waveform as an .eps file on any platform.

Table 9-2. Dataflow Window Links to Other Windows and Panes

Window Link

 Structure Window select a signal or process in the Dataflow window, and the
structure tab updates if that object is in a different design unit

 Processes Window select a process in either window, and that process is
highlighted in the other

 Objects Window select a design object in either window, and that object is
highlighted in the other

 Wave Window trace through the design in the Dataflow window, and the
associated signals are added to the Wave window

move a cursor in the Wave window, and the values update in
the Dataflow window

 Source Window select an object in the Dataflow window, and the Source
window updates if that object is in a different source file

ModelSim User’s Manual, v10.4c348

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Figure 9-11. The Print Postscript Dialog

Print from the Dataflow Display on Windows Platforms
With the Dataflow window active, select File > Print to print the Dataflow display or to save
the display to a file.

Figure 9-12. The Print Dialog

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

ModelSim User’s Manual, v10.4c 349

Configure Page Setup
With the Dataflow window active, select File > Page setup to open the Page Setup dialog. You
can also open this dialog by clicking the Setup button in the Print Postscript dialog. This dialog
allows you to configure page view, highlight, color mode, orientation, and paper options.

Figure 9-13. The Page Setup Dialog

How Do I Configure Window Options?
You can configure several options that determine how the Dataflow window behaves. The
settings affect only the current session.

Select DataFlow > Dataflow Preferences > Options to open the Dataflow Options dialog box.

ModelSim User’s Manual, v10.4c350

Debugging with the Dataflow Window
Dataflow Window Graphic Interface Reference

Figure 9-14. Dataflow Options Dialog

ModelSim User’s Manual, v10.4c 351

Chapter 10
Source Window

This chapter discusses the uses of the Source Window for editing and debugging.

Opening Source Files . 351

Data and Objects in the Source Window. 353

Breakpoints. 359

Source Window Bookmarks . 366

Source Window Preferences . 366

Opening Source Files
You can open several file types in the Source window for editing and debugging.

Changing File Permissions
If a file is protected you must create a copy of the file or change file permissions in order to
make changes to your source documents. Protected files can be edited in the Source window but
the changes must be saved to a new file. To edit the original source document(s) you must
change the read/write file permissions outside of ModelSim.

By default, files open in read-only mode even if the original source document file permissions
allow you to edit the document. To change this behavior, set the PrefSource(ReadOnly)

Table 10-1. Open a Source File

To open from ... Do the following ...

Main Menu Bar 1. Select File > Open
2. Select the file from the Open File dialog box

Other windows Double-click objects in the Ranked, Call Tree, Design Unit,
Structure, Objects, and other windows. The underlying source file
for the object opens in the Source window, the indicator scrolls to
the line where the object is defined, and the line is book marked.

Window context menu Select View Source from context menus in the Message Viewer,
Files, Structure, and other windows.

Command line Enter the edit <filename> command to open an existing file.

Create new file 1. Select File > New > Source
2. Select one of the file types from the drop down list.

ModelSim User’s Manual, v10.4c352

Source Window
Navigating Through Your Design

preference variable to 0. Refer to Setting GUI Preferences for details on setting preference
variables.

To change file permissions from the Source window:

Procedure
1. Right-click in the Source window

2. Select (un-check) Read Only.

3. Edit your file.

4. Save your file under a different name.

Updates to Externally Edited Source Files
The following preference variables control how ModelSim works with source files that have
been edited outside of the simulator’s Source window.

• PrefSource(CheckModifiedFiles) — Enables checking for source files for modification
by an external editor.

• PrefSource(AutoReloadModifiedFiles) — Enables automatic reload of files that were
modified by an external editor.

Refer to “Setting GUI Preferences” for more information about changing simulator preferences.

Navigating Through Your Design
When debugging your design from within the GUI, ModelSim keeps a log of all areas of the
design environment you have examined or opened, similar to the functionality in most web
browsers. This log allows you to easily navigate through your design hierarchy, returning to
previous views and contexts for debugging purposes.

Procedure

1. Select then right-click an instance name in a source document.

2. Select one of the following options:

• Open Instance — changes your context to the instance you have selected within the
source file. This is not available if you have not placed your cursor in, or highlighted
the name of, an instance within your source file.

If any ambiguities exist, most likely due to generate statements, this option opens a
dialog box allowing you to choose from all available instances.

• Ascend Env — changes your context to the next level up within the design. This is
not available if you are at the top-level of your design.

Source Window
Data and Objects in the Source Window

ModelSim User’s Manual, v10.4c 353

• Back/Forward — allows you to change to previously selected contexts. Questa
saves up to 50 context locations. This is not available if you have not changed your
context. (Figure 10-1):

Figure 10-1. Setting Context from Source Files

Note
The Open Instance option is essentially executing an environment command to change
your context. Therefore any time you use this command manually at the command
prompt, that information is also saved for use with the Back/Forward options.

Data and Objects in the Source Window
The Source window allows you to display the current value of objects and trace connectivity
information during a simulation run.

Object Values and Descriptions
You can obtain data on objects displayed in the Source window.

To determine the value and description of an object displayed in the Source window, do either
of the following:

• Select an object, then right-click and select Examine or Describe from the context
menu.

• Pause over an object with your mouse pointer to see an examine window popup.
(Figure 10-2)

ModelSim User’s Manual, v10.4c354

Source Window
Data and Objects in the Source Window

Figure 10-2. Examine Pop Up

You can select Source > Examine Now or Source > Examine Current Cursor to choose at
what simulation time the object is examined or described. Refer to Setting Simulation Time in
the Source Window for more information.

You can also invoke the examine and/or describe commands on the command line or in a DO
file.

Setting Simulation Time in the Source Window
The Source window includes a time indicator in the top right corner that displays the current
simulation time, the time of the active cursor in the Wave window, or a user-designated time.

Figure 10-3. Current Time Label in Source Window

Procedure
You have several options for setting the time display in the Source window,

Source Window
Data and Objects in the Source Window

ModelSim User’s Manual, v10.4c 355

• Change time in the Current Time Label.

a. Click the time indicator to open the Enter Value dialog box (Figure 10-4).

b. Change the value to the starting time you want for the causality trace.

c. Click the OK button.

Figure 10-4. Enter an Event Time Value

• Show the signal values at the current simulation time by selecting Source > Examine
Now. This is the default behavior. The window automatically updates the values as you
perform a run or a single-step action.

• Show the signal values at current cursor position in the Wave window by selecting
Source > Examine Current Cursor.

Search for Source Code Objects
The Source window includes a Find function that allows you to search for specific code. You
can search for one instance of a string, multiple instances, and the original declaration of a
specified object.

Searching for One Instance of a String
You can search for one instance of a string. This search procedure starts from the current
location in the open source file and finds the next instance of the specified search string.

Procedure

1. Make the Source window the active window by clicking anywhere in the window

ModelSim User’s Manual, v10.4c356

Source Window
Data and Objects in the Source Window

2. Select Edit > Find from the Main menu or press Ctrl-F. The Search bar is added to the
bottom of the Source Window.

3. Enter your search string, then press Enter

The cursor jumps to the first instance of the search string in the current document and
highlights it. Pressing the Enter key advances the search to the next instance of the string
and so on through the source document.

Searching for All Instances of a String
You can search for and bookmark every instance of a search string making it easier to track
specific objects throughout a source file.

Procedure
1. Enter the search term in the search field.

2. Select the Find Options drop menu and select Bookmark All Matches.

Figure 10-5. Bookmark All Instances of a Search

Source Window
Debugging and Textual Connectivity

ModelSim User’s Manual, v10.4c 357

Searching for the Original Declaration of an Object
You can also search for the original declaration of an object, signal, parameter, and so on.

Procedure
• Double click on the object in many windows, including the Structure, Objects, and List

windows. The Source window opens the source document containing the original
declaration of the object and places a bookmark on that line of the document.

• Double click on a hyperlinked section of code in your source document. The source
document is either opened or made the active Source window document and the
declaration is highlighted briefly. Refer to Hyperlinked Text for more information about
enabling hyperlinked text.

Debugging and Textual Connectivity
The Source window provides you with several tools for analyzing and debugging your code.
You can jump to the declaration of an object with hyperlinked text from the Source and other
windows. You can also determine the cause of any signal event or possible drivers or readers for
a signal.

Hyperlinked Text
The Source window supports hyperlinked navigation. When you double-click hyperlinked text
the selection jumps from the usage of an object to its declaration and highlights the declaration.
Hyperlinked text is indicated by a mouse cursor change from an arrow pointer icon to a pointing

finger icon:

Double-clicking hyperlinked text does one of the following:

• Jump from the usage of a signal, parameter, macro, or a variable to its declaration.

• Jump from a module declaration to its instantiation, and vice versa.

• Navigate back and forth between visited source files.

Hyperlinked text is off by default. To turn hyperlinked text on or off in the Source window:

1. Make sure the Source window is the active window.

2. Select Source > Hyperlinks.

To change hyperlinks to display as underlined text set prefMain(HyperLinkingUnderline) to
1 (select Tools > Edit Preferences, By Name tab, and expand the Main Object).

ModelSim User’s Manual, v10.4c358

Source Window
Debugging and Textual Connectivity

Highlighted Text in the Source Window
The Source window can display text that is highlighted as a result of various conditions or
operations, such as the following.

• Double-clicking an error message in the transcript shown during compilation

• Using Event Traceback > Show Driver

In these cases, the relevant text in the source code is shown with a persistent highlighting. To
remove this highlighted display, right-click in the Source window and choose More > Clear
Highlights. You can also perform this action by selecting Source > More > Clear Highlights
from the Main menu.

Note
 Clear Highlights does not affect text that you have selected with the mouse cursor.

Procedure

To produce a compile error that displays highlighted text in the Source window, do the
following:

1. Choose Compile > Compile Options

2. In the Compiler Options dialog box, click either the VHDL tab or the Verilog &
SystemVerilog tab.

3. Enable Show source lines with errors and click OK.

4. Open a design file and create a known compile error (such as changing the word “entity”
to “entry” or “module” to “nodule”).

5. Choose Compile > Compile and then complete the Compile Source Files dialog box to
finish compiling the file.

6. When the compile error appears in the Transcript window, double-click on it.

7. The source window is opened (if needed), and the text containing the error is
highlighted.

8. To remove the highlighting, choose Source > More > Clear Highlights.

Drag Objects Into Other Windows
ModelSim allows you to drag and drop objects from the Source window to the Wave and List
windows. Double-click an object to highlight it, then drag the object to the Wave or List
window. To place a group of objects into the Wave and List windows, drag and drop any
section of highlighted code.

Source Window
Breakpoints

ModelSim User’s Manual, v10.4c 359

Breakpoints
You can set a breakpoint on an executable file, file-line number, signal, signal value, or
condition in a source file. When the simulation hits a breakpoint, the simulator stops, the Source
window opens, and a blue arrow marks the line of code where the simulation stopped. You can
change this behavior by editing the PrefSource(OpenOnBreak) variable.

Setting Individual Breakpoints in a Source File
You can set individual file-line breakpoints in the Line number column of the Source Window.

Procedure

Click in the line number column of the Source window next to a red line number and a red ball
denoting a breakpoint will appear (Figure 10-6).

The breakpoint markers (red ball) are toggles. Click once to create the breakpoint; click again to
disable or enable the breakpoint.

Figure 10-6. Breakpoint in the Source Window

Related Topics

See Setting GUI Preferences.

Setting Breakpoints with the bp Command
You can set a file-line breakpoints with the bp command to add a file-line breakpoint from the
VSIM> prompt.

Procedure

Enter a bp command at the command line. For example, entering

bp top.vhd 147

ModelSim User’s Manual, v10.4c360

Source Window
Breakpoints

sets a breakpoint in the source file top.vhd at line 147.

Related Topics
See the bp command.

Editing Breakpoints
There are several ways to edit a breakpoint in a source file.

• Select Tools > Breakpoints from the Main menu.

• Right-click a breakpoint in your source file and select Edit All Breakpoints from the
popup menu.

• Click the Edit Breakpoints toolbar button from the Simulate Toolbar.

Using the Modify Breakpoints Dialog Box
The Modify Breakpoints dialog box provides a list of all breakpoints in the design organized by
ID number.

Procedure

1. Select a file-line breakpoint from the list in the Breakpoints field.

2. Click Modify, which opens the File Breakpoint dialog box, Figure 10-7.

Source Window
Breakpoints

ModelSim User’s Manual, v10.4c 361

Figure 10-7. Editing Existing Breakpoints

3. Fill out any of the following fields to edit the selected breakpoint:

• Breakpoint Label — Designates a label for the breakpoint.

• Breakpoint Condition — One or more conditions that determine whether the
breakpoint is observed. If the condition is true, the simulation stops at the
breakpoint. If false, the simulation bypasses the breakpoint. A condition cannot refer
to a VHDL variable (only a signal). Refer to Setting Conditional Breakpoints for
more information.

ModelSim User’s Manual, v10.4c362

Source Window
Breakpoints

• Breakpoint Command — A string, enclosed in braces ({}) that specifies one or
more commands to be executed at the breakpoint. Use a semicolon (;) to separate
multiple commands.

Tip: These fields in the File Breakpoint dialog box use the same syntax and format as the
-inst switch, the -cond switch, and the command string of the bp command. For more
information on these command options, refer to the bp command in the Reference
Manual.

4. Click OK to close the File Breakpoints dialog box.

5. Click OK to close the Modify Breakpoints dialog box.

Deleting Individual Breakpoints
You can permanently delete individual file-line breakpoints using the breakpoint context menu.

Procedure
1. Right-click the red breakpoint marker in the file line column.

2. Select Remove Breakpoint from the context menu.

Deleting Groups of Breakpoints
You can delete groups of breakpoints with the Modify Breakpoints Dialog.

Procedure
1. Open the Modify Breakpoints dialog.

2. Select and highlight the breakpoints you want to delete.

3. Click the Delete button

4. OK.

Saving and Restoring Breakpoints
You can save your breakpoints in a separate breakpoints.do file or save the breakpoint settings
as part of a larger .do file that recreates all debug windows and includes breakpoints.

Procedure
1. To save your breakpoints in a .do file, select Tools > Breakpoints to open the Modify

Breakpoints dialog. Click Save. You will be prompted to save the file under the name:
breakpoints.do.

To restore the breakpoints, start the simulation then enter:

Source Window
Breakpoints

ModelSim User’s Manual, v10.4c 363

do breakpoints.do

2. To save your breakpoints together with debug window settings, enter

write format restart <filename>

The write format restart command creates a single .do file that saves all debug windows,
file/line breakpoints, and signal breakpoints created using the when command.The file
created is primarily a list of add list or add wave commands, though a few other
commands are included. If the ShutdownFile modelsim.ini variable is set to this .do
filename, it will call the write format restart command upon exit.

To restore debugging windows and breakpoints enter:

do <filename>.do

Note
Editing your source file can cause changes in the numbering of the lines of code.
Breakpoints saved prior to editing your source file may need to be edited once they are
restored in order to place them on the appropriate code line.

Related Topics

See the do command.

Setting Conditional Breakpoints
In dynamic class-based code, an expression can be executed by more than one object or class
instance during the simulation of a design. You set a conditional breakpoint on the line in the
source file that defines the expression and specifies a condition of the expression or instance
you want to examine. You can write conditional breakpoints to evaluate an absolute expression
or a relative expression.

You can use the SystemVerilog keyword this when writing conditional breakpoints to refer to
properties, parameters or methods of an instance. The value of this changes every time the
expression is evaluated based on the properties of the current instance. Your context must be
within a local method of the same class when specifying the keyword this in the condition for a
breakpoint. Strings are not allowed.

The conditional breakpoint examples below refer to the following SystemVerilog source code
file source.sv:

Figure 10-8. Source Code for source.sv

1 class Simple;
2 integer cnt;
3 integer id;
4 Simple next;
5
6 function new(int x);

ModelSim User’s Manual, v10.4c364

Source Window
Breakpoints

7 id=x;
8 cnt=0
9 next=null
10 endfunction
11
12 task up;
13 cnt=cnt+1;
14 if (next) begin
15 next.up;
16 end
17 endtask
18 endclass
19
20 module test;
21 reg clk;
22 Simple a;
23 Simple b;
24
25 initial
26 begin
27 a = new(7);
28 b = new(5);
29 end
30
31 always @(posedge clk)
32 begin
33 a.up;
34 b.up;
35 a.up
36 end;
37 endmodule

Setting a Breakpoint For a Specific Instance
You can set a breakpoint for a value of specific instance from the GUI or from the command
line.

Procedure

Enter the following on the command line

bp simple.sv 13 -cond {this.id==7}

Results
The simulation breaks at line 13 of the simple.sv source file (Figure 10-8) the first time module
a hits the expression because the breakpoint is evaluating for an id of 7 (refer to line 27).

Source Window
Breakpoints

ModelSim User’s Manual, v10.4c 365

Setting a Breakpoint For a Specified Value of Any
Instance

You can set a breakpoint for a specific value of any instance from the GUI or from the
command line.

Procedure

• From the command line enter:

bp simple.sv 13 -cond {this.cnt==8}

• From the GUI:

a. Right-click on line 13 of the simple.sv source file.

b. Select Edit Breakpoint 13 from the drop menu.

c. Enter

this.cnt==8

in the Breakpoint Condition field of the Modify Breakpoint dialog box. (Refer to
Figure 10-7) Note that the file name and line number are automatically entered.

Results
The simulation evaluates the expression at line 13 in the simple.sv source file (Figure 10-8),
continuing the simulation run if the breakpoint evaluates to false. When an instance evaluates to
true the simulation stops, the source is opened and highlights line 13 with a blue arrow. The first
time cnt=8 evaluates to true, the simulation breaks for an instance of module Simple b. When
you resume the simulation, the expression evaluates to cnt=8 again, but this time for an instance
of module Simple a.

You can also set this breakpoint with the GUI:

Run Until Here
The Source window allows you to run the simulation to a specified line of code with the “Run
Until Here” feature. When you invoke Run Until Here, the simulation will run from the
current simulation time and stop on the specified line unless:

• The simulator encounters a breakpoint.

• Optionally, the Run Length preference variable causes the simulation run to stop.

• The simulation encounters a bug.

To specify Run Until Here, right-click on the line where you want the simulation to stop and
select Run Until Here from the pop up context menu. The simulation starts running the
moment the right mouse button releases.

ModelSim User’s Manual, v10.4c366

Source Window
Source Window Bookmarks

The simulator run length is set in the Simulation Toolbar and specifies the amount of time the
simulator will run before stopping. By default, Run Until Here will ignore the time interval
entered in the Run Length field of the Simulation Toolbar unless the
PrefSouce(RunUntilHereUseRL) preference variable is set to 1 (enabled). When
PrefSource(RunUntilHereUseRL) is enabled, the simulator will invoke Run Until Here and
stop when the amount of time entered in the Run Time field has been reached, a breakpoint is
hit, or the specified line of code is reached, whichever happens first.

For more information about setting preference variables, refer to Setting GUI Preferences.

Source Window Bookmarks
Source window bookmarks are graphical icons that give you reference points within your code.
The blue flags mark individual lines of code in a source file and can assist visual navigation
through a large source file by marking certain lines. Bookmarks can be added to currently open
source files only and are deleted once the file is closed.

Setting and Removing Bookmarks
You can set bookmarks in the following ways.

Procedure

• Set an individual bookmark.

a. Right-click in the Line number column on the line you want to bookmark then select
Add/Remove Bookmark.

• Set multiple bookmarks based on a search term refer to Searching for All Instances of a
String.

To remove a bookmark:

• Right-click the line number with the bookmark you want to remove and select
Add/Remove Bookmark.

• Select the Clear Bookmarks button in the Source toolbar.

Source Window Preferences
You can customize a variety of settings for Source windows. You can change the appearance
and behavior of the window in several ways.

Related Topics

See Customizing the Source Window and GUI Preferences.

ModelSim User’s Manual, v10.4c 367

Chapter 11
Signal Spy

The Verilog language allows access to any signal from any other hierarchical block without
having to route it through the interface. This means you can use hierarchical notation to either
write or read the value of a signal in the design hierarchy from a test bench. Verilog can also
reference a signal in a VHDL block or reference a signal in a Verilog block through a level of
VHDL hierarchy.

Note
This version of ModelSim does not support the features in this section describing the use
of SystemC.

With the VHDL-2008 standard, VHDL supports hierarchical referencing as well. However,
you cannot reference from VHDL to Verilog. The Signal Spy procedures and system tasks
provide hierarchical referencing across any mix of Verilog, VHDL and/or SystemC, allowing
you to monitor (spy), drive, force, or release hierarchical objects in mixed designs. While not
strictly required for references beginning in Verilog, it does allow references to be consistent
across all languages.

Signal Spy Concepts
Signal Spy procedures for VHDL are provided in the VHDL Utilities Package (util) within the
modelsim_lib library.

To access these procedures, you would add lines like the following to your VHDL code:

library modelsim_lib;
use modelsim_lib.util.all;

The Verilog tasks and SystemC functions are available as built-in SystemVerilog System Tasks
and Functions.

Table 11-1. Signal Spy Reference Comparison

Refer to: VHDL procedures Verilog system tasks SystemC function

disable_signal_spy disable_signal_spy() $disable_signal_spy() disable_signal_spy()

enable_signal_spy enable_signal_spy() $enable_signal_spy() enable_signal_spy()

init_signal_driver init_signal_driver() $init_signal_driver() init_signal_driver()

init_signal_spy init_signal_spy() $init_signal_spy() init_signal_spy()

signal_force signal_force() $signal_force() signal_force()

ModelSim User’s Manual, v10.4c368

Signal Spy
Signal Spy Concepts

Note that using Signal Spy procedures limits the portability of your code—HDL code with
Signal Spy procedures or tasks works only in Questa and Modelsim. Consequently, you should
use Signal Spy only in test benches, where portability is less of a concern and the need for such
procedures and tasks is more applicable.

Signal Spy Formatting Syntax
Strings that you pass to Signal Spy commands are not language-specific and should be
formatted as if you were referring to the object from the command line of the simulator. Thus,
you use the simulator's path separator. For example, the Verilog LRM specifies that a Verilog
hierarchical reference to an object always has a period (.) as the hierarchical separator, but the
reference does not begin with a period.

Related Topics

See VHDL Utilities Package (util).

Signal Spy Supported Types
Signal Spy supports the following SystemVerilog types and user-defined SystemC types.

• SystemVerilog types

o All scalar and integer SV types (bit, logic, int, shortint, longint, integer, byte, both
signed and unsigned variations of these types)

o Real and Shortreal

o User defined types (packed/unpacked structures including nested structures,
packed/unpacked unions, enums)

o Arrays and Multi-D arrays of all supported types.

• SystemC types

o Primitive C floating point types (double, float)

o User defined types (structures including nested structures, unions, enums)

Cross-language type-checks and mappings are included to support these types across all the
possible language combinations:

• SystemC-SystemVerilog

• SystemC-SystemC

signal_release signal_release() $signal_release() signal_release()

Table 11-1. Signal Spy Reference Comparison (cont.)

Refer to: VHDL procedures Verilog system tasks SystemC function

Signal Spy
Signal Spy Reference

ModelSim User’s Manual, v10.4c 369

• SystemC-VHDL

• VHDL-SystemVerilog

• SystemVerilog-SystemVerilog

In addition to referring to the complete signal, you can also address the bit-selects, field-selects
and part-selects of the supported types. For example:

/top/myInst/my_record[2].my_field1[4].my_vector[8]

Signal Spy Reference
The signal spy calls enumerated below include the syntax and arguments for the VHDL
procedure, the Verilog task, and the SystemC function for each call.

ModelSim User’s Manual, v10.4c370

Signal Spy
disable_signal_spy

disable_signal_spy
This reference section describes the following:

• VHDL Procedure — disable_signal_spy()

• Verilog Task — $disable_signal_spy()

• SystemC Function — disable_signal_spy()

The disable_signal_spy call disables the associated init_signal_spy. The association between
the disable_signal_spy call and the init_signal_spy call is based on specifying the same
src_object and dest_object arguments to both. The disable_signal_spy call can only affect
init_signal_spy calls that had their control_state argument set to "0" or "1".

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

disable_signal_spy(<src_object>, <dest_object>, <verbose>)

Verilog Syntax

$disable_signal_spy(<src_object>, <dest_object>, <verbose>)

SystemC Syntax

disable_signal_spy(<src_object>, <dest_object>, <verbose>)

Arguments
• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to disable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to disable.

• verbose

Optional integer. Specifies whether you want a message reported in the transcript stating
that a disable occurred and the simulation time that it occurred.

0 — Does not report a message. Default.

1 — Reports a message.

Signal Spy
disable_signal_spy

ModelSim User’s Manual, v10.4c 371

Return Values
Nothing

Examples
See “Examples” on page 380.

Related Topics
init_signal_spy, enable_signal_spy

ModelSim User’s Manual, v10.4c372

Signal Spy
enable_signal_spy

enable_signal_spy
This reference section describes the following:

• VHDL Procedure — enable_signal_spy()

• Verilog Task — $enable_signal_spy()

• SystemC Function — enable_signal_spy()

The enable_signal_spy() call enables the associated init_signal_spy call. The association
between the enable_signal_spy call and the init_signal_spy call is based on specifying the same
src_object and dest_object arguments to both. The enable_signal_spy call can only affect
init_signal_spy calls that had their control_state argument set to "0" or "1".

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

enable_signal_spy(<src_object>, <dest_object>, <verbose>)

Verilog Syntax

$enable_signal_spy(<src_object>, <dest_object>, <verbose>)

SystemC Syntax

enable_signal_spy(<src_object>, <dest_object>, <verbose>)

Arguments
• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to enable.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, SystemVerilog or Verilog register/net, or SystemC signal.
This path should match the path that was specified in the init_signal_spy call that you want
to enable.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the transcript stating that an enable occurred and the simulation time that it occurred.

0 — Does not report a message. Default.

1 — Reports a message.

Signal Spy
enable_signal_spy

ModelSim User’s Manual, v10.4c 373

Returns
Nothing

Example
See “Examples” on page 380.

Related Topics
init_signal_spy, disable_signal_spy

ModelSim User’s Manual, v10.4c374

Signal Spy
init_signal_driver

init_signal_driver
This reference section describes the following:

• VHDL Procedure — init_signal_driver()

• Verilog Task — $init_signal_driver()

• SystemC Function— init_signal_driver()

The init_signal_driver() call drives the value of a VHDL signal, Verilog net, or SystemC (called
the src_object) onto an existing VHDL signal or Verilog net (called the dest_object). This
allows you to drive signals or nets at any level of the design hierarchy from within a VHDL
architecture or Verilog or SystemC module(for example, a test bench).

Note
Destination SystemC signals are not supported.

The init_signal_driver procedure drives the value onto the destination signal just as if the
signals were directly connected in the HDL code. Any existing or subsequent drive or force of
the destination signal, by some other means, will be considered with the init_signal_driver
value in the resolution of the signal.

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

Verilog Syntax

$init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

SystemC Syntax

init_signal_driver(<src_object>, <dest_object>, <delay>, <delay_type>, <verbose>)

Arguments

• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal, Verilog net, or SystemC signal. Use the path separator to
which your simulation is set (for example, "/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog net. Use the path separator to which

Signal Spy
init_signal_driver

ModelSim User’s Manual, v10.4c 375

your simulation is set (for example, "/" or "."). A full hierarchical path must begin with a "/"
or ".". The path must be contained within double quotes.

• delay

Optional time value. Specifies a delay relative to the time at which the src_object changes.
The delay can be an inertial or transport delay. If no delay is specified, then a delay of zero
is assumed.

• delay_type

Optional del_mode or integer. Specifies the type of delay that will be applied.

For the VHDL init_signal_driver Procedure, The value must be either:

mti_inertial (default)

mti_transport

For the Verilog $init_signal_driver Task, The value must be either:

0 — inertial (default)

1 — transport

For the SystemC init_signal_driver Function, The value must be either:

0 — inertial (default)

1 — transport

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object is driving the dest_object.

0 — Does not report a message. Default.

1 — Reports a message.

Returns
Nothing

Description

Call Only Once

The init_signal_driver procedure creates a persistent relationship between the source and
destination signals. Hence, you need to call init_signal_driver only once for a particular pair of
signals. Once init_signal_driver is called, any change on the source signal will be driven on the
destination signal until the end of the simulation.

For VHDL, you should place all init_signal_driver calls in a VHDL process and code this
VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_driver calls and a simple wait
statement. The process will execute once and then wait forever. See the example below.

ModelSim User’s Manual, v10.4c376

Signal Spy
init_signal_driver

For Verilog, you should place all $init_signal_driver calls in a Verilog initial block. See the
example below.

Limitations

• For the VHDL init_signal_driver procedure, when driving a Verilog net, the only
delay_type allowed is inertial. If you set the delay type to mti_transport, the setting will
be ignored and the delay type will be mti_inertial.

• For the Verilog $init_signal_driver task, when driving a Verilog net, the only delay_type
allowed is inertial. If you set the delay type to 1 (transport), the setting will be ignored,
and the delay type will be inertial.

• For the SystemC init_signal_driver function, when driving a Verilog net, the only
delay_type allowed is inertial. If you set the delay type to 1 (transport), the setting will
be ignored, and the delay type will be inertial.

• Any delays that are set to a value less than the simulator resolution will be rounded to
the nearest resolution unit; no special warning will be issued.

• Verilog memories (arrays of registers) are not supported.

Examples
This example creates a local clock (clk0) and connects it to two clocks within the design
hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed. The .../blk2/clk
will match the local clk0 but be delayed by 100 ps. For the second call to work, the .../blk2/clk
must be a VHDL based signal, because if it were a Verilog net a 100 ps inertial delay would
consume the 40 ps clock period. Verilog nets are limited to only inertial delays and thus the
setting of 1 (transport delay) would be ignored.

`timescale 1 ps / 1 ps

module testbench;

reg clk0;

initial begin
 clk0 = 1;
 forever begin
 #20 clk0 = ~clk0;
 end
end

initial begin
 $init_signal_driver("clk0", "/testbench/uut/blk1/clk", , , 1);
 $init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100, 1);
end

 ...

endmodule

Signal Spy
init_signal_driver

ModelSim User’s Manual, v10.4c 377

This example creates a local clock (clk0) and connects it to two clocks within the design
hierarchy. The .../blk1/clk will match local clk0 and a message will be displayed. The open
entries allow the default delay and delay_type while setting the verbose parameter to a 1. The
.../blk2/clk will match the local clk0 but be delayed by 100 ps.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
 signal clk0 : std_logic;
begin
 gen_clk0 : process
 begin
 clk0 <= '1' after 0 ps, '0' after 20 ps;
 wait for 40 ps;
 end process gen_clk0;

 drive_sig_process : process
 begin
 init_signal_driver("clk0", "/testbench/uut/blk1/clk", open, open, 1);
 init_signal_driver("clk0", "/testbench/uut/blk2/clk", 100 ps,
 mti_transport);
 wait;
 end process drive_sig_process;
 ...
end;

Related Topics
init_signal_spy, signal_force, signal_release

ModelSim User’s Manual, v10.4c378

Signal Spy
init_signal_spy

init_signal_spy
This reference section describes the following:

• VHDL Procedure — init_signal_spy()

• Verilog Task — $init_signal_spy()

• SystemC Function — init_signal_spy()

The init_signal_spy() call mirrors the value of a VHDL signal, SystemVerilog or Verilog
register/net, or SystemC signal (called the src_object) onto an existing VHDL signal, Verilog
register, or SystemC signal (called the dest_object). This allows you to reference signals,
registers, or nets at any level of hierarchy from within a VHDL architecture or Verilog or
SystemC module (for example, a test bench).

The init_signal_spy call only sets the value onto the destination signal and does not drive or
force the value. Any existing or subsequent drive or force of the destination signal, by some
other means, will override the value that was set by init_signal_spy.

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Verilog Syntax

$init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

SystemC Syntax

init_signal_spy(<src_object>, <dest_object>, <verbose>, <control_state>)

Arguments
• src_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to a VHDL signal or SystemVerilog or Verilog register/net. Use the path
separator to which your simulation is set (for example, "/" or "."). A full hierarchical path
must begin with a "/" or ".". The path must be contained within double quotes.

• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal or Verilog register. Use the path separator to
which your simulation is set (for example, "/" or "."). A full hierarchical path must begin
with a "/" or ".". The path must be contained within double quotes.

Signal Spy
init_signal_spy

ModelSim User’s Manual, v10.4c 379

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the src_object’s value is mirrored onto the dest_object.

0 — Does not report a message. Default.

1 — Reports a message.

• control_state

Optional integer. Possible values are -1, 0, or 1. Specifies whether or not you want the
ability to enable/disable mirroring of values and, if so, specifies the initial state.

-1 — no ability to enable/disable and mirroring is enabled. (default)

0 — turns on the ability to enable/disable and initially disables mirroring.

1— turns on the ability to enable/disable and initially enables mirroring.

Returns
Nothing

Description

Call only once

The init_signal_spy call creates a persistent relationship between the source and destination
signals. Hence, you need to call init_signal_spy once for a particular pair of signals. Once
init_signal_spy is called, any change on the source signal will mirror on the destination signal
until the end of the simulation unless the control_state is set.

However, you can place simultaneous read/write calls on the same signal using multiple
init_signal_spy calls, for example:

init_signal_spy ("/sc_top/sc_sig", "/top/hdl_INST/hdl_sig");
init_signal_spy ("/top/hdl_INST/hdl_sig", "/sc_top/sc_sig");

The control_state determines whether the mirroring of values can be enabled/disabled and what
the initial state is. Subsequent control of whether the mirroring of values is enabled/disabled is
handled by the enable_signal_spy and disable_signal_spy calls.

For VHDL procedures, you should place all init_signal_spy calls in a VHDL process and code
this VHDL process correctly so that it is executed only once. The VHDL process should not be
sensitive to any signals and should contain only init_signal_spy calls and a simple wait
statement. The process will execute once and then wait forever, which is the desired behavior.
See the example below.

For Verilog tasks, you should place all $init_signal_spy tasks in a Verilog initial block. See the
example below.

Limitations

• When mirroring the value of a SystemVerilog or Verilog register/net onto a VHDL
signal, the VHDL signal must be of type bit, bit_vector, std_logic, or std_logic_vector.

ModelSim User’s Manual, v10.4c380

Signal Spy
init_signal_spy

• Verilog memories (arrays of registers) are not supported.

Examples
In this example, the value of /top/uut/inst1/sig1 is mirrored onto /top/top_sig1. A message is
issued to the transcript. The ability to control the mirroring of values is turned on and the
init_signal_spy is initially enabled.

The mirroring of values will be disabled when enable_sig transitions to a ’0’ and enable when
enable_sig transitions to a ’1’.

library ieee;
library modelsim_lib;
use ieee.std_logic_1164.all;
use modelsim_lib.util.all;
entity top is
end;
architecture only of top is
 signal top_sig1 : std_logic;
begin
 ...
 spy_process : process
 begin
 init_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",1,1);
 wait;
 end process spy_process;
 ...
 spy_enable_disable : process(enable_sig)
 begin
 if (enable_sig = '1') then
 enable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);
 elseif (enable_sig = '0')
 disable_signal_spy("/top/uut/inst1/sig1","/top/top_sig1",0);
 end if;
 end process spy_enable_disable;
 ...
end;

In this example, the value of .top.uut.inst1.sig1 is mirrored onto .top.top_sig1. A message is
issued to the transcript. The ability to control the mirroring of values is turned on and the
init_signal_spy is initially enabled.

The mirroring of values will be disabled when enable_reg transitions to a ’0’ and enabled when
enable_reg transitions to a ’1’.

module top;
...
reg top_sig1;
reg enable_reg;
...
initial
 begin
 $init_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",1,1);
 end

Signal Spy
init_signal_spy

ModelSim User’s Manual, v10.4c 381

 always @ (posedge enable_reg)
 begin
 $enable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
 end
 always @ (negedge enable_reg)
 begin
 $disable_signal_spy(".top.uut.inst1.sig1",".top.top_sig1",0);
 end
...
endmodule

Related Topics
init_signal_driver, signal_force, signal_release, enable_signal_spy, disable_signal_spy

ModelSim User’s Manual, v10.4c382

Signal Spy
signal_force

signal_force
This reference section describes the following:

• VHDL Procedure — signal_force()

• Verilog Task — $signal_force()

• SystemC Function — signal_force()

The signal_force() call forces the value specified onto an existing VHDL signal, Verilog
register/register bit/net, or SystemC signal (called the dest_object). This allows you to force
signals, registers, bits of registers, or nets at any level of the design hierarchy from within a
VHDL architecture or Verilog or SystemC module (for example, a test bench).

A signal_force works the same as the force command with the exception that you cannot issue a
repeating force. The force will remain on the signal until a signal_release, a force or noforce
command, or a subsequent signal_force is issued. Signal_force can be called concurrently or
sequentially in a process.

This command displays any signals using your radix setting (either the default, or as you
specify) unless you specify the radix in the value you set.

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Verilog Syntax

$signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>,
<verbose>)

SystemC Syntax

signal_force(<dest_object>, <value>, <rel_time>, <force_type>, <cancel_period>, <verbose>)

Arguments
• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal, SystemVerilog or Verilog register/bit of a
register/net or SystemC signal. Use the path separator to which your simulation is set (for
example, "/" or "."). A full hierarchical path must begin with a "/" or ".". The path must be
contained within double quotes.

• value

Required string. Specifies the value to which the dest_object is to be forced. The specified
value must be appropriate for the type.

Signal Spy
signal_force

ModelSim User’s Manual, v10.4c 383

Where value can be:

o a sequence of character literals or as a based number with a radix of 2, 8, 10 or 16.
For example, the following values are equivalent for a signal of type bit_vector (0 to
3):

• 1111 — character literal sequence

• 2#1111 —binary radix

• 10#15— decimal radix

• 16#F — hexadecimal radix

o a reference to a Verilog object by name. This is a direct reference or hierarchical
reference, and is not enclosed in quotation marks. The syntax for this named object
should follow standard Verilog syntax rules.

• rel_time

Optional time. Specifies a time relative to the current simulation time for the force to occur.
The default is 0.

• force_type

Optional forcetype or integer. Specifies the type of force that will be applied.

For the VHDL procedure, the value must be one of the following;

default — which is "freeze" for unresolved objects or "drive" for resolved objects

deposit

drive

freeze

For the Verilog task, the value must be one of the following;

0 — default, which is "freeze" for unresolved objects or "drive" for resolved objects

1 — deposit

2 — drive

3 — freeze

For the SystemC function, the value must be one of the following;

0 — default, which is "freeze" for unresolved objects or "drive" for resolved objects

1 — deposit

2 — drive

3 — freeze

See the force command for further details on force type.

ModelSim User’s Manual, v10.4c384

Signal Spy
signal_force

• cancel_period

Optional time or integer. Cancels the signal_force command after the specified period of
time units. Cancellation occurs at the last simulation delta cycle of a time unit.

For the VHDL procedure, a value of zero cancels the force at the end of the current time
period. Default is -1 ms. A negative value means that the force will not be cancelled.

For the Verilog task, A value of zero cancels the force at the end of the current time period.
Default is -1. A negative value means that the force will not be cancelled.

For the SystemC function, A value of zero cancels the force at the end of the current time
period. Default is -1. A negative value means that the force will not be cancelled.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the value is being forced on the dest_object at the specified
time.

0 — Does not report a message. Default.

1 — Reports a message.

Returns
Nothing

Description

Limitations

• Verilog memories (arrays of registers) are not supported.

Examples
This example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced to a "0",
200000 ns after the second $signal_force call was executed.

`timescale 1 ns / 1 ns

module testbench;

initial
 begin
 $signal_force("/testbench/uut/blk1/reset", "1", 0, 3, , 1);
 $signal_force("/testbench/uut/blk1/reset", "0", 40, 3, 200000, 1);
 end

...

endmodule

This example forces reset to a "1" from time 0 ns to 40 ns. At 40 ns, reset is forced to a "0", 2
ms after the second signal_force call was executed.

If you want to skip parameters so that you can specify subsequent parameters, you need to use
the keyword "open" as a placeholder for the skipped parameter(s). The first signal_force

Signal Spy
signal_force

ModelSim User’s Manual, v10.4c 385

procedure illustrates this, where an "open" for the cancel_period parameter means that the
default value of -1 ms is used.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is
begin

 force_process : process
 begin
 signal_force("/testbench/uut/blk1/reset", "1", 0 ns, freeze, open, 1);
 signal_force("/testbench/uut/blk1/reset", "0", 40 ns, freeze, 2 ms,
1);
 wait;
 end process force_process;

 ...

end;

Related Topics
init_signal_driver, init_signal_spy, signal_release

ModelSim User’s Manual, v10.4c386

Signal Spy
signal_release

signal_release
This reference section describes the following:

• VHDL Procedure — signal_release()

• Verilog Task — $signal_release()

• SystemC Function — signal_release()

The signal_release() call releases any force that was applied to an existing VHDL signal,
SystemVerilog or Verilog register/register bit/net, or SystemC signal (called the dest_object).
This allows you to release signals, registers, bits of registers, or nets at any level of the design
hierarchy from within a VHDL architecture or Verilog or SystemC module (for example, a test
bench).

A signal_release works the same as the noforce command. Signal_release can be called
concurrently or sequentially in a process.

By default this command uses a forward slash (/) as a path separator. You can change this
behavior with the SignalSpyPathSeparator variable in the modelsim.ini file.

Syntax

VHDL Syntax

signal_release(<dest_object>, <verbose>)

Verilog Syntax

$signal_release(<dest_object>, <verbose>)

SystemC Syntax

signal_release(<dest_object>, <verbose>)

Arguments
• dest_object

Required string. A full hierarchical path (or relative downward path with reference to the
calling block) to an existing VHDL signal, SystemVerilog or Verilog register/net, or
SystemC signal. Use the path separator to which your simulation is set (for example, "/" or
"."). A full hierarchical path must begin with a "/" or ".". The path must be contained within
double quotes.

• verbose

Optional integer. Possible values are 0 or 1. Specifies whether you want a message reported
in the Transcript stating that the signal is being released and the time of the release.

0 — Does not report a message. Default.

1 — Reports a message.

Signal Spy
signal_release

ModelSim User’s Manual, v10.4c 387

Returns
Nothing

Examples
This example releases any forces on the signals data and clk when the signal release_flag is a
"1". Both calls will send a message to the transcript stating which signal was released and when.

library IEEE, modelsim_lib;
use IEEE.std_logic_1164.all;
use modelsim_lib.util.all;

entity testbench is
end;

architecture only of testbench is

 signal release_flag : std_logic;

begin

 stim_design : process
 begin
 ...
 wait until release_flag = '1';
 signal_release("/testbench/dut/blk1/data", 1);
 signal_release("/testbench/dut/blk1/clk", 1);
 ...
 end process stim_design;

 ...

end;

This example releases any forces on the signals data and clk when the register release_flag
transitions to a "1". Both calls will send a message to the transcript stating which signal was
released and when.

module testbench;

reg release_flag;

always @(posedge release_flag) begin
 $signal_release("/testbench/dut/blk1/data", 1);
 $signal_release("/testbench/dut/blk1/clk", 1);
end

...
endmodule

Related Topics
init_signal_driver, init_signal_spy, signal_force

ModelSim User’s Manual, v10.4c388

Signal Spy
signal_release

ModelSim User’s Manual, v10.4c 389

Chapter 12
Generating Stimulus with Waveform Editor

The ModelSim Waveform Editor offers a simple method for creating design stimulus. You can
generate and edit waveforms in a graphical manner and then drive the simulation with those
waveforms.

Common tasks you can perform with the Waveform Editor:

• Create waveforms using four predefined patterns: clock, random, repeater, and counter.
Refer to Accessing the Create Pattern Wizard.

• Edit waveforms with numerous functions including inserting, deleting, and stretching
edges; mirroring, inverting, and copying waveform sections; and changing waveform
values on-the-fly. Refer to Editing Waveforms.

• Drive the simulation directly from the created waveforms

• Save created waveforms to four stimulus file formats: Tcl force format, extended VCD
format, Verilog module, or VHDL architecture. The HDL formats include code that
matches the created waveforms and can be used in test benches to drive a simulation.
Refer to Exporting Waveforms to a Stimulus File

The current version does not support the following:

• Enumerated signals, records, multi-dimensional arrays, and memories

• User-defined types

• SystemC or SystemVerilog

Getting Started with the Waveform Editor. 390

Accessing the Create Pattern Wizard . 392

Creating Waveforms with Wave Create Command. 393

Editing Waveforms . 393

Simulating Directly from Waveform Editor . 397

Exporting Waveforms to a Stimulus File. 397

Driving Simulation with the Saved Stimulus File . 399

Saving the Waveform Editor Commands . 400

ModelSim User’s Manual, v10.4c390

Generating Stimulus with Waveform Editor
Getting Started with the Waveform Editor

Getting Started with the Waveform Editor
You can use Waveform Editor before or after loading a design. Regardless of which method
you choose, you will select design objects and use them as the basis for created waveforms.

Using Waveform Editor Prior to Loading a Design
Here are the basic steps for using waveform editor prior to loading a design.

Procedure

1. Right-click a design unit on the Library Window and select Create Wave.

Figure 12-1. Waveform Editor: Library Window

2. Edit the waveforms in the Wave window. See Editing Waveforms for more details.

3. Run the simulation (see Simulating Directly from Waveform Editor) or save the created
waveforms to a stimulus file (see Exporting Waveforms to a Stimulus File).

Results

After the first step, a Wave window opens and displays signal names with the orange Waveform
Editor icon (Figure 12-2).

Generating Stimulus with Waveform Editor
Getting Started with the Waveform Editor

ModelSim User’s Manual, v10.4c 391

Figure 12-2. Results of Create Wave Operation

Using Waveform Editor After Loading a Design
Here are the basic steps for using waveform editor after loading a design.

Procedure

1. Right-click an object in the Objects window and select Modify > Apply Wave.

Figure 12-3. Opening Waveform Editor from Objects Windows

ModelSim User’s Manual, v10.4c392

Generating Stimulus with Waveform Editor
Accessing the Create Pattern Wizard

2. Use the Create Pattern wizard to create the waveforms (see Accessing the Create Pattern
Wizard).

3. Edit the waveforms as required (see Editing Waveforms).

4. Run the simulation (see Simulating Directly from Waveform Editor) or save the created
waveforms to a stimulus file (see Exporting Waveforms to a Stimulus File).

Accessing the Create Pattern Wizard
Waveform Editor includes a Create Pattern wizard that walks you through the process of
creating waveforms.

Procedure

1. Right-click an object in the Objects pane to open a popup menu.

2. Select Modify > Apply Wave from the popup menu.

Results

The Create Pattern Wizard opens to the inital dialog box shown in Figure 12-4. Note that the
Drive Type field is not present for input and output signals.

Figure 12-4. Create Pattern Wizard

In this dialog you specify the signal that the waveform will be based upon, the Drive Type (if
applicable), the start and end time for the waveform, and the pattern for the waveform.

Generating Stimulus with Waveform Editor
Creating Waveforms with Wave Create Command

ModelSim User’s Manual, v10.4c 393

The second dialog in the wizard lets you specify the appropriate attributes based on the pattern
you select. The table below shows the five available patterns and their attributes:

Creating Waveforms with Wave Create
Command

The wave create command gives you the ability to generate clock, constant, random, repeater,
and counter waveform patterns from the command line. You can then modify the waveform
interactively in the GUI and use the results to drive simulation. See the wave create command in
the Command Reference for correct syntax, argument descriptions, and examples.

Related Topics

See the wave create command.

Editing Waveforms
You can edit waveforms interactively with menu commands, mouse actions, or by using the
wave edit command.

Procedure

1. Create an editable pattern as described under Accessing the Create Pattern Wizard.

2. Enter editing mode by right-clicking a blank area of the toolbar and selecting
Wave_edit from the toolbar popup menu.

Table 12-1. Signal Attributes in Create Pattern Wizard

Pattern Description

Clock Specify an initial value, duty cycle, and clock period for
the waveform.

Constant Specify a value.

Random Generates different patterns depending upon the seed
value. Specify the type (normal or uniform), an initial
value, and a seed value. If you don’t specify a seed value,
ModelSim uses a default value of 5.

Repeater Specify an initial value and pattern that repeats. You can
also specify how many times the pattern repeats.

Counter Specify start and end values, time period, type (Range,
Binary, Gray, One Hot, Zero Hot, Johnson), counter
direction, step count, and repeat number.

ModelSim User’s Manual, v10.4c394

Generating Stimulus with Waveform Editor
Editing Waveforms

This will open the Wave Edit toolbar. For details about the Wave Edit toolbar, please
refer to Wave Edit Toolbar.

Figure 12-5. Wave Edit Toolbar

3. Select an edge or a section of the waveform with your mouse. See Selecting Parts of the
Waveform for more details.

4. Select a command from the Wave > Wave Editor menu when the Wave window is
docked, from the Edit > Wave menu when the Wave window is undocked, or right-
click on the waveform and select a command from the Wave context menu.

The table below summarizes the editing commands that are available.

Table 12-2. Waveform Editing Commands

Operation Description

Cut Cut the selected portion of the waveform to the clipboard

Copy Copy the selected portion of the waveform to the
clipboard

Paste Paste the contents of the clipboard over the selected
section or at the active cursor location

Insert Pulse Insert a pulse at the location of the active cursor

Delete Edge Delete the edge at the active cursor

Invert Invert the selected waveform section

Mirror Mirror the selected waveform section

Value Change the value of the selected portion of the waveform

Stretch Edge Move an edge forward/backward by "stretching" the
waveform; see Stretching and Moving Edges for more
information

Move Edge Move an edge forward/backward without changing other
edges; see Stretching and Moving Edges for more
information

Extend All
Waves

Extend all created waveforms by the specified amount or
to the specified simulation time; ModelSim cannot undo
this edit or any edits done prior to an extend command

Change Drive
Type

Change the drive type of the selected portion of the
waveform

Undo Undo waveform edits (except changing drive type and
extending all waves)

Generating Stimulus with Waveform Editor
Selecting Parts of the Waveform

ModelSim User’s Manual, v10.4c 395

These commands can also be accessed via toolbar buttons. Refer to Wave Edit Toolbar for more
information.

Related Topics

See the wave edit command and the Wave Edit Toolbar.

Selecting Parts of the Waveform
There are several methods for selecting edges or sections of a waveform. The table and graphic
below describe the various options.

Redo Redo previously undone waveform edits

Table 12-3. Selecting Parts of the Waveform

Action Method

Select a waveform edge Click on or just to the right of the
waveform edge

Select a section of the waveform Click-and-drag the mouse pointer in the
waveform pane

Select a section of multiple
waveforms

Click-and-drag the mouse pointer while
holding the <Shift> key

Extend/contract the selection size Drag a cursor in the cursor pane

Extend/contract selection from
edge-to-edge

Click Next Transition/Previous
Transition icons after selecting section

Table 12-2. Waveform Editing Commands (cont.)

Operation Description

ModelSim User’s Manual, v10.4c396

Generating Stimulus with Waveform Editor
Selecting Parts of the Waveform

Figure 12-6. Manipulating Waveforms with the Wave Edit Toolbar and Cursors

Selection and Zoom Percentage
You may find that you cannot select the exact range you want because the mouse moves more
than one unit of simulation time (for example, 228 ns to 230 ns). If this happens, zoom in on the
Wave display and you should be able to select the range you want.

Related Topics

See Zooming the Wave Window Display.

Auto Snapping of the Cursor
When you click just to the right of a waveform edge in the waveform pane, the cursor
automatically "snaps" to the nearest edge. This behavior is controlled by the Snap Distance
setting in the Wave window preferences dialog.

Generating Stimulus with Waveform Editor
Simulating Directly from Waveform Editor

ModelSim User’s Manual, v10.4c 397

Stretching and Moving Edges
There are mouse and keyboard shortcuts for moving and stretching edges.

Here are some points to keep in mind about stretching and moving edges:

• If you stretch an edge forward, more waveform is inserted at the beginning of simulation
time.

• If you stretch an edge backward, waveform is deleted at the beginning of simulation
time.

• If you move an edge past another edge, either forward or backward, the edge you moved
past is deleted.

Simulating Directly from Waveform Editor
You need not save the waveforms in order to use them as stimulus for a simulation. Once you
have configured all the waveforms, you can run the simulation as normal by selecting
Simulate > Start Simulation in the Main window or using the vsim command. ModelSim
automatically uses the created waveforms as stimulus for the simulation. Furthermore, while
running the simulation you can continue editing the waveforms to modify the stimulus for the
part of the simulation yet to be completed.

Related Topics

See the vsim command.

Exporting Waveforms to a Stimulus File
Once you have created and edited the waveforms, you can save the data to a stimulus file that
can be used to drive a simulation now or at a later time.

Procedure

1. To save the waveform data, select File > Export > Waveform or use the wave export
command.

Table 12-4. Wave Editor Mouse/Keyboard Shortcuts

Action Mouse/keyboard shortcut

Stretch an edge Hold the <Ctrl> key and drag the edge

Move an edge Hold the <Ctrl> key and drag the edge
with the 2nd (middle) mouse button

ModelSim User’s Manual, v10.4c398

Generating Stimulus with Waveform Editor
Exporting Waveforms to a Stimulus File

Figure 12-7. Export Waveform Dialog

You can save the waveforms in four different formats:

Related Topics

See the wave export command.

Table 12-5. Formats for Saving Waveforms

Format Description

Force format Creates a Tcl script that contains force commands
necessary to recreate the waveforms; source the file
when loading the simulation as described under
Driving Simulation with the Saved Stimulus File

EVCD format Creates an extended VCD file which can be reloaded
using the Import > EVCD File command or can be
used with the -vcdstim argument to vsim to simulate
the design

VHDL Testbench Creates a VHDL architecture that you load as the top-
level design unit

Verilog Testbench Creates a Verilog module that you load as the top-
level design unit

Generating Stimulus with Waveform Editor
Driving Simulation with the Saved Stimulus File

ModelSim User’s Manual, v10.4c 399

Driving Simulation with the Saved Stimulus
File

The method for loading the stimulus file depends upon what type of format you saved. In each
of the following examples, assume that the top-level of your block is named "top" and you
saved the waveforms to a stimulus file named "mywaves" with the default extension.

Signal Mapping and Importing EVCD Files
When you import a previously saved EVCD file, ModelSim attempts to map the signals in the
EVCD file to the signals in the loaded design by matching signals based on name and width.

If ModelSim can not map the signals automatically, you can do the mapping yourself by
selecting a signal, right-clicking the selected signal, then selecting Map to Design Signal from
the popup menu. This opens the Evcd Import dialog.

Figure 12-8. Evcd Import Dialog

Select a signal from the drop-down arrow and click OK.

Note
This command works only with extended VCD files created with ModelSim.

Table 12-6. Examples for Loading a Stimulus File

Format Loading example

Force format vsim top -do mywaves.do

Extended VCD format1

1. You can also use the Import > EVCD command from the Wave window. See below
for more details on working with EVCD files.

vsim top -vcdstim mywaves.vcd

VHDL Testbench vcom mywaves.vhd
vsim mywaves

Verilog Testbench vlog mywaves.v
vsim mywaves

ModelSim User’s Manual, v10.4c400

Generating Stimulus with Waveform Editor
Saving the Waveform Editor Commands

Saving the Waveform Editor Commands
When you create and edit waveforms in the Wave window, ModelSim tracks the underlying Tcl
commands and reports them to the transcript. You can save those commands to a DO file that
can be run at a later time to recreate the waveforms.

Procedure

Select File > Save.

ModelSim User’s Manual, v10.4c 401

Chapter 13
Standard Delay Format (SDF) Timing

Annotation

This chapter covers the ModelSim implementation of SDF (Standard Delay Format) timing
annotation. Included are sections on VITAL SDF and Verilog SDF, plus troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’s built-in SDF annotator.

Note
SDF timing annotations can be applied only to your FPGA vendor’s libraries; all other
libraries will simulate without annotation.

Specifying SDF Files for Simulation
ModelSim supports SDF versions 1.0 through 4.0 (IEEE 1497), except the NETDELAY and
LABEL statements. The simulator’s built-in SDF annotator automatically adjusts to the version
of the file.

Use the following vsim command line options to specify the SDF files, the desired timing
values, and their associated design instances:

-sdfmin [<instance>=]<filename>
-sdftyp [<instance>=]<filename>
-sdfmax [<instance>=]<filename>

Any number of SDF files can be applied to any instance in the design by specifying one of the
above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical, and
-sdfmax to select maximum timing values from the SDF file.

Instance Specification
The instance paths in the SDF file are relative to the instance to which the SDF is applied.
Usually, this instance is an ASIC or FPGA model instantiated under a test bench.

For example, to annotate maximum timing values from the SDF file myasic.sdf to an instance
u1 under a top-level named testbench, invoke the simulator as follows:

vsim -sdfmax /testbench/u1=myasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. This is usually
incorrect because in most cases the model is instantiated under a test bench or within a larger

ModelSim User’s Manual, v10.4c402

Standard Delay Format (SDF) Timing Annotation
Specifying SDF Files for Simulation

system level simulation. In fact, the design can have several models, each having its own SDF
file. In this case, specify an SDF file for each instance. For example,

vsim -sdfmax /system/u1=asic1.sdf -sdfmax /system/u2=asic2.sdf system

SDF Specification with the GUI
As an alternative to the command line options, you can specify SDF files in the Start
Simulation dialog box under the SDF tab.

Figure 13-1. SDF Tab in Start Simulation Dialog

You can access this dialog by invoking the simulator without any arguments or by selecting
Simulate > Start Simulation.

For Verilog designs, you can also specify SDF files by using the $sdf_annotate system task. See
$sdf_annotate for more details.

Errors and Warnings
Errors issued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not.

Standard Delay Format (SDF) Timing Annotation
VHDL VITAL SDF

ModelSim User’s Manual, v10.4c 403

• Use either the -sdfnoerror or the +nosdferror option with vsim to change SDF errors to
warnings so that the simulation can continue.

• Use either the -sdfnowarn or the +nosdfwarn option with vsim to suppress warning
messages.

Another option is to use the SDF tab from the Start Simulation dialog box (Figure 13-1).
Select Disable SDF warnings (-sdfnowarn +nosdfwarn) to disable warnings, or select Reduce
SDF errors to warnings (-sdfnoerror) to change errors to warnings.

See Troubleshooting for more information on errors and warnings and how to avoid them.

VHDL VITAL SDF
VHDL SDF annotation works on VITAL cells only. The IEEE Std 1076.4-2000, IEEE
Standard for VITAL ASIC Modeling Specification describes how cells must be written to
support SDF annotation. Once again, the designer does not need to know the details of this
specification because the library provider has already written the VITAL cells and tools that
create compatible SDF files. However, the following summary may help you understand
simulator error messages.

SDF to VHDL Generic Matching
An SDF file contains delay and timing constraint data for cell instances in the design. The
annotator must locate the cell instances and the placeholders (VHDL generics) for the timing
data. Each type of SDF timing construct is mapped to the name of a generic as specified by the
VITAL modeling specification. The annotator locates the generic and updates it with the timing
value from the SDF file. It is an error if the annotator fails to find the cell instance or the named
generic.

The following are examples of SDF constructs and their associated generic names:

Table 13-1. Matching SDF to VHDL Generics

SDF construct Matching VHDL generic name

(IOPATH a y (3)) tpd_a_y

(IOPATH (posedge clk) q (1) (2)) tpd_clk_q_posedge

(INTERCONNECT u1/y u2/a (5)) tipd_a

(SETUP d (posedge clk) (5)) tsetup_d_clk_noedge_posedge

(HOLD (negedge d) (posedge clk) (5)) thold_d_clk_negedge_posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1’b0) clk) (5)) tpw_clk_reset_eq_0

(DEVICE y (1)) tdevice_c1_y1

ModelSim User’s Manual, v10.4c404

Standard Delay Format (SDF) Timing Annotation
Verilog SDF

The SDF statement CONDELSE, when targeted for Vital cells, is annotated to a tpd generic of
the form tpd_<inputPort>_<outputPort>.

Resolving Errors
If the simulator finds the cell instance but not the generic, an error message is issued.

For example,

** Error (vsim-SDF-3240) myasic.sdf(18):
Instance ’/testbench/dut/u1’ does not have a generic named ’tpd_a_y’

In this case, make sure that the design is using the appropriate VITAL library cells. If it is, then
there is probably a mismatch between the SDF and the VITAL cells. You need to find the cell
instance and compare its generic names to those expected by the annotator. Look in the VHDL
source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the VITAL
library cells are not being used. If the generic names do look like VITAL timing generic names
but don’t match the names expected by the annotator, then there are several possibilities:

• The vendor’s tools are not conforming to the VITAL specification.

• The SDF file was accidentally applied to the wrong instance. In this case, the simulator
also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

• The vendor’s library and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim with the
-vital2.2b option:

vsim -vital2.2b -sdfmax /testbench/u1=myasic.sdf testbench

Related Topics

For additional VITAL specification information, see VITAL Usage and Compliance. For more
information on resolving errors see Troubleshooting.

Verilog SDF
Verilog designs can be annotated using either the simulator command line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The command
line options annotate the design immediately after it is loaded, but before any simulation events
take place. The $sdf_annotate task annotates the design at the time it is called in the Verilog
source code. This provides more flexibility than the command line options.

1. c1 is the instance name of the module containing the previous generic(tdevice_c1_y).

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v10.4c 405

$sdf_annotate
The $sdf_annotate task annotates the design when it is called in the Verilog source code.

Syntax
$sdf_annotate

(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"], ["<mtm_spec>"],
["<scale_factor>"], ["<scale_type>"]);

Arguments
• "<sdffile>"

String that specifies the SDF file. Required.

• <instance>

Hierarchical name of the instance to be annotated. Optional. Defaults to the instance where
the $sdf_annotate call is made.

• "<config_file>"

String that specifies the configuration file. Optional. Currently not supported, this argument
is ignored.

• "<log_file>"

String that specifies the logfile. Optional. Currently not supported, this argument is ignored.

• "<mtm_spec>"

String that specifies the delay selection. Optional. The allowed strings are "minimum",
"typical", "maximum", and "tool_control". Case is ignored and the default is "tool_control".
The "tool_control" argument means to use the delay specified on the command line by
+mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

• "<scale_factor>"

String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier is a real number that is used to
scale the corresponding delay in the SDF file.

• "<scale_type>"

String that overrides the <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is always used to select the delay scaling factor, but if a <scale_type> is specified,
then it will determine the min/typ/max selection from the SDF file. The allowed strings are
"from_min", "from_minimum", "from_typ", "from_typical", "from_max",
"from_maximum", and "from_mtm". Case is ignored, and the default is "from_mtm", which
means to use the <mtm_spec> value.

ModelSim User’s Manual, v10.4c406

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

Examples
Optional arguments can be omitted by using commas or by leaving them out if they are at the
end of the argument list. For example, to specify only the SDF file and the instance to which it
applies:

$sdf_annotate("myasic.sdf", testbench.u1);

To also specify maximum delay values:

$sdf_annotate("myasic.sdf", testbench.u1, , , "maximum");

SDF to Verilog Construct Matching
The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each SDF
construct, the annotator locates the cell instance and updates each specify path delay or timing
check that matches. An SDF construct can have multiple matches, in which case each matching
specify statement is updated with the SDF timing value.

SDF constructs are matched to Verilog constructs as follows.

• IOPATH is matched to specify path delays or primitives:

The IOPATH construct usually annotates path delays. If ModelSim can’t locate a
corresponding specify path delay, it returns an error unless you use the
+sdf_iopath_to_prim_ok argument to vsim. If you specify that argument and the module
contains no path delays, then all primitives that drive the specified output port are
annotated.

• INTERCONNECT and PORT are matched to input ports:

Both of these constructs identify a module input or inout port and create an internal net
that is a delayed version of the port. This is called a Module Input Port Delay (MIPD).

Table 13-2. Matching SDF IOPATH to Verilog

SDF Verilog

(IOPATH (posedge clk) q (3) (4)) (posedge clk => q) = 0;

(IOPATH a y (3) (4)) buf u1 (y, a);

Table 13-3. Matching SDF INTERCONNECT and PORT to Verilog

SDF Verilog

(INTERCONNECT u1.y u2.a (5)) input a;

(PORT u2.a (5)) inout a;

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v10.4c 407

All primitives, specify path delays, and specify timing checks connected to the original
port are reconnected to the new MIPD net.

• PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

If the input and output ports are omitted in the SDF, then all path delays are matched in
the cell.

• DEVICE is matched to primitives or specify path delays:

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated.
If it is a module instance, then all specify path delays are annotated that drive the output
port specified in the DEVICE construct (all path delays are annotated if the output port
is omitted). If the module contains no path delays, then all primitives that drive the
specified output port are annotated (or all primitives that drive any output port if the
output port is omitted).

• SETUP is matched to $setup and $setuphold:

• HOLD is matched to $hold and $setuphold:

Table 13-4. Matching SDF PATHPULSE and GLOBALPATHPULSE to Verilog

SDF Verilog

(PATHPULSE a y (5) (10)) (a => y) = 0;

(GLOBALPATHPULSE a y (30) (60)) (a => y) = 0;

Table 13-5. Matching SDF DEVICE to Verilog

SDF Verilog

(DEVICE y (5)) and u1(y, a, b);

(DEVICE y (5)) (a => y) = 0; (b => y) = 0;

Table 13-6. Matching SDF SETUP to Verilog

SDF Verilog

(SETUP d (posedge clk) (5)) $setup(d, posedge clk, 0);

(SETUP d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

Table 13-7. Matching SDF HOLD to Verilog

SDF Verilog

(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);

(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

ModelSim User’s Manual, v10.4c408

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

• SETUPHOLD is matched to $setup, $hold, and $setuphold:

• RECOVERY is matched to $recovery:

• REMOVAL is matched to $removal:

• RECREM is matched to $recovery, $removal, and $recrem:

• SKEW is matched to $skew:

Table 13-8. Matching SDF SETUPHOLD to Verilog

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

Table 13-9. Matching SDF RECOVERY to Verilog

SDF Verilog

(RECOVERY (negedge reset) (posedge clk)
(5))

$recovery(negedge reset, posedge clk, 0);

Table 13-10. Matching SDF REMOVAL to Verilog

SDF Verilog

(REMOVAL (negedge reset) (posedge clk)
(5))

$removal(negedge reset, posedge clk, 0);

Table 13-11. Matching SDF RECREM to Verilog

SDF Verilog

(RECREM (negedge reset) (posedge clk)
(5) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
(5) (5))

$removal(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk)
(5) (5))

$recrem(negedge reset, posedge clk, 0);

Table 13-12. Matching SDF SKEW to Verilog

SDF Verilog

(SKEW (posedge clk1) (posedge clk2) (5)) $skew(posedge clk1, posedge clk2, 0);

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v10.4c 409

• WIDTH is matched to $width:

• PERIOD is matched to $period:

• NOCHANGE is matched to $nochange:

To see complete mappings of SDF and Verilog constructs, please consult IEEE Std 1364-2005,
Chapter 16 - Back Annotation Using the Standard Delay Format (SDF).

Retain Delay Behavior
The simulator processes RETAIN delays in SDF files as described in this section.

A RETAIN delay can appear as:

(IOPATH addr[13:0] dout[7:0]
(RETAIN (rval1) (rval2) (rval3)) // RETAIN delays
(dval1) (dval2) ... // IOPATH delays
)

Because rval2 and rval 3 on the RETAIN line are optional, the simulator makes the following
assumptions:

• Only rval1 is specified — rval1 is used as the value of rval2 and rval3.

• rval1 and rval2 are specified — the smaller of rval1 and rval2 is used as the value of
rval3.

During simulation, if any rval that would apply is larger than or equal to the applicable path
delay, then RETAIN delay is not applied.

You can specify that RETAIN delays should not be processed by using +vlog_retain_off on the
vsim command line.

Table 13-13. Matching SDF WIDTH to Verilog

SDF Verilog

(WIDTH (posedge clk) (5)) $width(posedge clk, 0);

Table 13-14. Matching SDF PERIOD to Verilog

SDF Verilog

(PERIOD (posedge clk) (5)) $period(posedge clk, 0);

Table 13-15. Matching SDF NOCHANGE to Verilog

SDF Verilog

(NOCHANGE (negedge write) addr (5) (5)) $nochange(negedge write, addr, 0, 0);

ModelSim User’s Manual, v10.4c410

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

Retain delays apply to an IOPATH for any transition on the input of the PATH unless the
IOPATH specifies a particular edge for the input of the IOPATH. This means that for an
IOPATH such as RCLK -> DOUT, RETAIN delay should apply for a negedge on RCLK even
though a Verilog model is coded only to change DOUT in response to a posedge of RCLK. If
(posedge RCLK) -> DOUT is specified in the SDF then an associated RETAIN delay applies
only for posedge RCLK. If a path is conditioned, then RETAIN delays do not apply if a delay
path is not enabled.

Table 13-16 defines which delay is used depending on the transitions:

You can specify that X insertion on outputs that do not change except when the causal inputs
change by using +vlog_retain_same2same_on on the vsim command line. An example is when
CLK changes but bit DOUT[0] does not change from its current value of 0, but you want it to go
through the transition 0 -> X -> 0.

Table 13-16. RETAIN Delay Usage (default)

Path
Transition

Retain
Transition

Retain Delay
Used

Path Delay
Used

Note

0->1 0->x->1 rval1 (0->x) 0->1

1->0 1->x->0 rval2 (1->x) 1->0

z->0 z->x->0 rval3 (z->x) z->0

z->1 z->x->1 rval3 (z->x) z->1

0->z 0->x->z rval1 (0->x) 0->z

1->z 1->x->z rval2 (1->x) 1->z

x->0 x->x->0 n/a x->0 use PATH delay, no RETAIN
delay is applicable

x->1 x->x->1 n/a x->1

x->z x->x->z n/a x->z

0->x 0->x->x rval1 (0->x) 0->x use RETAIN delay for PATH
delay if it is smaller

1->x 1->x->x rval2 (1->x) 1->x

z->x z->x->x rval3 (z->x) z->x

Table 13-17. RETAIN Delay Usage (with +vlog_retain_same2same_on)

Path
Transition

Retain
Transition

Retain Delay
Used

Path Delay
Used

Note

0->0 0->x->0 rval1 (0->x) 1->0

1->1 1->x->1 rval2 (1->x) 0->1

z->z z->x->z rval3 (z->x) max(0->z,1->z)

x->x x->x->x No output transition

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

ModelSim User’s Manual, v10.4c 411

Optional Edge Specifications
Timing check ports and path delay input ports can have optional edge specifications.

The annotator uses the following rules to match edges:

• A match occurs if the SDF port does not have an edge.

• A match occurs if the specify port does not have an edge.

• A match occurs if the SDF port edge is identical to the specify port edge.

• A match occurs if explicit edge transitions in the specify port edge overlap with the SDF
port edge.

These rules allow SDF annotation to take place even if there is a difference between the number
of edge-specific constructs in the SDF file and the Verilog specify block. For example, the
Verilog specify block may contain separate setup timing checks for a falling and rising edge on
data with respect to clock, while the SDF file may contain only a single setup check for both
edges:

In this case, the cell accommodates more accurate data than can be supplied by the tool that
created the SDF file, and both timing checks correctly receive the same value.

Likewise, the SDF file may contain more accurate data than the model can accommodate.

In this case, both SDF constructs are matched and the timing check receives the value from the
last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF file is limited to posedge and negedge. For example,

Table 13-18. Matching Verilog Timing Checks to SDF SETUP

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);

(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

Table 13-19. SDF Data May Be More Accurate Than Model

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);

(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

Table 13-20. Matching Explicit Verilog Edge Transitions to Verilog

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge[01, 0x] clk, 0);

ModelSim User’s Manual, v10.4c412

Standard Delay Format (SDF) Timing Annotation
$sdf_annotate

The explicit edge specifiers are 01, 0x, 10, 1x, x0, and x1. The set of [01, 0x, x1] is equivalent to
posedge, while the set of [10, 1x, x0] is equivalent to negedge. A match occurs if any of the
explicit edges in the specify port match any of the explicit edges implied by the SDF port.

Optional Conditions
Timing check ports and path delays can have optional conditions.

The annotator uses the following rules to match conditions:

• A match occurs if the SDF does not have a condition.

• A match occurs for a timing check if the SDF port condition is semantically equivalent
to the specify port condition.

• A match occurs for a path delay if the SDF condition is lexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

The annotator does not match the second condition above because the order of r1 and r2 are
reversed.

Rounded Timing Values
The SDF TIMESCALE construct specifies time units of values in the SDF file. The annotator
rounds timing values from the SDF file to the time precision of the module that is annotated. For
example, if the SDF TIMESCALE is 1ns and a value of .016 is annotated to a path delay in a
module having a time precision of 10ps (from the timescale directive), then the path delay

Table 13-21. SDF Timing Check Conditions

SDF Verilog

(SETUP data (COND (reset!=1)
 (posedge clock)) (5))

$setup(data, posedge clk &&&
 (reset==0),0);

Table 13-22. SDF Path Delay Conditions

SDF Verilog

(COND (r1 || r2) (IOPATH clk q (5))) if (r1 || r2) (clk => q) = 5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) if (r2 || r1) (clk => q) = 5; // does not match

Standard Delay Format (SDF) Timing Annotation
SDF for Mixed VHDL and Verilog Designs

ModelSim User’s Manual, v10.4c 413

receives a value of 20ps. The SDF value of 16ps is rounded to 20ps. Interconnect delays are
rounded to the time precision of the module that contains the annotated MIPD.

SDF for Mixed VHDL and Verilog Designs
Annotation of a mixed VHDL and Verilog design is very flexible. VHDL VITAL cells and
Verilog cells can be annotated from the same SDF file. This flexibility is available only by
using the simulator’s SDF command line options. The Verilog $sdf_annotate system task can
annotate Verilog cells only.

Related Topics

See the vsim command for more information on SDF command line options.

Interconnect Delays
An interconnect delay represents the delay from the output of one device to the input of another.
ModelSim can model single interconnect delays or multisource interconnect delays for Verilog,
VHDL/VITAL, or mixed designs.

Timing checks are performed on the interconnect delayed versions of input ports. This may
result in misleading timing constraint violations, because the ports may satisfy the constraint
while the delayed versions may not. If the simulator seems to report incorrect violations, be sure
to account for the effect of interconnect delays.

Related Topics

See the vsim command for more information on the relevant command line arguments.

Disabling Timing Checks
ModelSim offers a number of options for disabling timing checks on a global basis.

The table below provides a summary of those options. See the command and argument
descriptions in the Reference Manual for more details.

Table 13-23. Disabling Timing Checks

Command and argument Effect

vlog +notimingchecks disables timing check system tasks for all instances in the
specified Verilog design

vlog +nospecify disables specify path delays and timing checks for all
instances in the specified Verilog design

vsim +no_neg_tchk disables negative timing check limits by setting them to
zero for all instances in the specified design

ModelSim User’s Manual, v10.4c414

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

Troubleshooting
ModelSim provides a number of tools for troubleshooting designs that use SDF files.

Specifying the Wrong Instance
By far, the most common mistake in SDF annotation is to specify the wrong instance to the
simulator’s SDF options. The most common case is to leave off the instance altogether, which is
the same as selecting the top-level design unit. This is generally wrong because the instance
paths in the SDF are relative to the ASIC or FPGA model, which is usually instantiated under a
top-level test bench.

Simple examples for both a VHDL and a Verilog test bench are provided below. For simplicity,
these test bench examples do nothing more than instantiate a model that has no ports.

VHDL Test Bench

entity testbench is end;
architecture only of testbench is

component myasic
end component;

begin
dut : myasic;

end;

vsim +no_notifier disables the toggling of the notifier register argument of
the timing check system tasks for all instances in the
specified design

vsim +no_tchk_msg disables error messages issued by timing check system
tasks when timing check violations occur for all instances
in the specified design

vsim +notimingchecks disables Verilog and VITAL timing checks for all
instances in the specified design; sets generic
TimingChecksOn to FALSE for all VHDL Vital models
with the Vital_level0 or Vital_level1 attribute. Setting this
generic to FALSE disables the actual calls to the timing
checks along with anything else that is present in the
model's timing check block.

vsim +nospecify disables specify path delays and timing checks for all
instances in the specified design

Table 13-23. Disabling Timing Checks (cont.)

Command and argument Effect

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

ModelSim User’s Manual, v10.4c 415

Verilog Test Bench

module testbench;
myasic dut();

endmodule

The name of the model is myasic and the instance label is dut. For either test bench, an
appropriate simulator invocation might be:

vsim -sdfmax /testbench/dut=myasic.sdf testbench

Optionally, you can leave off the name of the top-level:

vsim -sdfmax /dut=myasic.sdf testbench

The important thing is to select the instance for which the SDF is intended. If the model is deep
within the design hierarchy, an easy way to find the instance name is to first invoke the
simulator without SDF options, view the structure pane, navigate to the model instance, select
it, and enter the environment command. This command displays the instance name that should
be used in the SDF command line option.

Related Topics

See Instance Specification for an example.

Matching a Single Timing Check
SDF annotation of RECREM or SETUPHOLD matching only a single setup, hold, recovery, or
removal timing check will result in a Warning message.

Mistaking a Component or Module Name for an
Instance Label

Another common error is to specify the component or module name rather than the instance
label.

For example, the following invocation is wrong for the above test benches:

vsim -sdfmax /testbench/myasic=myasic.sdf testbench

This results in the following error message:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/myasic’.

Forgetting to Specify the Instance
If you leave off the instance altogether, then the simulator issues a message for each instance
path in the SDF that is not found in the design.

ModelSim User’s Manual, v10.4c416

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

For example,

vsim -sdfmax myasic.sdf testbench

Results in:

** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u1’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u2’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u3’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u4’
** Error (vsim-SDF-3250) myasic.sdf(0):
Failed to find INSTANCE ’/testbench/u5’
** Warning (vsim-SDF-3432) myasic.sdf:
This file is probably applied to the wrong instance.
** Warning (vsim-SDF-3432) myasic.sdf:
Ignoring subsequent missing instances from this file.

After annotation is done, the simulator issues a summary of how many instances were not found
and possibly a suggestion for a qualifying instance:

** Warning (vsim-SDF-3440) myasic.sdf:
Failed to find any of the 358 instances from this file.
** Warning (vsim-SDF-3442) myasic.sdf:
Try instance ’/testbench/dut’. It contains all instance paths from this
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see Resolving Errors for specific VHDL VITAL SDF troubleshooting.

Reporting Unannotated Specify Path Objects
ModelSim allows you to create a report about unannotated or partially-annotated specify path
objects, path delays and timing checks, to better understand a design that uses SDF files.

Unannotated specify objects occur either because the SDF file did not contain any SDF
statements targeting that object or (in a rather unusual situation) because all the values in the
statement were null, as signified by a pair of empty parentheses “()”.

The partial annotation of specify objects occurs when the SDF statements contain some null
values.

Procedure

1. Add the -sdfreport=<filename> argument to your vsim command line.

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

ModelSim User’s Manual, v10.4c 417

Results

The Unannotated Specify Objects Report contains a list of objects that fit into any of the
following three categories:

• Unannotated specify paths (UASP).

• Unannotated timing checks (UATC). This indicates either a single-value timing check
that was not annotated or part of a $setuphold or $recrem that was not annotated.

• Incompletely-annotated specify path transition edges (IATE). This indicates that certain
edges of a specify path, such as 0->1, 1->Z, and so on, were incompletely annotated.

The header of the report contains a full description of the syntax.

Examples

This example report shows the format if you have full design visibility (vopt with the +acc
argument):

Unannotated Specify Objects Report:
===================================
(UASP) = Unannotated specify path.
(UATC) = Unannotated timing check.
(IATE) = Incompltely annotated specify path transition edges.

/test1/u1: ([mymod(fast):test.v(4)]):
 17: (CK => Q1) = (1000) : (UASP)
 18: (S => Q1) = (102, 1000) : (IATE:10)
 19: (SI => Q1) = (103, 104, 1000) : (IATE:tz)
 20: (CK => Q2) = (1000, 201) : (IATE:01)
 21: (S => Q2) = (1000, 1000, 202) : (IATE:01,10)
 22: (SI => Q2) = (203, 1000, 204) : (IATE:10)
 30: SETUP: (posedge CK &&& Sn1), (D &&& CKe0): 2000 : (UATC)
 30: HOLD: (D &&& CKe0), (posedge CK &&& Sn1): 3000 : (UATC)
 36: HOLD: (posedge CK &&& Sn0), (SI &&& Sn0): 1000 : (UATC)
 37: SETUP: (posedge CK &&& Sn0), (SI &&& CKe0): 6000 : (IATC)
 38: HOLD: (posedge CK), (SI): 9000 : (IATC)
Found 1 instances with unannotated or incompletely annotated specify block objects.

This example report shows the format if you fully optimized the design (lines are abbreviated
for readability):

Unannotated Specify Objects Report:
===================================
(UASP) = Unannotated specify path.
(UATC) = Unannotated timing check.
(IATE) = Incompltely annotated specify path transition edges.

/test1/u1: ([mymod(fast):test.v(4)]):
 (CK => Q1) = (1000, 1000, 1000, 1000, 1000, ... 1000) : (UASP)
 (S => Q1) = (102, 1000, 102, 102, 1000, ... 102, 1000) : (IATE:10,1Z,Z0,1X,X0,ZX)
 (SI => Q1) = (103, 104, 1000, 103, 1000, ... 104, 1000, 103) : (IATE:0Z,1Z,0X,1X,XZ)
 (CK => Q2) = (1000, 201, 1000, 1000, ... 201, 201, 201, 1000) : (IATE:01,0Z,Z1,0X,X1,ZX)
 (S => Q2) = (1000, ... 1000, 1000, 202, 1000) : (IATE:01,10,Z1,Z0,0X,X1,1X,X0,ZX)
 (SI => Q2) = (203, 1000, 204, 203, 204, ... 1000, 204, 1000) : (IATE:10,Z0,1X,X0,ZX)
 HOLD: (posedge CK), (SI): 9000 : (UATC)
 SETUP: (posedge CK &&& Sn0), (SI &&& CKe0): 6000 : (UATC)
 SETUP: (posedge CK &&& Sn1), (D &&& CKe0): 2000 : (UATC)
 HOLD: (D &&& CKe0), (posedge CK &&& Sn1): 3000 : (UATC)
 HOLD: (posedge CK &&& Sn0), (SI &&& Sn0): 1000 : (UATC)
Found 1 instances with unannotated or incompletely annotated specify block objects.

ModelSim User’s Manual, v10.4c418

Standard Delay Format (SDF) Timing Annotation
Troubleshooting

ModelSim User’s Manual, v10.4c 419

Chapter 14
Value Change Dump (VCD) Files

The Value Change Dump (VCD) file format is supported for use by ModelSim and is specified
in the IEEE 1364-2005 standard. A VCD file is an ASCII file that contains information about
value changes on selected variables in the design stored by VCD system tasks. This includes
header information, variable definitions, and variable value changes.

VCD is in common use for Verilog designs and is controlled by VCD system task calls in the
Verilog source code. ModelSim provides equivalent commands for these system tasks and
extends VCD support to VHDL designs. You can use these ModelSim VCD commands on
Verilog and VHDL designs.

If you need vendor-specific ASIC design-flow documentation that incorporates VCD, contact
your ASIC vendor.

Creating a VCD File
ModelSim provides two general methods for creating a VCD file.

• Four-State VCD File — produces a four-state VCD file.

• Extended VCD File — produces an extended VCD (EVCD) file.

Both methods capture port driver changes unless you filter them out with optional
command-line arguments.

Four-State VCD File
This procedure produces a four-state VCD file with variable changes in 0, 1, x, and z with no
strength information.

Procedure

1. Compile and load the design. For example:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

2. With the design loaded, specify the VCD file name with the vcd file command and add
objects to the file with the vcd add command as follows:

ModelSim User’s Manual, v10.4c420

Value Change Dump (VCD) Files
Creating a VCD File

VSIM 1> vcd file myvcdfile.vcd
VSIM 2> vcd add /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

Results

Upon quitting the simulation, there will be a VCD file in the working directory.

Extended VCD File
This procedure produces an extended VCD (EVCD) file with variable changes in all states and
strength information and port driver data.

Procedure

1. Compile and load the design. For example:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter

2. With the design loaded, specify the VCD file name and objects to add with the
vcd dumpports command:

VSIM 1> vcd dumpports -file myvcdfile.vcd /test_counter/dut/*
VSIM 3> run
VSIM 4> quit -f

Results

Upon quitting the simulation, there will be an extended VCD file called myvcdfile.vcd in the
working directory.

Note
There is an internal limit to the number of ports that can be listed with the vcd dumpports
command. If that limit is reached, use the vcd add command with the -dumpports option
to name additional ports.

VCD Case Sensitivity
Verilog designs are case-sensitive, so ModelSim maintains case when it produces a VCD file.
However, VHDL is not case-sensitive, so ModelSim converts all signal names to lower case
when it produces a VCD file.

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

ModelSim User’s Manual, v10.4c 421

Using Extended VCD as Stimulus
You can use an extended VCD file as stimulus to re-simulate your design.

There are two ways to do this:

1. Simulate the top level of a design unit with the input values from an extended VCD file.

2. Specify one or more instances in a design to be replaced with the output values from the
associated VCD file.

Simulating with Input Values from a VCD File
When simulating with inputs from an extended VCD file, you can simulate only one design unit
at a time. In other words, you can apply the VCD file inputs only to the top level of the design
unit for which you captured port data.

Procedure

1. Create a VCD file for a single design unit using the vcd dumpports command.

2. Resimulate the single design unit using the -vcdstim argument with the vsim command.
Note that -vcdstim works only with VCD files that were created by a ModelSim
simulation.

Examples

Verilog Counter

First, create the VCD file for the single instance using vcd dumpports:

% cd <installDir>/examples/tutorials/verilog/basicSimulation
% vlib work
% vlog counter.v tcounter.v
% vsim test_counter +dumpports+nocollapse
VSIM 1> vcd dumpports -file counter.vcd /test_counter/dut/*
VSIM 2> run
VSIM 3> quit -f

Next, rerun the counter without the test bench, using the -vcdstim argument:

% vsim counter_replay -vcdstim counter.vcd
VSIM 1> add wave /*
VSIM 2> run 200

VHDL Adder

First, create the VCD file using vcd dumpports:

% cd <installDir>/examples/vcd
% vlib work

ModelSim User’s Manual, v10.4c422

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

% vcom gates.vhd adder.vhd stimulus.vhd
% vsim testbench2 +dumpports+nocollapse
VSIM 1> vcd dumpports -file addern.vcd /testbench2/uut/*
VSIM 2> run 1000
VSIM 3> quit -f

Next, rerun the adder without the test bench, using the -vcdstim argument:

% vsim -vcdstim addern.vcd addern -gn=8 -do "add wave /*; run 1000"

Mixed-HDL Design

First, create three VCD files, one for each module:

% cd <installDir>/examples/tutorials/mixed/projects
% vlib work
% vlog cache.v memory.v proc.v
% vcom util.vhd set.vhd top.vhd
% vsim top +dumpports+nocollapse
VSIM 1> vcd dumpports -file proc.vcd /top/p/*
VSIM 2> vcd dumpports -file cache.vcd /top/c/*
VSIM 3> vcd dumpports -file memory.vcd /top/m/*
VSIM 4> run 1000
VSIM 5> quit -f

Next, rerun each module separately, using the captured VCD stimulus:

% vsim -vcdstim proc.vcd proc -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim cache.vcd cache -do "add wave /*; run 1000"
VSIM 1> quit -f

% vsim -vcdstim memory.vcd memory -do "add wave /*; run 1000"
VSIM 1> quit -f

Note
When using VCD files as stimulus, the VCD file format does not support recording of
delta delay changes – delta delays are not captured and any delta delay ordering of signal
changes is lost. Designs relying on this ordering may produce unexpected results.

Replacing Instances with Output Values from a
VCD File

Replacing instances with output values from a VCD file lets you simulate without the instance’s
source or even the compiled object.

Value Change Dump (VCD) Files
Using Extended VCD as Stimulus

ModelSim User’s Manual, v10.4c 423

Procedure

1. Create VCD files for one or more instances in your design using the vcd dumpports
command. If necessary, use the -vcdstim switch to handle port order problems (see
below).

2. Re-simulate your design using the -vcdstim <instance>=<filename> argument to vsim.
Note that this works only with VCD files that were created by a ModelSim simulation.

Examples

Replacing Instances

In the following example, the three instances /top/p, /top/c, and /top/m are replaced in
simulation by the output values found in the corresponding VCD files.

First, create VCD files for all instances you want to replace:

vcd dumpports -vcdstim -file proc.vcd /top/p/*
vcd dumpports -vcdstim -file cache.vcd /top/c/*
vcd dumpports -vcdstim -file memory.vcd /top/m/*
run 1000

Next, simulate your design and map the instances to the VCD files you created:

vsim top -vcdstim /top/p=proc.vcd -vcdstim /top/c=cache.vcd
-vcdstim /top/m=memory.vcd
quit -f

Note
When using VCD files as stimulus, the VCD file format does not support recording of
delta delay changes – delta delays are not captured and any delta delay ordering of signal
changes is lost. Designs relying on this ordering may produce unexpected results.

Port Order Issues
The -vcdstim argument for the vcd dumpports command ensures the order that port names
appear in the VCD file matches the order that they are declared in the instance’s module or
entity declaration.

Consider the following module declaration:

module proc(clk, addr, data, rw, strb, rdy);
 input clk, rdy;
 output addr, rw, strb;
 inout data;

The order of the ports in the module line (clk, addr, data, ...) does not match the order of those
ports in the input, output, and inout lines (clk, rdy, addr, ...). In this case the -vcdstim argument
to the vcd dumpports command needs to be used.

ModelSim User’s Manual, v10.4c424

Value Change Dump (VCD) Files
VCD Commands and VCD Tasks

In cases where the order is the same, you do not need to use the -vcdstim argument to vcd
dumpports. Also, module declarations of the form:

module proc(input clk, output addr, inout data, ...)

do not require use of the argument.

VCD Commands and VCD Tasks
ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the VCD
file along with the results of those commands. The table below maps the VCD commands to
their associated tasks.

ModelSim also supports extended VCD (dumpports system tasks). The table below maps the
VCD dumpports commands to their associated tasks.

ModelSim supports multiple VCD files. This functionality is an extension of the IEEE Std
1364-2005 specification. The tasks behave the same as the IEEE equivalent tasks such as
$dumpfile, $dumpvar, and so forth. The difference is that $fdumpfile can be called multiple
times to create more than one VCD file, and the remaining tasks require a filename argument to

Table 14-1. VCD Commands and SystemTasks

VCD commands VCD system tasks

vcd add $dumpvars

vcd checkpoint $dumpall

vcd file $dumpfile

vcd flush $dumpflush

vcd limit $dumplimit

vcd off $dumpoff

vcd on $dumpon

Table 14-2. VCD Dumpport Commands and System Tasks

VCD dumpports commands VCD system tasks

vcd dumpports $dumpports

vcd dumpportsall $dumpportsall

vcd dumpportsflush $dumpportsflush

vcd dumpportslimit $dumpportslimit

vcd dumpportsoff $dumpportsoff

vcd dumpportson $dumpportson

Value Change Dump (VCD) Files
VCD File from Source to Output

ModelSim User’s Manual, v10.4c 425

associate their actions with a specific file. Table 14-3 maps the VCD commands to their
associated tasks. For additional details, please see the Verilog IEEE Std 1364-2005
specification.

Compressing Files with VCD Tasks
ModelSim can produce compressed VCD files using the gzip compression algorithm. Since we
cannot change the syntax of the system tasks, we act on the extension of the output file name. If
you specify a .gz extension on the filename, ModelSim will compress the output.

VCD File from Source to Output
The following example code shows the VHDL source, a set of simulator commands, and the
resulting VCD output.

VHDL Source Code
The design is a simple shifter device represented by the following VHDL source code.

Table 14-3. VCD Commands and System Tasks for Multiple VCD Files

VCD commands VCD system tasks

vcd add -file <filename> $fdumpvars(levels, {, module_or_variable }1, filename)

1. denotes an optional, comma-separated list of 0 or more modules or variables

vcd checkpoint <filename> $fdumpall(filename)

vcd files <filename> $fdumpfile(filename)

vcd flush <filename> $fdumpflush(filename)

vcd limit <filename> $fdumplimit(filename)

vcd off <filename> $fdumpoff(filename)

vcd on <filename> $fdumpon(filename)

ModelSim User’s Manual, v10.4c426

Value Change Dump (VCD) Files
VCD File from Source to Output

library IEEE;
use IEEE.STD_LOGIC_1164.all;

entity SHIFTER_MOD is
port (CLK, RESET, data_in : IN STD_LOGIC;

Q : INOUT STD_LOGIC_VECTOR(8 downto 0));
END SHIFTER_MOD ;

architecture RTL of SHIFTER_MOD is
begin

process (CLK,RESET)
begin

if (RESET = '1') then
Q <= (others => '0') ;

elsif (CLK'event and CLK = '1') then
Q <= Q(Q'left - 1 downto 0) & data_in ;

end if ;
end process ;

end ;

VCD Simulator Commands
At simulator time zero, the designer executes the following commands.

vcd file output.vcd
vcd add -r *
force reset 1 0
force data_in 0 0
force clk 0 0
run 100
force clk 1 0, 0 50 -repeat 100
run 100
vcd off
force reset 0 0
force data_in 1 0
run 100
vcd on
run 850
force reset 1 0
run 50
vcd checkpoint
quit -sim

Value Change Dump (VCD) Files
VCD File from Source to Output

ModelSim User’s Manual, v10.4c 427

VCD Output

The VCD file created as a result of the preceding scenario would be called output.vcd. The
following pages show how it would look.

$date
Thu Sep 18

11:07:43 2003
$end
$version

<Tool> Version
<version>
$end
$timescale

1ns
$end
$scope module
shifter_mod $end
$var wire 1 ! clk
$end
$var wire 1 " reset
$end
$var wire 1 # data_in
$end
$var wire 1 $ q [8]
$end
$var wire 1 % q [7]
$end
$var wire 1 & q [6]
$end
$var wire 1 ' q [5]
$end
$var wire 1 (q [4]
$end
$var wire 1) q [3]
$end
$var wire 1 * q [2]
$end
$var wire 1 + q [1]
$end
$var wire 1 , q [0]
$end
$upscope $end
$enddefinitions $end
#0
$dumpvars
0!
1"
0#
0$
0%
0&
0'
0(
0)
0*
0+
0,

$end
#100
1!
#150
0!
#200
1!
$dumpoff
x!
x"
x#
x$
x%
x&
x'
x(
x)
x*
x+
x,
$end
#300
$dumpon
1!
0"
1#
0$
0%
0&
0'
0(
0)
0*
0+
1,
$end
#350
0!
#400
1!
1+
#450
0!
#500
1!
1*
#550
0!
#600
1!
1)
#650
0!

#700
1!
1(
#750
0!
#800
1!
1'
#850
0!
#900
1!
1&
#950
0!
#1000
1!
1%
#1050
0!
#1100
1!
1$
#1150
0!
1"
0,
0+
0*
0)
0(
0'
0&
0%
0$
#1200
1!
$dumpall
1!
1"
1#
0$
0%
0&
0'
0(
0)
0*
0+
0,
$end

ModelSim User’s Manual, v10.4c428

Value Change Dump (VCD) Files
VCD to WLF

VCD to WLF
The ModelSim vcd2wlf command is a utility that translates a .vcd file into a .wlf file that can be
displayed in ModelSim using the vsim -view argument. This command only works on VCD
files containing positive time values.

Capturing Port Driver Data
Some ASIC vendors’ toolkits read a VCD file format that provides details on port drivers. This
information can be used, for example, to drive a tester. For more information on a specific
toolkit, refer to the ASIC vendor’s documentation.

In ModelSim, use the vcd dumpports command to create a VCD file that captures port driver
data. Each time an external or internal port driver changes values, a new value change is
recorded in the VCD file with the following format:

 p<state> <0 strength> <1 strength> <identifier_code>

Driver States

Table 14-4 shows the driver states recorded as TSSI states if the direction is known.

If the direction is unknown, the state will be recorded as one of the following:

Table 14-4. Driver States

Input (testfixture) Output (dut)

D low L low

U high H high

N unknown X unknown

Z tri-state T tri-state

d low (two or more
drivers active)

l low (two or more
drivers active)

u high (two or more
drivers active)

h high (two or
more drivers active)

Table 14-5. State When Direction is Unknown

Unknown direction

0 low (both input and output are driving low)

1 high (both input and output are driving high)

? unknown (both input and output are driving
unknown)

Value Change Dump (VCD) Files
Capturing Port Driver Data

ModelSim User’s Manual, v10.4c 429

Driver Strength

The recorded 0 and 1 strength values are based on Verilog strengths:

Identifier Code

The <identifier_code> is an integer preceded by < that starts at zero and is incremented for each
port in the order the ports are specified. Also, the variable type recorded in the VCD header is
"port".

F three-state (input and output unconnected)

A unknown (input driving low and output driving
high)

a unknown (input driving low and output driving
unknown)

B unknown (input driving high and output driving
low)

b unknown (input driving high and output driving
unknown)

C unknown (input driving unknown and output
driving low)

c unknown (input driving unknown and output
driving high)

f unknown (input and output three-stated)

Table 14-6. Driver Strength

Strength VHDL std_logic mappings

0 highz ’Z’

1 small

2 medium

3 weak

4 large

5 pull ’W’,’H’,’L’

6 strong ’U’,’X’,’0’,’1’,’-’

 7 supply

Table 14-5. State When Direction is Unknown (cont.)

Unknown direction

ModelSim User’s Manual, v10.4c430

Value Change Dump (VCD) Files
Resolving Values

Resolving Values
The resolved values written to the VCD file depend on which options you specify when creating
the file.

Default Behavior
By default, ModelSim generates VCD output according to the IEEE Std 1364™-2005, IEEE

Standard for Verilog® Hardware Description Language. This standard states that the values 0
(both input and output are active with value 0) and 1 (both input and output are active with
value 1) are conflict states. The standard then defines two strength ranges:

• Strong: strengths 7, 6, and 5

• Weak: strengths 4, 3, 2, 1

The rules for resolving values are as follows:

• If the input and output are driving the same value with the same range of strength, the
resolved value is 0 or 1, and the strength is the stronger of the two.

• If the input is driving a strong strength and the output is driving a weak strength, the
resolved value is D, d, U or u, and the strength is the strength of the input.

• If the input is driving a weak strength and the output is driving a strong strength, the
resolved value is L, l, H or h, and the strength is the strength of the output.

When force Command is Used
If you force a value on a net that does not have a driver associated with it, ModelSim uses the
port direction shown in the following table to dump values to the VCD file. When the port is an
inout, the direction cannot be determined.

Table 14-7. VCD Values When Force Command is Used

Value forced on
net

Port Direction

input output inout

0 D L 0

1 U H 1

X N X ?

Z Z T F

Value Change Dump (VCD) Files
Resolving Values

ModelSim User’s Manual, v10.4c 431

Extended Data Type for VHDL (vl_logic)
Mentor Graphics has created an additional VHDL data type for use in mixed-language designs,
in case you need access to the full Verilog state set. The vl_logic type is an enumeration that
defines the full set of VHDL values for Verilog nets, as defined for Logic Strength Modeling in

IEEE 1364™-2005.

This specification defines the following driving strengths for signals propagated from gate
outputs and continuous assignment outputs:

Supply, Strong, Pull, Weak, HiZ

This specification also defines three charge storage strengths for signals originating in the trireg
net type:

Large, Medium, Small

Each of these strengths can assume a strength level ranging from 0 to 7 (expressed as a binary
value from 000 to 111), combined with the standard four-state values of 0, 1, X, and Z. This
results in a set of 256 strength values, which preserves Verilog strength values going through
the VHDL portion of the design and allows a VCD in extended format for any downstream
application.

The vl_logic type is defined in the following file installed with ModelSim, where you can view
the 256 strength values:

<install_dir>/vhdl_src/verilog/vltypes.vhd

This location is a pre-compiled verilog library provided in your installation directory, along
with the other pre-compiled libraries (std and ieee).

Note
The Wave window display and WLF do not support the full range of vl_logic values for
VHDL signals.

Ignoring Strength Ranges
You may wish to ignore strength ranges and have ModelSim handle each strength separately.

Any of the following options will produce this behavior:

• Use the -no_strength_range argument to the vcd dumpports command

• Use an optional argument to $dumpports (see Extended $dumpports Syntax below)

• Use the +dumpports+no_strength_range argument to vsim command

ModelSim User’s Manual, v10.4c432

Value Change Dump (VCD) Files
Resolving Values

In this situation, ModelSim reports strengths for both the zero and one components of the value
if the strengths are the same. If the strengths are different, ModelSim reports only the “winning”
strength. In other words, the two strength values either match (for example, pA 5 5 !) or the
winning strength is shown and the other is zero (for instance, pH 0 5 !).

Extended $dumpports Syntax

ModelSim extends the $dumpports system task in order to support exclusion of strength ranges.

The extended syntax is as follows:

$dumpports (scope_list, file_pathname, ncsim_file_index, file_format)

The nc_sim_index argument is required yet ignored by ModelSim. It is required only to be
compatible with NCSim’s argument list.

The file_format argument accepts the following values or an ORed combination thereof (see
examples below):

Here are some examples:

// ignore strength range
$dumpports(top, "filename", 0, 0)
// compress and ignore strength range
$dumpports(top, "filename", 0, 4)
// print direction and ignore strength range
$dumpports(top, "filename", 0, 8)
// compress, print direction, and ignore strength range
$dumpports(top, "filename", 0, 12)

Table 14-8. Values for file_format Argument

File_format value Meaning

0 Ignore strength range

2 Use strength ranges; produces IEEE 1364-compliant
behavior

4 Compress the EVCD output

8 Include port direction information in the EVCD file
header; same as using -direction argument to vcd
dumpports

Value Change Dump (VCD) Files
Resolving Values

ModelSim User’s Manual, v10.4c 433

Example 14-1. VCD Output from vcd dumpports

This example demonstrates how vcd dumpports resolves values based on certain combinations
of driver values and strengths and whether or not you use strength ranges. Table 14-9 is sample
driver data.

Given the driver data above and use of 1364 strength ranges, here is what the VCD file output
would look like:

#0
p0 7 0 <0
#100
p0 7 0 <0
#200
p0 7 0 <0
#300
pL 7 0 <0
#900
pB 7 6 <0
#27400
pU 0 5 <0
#27500
p1 0 4 <0
#27600
p1 0 4 <0

Table 14-9. Sample Driver Data

time in value out value in strength value
(range)

out strength value
(range)

0 0 0 7 (strong) 7 (strong)

100 0 0 6 (strong) 7 (strong)

200 0 0 5 (strong) 7 (strong)

300 0 0 4 (weak) 7 (strong)

900 1 0 6 (strong) 7 (strong)

27400 1 1 5 (strong) 4 (weak)

27500 1 1 4 (weak) 4 (weak)

27600 1 1 3 (weak) 4 (weak)

ModelSim User’s Manual, v10.4c434

Value Change Dump (VCD) Files
Resolving Values

ModelSim User’s Manual, v10.4c 435

Chapter 15
Tcl and DO Files

Tcl is a scripting language for controlling and extending ModelSim. Within ModelSim you can
develop implementations from Tcl scripts without the use of C code. Because Tcl is interpreted,
development is rapid; you can generate and execute Tcl scripts “on the fly” without stopping to
recompile or restart ModelSim. In addition, if ModelSim does not provide a command you
need, you can use Tcl to create your own commands.

Tcl Features
Using Tcl with ModelSim gives you these features:

• command history (like that in C shells)

• full expression evaluation and support for all C-language operators

• a full range of math and trig functions

• support of lists and arrays

• regular expression pattern matching

• procedures

• the ability to define your own commands

• command substitution (that is, commands may be nested)

• robust scripting language for DO files

Tcl References
For quick reference information on Tcl, choose the following from the ModelSim main menu:

Help > Tcl Man Pages

In addition, the following books provide more comprehensive usage information on Tcl:

• Tcl and the Tk Toolkit by John K. Ousterhout, published by Addison-Wesley Publishing
Company, Inc.

• Practical Programming in Tcl and Tk by Brent Welch, published by Prentice Hall.

ModelSim User’s Manual, v10.4c436

Tcl and DO Files
Tcl Command Syntax

Tcl Command Syntax
The following eleven rules define the syntax and semantics of the Tcl language.

Additional details on If Command Syntax follow.

1. A Tcl script is a string containing one or more commands. Semi-colons and newlines are
command separators unless quoted as described below. Close brackets ("]") are
command terminators during command substitution (see below) unless quoted.

2. A command is evaluated in two steps. First, the Tcl interpreter breaks the command into
words and performs substitutions as described below. These substitutions are performed
in the same way for all commands. The first word is used to locate a command
procedure to carry out the command, then all of the words of the command are passed to
the command procedure. The command procedure is free to interpret each of its words
in any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

3. Words of a command are separated by white space (except for newlines, which are
command separators).

4. If the first character of a word is a double-quote (") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backslash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

5. If the first character of a word is an open brace ({) then the word is terminated by the
matching close brace (}). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
the word is quoted with a backslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

6. If a word contains an open bracket ([) then Tcl performs command substitution. To do
this it invokes the Tcl interpreter recursively to process the characters following the
open bracket as a Tcl script. The script may contain any number of commands and must
be terminated by a close bracket (]). The result of the script (that is, the result of its last
command) is substituted into the word in place of the brackets and all of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

7. If a word contains a dollar-sign ($) then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of a variable.
Variable substitution may take any of the following forms:

Tcl and DO Files
Tcl Command Syntax

ModelSim User’s Manual, v10.4c 437

o $name

Name is the name of a scalar variable; the name is terminated by any character that
isn't a letter, digit, or underscore.

o $name(index)

Name gives the name of an array variable and index gives the name of an element
within that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on
the characters of index.

o ${name}

Name is the name of a scalar variable. It may contain any characters whatsoever
except for close braces.

There may be any number of variable substitutions in a single word. Variable
substitution is not performed on words enclosed in braces.

8. If a backslash (\) appears within a word then backslash substitution occurs. In all cases
but those described below the backslash is dropped and the following character is
treated as an ordinary character and included in the word. This allows characters such as
double quotes, close brackets, and dollar signs to be included in words without
triggering special processing. Table 15-1 lists the backslash sequences that are handled
specially, along with the value that replaces each sequence.

Table 15-1. Tcl Backslash Sequences

Sequence Value

\a Audible alert (bell) (0x7)

\b Backspace (0x8)

\f Form feed (0xc).

\n Newline (0xa)

\r Carriage-return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\<newline>whiteSpace A single space character replaces the backslash, newline,
and all spaces and tabs after the newline. This backslash
sequence is unique in that it is replaced in a separate pre-
pass before the command is actually parsed. This means
that it will be replaced even when it occurs between
braces, and the resulting space will be treated as a word
separator if it isn't in braces or quotes.

\\ Backslash ("\")

ModelSim User’s Manual, v10.4c438

Tcl and DO Files
Tcl Command Syntax

Backslash substitution is not performed on words enclosed in braces, except for
backslash-newline as described above.

9. If a pound sign (#) appears at a point where Tcl is expecting the first character of the
first word of a command, then the pound sign and the characters that follow it, up
through the next newline, are treated as a comment and ignored. The # character denotes
a comment only when it appears at the beginning of a command.

10. Each character is processed exactly once by the Tcl interpreter as part of creating the
words of a command. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value is inserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by the recursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11. Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of a single word, even
if the variable's value contains spaces.

If Command Syntax
The Tcl if command executes scripts conditionally. Note that in the syntax below the question
mark (?) indicates an optional argument.

Syntax
if expr1 ?then? body1 elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Arguments
None

Description
The if command evaluates expr1 as an expression. The value of the expression must be a
boolean (a numeric value, where 0 is false and anything else is true, or a string value such as
true or yes for true and false or no for false); if it is true then body1 is executed by passing it to
the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is true then body2 is
executed, and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional "noise words" to make the command easier to read. There

\ooo The digits ooo (one, two, or three of them) give the octal
value of the character.

\xhh The hexadecimal digits hh give the hexadecimal value of
the character. Any number of digits may be present.

Table 15-1. Tcl Backslash Sequences (cont.)

Sequence Value

Tcl and DO Files
Tcl Command Syntax

ModelSim User’s Manual, v10.4c 439

may be any number of elseif clauses, including zero. BodyN may also be omitted as long as else
is omitted too. The return value from the command is the result of the body script that was
executed, or an empty string if none of the expressions was non-zero and there was no bodyN.

Command Substitution
Placing a command in square brackets ([]) will cause that command to be evaluated first and its
results returned in place of the command. For example:

set a 25
set b 11
set c 3
echo "the result is [expr ($a + $b)/$c]"

This generates the following output:

"the result is 12"

Substitution allows you to obtain VHDL variables and signals, and Verilog nets and registers
using the following construct:

[examine -<radix> name]

The %name substitution is no longer supported. Everywhere %name could be used, you now
can use [examine -value -<radix> name] which allows the flexibility of specifying command
options. The radix specification is optional.

Command Separator
A semicolon character (;) works as a separator for multiple commands on the same line. It is not
required at the end of a line in a command sequence.

Multiple-Line Commands
With Tcl, multiple-line commands can be used within scripts and on the command line. The
command line prompt will change (as in a C shell) until the multiple-line command is complete.

In the example below, note the way the opening brace ’{’ is at the end of the if and else lines.
This is important because otherwise the Tcl scanner won't know that there is more coming in the
command and will try to execute what it has up to that point, which won't be what you intend.

if { [exa sig_a] == "0011ZZ"} {
echo "Signal value matches"
do do_1.do

} else {
echo "Signal value fails"
do do_2.do

}

ModelSim User’s Manual, v10.4c440

Tcl and DO Files
Tcl Command Syntax

Evaluation Order
An important thing to remember when using Tcl is that anything put in braces ({}) is not
evaluated immediately. This is important for if-then-else statements, procedures, loops, and so
forth.

Tcl Relational Expression Evaluation
When you are comparing values, the following hints may be useful:

• Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want a literal to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...

The following will also work:

if {[exa var_1] == "345"}...

• However, if a literal cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001Z}...

will give an error.

if {[exa var_2] == "001Z"}...

will work okay.

• Do not quote single characters between apostrophes; use quotation marks instead.
For example:

if {[exa var_3] == 'X'}...

will produce an error. However, the following:

if {[exa var_3] == "X"}...

will work.

• For the equal operator, you must use the C operator (==). For not-equal, you must use
the C operator (!=).

Variable Substitution
When a $<var_name> is encountered, the Tcl parser will look for variables that have been
defined either by ModelSim or by you, and substitute the value of the variable.

Note
Tcl is case sensitive for variable names.

Tcl and DO Files
Tcl Command Syntax

ModelSim User’s Manual, v10.4c 441

To access environment variables, use the construct:

$env(<var_name>)
echo My user name is $env(USER)

Environment variables can also be set using the env array:

set env(SHELL) /bin/csh

See modelsim.ini Variables for more information about ModelSim-defined variables.

System Commands
To pass commands to the UNIX shell or DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim Replacements for Tcl Commands
For complete information on Tcl commands, select Help > Tcl Man Pages.

ModelSim command names that conflict with Tcl commands have been renamed or have been
replaced by Tcl commands, as shown in Table 15-2.

Related Topics

See Simulator GUI Preferences for information on Tcl preference variables.

Table 15-2. Changes to ModelSim Commands

Previous ModelSim
command

Command changed to (or replaced by)

continue run with the -continue option

format list | wave write format with either list or wave specified

if replaced by the Tcl if command, see If Command
Syntax for more information

list add list

nolist | nowave delete with either list or wave specified

set replaced by the Tcl set command.

source vsource

wave add wave

ModelSim User’s Manual, v10.4c442

Tcl and DO Files
Simulator State Variables

Simulator State Variables
Unlike other variables that must be explicitly set, simulator state variables return a value
relative to the current simulation. Simulator state variables can be useful in commands,
especially when used within ModelSim DO file scripts. The variables are referenced in
commands by prefixing the name with a dollar sign ($).

Table 15-3. Simulator State Variables

Variable Description

architecture This variable returns the name of the top-level architecture currently
being simulated; for a configuration or Verilog module, this variable
returns an empty string.

argc This variable returns the total number of parameters passed to the
current script.

argv This variable returns the list of parameters (arguments) passed to the
vsim command line.

configuration This variable returns the name of the top-level configuration currently
being simulated; returns an empty string if no configuration.

delta This variable returns the number of the current simulator iteration.

entity This variable returns the name of the top-level VHDL entity or
Verilog module currently being simulated.

library This variable returns the library name for the current region.

MacroNestingLevel This variable returns the current depth of script call nesting.

n This variable represents a script parameter, where n can be an integer
in the range 1-9.

Now This variable always returns the current simulation time with time
units (for example, 110,000 ns). Note: the returned value contains a
comma inserted between thousands.

now This variable returns the current simulation time with or without time
units—depending on the setting for time resolution, as follows:
• When time resolution is a unary unit (such as 1ns, 1ps, 1fs), this

variable returns the current simulation time without time units (for
example, 100000).

• When time resolution is a multiple of the unary unit (such as 10ns,
100ps, 10fs), this variable returns the current simulation time with
time units (for example, 110000 ns).

Note: the returned value does not contain a comma inserted between
thousands.

resolution This variable returns the current simulation time resolution.

Tcl and DO Files
List Processing

ModelSim User’s Manual, v10.4c 443

Referencing Simulator State Variables
Variable values may be referenced in simulator commands by preceding the variable name with
a dollar sign ($). For example, to use the now and resolution variables in an echo command
type:

echo "The time is $now $resolution."

Depending on the current simulator state, this command could result in:

The time is 12390 ps 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a "\". For
example, \$now will not be interpreted as the current simulator time.

Special Considerations for the now Variable
For the when command, special processing is performed on comparisons involving the now
variable. If you specify "when {$now=100}...", the simulator will stop at time 100 regardless of
the multiplier applied to the time resolution.

You must use 64-bit time operators if the time value of now will exceed 2147483647 (the limit
of 32-bit numbers). For example:

if { [gtTime $now 2us] } {
.
.
.

See Simulator Tcl Time Commands for details on 64-bit time operators.

Related Topics

See the when command.

List Processing
In Tcl, a "list" is a set of strings in braces separated by spaces. Several Tcl commands are
available for creating lists, indexing into lists, appending to lists, getting the length of lists and
shifting lists, as shown in the following table..

Table 15-4. Tcl List Commands

Command syntax Description

lappend var_name val1 val2 ... appends val1, val2, ..., to list var_name

lindex list_name index returns the index-th element of list_name; the first
element is 0

ModelSim User’s Manual, v10.4c444

Tcl and DO Files
Simulator Tcl Commands

Two other commands, lsearch and lsort, are also available for list manipulation. See the Tcl man
pages (Help > Tcl Man Pages) for more information on these commands.

Related Topics

See the when command.

Simulator Tcl Commands
These additional commands enhance the interface between Tcl and ModelSim. Only brief
descriptions are provided in the following table.

Simulator Tcl Time Commands
ModelSim Tcl time commands make simulator-time-based values available for use within other
Tcl procedures. Time values may optionally contain a units specifier where the intervening

linsert list_name index val1 val2 ... inserts val1, val2, ..., just before the index-th element
of list_name

list val1, val2 ... returns a Tcl list consisting of val1, val2, ...

llength list_name returns the number of elements in list_name

lrange list_name first last returns a sublist of list_name, from index first to index
last; first or last may be "end", which refers to the last
element in the list

lreplace list_name first last val1,
val2, ...

replaces elements first through last with val1, val2, ...

Table 15-5. Simulator-Specific Tcl Commands

Command Description

alias creates a new Tcl procedure that evaluates the specified
commands; used to create a user-defined alias

find locates incrTcl classes and objects

lshift takes a Tcl list as argument and shifts it in-place one place
to the left, eliminating the 0th element

lsublist returns a sublist of the specified Tcl list that matches the
specified Tcl glob pattern

printenv echoes to the Transcript pane the current names and values
of all environment variables

Table 15-4. Tcl List Commands (cont.)

Command syntax Description

Tcl and DO Files
Simulator Tcl Commands

ModelSim User’s Manual, v10.4c 445

space is also optional. If the space is present, the value must be quoted (for example, 10ns, "10
ns"). Time values without units are taken to be in the UserTimeScale. Return values are always
in the current Time Scale Units. All time values are converted to a 64-bit integer value in the
current Time Scale. When values are smaller than the current Time Scale, the values are
truncated to 0 and a warning is issued.

Time Conversion Tcl Commands
The following table provides Tcl time conversion commands.

Time Relations Tcl Commands
The following table provides Tcl time relation commands.

All relation operations return 1 or 0 for true or false respectively and are suitable return values
for TCL conditional expressions. For example,

if {[eqTime $Now 1750ns]} {
...

}

Table 15-6. Tcl Time Conversion Commands

Command Description

 intToTime <intHi32> <intLo32> converts two 32-bit pieces (high and low
order) into a 64-bit quantity (Time in
ModelSim is a 64-bit integer)

 RealToTime <real> converts a <real> number to a 64-bit
integer in the current Time Scale

scaleTime <time> <scaleFactor> returns the value of <time> multiplied by
the <scaleFactor> integer

Table 15-7. Tcl Time Relation Commands

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than

gteTime <time> <time> evaluates for greater than or equal

ltTime <time> <time> evaluates for less than

lteTime <time> <time> evaluates for less than or equal

ModelSim User’s Manual, v10.4c446

Tcl and DO Files
Tcl Examples

Tcl Time Arithmetic Commands
The following table provides commands for performing arithmetic operations on time.

Tcl Examples
This section provides examples of Tcl command usage.

• Tcl while Loop

This example uses the Tcl while loop to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
set i [expr {[llength $a] - 1}]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}

• Tcl for Command

This example uses the Tcl for command to copy a list from variable a to variable b,
reversing the order of the elements along the way:

set b [list]
for {set i [expr {[llength $a] - 1}]} {$i >= 0} {incr i -1} {

lappend b [lindex $a $i]
}

• Tcl foreach Command

This example uses the Tcl foreach command to copy a list from variable a to variable b,
reversing the order of the elements along the way (the foreach command iterates over all
of the elements of a list):

set b [list]
foreach i $a { set b [linsert $b 0 $i] }

• Tcl break Command

Table 15-8. Tcl Time Arithmetic Commands

Command Description

addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide

mulTime <time> <time> 64-bit integer multiply

subTime <time> <time> subtract time

Tcl and DO Files
Tcl Examples

ModelSim User’s Manual, v10.4c 447

This example shows a list reversal as above, this time aborting on a particular element
using the Tcl break command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} break
set b [linsert $b 0 $i]

}

• Tcl continue Command

This example is a list reversal that skips a particular element by using the Tcl continue
command:

set b [list]
foreach i $a {

if {$i = "ZZZ"} continue
set b [linsert $b 0 $i]

}

• Access and Transfer System Information

This example works in UNIX only. In a Windows environment, the Tcl exec command
will execute compiled files only, not system commands.) The example shows how you
can access system information and transfer it into VHDL variables or signals and
Verilog nets or registers. When a particular HDL source breakpoint occurs, a Tcl
function is called that gets the date and time and deposits it into a VHDL signal of type
STRING. If a particular environment variable (DO_ECHO) is set, the function also
echoes the new date and time to the transcript file by examining the VHDL variable.

(in VHDL source):

signal datime : string(1 to 28) := " ";# 28 spaces

(on VSIM command line or in a DO file script):

proc set_date {} {
global env
set do_the_echo [set env(DO_ECHO)]
set s [clock format [clock seconds]]
force -deposit datime $s
if {do_the_echo} {

echo "New time is [examine -value datime]"
}

}

bp src/waveadd.vhd 133 {set_date; continue}
 --sets the breakpoint to call set_date

• Tcl Used to Specify Compiler Arguments

This example specifies the compiler arguments and lets you compile any number of
files.

ModelSim User’s Manual, v10.4c448

Tcl and DO Files
DO Files

set Files [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

set lappend Files $1
shift

}
eval vcom -93 -explicit -noaccel std_logic_arith $Files

• Tcl Used to Specify Compiler Arguments—Enhanced

This example is an enhanced version of the last one. The additional code determines
whether the files are VHDL or Verilog and uses the appropriate compiler and arguments
depending on the file type. Note that the script assumes your VHDL files have a .vhd file
extension.

set vhdFiles [list]
set vFiles [list]
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {

if {[string match *.vhd $1]} {
lappend vhdFiles $1

} else {
lappend vFiles $1

}
shift

}
if {[llength $vhdFiles] > 0} {

eval vcom -93 -explicit -noaccel std_logic_arith $vhdFiles
}
if {[llength $vFiles] > 0} {

eval vlog $vFiles
}

DO Files
ModelSim DO files are simply scripts that contain ModelSim and, optionally, Tcl commands.
You invoke these scripts with the Tools > TCL > Execute Macro menu selection or the do
command.

Creating DO Files
You can create DO file scripts, like any other Tcl script, by doing one of the following.

Procedure

1. Type the required commands in any editor and save the file with the extension .do.

2. Save the transcript as a DO file (refer to Saving a Transcript File as a DO file.

Tcl and DO Files
DO Files

ModelSim User’s Manual, v10.4c 449

3. Use the write format restart command to create a .do file that will recreate all debug
windows, all file/line breakpoints, and all signal breakpoints created with the when
command.

All "event watching" commands (for example, onbreak, onerror, and so forth) must be placed
before run commands within the script in order to take effect.

The following is a simple DO file script that was saved from the transcript. It is used in the
dataset exercise in the ModelSim Tutorial. This script adds several signals to the Wave window,
provides stimulus to those signals, and then advances the simulation.

add wave ld
add wave rst
add wave clk
add wave d
add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force ld 0
force d 1010
onerror {cont}
run 1700
force ld 1
run 100
force ld 0
run 400
force rst 1
run 200
force rst 0 10
run 1500

Using Parameters with DO Files
You can increase the flexibility of DO file scripts by using parameters. Parameters specify
values that are passed to the corresponding parameters $1 through $9 in the script. For example
say the DO file "testfile" contains the line bp $1 $2. The command below would place a
breakpoint in the source file named design.vhd at line 127:

do testfile design.vhd 127

There is no limit to the number of parameters that can be passed to DO file scripts, but only nine
values are visible at one time. You can use the shift command to see the other parameters.

Deleting a File from a .do Script
To delete a file from a .do script, use the Tcl file command.

Procedure
The Tcl file command

ModelSim User’s Manual, v10.4c450

Tcl and DO Files
DO Files

file delete myfile.log

will delete the file "myfile.log."

You can also use the transcript file command to perform a deletion:

transcript file ()
transcript file my file.log

The first line will close the current log file. The second will open a new log file. If it has the
same name as an existing file, it will replace the previous one.

Making Script Parameters Optional
If you want to make DO file script parameters optional (that is, be able to specify fewer
parameter values with the do command than the number of parameters referenced in the DO file
script), you must use the argc simulator state variable. The argc simulator state variable returns
the number of parameters passed. The examples below show several ways of using argc.

• Specifying Files to Compile With argc DO File Scripts

This script specifies the files to compile and handles 0-2 compiler arguments as
parameters. If you supply more arguments, ModelSim generates a message.

switch $argc {
 0 {vcom file1.vhd file2.vhd file3.vhd }
 1 {vcom $1 file1.vhd file2.vhd file3.vhd }
 2 {vcom $1 $2 file1.vhd file2.vhd file3.vhd }
 default {echo Too many arguments. The macro accepts 0-2 args. }
}

• Specifying Compiler Arguments With DO File Scripts

This script specifies the compiler arguments and lets you compile any number of files.

variable Files ""
set nbrArgs $argc
for {set x 1} {$x <= $nbrArgs} {incr x} {
 set Files [concat $Files $1]
 shift
}
eval vcom -93 -explicit -noaccel std_logic_arith $Files

• Specifying Compiler Arguments With Scripts — Enhanced

This DO file script is an enhanced version of the one shown in example 2. The
additional code determines whether the files are VHDL or Verilog and uses the
appropriate compiler and arguments depending on the file type. Note that the script
assumes your VHDL files have a .vhd file extension.

Tcl and DO Files
DO Files

ModelSim User’s Manual, v10.4c 451

variable vhdFiles ""
variable vFiles ""
set nbrArgs $argc
set vhdFilesExist 0
set vFilesExist 0
for {set x 1} {$x <= $nbrArgs} {incr x} {
 if {[string match *.vhd $1]} {
 set vhdFiles [concat $vhdFiles $1]
 set vhdFilesExist 1
 } else {
 set vFiles [concat $vFiles $1]
 set vFilesExist 1
 }
 shift
}
if {$vhdFilesExist == 1} {
 eval vcom -93 -explicit -noaccel std_logic_arith $vhdFiles
}
if {$vFilesExist == 1} {
 eval vlog $vFiles
}

Related Topics

See the argc simulator state variable.

Breakpoint Flow Control in Nested DO files
The following diagram shows how control flows from one DO file to another and out to the
command line interface for input from the user.

ModelSim User’s Manual, v10.4c452

Tcl and DO Files
DO Files

Figure 15-1. Breakpoint Flow Control in Nested DO Files

vsim CLI f1.do f2.do

resume

onbreak

resume

resume

pause

abort 1

abort all

vsim> do f1.do

echo Back

transcript on

echo Done!

do f2.do transcript off

vsim>

echo Resume

Bp Hit

Bp Hit

echo Fini

Bp Hit

onbreak {
 echo In onbreak
 resume
}

run 100

run 100

onbreak pause

vsim> abort

vsim(paused)>

vsim> resume

run 200

Tcl and DO Files
DO Files

ModelSim User’s Manual, v10.4c 453

Useful Commands for Handling Breakpoints and
Errors

If you are executing a script when your simulation hits a breakpoint or causes a run-time error,
ModelSim interrupts the script and returns control to the command line. The commands in the
following table may be useful for handling such events. (Any other legal command may be
executed as well.)

You can also set the OnErrorDefaultAction Tcl variable to determine what action ModelSim
takes when an error occurs.

Error Action in DO File Scripts
If a command in a script returns an error, ModelSim does the following:

1. If an onerror command has been set in the script, ModelSim executes that command.
The onerror command must be placed prior to the run command in the DO file to take
effect.

2. If no onerror command has been specified in the script, ModelSim checks the
OnErrorDefaultAction variable. If the variable is defined, its action will be invoked.

3. If neither 1 or 2 is true, the script aborts.

Table 15-9. Commands for Handling Breakpoints and Errors in DO scripts

Command Result

run -continue continue as if the breakpoint had not been executed,
completes the run that was interrupted

onbreak specify a command to run when you hit a breakpoint
within a script

onElabError specify a command to run when an error is
encountered during elaboration

onerror specify a command to run when an error is
encountered within a script

status get a traceback of nested script calls when a script is
interrupted

abort terminate a script once the script has been interrupted
or paused

pause cause the script to be interrupted; the script can be
resumed by entering a resume command via the
command line

ModelSim User’s Manual, v10.4c454

Tcl and DO Files
DO Files

Using the Tcl Source Command with DO Files
Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the Tcl source command, the DO file is executed exactly as if the commands in it were
typed in by hand at the prompt. Each time a breakpoint is hit, the Source window is updated to
show the breakpoint. This behavior could be inconvenient with a large DO file containing many
breakpoints.

When a do command is interrupted by an error or breakpoint, it does not update any windows,
and keeps the DO file "locked". This keeps the Source window from flashing, scrolling, and
moving the arrow when a complex DO file is executed. Typically an onbreak resume command
is used to keep the script running as it hits breakpoints. Add an onbreak abort command to the
DO file if you want to exit the script and update the Source window.

ModelSim User’s Manual, v10.4c 455

Appendix A
modelsim.ini Variables

The modelsim.ini file is the default initialization file and contains control variables that specify
reference library paths, optimization, compiler and simulator settings, and various other
functions. This chapter covers the contents and modification of the modelsim.ini file.

• Organization of the modelsim.ini File — A list of the different sections of the
modelsim.ini file.

• Making Changes to the modelsim.ini File — How to modify variable settings in the
modelsim.ini file.

• Variables — An alphabetized list of modelsim.ini variables and their properties.

• Commonly Used modelsim.ini Variables — A discussion of the most frequently used
variables and their settings.

Organization of the modelsim.ini File
The modelsim.ini file is located in your install directory and is organized into the following
sections.

• The [library] section contains variables that specify paths to various libraries used by
ModelSim.

• The [vcom] section contains variables that control the compilation of VHDL files.

• The [vlog] section contains variables that control the compilation of Verilog files.

• The [DefineOptionset] section allows you to define groups of commonly used
command line arguments. Refer to the section “Optionsets” in the Reference Manual for
more information.

• The [vsim] section contains variables that control the simulator.

• The [msg_system] section contains variables that control the severity of notes,
warnings, and errors that come from vcom, vlog and vsim.

• The [utils] section contains variables that control utility functions in the tool
environment.

The System Initialization chapter contains descriptions of Environment Variables.

ModelSim User’s Manual, v10.4c456

modelsim.ini Variables
Organization of the modelsim.ini File

Making Changes to the modelsim.ini File
When first installed, the modelsim.ini file is protected as a Read-only file. In order to make and
save changes to the file, you must first turn off the Read-only attribute in the modelsim.ini
Properties dialog box.

Procedure

1. Navigate to the location of the modelsim.ini file:

<install directory>/modelsim.ini

2. Right-click on the modelsim.ini file and choose Properties from the popup menu. This
displays the modelsim.ini Properties dialog box.

3. Uncheck the Attribute: Read-only.

4. Click OK.

To protect the modelsim.ini file after making changes, repeat the preceding steps, but at Step 3,
check the Read-only attribute.

Editing modelsim.ini Variables
Once the Read-only attribute has been turned off, you can make changes to the values of the
variables in the file.

The syntax for variables in the file is as follows:

<variable> = <value>

Procedure

1. Open the modelsim.ini file with a text editor.

2. Find the variable you want to edit in the appropriate section of the file.

3. Type the new value for the variable after the equal (=) sign.

4. If the variable is commented out with a semicolon (;) remove the semicolon.

5. Save.

Overriding the Default Initialization File
You can make changes to the working environment during a work session by loading an
alternate initialization file that replaces the default modelsim.ini file. This file overrides the file
and path specified by the MODELSIM environment variable.

Refer to “Initialization Sequence” for the modelsim.ini file search precedence.

modelsim.ini Variables
Organization of the modelsim.ini File

ModelSim User’s Manual, v10.4c 457

Procedure

1. Open the modelsim.ini file with a text editor.

2. Make changes to the modelsim.ini variables.

3. Save the file with an alternate name to any directory.

4. After start up of the tool, specify the -modelsimini <ini_filepath> switch with one of the
following commands:

Refer to the <command> -modelsimini argument description for further information.

The Runtime Options Dialog
The Runtime Options dialog box writes changes to the active modelsim.ini file that affect the
current session. To access, choose Simulate > Runtime Options in the Main window. The
dialog contains three tabs - Defaults, Message Severity, and WLF Files.

If the read-only attribute for the modelsim.ini file is turned off, the changes are saved, and affect
all future sessions. Refer to Making Changes to the modelsim.ini File.

Table A-1. Commands for Overriding the Default Initialization File

Simulator Commands Compiler Commands Utility Commands

vsim vcom
vlog

vdel
vdir
vgencomp
vmake

ModelSim User’s Manual, v10.4c458

modelsim.ini Variables
Organization of the modelsim.ini File

Figure A-1. Runtime Options Dialog: Defaults Tab

Table A-2. Runtime Option Dialog: Defaults Tab Contents

Option Description

Default Radix Sets the default radix for the current simulation run.
The chosen radix is used for all commands (force, examine, change
are examples) and for displayed values in the Objects, Locals,
Dataflow, List, and Wave windows, as well as the Source window in
the source annotation view.
The corresponding modelsim.ini variable is DefaultRadix. You can
override this variable with the radix command.

Default Radix Flags Displays SystemVerilog enums as numbers rather than strings.
This option overrides the global setting of the default radix. You can
override this variable with the add list -radixenumsymbolic.

modelsim.ini Variables
Organization of the modelsim.ini File

ModelSim User’s Manual, v10.4c 459

Figure A-2. Runtime Options Dialog Box: Message Severity Tab

Suppress Warnings From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. The corresponding
modelsim.ini variable is StdArithNoWarnings.

From IEEE Numeric Std Packages suppresses warnings generated
within the accelerated numeric_std and numeric_bit packages. The
corresponding modelsim.ini variable is NumericStdNoWarnings.

Default Run Sets the default run length for the current simulation. The
corresponding modelsim.ini variable is RunLength. You can override
this variable by specifying the run command.

Iteration Limit Sets a limit on the number of deltas within the same simulation time
unit to prevent infinite looping. The corresponding modelsim.ini
variable is IterationLimit.

Default Force Type Selects the default force type for the current simulation. The
corresponding modelsim.ini variable is DefaultForceKind. You can
override this variable by specifying the force command argument
-default, -deposit, -drive, or -freeze.

Table A-2. Runtime Option Dialog: Defaults Tab Contents (cont.)

Option Description

ModelSim User’s Manual, v10.4c460

modelsim.ini Variables
Organization of the modelsim.ini File

Figure A-3. Runtime Options Dialog Box: WLF Files Tab

Table A-3. Runtime Option Dialog: Message Severity Tab Contents

Option Description

No Message Display
For -VHDL

Selects the VHDL assertion severity for which messages will not be
displayed (even if break on assertion is set for that severity). Multiple
selections are possible. The corresponding modelsim.ini variables are
IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote.

Table A-4. Runtime Option Dialog: WLF Files Tab Contents

Option Description

WLF File Size Limit Limits the WLF file by size (as closely as possible) to the specified
number of megabytes. If both size and time limits are specified, the
most restrictive is used. Setting it to 0 results in no limit. The
corresponding modelsim.ini variable is WLFSizeLimit.

WLF File Time
Limit

Limits the WLF file by size (as closely as possible) to the specified
amount of time. If both time and size limits are specified, the most
restrictive is used. Setting it to 0 results in no limit. The
corresponding modelsim.ini variable is WLFTimeLimit.

modelsim.ini Variables
Variables

ModelSim User’s Manual, v10.4c 461

Variables
The modelsim.ini variables are listed in order alphabetically. The following information is given
for each variable.

• A short description of how the variable functions.

• The location of the variable, by section, in the modelsim.ini file.

• The syntax for the variable.

• A listing of all values and the default value where applicable.

• Related arguments that are entered on the command line to override variable settings.
Commands entered at the command line always take precedence over modelsim.ini
settings. Not all variables have related command arguments.

• Related topics and links to further information about the variable.

WLF Attributes Specifies whether to compress WLF files and whether to delete the
WLF file when the simulation ends. You would typically only disable
compression for troubleshooting purposes. The corresponding
modelsim.ini variables are WLFCompress for compression and
WLFDeleteOnQuit for WLF file deletion.

Design Hierarchy Specifies whether to save all design hierarchy in the WLF file or only
regions containing logged signals. The corresponding modelsim.ini
variable is WLFSaveAllRegions.

Table A-4. Runtime Option Dialog: WLF Files Tab Contents (cont.)

Option Description

ModelSim User’s Manual, v10.4c462

modelsim.ini Variables
AccessObjDebug

AccessObjDebug
This variable enables logging a VHDL access variable—both the variable value and any access
object that the variable points to during the simulation. Further, display-only names such as
[10001] take on a different form, as follows:

• the initial character, @

• the name of the access type or subtype

• another @

• a unique integer N that represents the sequence number (starting with 1) of the objects of
that designated type that were created with the VHDL allocator called new.

For example: @ptr@1

By default, this variable is turned off. This means that while access variables themselves can be
logged and displayed in the various display windows, any access objects that they point to will
not be logged. The value of an access variable, which is the "name" of the access object it points
to, is suitable only for displaying, and cannot be used as a way for a command to reference it.

For example, for an access variable "v1" that designates some access object, the value of "v1"
will show as [10001]. This name cannot be used as input to any command that expects an object
name, it is for display only; but it is a unique identifier for any access object that the design may
produce. This value replaces any hexadecimal address-based 'value' that may have been
displayed in prior versions of ModelSim.

Section [vsim]

Syntax
AccessObjDebug = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vsim -accessobjdebug or -noaccessobjdebug.

modelsim.ini Variables
AddPragmaPrefix

ModelSim User’s Manual, v10.4c 463

AddPragmaPrefix
This variable enables recognition of synthesis pragmas with a user specified prefix. If this
argument is not specified, pragmas are treated as comments and the previously excluded
statements included in the synthesized design. All regular synthesis pragmas are honored.

Section [vcom], [vlog]

Syntax
AddPragmaPrefix = <prefix>

Arguments
• <prefix> — Specifies a user defined string where the default is no string, indicated by

quotation marks ("").

ModelSim User’s Manual, v10.4c464

modelsim.ini Variables
AmsStandard

AmsStandard
This variable specifies whether vcom adds the declaration of REAL_VECTOR to the
STANDARD package. This is useful for designers using VHDL-AMS to test digital parts of
their model.

Section [vcom]

Syntax
AmsStandard = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom {-amsstd | -noamsstd}.

Related Topics

See MGC_AMS_HOME and the vcom command.

modelsim.ini Variables
AppendClose

ModelSim User’s Manual, v10.4c 465

AppendClose
This variable immediately closes files previously opened in the APPEND mode as soon as there
is either an explicit call to file_close, or when the file variable's scope is closed. You can
override this variable by specifying vsim -noappendclose at the command line.

Section [vsim]

Syntax
AppendClose = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

When set to zero, the simulator will not immediately close files opened in the APPEND mode.
Subsequent calls to file_open in APPEND mode will therefore not require operating system
interaction, resulting in faster performance. If your designs rely on files to be closed and
completely written to disk following calls to file_close, because they perform operations on the
files outside the simulation, this enhancement could adversely impact those operations. In those
situations, turning this variable on is not recommended.

ModelSim User’s Manual, v10.4c466

modelsim.ini Variables
AssertFile

AssertFile
This variable specifies an alternative file for storing VHDL assertion messages.

 By default, assertion messages are output to the file specified by the TranscriptFile variable in
the modelsim.ini file . If the AssertFile variable is specified, all assertion messages will be
stored in the specified file, not in the transcript.

Section [vsim]

Syntax
AssertFile = <filename>

Arguments
• <filename> — Any valid file name containing assertion messages, where the default name

is assert.log.

You can override this variable by specifying vsim -assertfile.

Related Topics

See the TranscriptFile variable and Creating a Transcript File.

modelsim.ini Variables
BatchMode

ModelSim User’s Manual, v10.4c 467

BatchMode
This variable runs batch (non-GUI) simulations. The simulations are executed via scripted files
from a Windows command prompt or UNIX terminal and do not provide for interaction with
the design during simulation. The BatchMode variable will be ignored if you use the -batch, -c,
-gui, or -i options to vsim. Refer to BatchMode for more information about running batch
simulations.

Section [vsim]

Syntax
BatchMode = {0 | 1}

Arguments
• 0 — (default) Runs the simulator in interactive mode. Refer to vsim -i for more information.

• 1 — Enables batch simulation mode.

You can also enable batch mode by specifying vsim -batch.

Related Topics

Batch Mode

BatchTranscriptFile variable

TranscriptFile variable

vsim -batch

vsim -do

vsim -i

vsim -logfile

vsim -nolog

ModelSim User’s Manual, v10.4c468

modelsim.ini Variables
BatchTranscriptFile

BatchTranscriptFile
This variable enables automatic creation of a transcript file when the simulator runs in batch
mode. All transcript data is sent to stdout when this variable is disabled and the simulator is run
in batch mode (BatchMode = 1, or vsim -batch).

Section [vsim]

Syntax
BatchTranscriptFile = <filename>

Arguments
• <filename> — Any string representing a valid filename where the default is transcript.

You can override this variable by specifying vsim -logfile <filename>, vsim -nolog.

Related Topics

Batch Mode

BatchMode variable

TranscriptFile variable

transcript file command

vsim -batch

vsim -logfile

vsim -nolog

modelsim.ini Variables
BindAtCompile

ModelSim User’s Manual, v10.4c 469

BindAtCompile
This variable instructs ModelSim to perform VHDL default binding at compile time rather than
load time.

Section [vcom]

Syntax
BindAtCompile = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom {-bindAtCompile | -bindAtLoad}.

Related Topics

See Default Binding and RequireConfigForAllDefaultBinding.

ModelSim User’s Manual, v10.4c470

modelsim.ini Variables
BreakOnAssertion

BreakOnAssertion
This variable stops the simulator when the severity of a VHDL assertion message or a
SystemVerilog severity system task is equal to or higher than the value set for the variable.

Section [vsim]

Syntax
BreakOnAssertion = {0 | 1 | 2 | 3 | 4}

Arguments
• 0 — Note

• 1 — Warning

• 2 — Error

• 3 — (default) Failure

• 4 — Fatal

Related Topics

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
CheckPlusargs

ModelSim User’s Manual, v10.4c 471

CheckPlusargs
This variable defines the simulator’s behavior when encountering unrecognized plusargs. The
simulator checks the syntax of all system-defined plusargs to ensure they conform to the syntax
defined in the Reference Manual. By default, the simulator does not check syntax or issue
warnings for unrecognized plusargs (including accidently misspelled, system-defined plusargs),
because there is no way to distinguish them from a user-defined plusarg.

Section [vsim]

Syntax
CheckPlusargs = {0 | 1 | 2}

Arguments
• 0 — (default) Ignore

• 1 — Issues a warning and simulates while ignoring.

• 2 — Issues an error and exits.

ModelSim User’s Manual, v10.4c472

modelsim.ini Variables
CheckpointCompressMode

CheckpointCompressMode
This variable specifies that checkpoint files are written in compressed format.

Section [vsim]

Syntax
CheckpointCompressMode = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
CheckSynthesis

ModelSim User’s Manual, v10.4c 473

CheckSynthesis
This variable turns on limited synthesis rule compliance checking, which includes checking
only signals used (read) by a process and understanding only combinational logic, not clocked
logic.

Section [vcom]

Syntax
CheckSynthesis = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom -check_synthesis.

ModelSim User’s Manual, v10.4c474

modelsim.ini Variables
ClassDebug

ClassDebug
This variable enables visibility into and tracking of class instances.

Section [vsim]

Syntax
ClassDebug = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vsim -classdebug.

Related Topics

See the classinfo commands in the Command Reference.

modelsim.ini Variables
CommandHistory

ModelSim User’s Manual, v10.4c 475

CommandHistory
This variable specifies the name of a file in which to store the Main window command history.

Section [vsim]

Syntax
CommandHistory = <filename>

Arguments
• <filename> — Any string representing a valid filename where the default is cmdhist.log.

The default setting for this variable is to comment it out with a semicolon (;).

ModelSim User’s Manual, v10.4c476

modelsim.ini Variables
CompilerTempDir

CompilerTempDir
This variable specifies a directory for compiler temporary files instead of “work/_temp.”

Section [vcom]

Syntax
CompilerTempDir = <directory>

Arguments
• <directory> — Any user defined directory where the default is work/_temp.

modelsim.ini Variables
ConcurrentFileLimit

ModelSim User’s Manual, v10.4c 477

ConcurrentFileLimit
This variable controls the number of VHDL files open concurrently. This number should be less
than the current limit setting for maximum file descriptors.

Section [vsim]

Syntax
ConcurrentFileLimit = <n>

Arguments
• <n> — Any non-negative integer where 0 is unlimited and 40 is the default.

Related Topics

See Syntax for File Declaration.

ModelSim User’s Manual, v10.4c478

modelsim.ini Variables
vlogCreateDirForFileAccess

vlogCreateDirForFileAccess
This variable controls whether the Verilog system task $fopen will create a non-existent
directory when opening a file in append (a), or write (w) modes.

Section [vsim]

Syntax
CreateDirForFileAccess = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

See New Directory Path With $fopen.

modelsim.ini Variables
CreateLib

ModelSim User’s Manual, v10.4c 479

CreateLib
This variable enables automatic creation of missing work libraries.

You can use the -nocreatelib option for the vcom or vlog commands to override this variable
and stop automatic creation of missing work libraries (which reverts back to the 10.3x and
earlier version behavior).

Section [vcom], [vlog]

Syntax
CreateLib = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c480

modelsim.ini Variables
DatasetSeparator

DatasetSeparator
This variable specifies the dataset separator for fully-rooted contexts, for example:

sim:/top

The variable for DatasetSeparator must not be the same character as the PathSeparator variable,
or the SignalSpyPathSeparator variable.

Section [vsim]

Syntax
DatasetSeparator = <character>

Arguments
• <character> — Any character except special characters, such as backslash (\), brackets ({}),

and so forth, where the default is a colon (:).

modelsim.ini Variables
DefaultForceKind

ModelSim User’s Manual, v10.4c 481

DefaultForceKind
This variable defines the kind of force used when not otherwise specified.

Section [vsim]

Syntax
DefaultForceKind = {default | deposit | drive | freeze}

Arguments
• default — Uses the signal kind to determine the force kind.

• deposit — Sets the object to the specified value.

• drive — Default for resolved signals.

• freeze — Default for unresolved signals.

You can override this variable by specifying force {-default | -deposit | -drive | -freeze}.

Related Topics

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c482

modelsim.ini Variables
DefaultLibType

DefaultLibType
This variable determines the default type for a library created with the vlib command.

Section [utils]

Syntax
DefaultLibType = {0 | 1 | 2}

Arguments
• 0 - legacy library using subdirectories for design units

• 1 - archive library (deprecated)

• 2 - (default) flat library

Related Topics

See the vlib command.

modelsim.ini Variables
DefaultRadix

ModelSim User’s Manual, v10.4c 483

DefaultRadix
This variable allows a numeric radix to be specified as a name or number. For example, you can
specify binary as “binary” or “2” or octal as “octal” or “8”.

Section [vsim]

Syntax

DefaultRadix = {ascii | binary | decimal | hexadecimal | octal | symbolic | unsigned}

Arguments
• ascii — Display values in 8-bit character encoding.

• binary— Display values in binary format. You can also specify 2.

• decimal or 10 — Display values in decimal format. You can also specify 10.

• hexadecimal— (default) Display values in hexadecimal format. You can also specify 16.

• octal — Display values in octal format. You can also specify 8.

• symbolic — Display values in a form closest to their natural format.

• unsigned — Display values in unsigned decimal format.

You can override this variable by specifying radix {ascii | binary | decimal | hexadecimal | octal
| symbolic | unsigned}, or by using the -default_radix switch with the vsim command.

Related Topics

See Changing Radix (base) for the Wave Window.

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c484

modelsim.ini Variables
DefaultRadixFlags

DefaultRadixFlags
This variable controls the display of enumeric radices.

Section [vsim]

Syntax
DefaultRadixFlags = {" " | enumnumeric | enumsymbolic | showbase | showverbose}

Arguments
• " " — No options. Formats enums symbolically.

• enumnumeric — Display enums is in numeric format.

• enumsybmolic — Display enums is in symbolic format.

• showbase — (default) Display enums showing the number of bits of the vector and the
radix that was used where:

binary = b
decimal = d
hexadecimal = h
ASCII = a
time = t

For example, instead of simply displaying a vector value of “31”, a value of “16’h31”
may be displayed to show that the vector is 16 bits wide, with a hexadecimal radix.

• showverbose — Display enums with verbose information enabled.

You can override this variable with the radix command.

modelsim.ini Variables
DefaultRestartOptions

ModelSim User’s Manual, v10.4c 485

DefaultRestartOptions
This variable sets the default behavior for the restart command.

Section [vsim]

Syntax
DefaultRestartOptions = {-force | -noassertions | -nobreakpoint | -nofcovers | -nolist | -nolog |

-nowave}

Arguments
• -force — Restart simulation without requiring confirmation in a popup window.

• -noassertions — Restart simulation without maintaining the current assert directive
configurations.

• -nobreakpoint — Restart simulation with all breakpoints removed.

• -nofcovers — Restart without maintaining the current cover directive configurations.

• -nolist — Restart without maintaining the current List window environment.

• -nolog — Restart without maintaining the current logging environment.

• -nowave — Restart without maintaining the current Wave window environment.

• semicolon (;) — Default is to prevent initiation of the variable by commenting the variable
line.

You can specify one or more value in a space separated list.

You can override this variable by specifying restart {-force | -noassertions | -nobreakpoint |
-nofcovers | -nolist | -nolog | -nowave}.

Related Topics

See the vsim -restore command.

ModelSim User’s Manual, v10.4c486

modelsim.ini Variables
DelayFileOpen

DelayFileOpen
This variable instructs ModelSim to open VHDL87 files on first read or write, else open files
when elaborated.

Section [vsim]

Syntax
DelayFileOpen = {0 | 1}

Arguments
• 0 — (default) On

• 1 — Off

modelsim.ini Variables
displaymsgmode

ModelSim User’s Manual, v10.4c 487

displaymsgmode
This variable controls where the simulator outputs system task messages. The display system
tasks displayed with this functionality include: $display, $strobe, $monitor, $write as well as the
analogous file I/O tasks that write to STDOUT, such as $fwrite or $fdisplay.

Section [msg_system]

Syntax
displaymsgmode = {both | tran | wlf}

Arguments
• both — Outputs messages to both the transcript and the WLF file.

• tran — (default) Outputs messages only to the transcript, therefore they are unavailable in
the Message Viewer.

• wlf — Outputs messages only to the WLF file/Message Viewer, therefore they are
unavailable in the transcript.

You can override this variable by specifying vsim -displaymsgmode.

Related Topics

See the Message Viewer Window.

ModelSim User’s Manual, v10.4c488

modelsim.ini Variables
DpiOutOfTheBlue

DpiOutOfTheBlue
This variable enables DPI out-of-the-blue Verilog function calls. The C functions must not be
declared as import tasks or functions.

Section [vsim]

Syntax
DpiOutOfTheBlue = {0 | 1 | 2}

Arguments
• 0 — (default) Support for DPI out-of-the-blue calls is disabled.

• 1 — Support for DPI out-of-the-blue calls is enabled.

• 2 — Support for DPI out-of-the-blue calls is enabled.

You can override this variable using vsim -dpioutoftheblue.

Related Topics

See Making Verilog Function Calls from non-DPI C Models and the vsim -dpioutoftheblue
command.

modelsim.ini Variables
DumpportsCollapse

ModelSim User’s Manual, v10.4c 489

DumpportsCollapse
This variable collapses vectors (VCD id entries) in dumpports output.

Section [vsim]

Syntax
DumpportsCollapse = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vsim {+dumpports+collapse |
+dumpports+nocollapse}.

ModelSim User’s Manual, v10.4c490

modelsim.ini Variables
EnumBaseInit

EnumBaseInit
This variable initializes enum variables in SystemVerilog using either the default value of the
base type or the leftmost value.

Section [vsim]

Syntax
EnumBaseInit= {0 | 1}

Arguments
• 0 — Initialize to leftmost value

• 1 — (default) Initialize to default value of base type

modelsim.ini Variables
error

ModelSim User’s Manual, v10.4c 491

error
This variable changes the severity of the listed message numbers to "error".

Section [msg_system]

Syntax
error = <msg_number>…

Arguments
• <msg_number>… — An unlimited list of message numbers, comma separated.

You can override this variable by specifying the vcom, vlog, or vsim command with the -error
argument.

Related Topics

The verror <msg number> command prints a detailed description about a message number.

See Message Severity Level, fatal, note, suppress, warning.

ModelSim User’s Manual, v10.4c492

modelsim.ini Variables
ErrorFile

ErrorFile
This variable specifies an alternative file for storing error messages. By default, error messages
are output to the file specified by the TranscriptFile variable in the modelsim.ini file. If the
ErrorFile variable is specified, all error messages will be stored in the specified file, not in the
transcript.

Section [vsim]

Syntax
ErrorFile = <filename>

Arguments
• <filename> — Any valid filename where the default is error.log.

You can override this variable by specifying vsim -errorfile.

Related Topics

See Creating a Transcript File and TranscriptFile.

modelsim.ini Variables
Explicit

ModelSim User’s Manual, v10.4c 493

Explicit
This variable enables the resolving of ambiguous function overloading in favor of the "explicit"
function declaration (not the one automatically created by the compiler for each type
declaration). Using this variable makes QuestaSim compatible with common industry practice.

Section [vcom]

Syntax
Explicit = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom -explicit.

ModelSim User’s Manual, v10.4c494

modelsim.ini Variables
fatal

fatal
This variable changes the severity of the listed message numbers to "fatal".

Section [msg_system]

Syntax
fatal = <msg_number>…

Arguments
• <msg_number>… — An unlimited list of message numbers, comma separated.

You can override this variable by specifying the vcom, vlog, or vsim command with the -fatal
argument.

Related Topics

The verror <msg number> command prints a detailed description about a message number.

See Message Severity Level, error, note, suppress, warning.

modelsim.ini Variables
FlatLibPageSize

ModelSim User’s Manual, v10.4c 495

FlatLibPageSize
This variable sets the size in bytes for flat library file pages. Very large libraries may benefit
from a larger value, at the expense of disk space.

Section [utils]

Syntax
FlatLibPageSize = <value>

Arguments
• <value> — Specifies a library size in Mb where the default value is 8192.

ModelSim User’s Manual, v10.4c496

modelsim.ini Variables
FlatLibPageDeletePercentage

FlatLibPageDeletePercentage
This variable sets the percentage of total pages deleted before library cleanup can occur. This
setting is applied together with FlatLibPageDeleteThreshold.

Section [utils]

Syntax
FlatLibPageDeletePercentage = <value>

Arguments
• <value> — Specifies a percentage where the default value is 50.

modelsim.ini Variables
FlatLibPageDeleteThreshold

ModelSim User’s Manual, v10.4c 497

FlatLibPageDeleteThreshold
Set the number of pages deleted before library cleanup can occur. This setting is applied
together with FlatLibPageDeletePercentage.

Section [utils]

Syntax
FlatLibPageDeletePercentage = <value>

Arguments
• <value> — Specifies a percentage where the default value is 1000.

ModelSim User’s Manual, v10.4c498

modelsim.ini Variables
floatfixlib

floatfixlib
This variable sets the path to the library containing VHDL floating and fixed point packages.

Section [library]

Syntax
floatfixlib = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../floatfixlib. May include

environment variables.

modelsim.ini Variables
ForceSigNextIter

ModelSim User’s Manual, v10.4c 499

ForceSigNextIter
This variable controls the iteration of events when a VHDL signal is forced to a value.

Section [vsim]

Syntax
ForceSigNextIter = {0 | 1}

Arguments
• 0 — (default) Off. Update and propagate in the same iteration.

• 1 — On. Update and propagate in the next iteration.

ModelSim User’s Manual, v10.4c500

modelsim.ini Variables
ForceUnsignedIntegerToVHDLInteger

ForceUnsignedIntegerToVHDLInteger
This variable controls whether untyped Verilog parameters in mixed-language designs that are
initialized with unsigned values between 2*31-1 and 2*32 are converted to VHDL generics of
type INTEGER or ignored. If mapped to VHDL Integers, Verilog values greater than 2*31-1
(2147483647) are mapped to negative values. Default is to map these parameter to generic of
type INTEGER.

Section [vlog]

Syntax
ForceUnsignedIntegerToVHDLInteger = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
FsmImplicitTrans

ModelSim User’s Manual, v10.4c 501

FsmImplicitTrans
This variable controls recognition of FSM Implicit Transitions.

Sections [vcom], [vlog]

Syntax
FsmImplicitTrans = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On. Enables recognition of implied same state transitions.

Related Topics

See vcom -fsmimplicittrans | -nofsmimplicittrans and vlog -fsmimplicittrans |
-nofsmimplicittrans

ModelSim User’s Manual, v10.4c502

modelsim.ini Variables
FsmResetTrans

FsmResetTrans
This variable controls the recognition of asynchronous reset transitions in FSMs.

Sections [vcom], [vlog]

Syntax
FsmResetTrans = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

Related Topics

See vcom -fsmimplicittrans | -nofsmimplicittrans and vlog -fsmimplicittrans |
-nofsmimplicittrans

modelsim.ini Variables
FsmSingle

ModelSim User’s Manual, v10.4c 503

FsmSingle
This variable controls the recognition of FSMs with a single-bit current state variable.

Section [vcom], [vlog]

Syntax
FsmSingle = { 0 | 1 }

Arguments
• 0 — Off

• 1 — (default) On

Related Topics

See vcom -fsmimplicittrans | -nofsmimplicittrans and vlog -fsmimplicittrans |
-nofsmimplicittrans

ModelSim User’s Manual, v10.4c504

modelsim.ini Variables
FsmXAssign

FsmXAssign
This variable controls the recognition of FSMs where a current-state or next-state variable has
been assigned “X” in a case statement.

Section [vlog]

Syntax
FsmXAssign = { 0 | 1 }

Arguments
• 0 — Off

• 1 — (default) On

Related Topics

See vlog -fsmxassign | -nofsmxassign

modelsim.ini Variables
GCThreshold

ModelSim User’s Manual, v10.4c 505

GCThreshold
This variable sets the memory threshold for SystemVerilog garbage collection.

Section [vsim]

Syntax
GCThreshold = <n>

Arguments
• <n> — Any positive integer where <n> is the number of megabytes. The default is 100.

You can override this variable with the gc configure command or with vsim -threshold.

Related Topics

See Class Instance Garbage Collection and Changing the Garbage Collector Configuration.

Also, refer to the ClassDebug modelsim.ini variable and GC Settings in Class Debug Disbled
Mode.

ModelSim User’s Manual, v10.4c506

modelsim.ini Variables
GCThresholdClassDebug

GCThresholdClassDebug
This variable sets the memory threshold for SystemVerilog garbage collection when class
debug mode is enabled with vsim -classdebug.

Section [vsim]

Syntax
GCThresholdClassDebug = <n>

Arguments
• <n> — Any positive integer where <n> is the number of megabytes. The default is 5.

You can override this variable with the gc configure command.

Related Topics

See Class Instance Garbage Collection and Changing the Garbage Collector Configuration.

Also, refer to the ClassDebug modelsim.ini variable and GC Settings in Class Debug Disbled
Mode.

modelsim.ini Variables
GenerateFormat

ModelSim User’s Manual, v10.4c 507

GenerateFormat
This variable controls the format of the old-style VHDL for … generate statement region name
for each iteration.

Section [vsim]

Syntax
GenerateFormat = <non-quoted string>

Arguments
<non-quoted string> — The default is %s__%d. The format of the argument must be un-
quoted, and must contain the conversion codes %s and %d, in that order. This string should
not contain any uppercase or backslash (\) characters.

The %s represents the generate statement label and the %d represents the generate
parameter value at a particular iteration (this is the position number if the generate
parameter is of an enumeration type). Embedded white space is allowed (but discouraged)
while leading and trailing white space is ignored. Application of the format must result in a
unique region name over all loop iterations for a particular immediately enclosing scope so
that name lookup can function properly.

Related Topics

See the OldVhdlForGenNames modelsim.ini variable and Naming Behavior of VHDL for
Generate Blocks.

ModelSim User’s Manual, v10.4c508

modelsim.ini Variables
GenerousIdentifierParsing

GenerousIdentifierParsing
Controls parsing of identifiers input to the simulator. If this variable is on (value = 1), either
VHDL extended identifiers or Verilog escaped identifier syntax may be used for objects of
either language kind. This provides backward compatibility with older .do files, which often
contain pure VHDL extended identifier syntax, even for escaped identifiers in Verilog design
regions.

Section [vsim]

Syntax
GenerousIdentifierParsing = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
GlobalSharedObjectsList

ModelSim User’s Manual, v10.4c 509

GlobalSharedObjectsList
This variable instructs ModelSim to load the specified PLI/FLI shared objects with global
symbol visibility. Essentially, setting this variable exports the local data and function symbols
from each shared object as global symbols so they become visible among all other shared
objects. Exported symbol names must be unique across all shared objects.

Section [vsim]

Syntax
GlobalSharedObjectsList = <filename>

Arguments
• <filename> — A comma separated list of filenames.

• semicolon (;) — (default) Prevents initiation of the variable by commenting the variable
line.

You can override this variable by specifying vsim -gblso.

ModelSim User’s Manual, v10.4c510

modelsim.ini Variables
Hazard

Hazard
This variable turns on Verilog hazard checking (order-dependent accessing of global variables).

Section [vlog]

Syntax
Hazard = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

modelsim.ini Variables
ieee

ModelSim User’s Manual, v10.4c 511

ieee
This variable sets the path to the library containing IEEE and Synopsys arithmetic packages.

Section [library]

Syntax
ieee = <path>

Arguments
• <path> — Any valid path, including environment variables where the default is

$MODEL_TECH/../ieee.

ModelSim User’s Manual, v10.4c512

modelsim.ini Variables
IgnoreError

IgnoreError
This variable instructs ModelSim to disable runtime error messages.

Section [vsim]

Syntax
IgnoreError = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
IgnoreFailure

ModelSim User’s Manual, v10.4c 513

IgnoreFailure
This variable instructs ModelSim to disable runtime failure messages.

Section [vsim]

Syntax
IgnoreFailure = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c514

modelsim.ini Variables
IgnoreNote

IgnoreNote
This variable instructs ModelSim to disable runtime note messages.

Section [vsim]

Syntax
IgnoreNote = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
IgnorePragmaPrefix

ModelSim User’s Manual, v10.4c 515

IgnorePragmaPrefix
This variable instructs the compiler to ignore synthesis pragmas with the specified prefix name.
The affected pragmas will be treated as regular comments.

Section [vcom, vlog]

Syntax
IgnorePragmaPrefix = {<prefix> | "" }

Arguments
<prefix> — Specifies a user defined string.

"" — (default) No string.

You can override this variable by specifying vcom -ignorepragmaprefix or vlog
-ignorepragmaprefix.

ModelSim User’s Manual, v10.4c516

modelsim.ini Variables
ignoreStandardRealVector

ignoreStandardRealVector
This variable instructs ModelSim to ignore the REAL_VECTOR declaration in package
STANDARD when compiling with vcom -2008. For more information refer to the
REAL_VECTOR section in Help > Technotes > vhdl2008migration technote.

Section [vcom]

Syntax
IgnoreStandardRealVector = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom -ignoreStandardRealVector.

Related Topics

See the vcom command in the Command Reference.

modelsim.ini Variables
IgnoreVitalErrors

ModelSim User’s Manual, v10.4c 517

IgnoreVitalErrors
This variable instructs ModelSim to ignore VITAL compliance checking errors.

Section [vcom]

Syntax
IgnoreVitalErrors = {0 | 1}

Arguments
• 0 — (default) Off. Allow VITAL compliance checking errors.

• 1 — On

You can override this variable by specifying vcom -ignorevitalerrors.

ModelSim User’s Manual, v10.4c518

modelsim.ini Variables
IgnoreWarning

IgnoreWarning
This variable instructs ModelSim to disable runtime warning messages.

Section [vsim]

Syntax
IgnoreWarning = {0 | 1}

Arguments
• 0 — (default) Off. Enable runtime warning messages.

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
ImmediateContinuousAssign

ModelSim User’s Manual, v10.4c 519

ImmediateContinuousAssign
This variable instructs ModelSim to run continuous assignments before other normal priority
processes that are scheduled in the same iteration. This event ordering minimizes race
differences between optimized and non-optimized designs and is the default behavior.

Section [vsim]

Syntax
ImmediateContinuousAssign = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vsim -noimmedca.

ModelSim User’s Manual, v10.4c520

modelsim.ini Variables
IncludeRecursionDepthMax

IncludeRecursionDepthMax
This variable limits the number of times an include file can be called during compilation. This
prevents cases where an include file could be called repeatedly.

Section [vlog]

Syntax
IncludeRecursionDepthMax = <n>

Arguments
• <n> — An integer that limits the number of loops. A setting of 0 would allow one pass

through before issuing an error, 1 would allow two passes, and so on.

modelsim.ini Variables
InitOutCompositeParam

ModelSim User’s Manual, v10.4c 521

InitOutCompositeParam
This variable controls how subprogram output parameters of array and record types are treated.

Section [vcom]

Syntax
InitOutCompositeParam = {0 | 1 | 2}

Arguments
• 0 — Use the default for the language version being compiled.

• 1 — (default) Always initialize the output parameter to its default or “left” value
immediately upon entry into the subprogram.

• 2 — Do not initialize the output parameter.

You can override this variable by specifying vcom -initoutcompositeparam

ModelSim User’s Manual, v10.4c522

modelsim.ini Variables
IterationLimit

IterationLimit
This variable specifies a limit on simulation kernel iterations allowed without advancing time.

Section [vlog], [vsim]

Syntax
IterationLimit = <n>

Arguments
<n> — Any positive integer where the default is 10000000.

Related Topics

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
LargeObjectSilent

ModelSim User’s Manual, v10.4c 523

LargeObjectSilent
This variable controls whether “large object” warning messages are issued or not. Warning
messages are issued when the limit specified in the variable LargeObjectSize is reached.

Section [vsim]

Syntax
LargeObjectSilent = {0 | 1}

Arguments
• 0 — (default) On

• 1 — Off

ModelSim User’s Manual, v10.4c524

modelsim.ini Variables
LargeObjectSize

LargeObjectSize
This variable specifies the relative size of log, wave, or list objects in bytes that will trigger
“large object” messages. This size value is an approximation of the number of bytes needed to
store the value of the object before compression and optimization.

Section [vsim]

Syntax
LargeObjectSize = <n>

Arguments
<n> — Any positive integer where the default is 500000 bytes.

modelsim.ini Variables
LibrarySearchPath

ModelSim User’s Manual, v10.4c 525

LibrarySearchPath
This variable specifies the location of one or more resource libraries containing a precompiled
package. The behavior of this variable is identical to specifying the -L <libname> command
line option with vlog or vsim.

Section [vlog, vsim]

Syntax
LibrarySearchPath = <variable> | <path/lib> ...

Arguments
• <variable>— Any library variable where the default is:

LibrarySearchPath = mtiAvm mtiOvm mtiUvm mtiUPF infact

• path/lib — Any valid library path. May include environment variables.
Multiple library paths and variables are specified as a space separated list.

You can use the vsim -showlibsearchpath option to return all libraries specified by the
LibrarySearchPath variable. You can use the vsim -ignoreinilibs to prevent vsim from using
the libraries specified in LibrarySearchPath.

Related Topics

Verilog Resource Libraries

VHDL Resource Libraries

vlog

vsim

ModelSim User’s Manual, v10.4c526

modelsim.ini Variables
MessageFormat

MessageFormat
This variable defines the format of VHDL assertion messages as well as normal error messages.

Section [vsim]

Syntax
MessageFormat = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D%I\n.

Table A-5. MessageFormat Variable: Accepted Values

Variable Description

%S severity level

%R report message

%T time of assertion

%D delta

%I instance or region pathname (if available)

%i instance pathname with process

%O process name

%K kind of object path points to; returns Instance, Signal,
Process, or Unknown

%P instance or region path without leaf process

%F file

%L line number of assertion, or if from subprogram, line from
which call is made

%u Design unit name in form: library.primary. Returns
<protected> if the design unit is protected.

%U Design unit name in form: library.primary(secondary).
Returns <protected> if the design unit is protected.

%% print ’%’ character

modelsim.ini Variables
MessageFormatBreak

ModelSim User’s Manual, v10.4c 527

MessageFormatBreak
This variable defines the format of messages for VHDL assertions that trigger a breakpoint.

Section [vsim]

Syntax
MessageFormatBreak = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n

ModelSim User’s Manual, v10.4c528

modelsim.ini Variables
MessageFormatBreakLine

MessageFormatBreakLine
This variable defines the format of messages for VHDL assertions that trigger a breakpoint.

%L specifies the line number of the assertion or, if the breakpoint is from a subprogram, the line
from which the call is made.

Section [vsim]

Syntax
MessageFormatBreakLine = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D %K: %i File: %F Line: %L\n

modelsim.ini Variables
MessageFormatError

ModelSim User’s Manual, v10.4c 529

MessageFormatError
This variable defines the format of all error messages. If undefined, MessageFormat is used
unless the error causes a breakpoint in which case MessageFormatBreak is used.

Section [vsim]

Syntax
MessageFormatError = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n

Related Topics

See the MessageFormatBreak variable.

ModelSim User’s Manual, v10.4c530

modelsim.ini Variables
MessageFormatFail

MessageFormatFail
This variable defines the format of messages for VHDL Fail assertions.

If undefined, MessageFormat is used unless assertion causes a breakpoint in which case
MessageFormatBreak is used.

Section [vsim]

Syntax
MessageFormatFail = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n

Related Topics

See the MessageFormatBreak variable.

modelsim.ini Variables
MessageFormatFatal

ModelSim User’s Manual, v10.4c 531

MessageFormatFatal
This variable defines the format of messages for VHDL Fatal assertions.

If undefined, MessageFormat is used unless assertion causes a breakpoint in which case
MessageFormatBreak is used.

Section [vsim]

Syntax
MessageFormatFatal = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D %K: %i File: %F\n

Related Topics

See the MessageFormatBreak variable.

ModelSim User’s Manual, v10.4c532

modelsim.ini Variables
MessageFormatNote

MessageFormatNote
This variable defines the format of messages for VHDL Note assertions.

If undefined, MessageFormat is used unless assertion causes a breakpoint in which case
MessageFormatBreak is used.

Section [vsim]

Syntax
MessageFormatNote = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D%I\n

Related Topics

See the MessageFormatBreak variable.

modelsim.ini Variables
MessageFormatWarning

ModelSim User’s Manual, v10.4c 533

MessageFormatWarning
This variable defines the format of messages for VHDL Warning assertions.

If undefined, MessageFormat is used unless assertion causes a breakpoint in which case
MessageFormatBreak is used.

Section [vsim]

Syntax
MessageFormatWarning = <%value>

Arguments
• <%value> — One or more of the variables from Table A-5 where the default is:

** %S: %R\n Time: %T Iteration: %D%I\n

Related Topics

See the MessageFormatBreak variable.

ModelSim User’s Manual, v10.4c534

modelsim.ini Variables
MixedAnsiPorts

MixedAnsiPorts
This variable supports mixed ANSI and non-ANSI port declarations and task/function
declarations.

Section [vlog]

Syntax
MixedAnsiPorts = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vlog -mixedansiports.

modelsim.ini Variables
modelsim_lib

ModelSim User’s Manual, v10.4c 535

modelsim_lib
This variable sets the path to the library containing Mentor Graphics VHDL utilities such as
Signal Spy.

Section [library]

Syntax
modelsim_lib = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../modelsim_lib. May

include environment variables.

ModelSim User’s Manual, v10.4c536

modelsim.ini Variables
MsgLimitCount

MsgLimitCount
This variable limits the number of times warning messages will be displayed. The default limit
value is five.

Section [msg_system]

Syntax
MsgLimitCount = <limit_value>

Arguments
<limit_value> — Any positive integer where the default limit value is 5.

You can override this variable by specifying vsim -msglimitcount.

Related Topics

See the Message Viewer Window.

modelsim.ini Variables
msgmode

ModelSim User’s Manual, v10.4c 537

msgmode
This variable controls where the simulator outputs elaboration and runtime messages.

Section [msg_system]

Syntax
msgmode = {tran | wlf | both}

Arguments
• tran — (default) Messages appear only in the transcript.

• wlf — Messages are sent to the wlf file and can be viewed in the MsgViewer.

• both — Transcript and wlf files.

You can override this variable by specifying vsim -msgmode.

Related Topics

See the Message Viewer Window.

ModelSim User’s Manual, v10.4c538

modelsim.ini Variables
mtiAvm

mtiAvm
This variable sets the path to the location of the Advanced Verification Methodology libraries.

Section [library]

Syntax
mtiAvm = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../avm

The behavior of this variable is identical to specifying vlog -L mtiAvm.

modelsim.ini Variables
mtiOvm

ModelSim User’s Manual, v10.4c 539

mtiOvm
This variable sets the path to the location of the Open Verification Methodology libraries.

Section [library]

Syntax
mtiOvm = <path>

Arguments
• <path> — $MODEL_TECH/../ovm-2.1.2

The behavior of this variable is identical to specifying vlog -L mtiOvm.

ModelSim User’s Manual, v10.4c540

modelsim.ini Variables
MultiFileCompilationUnit

MultiFileCompilationUnit
This variable controls whether Verilog files are compiled separately or concatenated into a
single compilation unit.

Section [vlog]

Syntax
MultiFileCompilationUnit = {0 | 1}

Arguments
• 0 — (default) Single File Compilation Unit (SFCU) mode.

• 1 — Multi File Compilation Unit (MFCU) mode.

You can override this variable by specifying vlog {-mfcu | -sfcu}.

Related Topics

See SystemVerilog Multi-File Compilation.

modelsim.ini Variables
NoCaseStaticError

ModelSim User’s Manual, v10.4c 541

NoCaseStaticError
This variable changes case statement static errors to warnings.

Section [vcom]

Syntax
NoCaseStaticError = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vcom -nocasestaticerror.

Related Topics

See PedanticErrors and the vcom -pedanticerrors command.

ModelSim User’s Manual, v10.4c542

modelsim.ini Variables
NoDebug

NoDebug
This variable controls inclusion of debugging info within design units.

Sections [vcom], [vlog]

Syntax
NoDebug = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

modelsim.ini Variables
NoDeferSubpgmCheck

ModelSim User’s Manual, v10.4c 543

NoDeferSubpgmCheck
This variable controls the reporting of range and length violations detected within subprograms
as errors (instead of as warnings).

Section [vcom]

Syntax
NoDeferSubpgmCheck = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vcom -deferSubpgmCheck.

ModelSim User’s Manual, v10.4c544

modelsim.ini Variables
NoIndexCheck

NoIndexCheck
This variable controls run time index checks.

Section [vcom]

Syntax
NoIndexCheck = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override NoIndexCheck = 0 by specifying vcom -noindexcheck.

Related Topics

See Range and Index Checking.

modelsim.ini Variables
NoOthersStaticError

ModelSim User’s Manual, v10.4c 545

NoOthersStaticError
This variable disables errors caused by aggregates that are not locally static.

Section [vcom]

Syntax
NoOthersStaticError = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom -noothersstaticerror.

Related Topics

See Message Severity Level and PedanticErrors.

ModelSim User’s Manual, v10.4c546

modelsim.ini Variables
NoRangeCheck

NoRangeCheck
This variable disables run time range checking. In some designs this results in a 2x speed
increase.

Section [vcom]

Syntax
NoRangeCheck = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this NoRangeCheck = 1 by specifying vcom -rangecheck.

Related Topics

See Range and Index Checking.

modelsim.ini Variables
note

ModelSim User’s Manual, v10.4c 547

note
This variable changes the severity of the listed message numbers to "note".

Section [msg_system]

Syntax
note = <msg_number>…

Arguments
• <msg_number>… — An unlimited list of message numbers, comma separated.

You can override this variable setting by specifying the vcom, vlog, or vsim command with the
-note argument.

Related Topics

verror <msg number> prints a detailed description about a message number.

See the Message Severity Level, error, fatal, suppress, warning variable.

ModelSim User’s Manual, v10.4c548

modelsim.ini Variables
NoVitalCheck

NoVitalCheck
This variable disables VITAL level 0 and Vital level 1 compliance checking.

Section [vcom]

Syntax
NoVitalCheck = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vcom -novitalcheck.

Related Topics

See Section 4 of the IEEE Std 1076.4-2004.

modelsim.ini Variables
NumericStdNoWarnings

ModelSim User’s Manual, v10.4c 549

NumericStdNoWarnings
This variable disables warnings generated within the accelerated numeric_std and numeric_bit
packages.

Section [vsim]

Syntax
NumericStdNoWarnings = {0 | 1}

Arguments
• 0 —(default) Off

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c550

modelsim.ini Variables
OldVHDLConfigurationVisibility

OldVHDLConfigurationVisibility
Controls visibility of VHDL component configurations during compile.

Section [vcom]

Syntax
OldVHDLConfigurationVisibility = {0 | 1}

Arguments
• 0 — Use Language Reference Manual compliant visibility rules when processing VHDL

configurations.

• 1 — (default) Force vcom to process visibility of VHDL component configurations
consistent with prior releases.

Related Topics

vcom -oldconfigvis

vcom -lrmVHDLConfigVis

modelsim.ini Variables
OldVhdlForGenNames

ModelSim User’s Manual, v10.4c 551

OldVhdlForGenNames
This variable instructs the simulator to use a previous style of naming (pre-6.6) for VHDL
for … generate statement iteration names in the design hierarchy.

The previous style is controlled by the value of the GenerateFormat value. The default behavior
is to use the current style names, which is described in the section “Naming Behavior of VHDL
for Generate Blocks”.

Section [vsim]

Syntax
OldVhdlForGenNames = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

See GenerateFormat modelsim.ini variable and Naming Behavior of VHDL for Generate
Blocks.

ModelSim User’s Manual, v10.4c552

modelsim.ini Variables
OnFinish

OnFinish
This variable controls the behavior of ModelSim when it encounters either an assertion failure,
a $finish in the design code.

Section [vsim]

Syntax
OnFinish = {ask | exit | final | stop}

Arguments
• ask — (default) In batch mode, the simulation exits. In GUI mode, a dialog box pops up and

asks for user confirmation on whether to quit the simulation.

• stop — Causes the simulation to stay loaded in memory. This can make some post-
simulation tasks easier.

• exit — The simulation exits without asking for any confirmation.

• final — The simulation executes all final blocks then exits the simulation.

You can override this variable by specifying vsim -onfinish.

modelsim.ini Variables
Optimize_1164

ModelSim User’s Manual, v10.4c 553

Optimize_1164
This variable disables optimization for the IEEE std_logic_1164 package.

Section [vcom]

Syntax
Optimize_1164 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c554

modelsim.ini Variables
osvvm

osvvm
This variable sets the path to the location of the pre-compiled Open Source VHDL Verification
Methodology library.

Section [Library]

Syntax
osvvm = <path>

Arguments
• <path> — $MODEL_TECH/../osvvm

The source code for building this library is copied under the Perl foundation's artistic license
from the Open Source VHDL Verification Methodology web site at http://www.osvvm.org. A
copy of the source code is in the directory vhdl_src/vhdl_osvvm_packages.

http://www.osvvm.org

modelsim.ini Variables
PathSeparator

ModelSim User’s Manual, v10.4c 555

PathSeparator
This variable specifies the character used for hierarchical boundaries of HDL modules. This
variable does not affect file system paths. The argument to PathSeparator must not be the same
character as DatasetSeparator. This variable setting is also the default for the
SignalSpyPathSeparator variable.

This variable is used by the vsim command.

Note
When creating a virtual bus, the PathSeparator variable must be set to either a period (.)
or a forward slash (/). For more information on creating virtual buses, refer to the section
“Combining Objects into Buses”.

Section [vsim]

Syntax

PathSeparator = <n>

Arguments

• <n> — Any character except special characters, such as backslash (\), brackets ({}), and
so forth, where the default is a forward slash (/).

Related Topics

Using Escaped Identifiers

SignalSpyPathSeparator

DatasetSeparator

ModelSim User’s Manual, v10.4c556

modelsim.ini Variables
PedanticErrors

PedanticErrors
This variable forces display of an error message (rather than a warning) on a variety of
conditions. It overrides the NoCaseStaticError and NoOthersStaticError variables.

Section [vcom]

Syntax
PedanticErrors = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

See the vcom -nocasestaticerror and vcom -noothersstaticerror commands.

See the NoCaseStaticError and NoOthersStaticError variables.

See, Enforcing Strict 1076 Compliance.

modelsim.ini Variables
PreserveCase

ModelSim User’s Manual, v10.4c 557

PreserveCase
This variable instructs the VHDL compiler either to preserve the case of letters in basic VHDL
identifiers or to convert uppercase letters to lowercase.

Section [vcom]

Syntax
PreserveCase = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vcom -lower or vcom -preserve.

ModelSim User’s Manual, v10.4c558

modelsim.ini Variables
PrintSimStats

PrintSimStats
This variable instructs the simulator to print out simulation statistics at the end of the simulation
before it exits. Statistics are printed with relevant units in separate lines. The Stats variable
overrides the PrintSimStats if the two are both enabled.

Section [vsim]

Syntax
PrintSimStats = {0 | 1 | 2}

Arguments
• 0 — (default) Off

• 1 — print at end of simulation

• 2 — print at end of each run and end of simulation

You can override this variable by specifying vsim -printsimstats.

Related Topics

See the simstats command in the Command Reference, and the Stats variable.

modelsim.ini Variables
Quiet

ModelSim User’s Manual, v10.4c 559

Quiet
This variable turns off "loading…" messages.

Sections [vcom], [vlog]

Syntax
Quiet = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vlog -quiet or vcom -quiet.

ModelSim User’s Manual, v10.4c560

modelsim.ini Variables
RequireConfigForAllDefaultBinding

RequireConfigForAllDefaultBinding
This variable instructs the compiler to not generate any default bindings when compiling with
vcom and when elaborating with vsim. All instances are left unbound unless you specifically
write a configuration specification or a component configuration that applies to the instance.
You must explicitly bind all components in the design through either configuration
specifications or configurations. If an explicit binding is not fully specified, defaults for the
architecture, port maps, and generic maps will be used as needed.

Refer to Disabling Default Binding for more information.

Section [vcom]

Syntax
RequireConfigForAllDefaultBinding = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override RequireConfigForAllDefaultBinding = 1 by specifying vcom
-performdefaultbinding.

Related Topics

Default Binding

BindAtCompile .ini variable

vcom -ignoredefaultbinding

Disabling Default Binding

modelsim.ini Variables
Resolution

ModelSim User’s Manual, v10.4c 561

Resolution
This variable specifies the simulator resolution. The argument must be less than or equal to the
UserTimeUnit and must not contain a space between value and units.

Section [vsim]

Syntax
Resolution = {[n]<time_unit>}

Arguments
• [n] — Optional prefix specifying number of time units as 1, 10, or 100.

• <time_unit> — fs, ps, ns, us, ms, or sec where the default is ps.

The argument must be less than or equal to the UserTimeUnit and must not contain a space
between value and units, for example:

Resolution = 10fs

You can override this variable by specifying vsim -t. You should set a smaller resolution if your
delays get truncated.

Related Topics

See the Time command and the UserTimeUnit variable.

ModelSim User’s Manual, v10.4c562

modelsim.ini Variables
RunLength

RunLength
This variable specifies the default simulation length in units specified by the UserTimeUnit
variable.

Section [vsim]

Syntax
RunLength = <n>

Arguments
• <n> — Any positive integer where the default is 100.

You can override this variable by specifying the run command.

Related Topics

See the UserTimeUnit variable.

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
SeparateConfigLibrary

ModelSim User’s Manual, v10.4c 563

SeparateConfigLibrary
This variable allows the declaration of a VHDL configuration to occur in a different library than
the entity being configured. Strict conformance to the VHDL standard (LRM) requires that they
be in the same library.

Section [vcom]

Syntax
SeparateConfigLibrary = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom -separateConfigLibrary.

ModelSim User’s Manual, v10.4c564

modelsim.ini Variables
Show_BadOptionWarning

Show_BadOptionWarning
This variable instructs ModelSim to generate a warning whenever an unknown plus argument is
encountered.

Section [vlog]

Syntax
Show_BadOptionWarning = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

modelsim.ini Variables
Show_Lint

ModelSim User’s Manual, v10.4c 565

Show_Lint
This variable instructs ModelSim to display lint warning messages.

Sections [vcom], [vlog]

Syntax
Show_Lint = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vlog -lint or vcom -lint.

ModelSim User’s Manual, v10.4c566

modelsim.ini Variables
Show_source

Show_source
This variable shows source line containing error.

Sections [vcom], [vlog]

Syntax
Show_source = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying the vlog -source or vcom -source.

modelsim.ini Variables
Show_VitalChecksWarnings

ModelSim User’s Manual, v10.4c 567

Show_VitalChecksWarnings
This variable enables VITAL compliance-check warnings.

Section [vcom]

Syntax
Show_VitalChecksWarnings = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c568

modelsim.ini Variables
Show_Warning1

Show_Warning1
This variable enables unbound-component warnings.

Section [vcom]

Syntax
Show_Warning1 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
Show_Warning2

ModelSim User’s Manual, v10.4c 569

Show_Warning2
This variable enables process-without-a-wait-statement warnings.

Section [vcom]

Syntax
Show_Warning2 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c570

modelsim.ini Variables
Show_Warning3

Show_Warning3
This variable enables null-range warnings.

Section [vcom]

Syntax
Show_Warning3 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
Show_Warning4

ModelSim User’s Manual, v10.4c 571

Show_Warning4
This variable enables no-space-in-time-literal warnings.

Section [vcom]

Syntax
Show_Warning4 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c572

modelsim.ini Variables
Show_Warning5

Show_Warning5
This variable enables multiple-drivers-on-unresolved-signal warnings.

Section [vcom]

Syntax
Show_Warning5 = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

modelsim.ini Variables
ShowFunctions

ModelSim User’s Manual, v10.4c 573

ShowFunctions
This variable sets the format for Breakpoint and Fatal error messages. When set to 1 (the default
value), messages will display the name of the function, task, subprogram, module, or
architecture where the condition occurred, in addition to the file and line number. Set to 0 to
revert messages to the previous format.

Section [vsim]

Syntax
ShowFunctions = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

ModelSim User’s Manual, v10.4c574

modelsim.ini Variables
ShutdownFile

ShutdownFile
This variable calls the write format restart command upon exit and executes the .do file created
by that command. This variable should be set to the name of the file to be written, or the value
"--disable-auto-save" to disable this feature. If the filename contains the pound sign character
(#), then the filename will be sequenced with a number replacing the #. For example, if the file
is "restart#.do", then the first time it will create the file "restart1.do" and the second time it will
create "restart2.do", and so forth.

Section [vsim]

Syntax
ShutdownFile = <filename>.do | <filename>#.do | --disable-auto-save}

Arguments
• <filename>.do — A user defined filename where the default is restart.do.

• <filename>#.do — A user defined filename with a sequencing character.

• --disable-auto-save — Disables auto save.

Related Topics

The the write format restart command.

modelsim.ini Variables
SignalForceFunctionUseDefaultRadix

ModelSim User’s Manual, v10.4c 575

SignalForceFunctionUseDefaultRadix
Set this variable to 1 cause the signal_force VHDL and Verilog functions use the default radix
when processing the force value. Prior to 10.2 signal_force used the default radix and now it
always uses symbolic unless the value explicitly indicates a base radix.

Section [vsim]

Syntax
SignalForceFunctionUseDefaultRadix = { 0 | 1 }

Arguments
• 0 — (default) Off

• 1 — On

ModelSim User’s Manual, v10.4c576

modelsim.ini Variables
SignalSpyPathSeparator

SignalSpyPathSeparator
This variable specifies a unique path separator for the Signal Spy functions. The argument to
SignalSpyPathSeparator must not be the same character as the DatasetSeparator variable.

Section [vsim]

Syntax
SignalSpyPathSeparator = <character>

Arguments
• <character> — Any character except special characters, such as backslash (\), brackets

({}), and so forth, where the default is to use the PathSeparator variable or a forward slash
(/).

Related Topics

Signal Spy

DatasetSeparator

modelsim.ini Variables
SmartDbgSym

ModelSim User’s Manual, v10.4c 577

SmartDbgSym
This variable reduces the size of design libraries by minimizing the amount of debugging
symbol files generated at compile time. Default is to generate debugging symbol database file
for all design-units.

Syntax
SmartDbgSym = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vcom/vlog -smartdbgsym.

ModelSim User’s Manual, v10.4c578

modelsim.ini Variables
Startup

Startup
This variable specifies a simulation startup DO file.

Section [vsim]

Syntax
Startup = {do <DO filename>}

Arguments
• <DO filename> — Any valid DO file where the default is to comment out the line (;).

Related Topics

See the do command and Using a Startup File.

modelsim.ini Variables
Stats

ModelSim User’s Manual, v10.4c 579

Stats
This variable controls the display of statistics messages in a logfile and stdout. Stats variable
overrides PrintSimStats variable if both are enabled.

You can specify modes globally or for a specific feature.

Section [vcom, vlog, vsim]

Syntax
Stats [=[+|-]<feature>[,[+|-]<mode>]

Arguments
• [+|-] — Controls activation of the feature or mode. You can also enable a feature or mode by

specifying a feature or mode without the plus (+) character. Multiple features and modes for
each instance of -stats are specified as a comma separated list.

• <feature>

all — All statistics features displayed (cmd, msg, perf, time). Mutually exclusive with
none option. When specified in a string with other options, +|-all is applied first.

cmd — (default) Echo the command line

msg — (default) Display error and warning summary at the end of command execution

none — Disable all statistics features. Mutually exclusive with all option. When
specified in a string with other options, +|-none is applied first.

perf — Display time and memory performance statistics

time — (default) Display Start, End, and Elapsed times

• <mode>

Modes can be set for a specific feature or globally for all features. To add or subtract a mode
for a specific feature, specify using the plus (+) or minus (-) character with the feature, for
example, Stats=cmd+verbose,perf+list. To add or subtract a mode globally for all features,
specify the modes in a comma-separated list, for example, Stats=time,perf,list,-verbose.
You cannot specify global and feature specific modes together.

kb — Prints memory statistics in Kb units with no auto-scaling

list — Display statistics in a Tcl list format when available

verbose — Display verbose statistics information when available

You can add or subtract individual elements of this variable by specifying the -stats argument
with vcom, vencrypt, vhencrypt, vlog, and vsim.

You can disable all default or user-specified Stats features with the -quiet argument for vcom,
vencrypt, vhencrypt, vlog, mc2com, qverilog and vopt.

Related Topics

ModelSim User’s Manual, v10.4c580

modelsim.ini Variables
Stats

For more information, see Tool Statistics Messages, the simstats command, and the
PrintSimStats variable in the modelsim.ini file.

modelsim.ini Variables
std

ModelSim User’s Manual, v10.4c 581

std
This variable sets the path to the VHDL STD library.

Section [library]

Syntax
std = <path>

Arguments
<path> — Any valid path where the default is $MODEL_TECH/../std. May include
environment variables.

ModelSim User’s Manual, v10.4c582

modelsim.ini Variables
std_developerskit

std_developerskit
This variable sets the path to the libraries for Mentor Graphics standard developer’s kit.

Section [library]

Syntax
std_developerskit = <path>

Arguments
<path> — Any valid path where the default is $MODEL_TECH/../std_developerskit. May
include environment variables.

modelsim.ini Variables
StdArithNoWarnings

ModelSim User’s Manual, v10.4c 583

StdArithNoWarnings
This variable suppresses warnings generated within the accelerated Synopsys std_arith
packages.

Section [vsim]

Syntax
StdArithNoWarnings = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

Related Topics

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c584

modelsim.ini Variables
suppress

suppress
This variable suppresses the listed message numbers and/or message code strings (displayed in
square brackets).

Section [msg_system]

Syntax
suppress = <msg_number>…

Arguments
• <msg_number>… — An unlimited list of message numbers, comma separated.

You can override this variable setting by specifying the vcom, vlog, or vsim command with the
-suppress argument.

Related Topics

verror <msg number> prints a detailed description about a message number.

Also, see Message Severity Level and the error, fatal, note, and warning variables.

modelsim.ini Variables
SuppressFileTypeReg

ModelSim User’s Manual, v10.4c 585

SuppressFileTypeReg
This variable suppresses a prompt from the GUI asking if ModelSim file types should be
applied to the current version.

Section [vsim]

Syntax
SuppressFileTypeReg = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can suppress the GUI prompt for ModelSim type registration by setting the
SuppressFileTypeReg variable value to 1 in the modelsim.ini file on each server in a server
farm. This variable only applies to Microsoft Windows platforms.

ModelSim User’s Manual, v10.4c586

modelsim.ini Variables
sv_std

sv_std
This variable sets the path to the SystemVerilog STD library.

Section [library]

Syntax
sv_std = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../sv_std. May include

environment variables.

modelsim.ini Variables
SvExtensions

ModelSim User’s Manual, v10.4c 587

SvExtensions
This variable enables SystemVerilog language extensions. The extensions enable non-LRM
compliant behavior.

Section [vlog], [vsim]

Syntax
SvExtensions = [+|-]<val>[,[+|-]<val>] …

Arguments
• [+ | -] — controls activation of the val.

+ — activates the val.

- — deactivates the val.

If you do not specify either a “+” or “-”, the variable assumes you are activating the
specified val.

• <val>

acum — Specifies that the get(), try_get(), peek(), and try_peek() methods on an
untyped mailbox will return successfully if the argument passed is assignment-
compatible with the entry in the mailbox. The LRM-compliant behavior is to return
successfully only if the argument and entry are of equivalent types.

atpi — Use type names as port identifiers. Disabled when compiling with
-pedanticerrors.

catx — Allow an assignment of a single un-sized constant in a concat to be treated as an
assignment of 'default:val'.

cfce — Error message will be generated if $cast is used as a function and the casting
operation fails.

daoa — Allows the passing a dynamic array as the actual argument of DPI open array
output port. Without this option, a runtime error, similar to the following, is
generated, which is compliant with LRM requirement.

** Fatal: (vsim-2211) A dynamic array cannot be passed as an
argument to the DPI import function 'impcall' because the formal 'o'
is an unsized output.
Time: 0 ns Iteration: 0 Process: /top/#INITIAL#56 File:
dynarray.sv
Fatal error in Module dynarray_sv_unit at dynarray.sv line 2

evis — Supports the expansion of environment variables within `include path names.
For example, if MYPATH exists in the environment then it will be expanded in the
following:

`include "$MYPATH/inc.svh"

feci — Treat constant expressions in a foreach loop variable index as constant.

ModelSim User’s Manual, v10.4c588

modelsim.ini Variables
SvExtensions

fin0 — Treats $finish() system call as $finish(0), which results in no diagnostic
information being printed.

idcl — Allows passing of import DPI call locations as implicit scopes.

iddp — Ignore the DPI task disable protocol check.

pae — Automatically export all symbols imported and referenced in a package.

sccts — (default) Process string concatenations converting the result to string type.

spsl — (default) Search for packages in source libraries specified with -y and +libext.

stop0 — Treats $stop and $stop() as $stop(0), which results in no diagnostic information
being printed.

udm0 — Expands any undefined macro with the text “1'b0”.

uslt — (default) Promote unused design units found in source library files specified with
the -y option to top-level design units.

Multiple extensions are specified as a comma separated list. For example:

SvExtensions = +feci,-uslt,pae

modelsim.ini Variables
SVFileSuffixes

ModelSim User’s Manual, v10.4c 589

SVFileSuffixes
This variable defines one or more filename suffixes that identify a file as a SystemVerilog file.
To insert white space in an extension, use a backslash (\) as a delimiter. To insert a backslash in
an extension, use two consecutive back-slashes (\\).

Section [vlog]

Syntax
SVFileSuffixes = sv svp svh

Arguments
• On — Uncomment the variable.

• Off — Comment the variable (;).

ModelSim User’s Manual, v10.4c590

modelsim.ini Variables
Svlog

Svlog
This variable instructs the vlog compiler to compile in SystemVerilog mode. This variable does
not exist in the default modelsim.ini file, but is added when you select Use SystemVerilog in the
Compile Options dialog box > Verilog and SystemVerilog tab.

Section [vlog]

Syntax
Svlog = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

modelsim.ini Variables
SVPrettyPrintFlags

ModelSim User’s Manual, v10.4c 591

SVPrettyPrintFlags
This variable controls the formatting of '%p' and '%P' conversion specifications used in $display
and similar system tasks.

Section [vsim]

Syntax
SVPrettyPrintFlags=[I<n><S | T>] [L<numLines>] [C<numChars>] [F<numFields>]

[E<numElements>] [D<depth>]

Arguments
• I <n><S | T> — Expand and indent the format for printing records, structures, and so forth

by <n> spaces (S) or <n> tab stops (T).

• <n> — (required) Any positive integer

• S — (required when indenting with spaces) Indent with spaces.

• T — (required when indenting with tab stops) Indent with tab stops.

• For example, SVPrettyPrintFlags=I4S will cause 4 spaces to be used per indentation level.

• L<numLines> — (optional) Limit the number of lines of output to <numLines>.

• <numLines> — (required) Any positive integer.

• For example, SVPrettyPrintFlags=L10 will cause the output to be limited to 10 lines.

• C<numChars> — (optional) Limit the number of characters of output to <numChars>.

• <numChars> — (required) Any positive integer.

• For example, SVPrettyPrintFlags=C256 will limit the output to 256 characters.

• F<numFields> — (optional) Limit the number of fields of records, structures, and so forth
to <numFields>.

• <numFields> — (required) Any positive integer.

• For example, SVPrettyPrintFlags=F4 will limit the output to 4 fields of a structure.

• E<numElements> — (optional) Limit the number of elements of arrays to
<numElements>.

• <numElements> — (required) Any positive integer.

• For example, SVPrettyPrintFlags=E50 will limit the output to 50 elements of an array.

• D<depth> — (optional) Suppress the output of sub-elements below a specified depth to
<depth>.

• <depth> — (required) Any positive integer.

For example, SVPrettyPrintFlags=D5 will suppresses the output of sub elements below a
depth of 5.

Multiple options are specified as a comma separated list. For example,
SVPrettyPrintFlags=I4S,L20,C256,F4,E50,D5.

ModelSim User’s Manual, v10.4c592

modelsim.ini Variables
synopsys

synopsys
This variable sets the path to the accelerated arithmetic packages.

Section [vsim]

Syntax
synopsys = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../synopsys. May include

environment variables.

modelsim.ini Variables
SyncCompilerFiles

ModelSim User’s Manual, v10.4c 593

SyncCompilerFiles
This variable causes compilers to force data to be written to disk when files are closed.

Section [vcom]

Syntax
SyncCompilerFiles = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

ModelSim User’s Manual, v10.4c594

modelsim.ini Variables
TranscriptFile

TranscriptFile
This variable specifies a file for saving a command transcript. You can specify environment
variables in the pathname.

Note
Once you load a modelsim.ini file with TranscriptFile set to a file location, this location
will be used for all output until you override the location with the transcript file
command. This includes the scenario where you load a new design with a new
TranscriptFile variable set to a different file location.
You can determine the current path of the transcript file by executing the transcript path
command with no arguments.

Section [vsim]

Syntax

TranscriptFile = {<filename> | transcript}

Arguments

<filename> — Any valid filename where transcript is the default.

Related Topics

Batch Mode

AssertFile variable

BatchMode variable

BatchTranscriptFile variable

transcript file command

vsim -batch

vsim -nostdout

vsim -logfile

vsim -nolog

modelsim.ini Variables
UnbufferedOutput

ModelSim User’s Manual, v10.4c 595

UnbufferedOutput
This variable controls VHDL and Verilog files open for write.

Section [vsim]

Syntax
UnbufferedOutput = {0 | 1}

Arguments
• 0 — (default) Off, Buffered

• 1 — On, Unbuffered

ModelSim User’s Manual, v10.4c596

modelsim.ini Variables
UndefSyms

UndefSyms
This variable allows you to manage the undefined symbols in the shared libraries currently
being loaded into the simulator.

Section [vsim]

Syntax
UndefSyms = {on | off | verbose}

Arguments
• on — Enables automatic generation of stub definitions for undefined symbols and permits

loading of the shared libraries despite the undefined symbols.

• off — (default) Disables loading of undefined symbols. Undefined symbols trigger an
immediate shared library loading failure.

• verbose — Permits loading to the shared libraries despite the undefined symbols and
reports the undefined symbols for each shared library.

modelsim.ini Variables
UserTimeUnit

ModelSim User’s Manual, v10.4c 597

UserTimeUnit
This variable specifies the multiplier for simulation time units and the default time units for
commands such as force and run. Generally, you should set this variable to default, in which
case it takes the value of the Resolution variable.

Note
The value you specify for UserTimeUnit does not affect the display in the Wave window.
To change the time units for the X-axis in the Wave window, choose Wave > Wave
Preferences > Grid & Timeline from the main menu and specify a value for Grid Period.

Section [vsim]

Syntax

UserTimeUnit = {<time_unit> | default}

Arguments

• <time_unit> — fs, ps, ns, us, ms, sec, or default.

Related Topics

Resolution variable

RunLength variable

force

run

ModelSim User’s Manual, v10.4c598

modelsim.ini Variables
UVMControl

UVMControl
This variable controls UVM-Aware debug features. These features work with either a standard
Accelera-released open source toolkit or the pre-compiled UVM library package in ModelSim.

Section [vsim]

Syntax
UVMControl={all | certe | disable | msglog | none | struct | trlog | verbose}

Arguments
You must specify at least one argument. You can enable or disable some arguments by
prefixing the argument with a dash (-). Arguments may be specified as multiple instances of
-uvmcontrol. Multiple arguments are specified as a comma separated list without spaces.
Refer to the argument descriptions for more information.

• all — Enables all UVM-Aware functionality and debug options except disable and verbose.
You must specify verbose separately.

• certe — Enables the integration of the elaborated design in the Certe tool. Disables Certe
features when specified as -certe.

• disable — Prevents the UVM-Aware debug package from being loaded. Changes the
results of randomized values in the simulator.

• msglog — Enables messages logged in UVM to be integrated into the Message Viewer.
You must also enable wlf message logging by specifying tran or wlf with vsim -msgmode.
Disables message logging when specified as -msglog

• none — Turns off all UVM-Aware debug features. Useful when multiple -uvmcontrol
options are specified in a separate script, makefile or alias and you want to be sure all UVM
debug features are turned off.

• struct — (default) Enables UVM component instances to appear in the Structure window.
UVM instances appear under “uvm_root” in the Structure window. Disables Structure
window support when specified as -struct.

• trlog — Enables or disables UVM transaction logging. Logs UVM transactions for viewing
in the Wave window. Disables transaction logging when specified as -trlog.

• verbose — Sends UVM debug package information to the transcript. Does not affect
functionality. Must be specified separately.

You can also control UVM-Aware debugging with the -uvmcontrol argument to the vsim
command.

modelsim.ini Variables
verilog

ModelSim User’s Manual, v10.4c 599

verilog
This variable sets the path to the library containing VHDL/Verilog type mappings.

Section [library]

Syntax
verilog = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../verilog. May include

environment variables.

ModelSim User’s Manual, v10.4c600

modelsim.ini Variables
Veriuser

Veriuser
This variable specifies a list of dynamically loadable objects for Verilog interface applications.

Section [vsim]

Syntax
Veriuser = <name>

Arguments
• <name> — One or more valid shared object names where the default is to comment out the

variable.

Related Topics

See Registering PLI Applications and the vsim -pli and restart commands.

modelsim.ini Variables
VHDL93

ModelSim User’s Manual, v10.4c 601

VHDL93
This variable enables support for VHDL language version.

Section [vcom]

Syntax
VHDL93 = {0 | 1 | 2 | 3 | 87 | 93 | 02 | 08 | 1987 | 1993 | 2002 | 2008}

Arguments
• 0 — Support for VHDL-1987. You can also specify 87 or 1987.

• 1 — Support for VHDL-1993. You can also specify 93 or 1993.

• 2 — (default) Support for VHDL-2002. You can also specify 02 or 2002.

• 3 — Support for VHDL-2008. You can also specify 08 or 2008.

You can override this variable by specifying vcom {-87 | -93 | -2002 | -2008}.

ModelSim User’s Manual, v10.4c602

modelsim.ini Variables
VhdlSeparatePduPackage

VhdlSeparatePduPackage
This variable turns off sharing of a package from a library between two or more PDUs. Each
PDU will have a separate copy of the package. By default PDUs calling the same package from
a library share one copy of that package.

Section [vsim]

Syntax
VhdlSeparatePduPackage = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vsim -vhdlmergepdupackage.

Related Topics

See the vsim -vhdlmergepdupackage command.

modelsim.ini Variables
VhdlVariableLogging

ModelSim User’s Manual, v10.4c 603

VhdlVariableLogging
This switch makes it possible for process variables to be recursively logged or added to the
Wave and List windows (process variables can still be logged or added to the Wave and List
windows explicitly with or without this switch).

Note
Logging process variables is inherently expensive on simulation performance because of
their nature. It is recommended that they not be logged, or added to the Wave and List
windows. However, if your debugging needs require them to be logged, then use of this
switch will lessen the performance hit in doing so.

Section [vsim]

Syntax

VhdlVariableLogging = {0 | 1}

Arguments

• 0 — (default) Off

• 1 — On

You can override this variable by specifying vsim -novhdlvariablelogging.

Related Topics

See the vsim -vhdlvariablelogging command.

ModelSim User’s Manual, v10.4c604

modelsim.ini Variables
vital2000

vital2000
This variable sets the path to the VITAL 2000 library.

Section [library]

Syntax
vital2000 = <path>

Arguments
• <path> — Any valid path where the default is $MODEL_TECH/../vital2000. May include

environment variables.

modelsim.ini Variables
vlog95compat

ModelSim User’s Manual, v10.4c 605

vlog95compat
This variable instructs ModelSim to disable SystemVerilog and Verilog 2001 support, making
the compiler revert to IEEE Std 1364-1995 syntax.

Section [vlog]

Syntax
vlog95compat = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying vlog -vlog95compat.

ModelSim User’s Manual, v10.4c606

modelsim.ini Variables
WarnConstantChange

WarnConstantChange
This variable controls whether a warning is issued when the change command changes the
value of a VHDL constant or generic.

Section [vsim]

Syntax
WarnConstantChange = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

Related Topics

See the change command.

modelsim.ini Variables
warning

ModelSim User’s Manual, v10.4c 607

warning
This variable changes the severity of the listed message numbers to "warning".

Section [msg_system]

Syntax
warning = <msg_number>…

Arguments
• <msg_number>… — An unlimited list of message numbers, comma separated.

You can override this variable by specifying the vcom, vlog, or vsim command with the -
warning argument.

Related Topics

verror <msg number> prints a detailed description about a message number.

Also, see Message Severity Level and the error, fatal, note, and suppress variables.

ModelSim User’s Manual, v10.4c608

modelsim.ini Variables
WaveSignalNameWidth

WaveSignalNameWidth
This variable controls the number of visible hierarchical regions of a signal name shown in the
Wave Window.

Section [vsim]

Syntax
WaveSignalNameWidth = <n>

Arguments
• <n> — Any non-negative integer where the default is 0 (display full path). 1 displays only

the leaf path element, 2 displays the last two path elements, and so on.

You can override this variable by specifying configure -signalnamewidth.

Related Topics

verror <msg number> prints a detailed description about a message number.

Also, see Message Severity Level, the Wave Window, and the error, fatal, note, and suppress
variable.

modelsim.ini Variables
WildcardFilter

ModelSim User’s Manual, v10.4c 609

WildcardFilter
This variable sets the default list of object types that are excluded when performing wildcard
matches with simulator commands. The default WildcardFilter variables are loaded every time
you invoke the simulator.

Section [vsim]

Syntax
WildcardFilter = <object_list>

Arguments
• <object_list> — A space separated list of objects where the default is:

Variable Constant Generic Parameter SpecParam Memory Assertion Cover Endpoint
ScVariable CellInternal ImmediateAssert VHDLFile

You can override this variable by specifying set WildcardFilter "<object_list>" or by selecting
Tools > Wildcard Filter to open the Wildcard Filter dialog. Refer to Using the WildcardFilter
Preference Variable for more information and a list of other possible WildcardFilter object
types.

Related Topics

See Using the WildcardFilter Preference Variable.

ModelSim User’s Manual, v10.4c610

modelsim.ini Variables
WildcardSizeThreshold

WildcardSizeThreshold
This variable prevents logging of very large non-dynamic objects when performing wildcard
matches with simulator commands, for example, “log -r*” and “add wave *”. Objects of size
equal to or greater than the WildcardSizeThreshold setting will be filtered out of wildcard
matches. The size is a simple calculation of the number of bits or items in the object.

Section [vsim]

Syntax
WildcardSizeThreshold = <n>

Arguments
• <n> — Any positive whole number where the default is 8192 bits (8 k). Specifying 0

disables the checking of the object size against this threshold and allows logging objects of
any size.

You can override this variable by specifying set WildcardSizeThreshold <n> where <n> is
any positive whole number.

Related Topics

See the Wildcard Characters.

modelsim.ini Variables
WildcardSizeThresholdVerbose

ModelSim User’s Manual, v10.4c 611

WildcardSizeThresholdVerbose
This variable controls whether warning messages are output when objects are filtered out due to
the WildcardSizeThreshold variable.

Section [vsim]

Syntax
WildcardSizeThresholdVerbose = {0 | 1}

Arguments
• 0 — (default) Off

• 1 — On

You can override this variable by specifying set WildcardSizeThresholdVerbose with a 1 or a
0.

Related Topics

See the Wildcard Characters.

ModelSim User’s Manual, v10.4c612

modelsim.ini Variables
WLFCacheSize

WLFCacheSize
This variable sets the number of megabytes for the WLF reader cache. WLF reader caching
caches blocks of the WLF file to reduce redundant file I/O.

Section [vsim]

Syntax
WLFCacheSize = <n>

Arguments
<n> — Any non-negative integer where the default for Windows platforms is 1000M.

You can override this variable by specifying vsim -wlfcachesize.

Related Topics

See the WLF File Parameter Overview.

modelsim.ini Variables
WLFCollapseMode

ModelSim User’s Manual, v10.4c 613

WLFCollapseMode
This variable controls when the WLF file records values.

Section [vsim]

Syntax
WLFCollapseMode = {0 | 1 | 2}

Arguments
• 0 — Preserve all events and event order. Same as vsim -nowlfcollapse.

• 1 — (default) Only record values of logged objects at the end of a simulator iteration. Same
as vsim -wlfcollapsedelta.

• 2 — Only record values of logged objects at the end of a simulator time step. Same as vsim
-wlfcollapsetime.

You can override this variable by specifying vsim {-nowlfcollapse | -wlfcollapsedelta |
-wlfcollapsetime}.

Related Topics

See the WLF File Parameter Overview.

ModelSim User’s Manual, v10.4c614

modelsim.ini Variables
WLFCompress

WLFCompress
This variable enables WLF file compression.

Section [vsim]

Syntax
WLFCompress = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vsim -nowlfcompress.

Related Topics

You can set this variable in the The Runtime Options Dialog.

See the WLF File Parameter Overview and the vsim -wlfcompress and vsim -nowlfcompress
commands.

modelsim.ini Variables
WLFDeleteOnQuit

ModelSim User’s Manual, v10.4c 615

WLFDeleteOnQuit
This variable specifies whether a WLF file should be deleted when the simulation ends.

Section [vsim]

Syntax
WLFDeleteOnQuit = {0 | 1}

Arguments
• 0 — (default) Off. Do not delete.

• 1 — On.

You can override this variable by specifying vsim -nowlfdeleteonquit.

Related Topics

You can set this variable in the The Runtime Options Dialog.

See the WLF File Parameter Overview and the vsim -wlfdeleteonquit and
vsim -nowlfdeleteonquit commands.

ModelSim User’s Manual, v10.4c616

modelsim.ini Variables
WLFFileLock

WLFFileLock
This variable controls overwrite permission for the WLF file.

Section [vsim]

Syntax
WLFFileLock = {0 | 1}

Arguments
• 0 — Allow overwriting of the WLF file.

• 1 — (default) Prevent overwriting of the WLF file.

You can override this variable by specifying vsim -wlflock or vsim -nowlflock.

Related Topics

See the WLF File Parameter Overview and the vsim -wlflockcommand.

modelsim.ini Variables
WLFFilename

ModelSim User’s Manual, v10.4c 617

WLFFilename
This variable specifies the default WLF file name.

Section [vsim]

Syntax
WLFFilename = {<filename> | vsim.wlf}

Arguments
• <filename> — User defined WLF file to create.

vsim.wlf — (default) filename

You can override this variable by specifying vsim -wlf.

Related Topics

See the WLF File Parameter Overview.

ModelSim User’s Manual, v10.4c618

modelsim.ini Variables
WLFOptimize

WLFOptimize
This variable specifies whether the viewing of waveforms is optimized.

Section [vsim]

Syntax
WLFOptimize = {0 | 1}

Arguments
• 0 — Off

• 1 — (default) On

You can override this variable by specifying vsim -nowlfopt.

Related Topics

See the WLF File Parameter Overview and the vsim -wlfopt command.

modelsim.ini Variables
WLFSaveAllRegions

ModelSim User’s Manual, v10.4c 619

WLFSaveAllRegions
This variable specifies the regions to save in the WLF file.

Section [vsim]

Syntax
WLSaveAllRegions = {0 | 1}

Arguments
• 0 — (default) Only save regions containing logged signals.

• 1 — Save all design hierarchy.

Related Topics

You can set this variable in the The Runtime Options Dialog.

ModelSim User’s Manual, v10.4c620

modelsim.ini Variables
WLFSimCacheSize

WLFSimCacheSize
This variable sets the number of megabytes for the WLF reader cache for the current simulation
dataset only. WLF reader caching caches blocks of the WLF file to reduce redundant file I/O.
This makes it easier to set different sizes for the WLF reader cache used during simulation, and
those used during post-simulation debug. If the WLFSimCacheSize variable is not specified,
the WLFCacheSize variable is used.

Section [vsim]

Syntax
WLFSimCacheSize = <n>

Arguments
• <n> — Any non-negative integer where the default is 500.

You can override this variable by specifying vsim -wlfsimcachesize.

Related Topics

See the WLFCacheSize variable and the WLF File Parameter Overview.

modelsim.ini Variables
WLFSizeLimit

ModelSim User’s Manual, v10.4c 621

WLFSizeLimit
This variable limits the WLF file by size (as closely as possible) to the specified number of
megabytes; if both size (WLFSizeLimit) and time (WLFTimeLimit) limits are specified the
most restrictive is used.

Section [vsim]

Syntax
WLFSizeLimit = <n>

Arguments
• <n> — Any non-negative integer in units of MB where the default is 0 (unlimited).

You can override this variable by specifying vsim -wlfslim.

Related Topics

WLFTimeLimit

Limiting the WLF File Size

WLF File Parameter Overview

ModelSim User’s Manual, v10.4c622

modelsim.ini Variables
WLFTimeLimit

WLFTimeLimit
This variable limits the WLF file by time (as closely as possible) to the specified amount of
time. If both time and size limits are specified the most restrictive is used.

Section [vsim]

Syntax
WLFTimeLimit = <n>

Arguments
• <n> — Any non-negative integer in units of MB where the default is 0 (unlimited).

You can override this variable by specifying vsim -wlftlim.

Related Topics

See the WLF File Parameter Overview and Limiting the WLF File Size.

You can set this variable in the The Runtime Options Dialog.

modelsim.ini Variables
WLFUpdateInterval

ModelSim User’s Manual, v10.4c 623

WLFUpdateInterval
This variable specifies the update interval for the WLF file. After the interval has elapsed, the
live data is flushed to the .wlf file, providing an up to date view of the live simulation. If you
specify 0, the live view of the wlf file is correct, however the file update lags behind the live
simulation.

Section [vsim]

Syntax
WLFUpdateInterval = <n>

Arguments
• <n> — Any non-negative integer in units of seconds where the default is 10 and 0 disables

updating.

ModelSim User’s Manual, v10.4c624

modelsim.ini Variables
WLFUseThreads

WLFUseThreads
This variable specifies whether the logging of information to the WLF file is performed using
multithreading.

Section [vsim]

Syntax
WLFUseThreads = {0 | 1}

Arguments
• 0 — (default) Off. Windows systems only, or when one processor is available.

• 1 — On Linux systems only, with more than one processor on the system. When this
behavior is enabled, the logging of information is performed by the secondary processor
while the simulation and other tasks are performed by the primary processor.

You can override this variable by specifying vsim -nowlfopt.

Commonly Used modelsim.ini Variables
Several of the more commonly used modelsim.ini variables are further explained below.

Tip: When a design is loaded, you can use the where command to display which
modelsim.ini or ModelSim Project File (.mpf) file is in use.

Common Environment Variables
You can use environment variables in the modelsim.ini file. Insert a dollar sign ($) before the
name of the environment variable so that its defined value is used. For example:

[Library]
work = $HOME/work_lib
test_lib = ./$TESTNUM/work
...
[vsim]
IgnoreNote = $IGNORE_ASSERTS
IgnoreWarning = $IGNORE_ASSERTS
IgnoreError = 0
IgnoreFailure = 0

Note
The MODEL_TECH environment variable is a special variable that is set by ModelSim
(it is not user-definable). ModelSim sets this value to the name of the directory from
which the VCOM or VLOG compilers or the VSIM simulator was invoked. This
directory is used by other ModelSim commands and operations to find the libraries.

modelsim.ini Variables
Commonly Used modelsim.ini Variables

ModelSim User’s Manual, v10.4c 625

Hierarchical Library Mapping
By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSim tools do not find a mapping in the modelsim.ini file, then they will
search only the library section of the initialization file specified by the "others" clause. For
example:

[Library]
asic_lib = /cae/asic_lib
work = my_work
others = /install_dir/modeltech/modelsim.ini

Since the file referred to by the "others" clause may itself contain an "others" clause, you can
use this feature to chain a set of hierarchical INI files for library mappings.

Creating a Transcript File
You can use the TranscriptFile variable to keep a record of everything that is sent to the
transcript from stdout: error messages, assertions, commands, command outputs, and so forth.

To do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the file
in which you would like to record the ModelSim history. You can also choose what type of data
to send to the transcript with the Stats variable.

; Save the command window contents to this file
TranscriptFile = trnscrpt

You can prevent overwriting older transcript files by including a pound sign (#) in the name of
the file. The simulator replaces the ’#’ character with the next available sequence number when
saving a new transcript file.

When you invoke vsim using the default modelsim.ini file, a transcript file is opened in the
current working directory. If you then change (cd) to another directory that contains a different
modelsim.ini file with a TranscriptFile variable setting, the simulator continues to save to the
original transcript file in the former location. You can change the location of the transcript file
to the current working directory by:

• changing the preference setting (Tools > Edit Preferences > By Name > Main > file).

• using the transcript file command.

To limit the amount of disk space used by the transcript file, you can set the maximum size of
the transcript file with the transcript sizelimit command.

You can disable the creation of the transcript file by using the following ModelSim command
immediately after ModelSim starts:

transcript file ""

ModelSim User’s Manual, v10.4c626

modelsim.ini Variables
Commonly Used modelsim.ini Variables

Related Topics

See the TranscriptFile and Stats variables

Using a Startup File
The system initialization file allows you to specify a command or a .do file that is to be executed
after the design is loaded. For example:

; VSIM Startup command
Startup = do mystartup.do

The line shown above instructs ModelSim to execute the commands in the DO file named
mystartup.do.

; VSIM Startup command
Startup = run -all

The line shown above instructs VSIM to run until there are no events scheduled.

Refer to the do command for additional information on creating DO files.

Turn Off Assertion Messages
You can turn off assertion messages from your VHDL code by setting a variable in the
modelsim.ini file. This option was added because some utility packages print a huge number of
warnings.

[vsim]
IgnoreNote = 1
IgnoreWarning = 1
IgnoreError = 1
IgnoreFailure = 1

Turn Off Warnings from Arithmetic Packages
You can disable warnings from the Synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsim]
NumericStdNoWarnings = 1
StdArithNoWarnings = 1

Force Command Defaults
The force command has -freeze, -drive, and -deposit arguments. When none of these is
specified, then -freeze is assumed for unresolved signals and -drive is assumed for resolved

modelsim.ini Variables
Commonly Used modelsim.ini Variables

ModelSim User’s Manual, v10.4c 627

signals. But if you prefer -freeze as the default for both resolved and unresolved signals, you
can change the defaults in the modelsim.ini file.

[vsim]
; Default Force Kind
; The choices are freeze, drive, or deposit
DefaultForceKind = freeze

Related Topics

See the force command.

Restart Command Defaults
The restart command has -force, -nobreakpoint, -nofcovers, -nolist, -nolog, and -nowave
arguments. You can set any of these as defaults by entering the following line in the
modelsim.ini file.

DefaultRestartOptions = <options>

where <options> can be one or more of -force, -nobreakpoint, -nofcovers, -nolist, -nolog, and
-nowave.

Example:

DefaultRestartOptions = -nolog -force

Related Topics

See the restart command.

VHDL Standard
You can specify which version of the 1076 Std ModelSim follows by default using the
VHDL93 variable.

[vcom]
; VHDL93 variable selects language version as the default.
; Default is VHDL-2002.
; Value of 0 or 1987 for VHDL-1987.
; Value of 1 or 1993 for VHDL-1993.
; Default or value of 2 or 2002 for VHDL-2002.
VHDL93 = 2002

Related Topics

See the VHDL93 variable.

ModelSim User’s Manual, v10.4c628

modelsim.ini Variables
Commonly Used modelsim.ini Variables

Delay Opening VHDL Files
You can delay the opening of VHDL files with an entry in the modelsim.ini file if you wish.
Normally VHDL files are opened when the file declaration is elaborated. If the DelayFileOpen
option is enabled, then the file is not opened until the first read or write to that file.

[vsim]
DelayFileOpen = 1

Related Topics

See the DelayFileOpen variable.

ModelSim User’s Manual, v10.4c 629

Appendix B
Location Mapping

Pathnames to source files are recorded in libraries by storing the working directory from which
the compile is invoked and the pathname to the file as specified in the invocation of the
compiler. The pathname may be either a complete pathname or a relative pathname.

Referencing Source Files with Location Maps
ModelSim tools that reference source files from the library locate a source file in two ways.

• If the pathname stored in the library is complete, then this is the path used to reference
the file.

• If the pathname is relative, then the tool looks for the file relative to the current working
directory. If this file does not exist, then the path relative to the working directory stored
in the library is used.

This method of referencing source files generally works fine if the libraries are created and used
on a single system. However, when multiple systems access a library across a network, the
physical pathnames are not always the same and the source file reference rules do not always
work.

Using Location Mapping
Location maps are used to replace prefixes of physical pathnames in the library with
environment variables. The location map defines a mapping between physical pathname
prefixes and environment variables.

ModelSim tools open the location map file on invocation if the MGC_LOCATION_MAP
environment variable is set. If MGC_LOCATION_MAP is not set, ModelSim will look for a
file named "mgc_location_map" in the following locations, in order:

• the current directory

• your home directory

• the directory containing the ModelSim binaries

• the ModelSim installation directory

You can map your files in two steps.

ModelSim User’s Manual, v10.4c630

Location Mapping
Referencing Source Files with Location Maps

Procedure

1. Set the environment variable MGC_LOCATION_MAP to the path of your location map
file.

2. Specify the mappings from physical pathnames to logical pathnames:

$SRC
/home/vhdl/src
/usr/vhdl/src

$IEEE
/usr/modeltech/ieee

Pathname Syntax
The logical pathnames must begin with $ and the physical pathnames must begin with /. The
logical pathname is followed by one or more equivalent physical pathnames. Physical
pathnames are equivalent if they refer to the same physical directory (they just have different
pathnames on different systems).

How Location Mapping Works
When a pathname is stored, an attempt is made to map the physical pathname to a path relative
to a logical pathname. This is done by searching the location map file for the first physical
pathname that is a prefix to the pathname in question. The logical pathname is then substituted
for the prefix. For example, "/usr/vhdl/src/test.vhd" is mapped to "$SRC/test.vhd". If a mapping
can be made to a logical pathname, then this is the pathname that is saved. The path to a source
file entry for a design unit in a library is a good example of a typical mapping.

For mapping from a logical pathname back to the physical pathname, ModelSim expects an
environment variable to be set for each logical pathname (with the same name). ModelSim
reads the location map file when a tool is invoked. If the environment variables corresponding
to logical pathnames have not been set in your shell, ModelSim sets the variables to the first
physical pathname following the logical pathname in the location map. For example, if you
don't set the SRC environment variable, ModelSim will automatically set it to "/home/vhdl/src".

ModelSim User’s Manual, v10.4c 631

Appendix C
Error and Warning Messages

This appendix describes the messages and status information that ModelSim displays in the
Transcript window.

Message System
The ModelSim message system helps you identify and troubleshoot problems while using the
application. The messages display in a standard format in the Transcript window.

Accordingly, you can also access them from a saved transcript file (see Saving the Transcript
File for more details).

Message Format
The format for messages consists of several fields.

The fields for a given message appear as:

** <SEVERITY LEVEL>: ([<Tool>[-<Group>]]-<MsgNum>) <Message>

• SEVERITY LEVEL — may be one of the following:

• Tool — indicates which ModelSim tool was being executed when the message was
generated. For example, tool could be vcom, vdel, vsim, and so forth.

• Group — indicates the topic to which the problem is related. For example group could
be PLI, VCD, and so forth.

Example

** Error: (vsim-PLI-3071) ./src/19/testfile(77): $fdumplimit : Too few
arguments.

Table C-1. Severity Level Types

severity level meaning

Note This is an informational message.

Warning There may be a problem that will affect the accuracy of
your results.

Error The tool cannot complete the operation.

Fatal The tool cannot complete execution.

ModelSim User’s Manual, v10.4c632

Error and Warning Messages
Message System

Getting More Information
Each message is identified by a unique MsgNum id consisting of four numerical digits.

You can access additional information about a message using the unique id and the verror
command. For example:

% verror 3071
Message # 3071:
Not enough arguments are being passed to the specified system task or
function.

Message Severity Level
You can suppress or change the severity of notes, warnings, and errors that come from vcom,
vlog, and vsim commands. You cannot suppress Fatal or Internal messages or change their
severity.

There are three ways to modify the severity of or to suppress notes, warnings, and errors:

• Use the -error, -fatal, -note, -suppress, and -warning arguments to vcom, vlog, or vsim.
See the command descriptions in the Reference Manual for details on those arguments.

• Use the suppress command.

• Set a permanent default in the [msg_system] section of the modelsim.ini file. See
modelsim.ini Variables for more information.

Related Topics

See Suppression of Warning Messages.

Syntax Error Debug Flow
ModelSim commands issue errors when you provide design files that have syntax errors due to
typos or illegal code. You can work to debug these errors using this flow.

Procedure

1. Begin with the first error issued by the command.

2. Review the error message for a specific error number and information about the
filename and line number.

3. Use the verror command to access more information about the error number.

4. Review the area around the line number for typos in identifiers and correct as needed.

5. Review the previous line for a malformed token or missing semicolon (;) or other ending
bracket and correct as needed.

Error and Warning Messages
Suppression of Warning Messages

ModelSim User’s Manual, v10.4c 633

6. Review the specific line to ensure the syntax is legal based on the BNF of the language
used and correct as needed.

7. Run the command again and repeat these steps for any further messages.

Suppression of Warning Messages
You can suppress the display of a specific warning message or categories of warning messages
that are trivial or not relevant to operation of a given command. For example, you can suppress
warning messages about unbound components that you are not interested in seeing.

Each of the following commands provides an argument you can specify to control the display of
warning messages issued while that command is running:

• vcom — see Suppress Warning Messages for the vcom Command.

• vlog — see Suppress Warning Messages for the vlog Command.

• vsim — see Suppress Warning Messages for the vsim Command.

Suppress Warning Messages for the vcom Command

Use the vcom -nowarn <category_number> argument to suppress a specific warning message.
For example:

vcom -nowarn 1

suppresses unbound component warning messages.

Alternatively, warnings may be disabled for all compiles via the Main window Compile >
Compile Options menu selections or the modelsim.ini file (see modelsim.ini Variables).

The warning message category numbers are:

1 = unbound component
2 = process without a wait statement
3 = null range
4 = no space in time literal
5 = multiple drivers on unresolved signal
6 = VITAL compliance checks ("VitalChecks" also works)
7 = VITAL optimization messages
8 = lint checks
9 = signal value dependency at elaboration
10 = VHDL-1993 constructs in VHDL-1987 code
14 = locally static error deferred until simulation run

These numbers are unrelated to vcom arguments that are specified by numbers, such as
vcom -87 – which disables support for VHDL-1993 and 2002.

ModelSim User’s Manual, v10.4c634

Error and Warning Messages
Exit Codes

Suppress Warning Messages for the vlog Command

Use the vlog -nowarn <category_number> command to suppress a specific warning message.
The warning message category numbers for vlog are:

12 = non-LRM compliance in order to match Cadence behavior

Alternatively, you can use the +nowarn<CODE> argument with the vlog command to suppress
a specific warning message. Warning messages that can be disabled this way contain the
<CODE> string in square brackets, [].

For example:

vlog +nowarnDECAY

suppresses decay warning messages.

Suppress Warning Messages for the vsim Command

Use the vsim +nowarn<CODE> command to suppress a specific warning message. Warnings
that can be disabled include the <CODE> name in square brackets [] in the warning message.
For example:

vsim +nowarnTFMPC

suppresses warning messages about too few port connections.

You can use vsim -msglimit <msg_number>[,<msg_number>,…], or the MsgLimitCount
variable in the modelsim.ini file, to limit the number of times specific warning message(s) are
displayed to five. All instances of the specified messages are suppressed after the limit is
reached.

Exit Codes
When ModelSim exits a process, it displays a numerical exit code in the Transcript window.
Each code corresponds to a status condition of the process or operation.

Table C-1 lists the exit codes used by ModelSim commands, ,processes, and languages.

Table C-2. Exit Codes

Exit code Description

0 Normal (non-error) return

1 Incorrect invocation of tool

2 Previous errors prevent continuing

Error and Warning Messages
Exit Codes

ModelSim User’s Manual, v10.4c 635

3 Cannot create a system process (execv, fork, spawn, and so
forth.)

4 Licensing problem

5 Cannot create/open/find/read/write a design library

6 Cannot create/open/find/read/write a design unit

7 Cannot open/read/write/dup a file (open, lseek, write, mmap,
munmap, fopen, fdopen, fread, dup2, and so forth.)

8 File is corrupted or incorrect type, version, or format of file

9 Memory allocation error

10 General language semantics error

11 General language syntax error

12 Problem during load or elaboration

13 Problem during restore

14 Problem during refresh

15 Communication problem (Cannot create/read/write/close
pipe/socket)

16 Version incompatibility

19 License manager not found/unreadable/unexecutable
(vlm/mgvlm)

42 Lost license

43 License read/write failure

44 Modeltech daemon license checkout failure #44

45 Modeltech daemon license checkout failure #45

90 Assertion failure (SEVERITY_QUIT)

93 Reserved for Verification Run Manager

99 Unexpected error in tool

100 GUI Tcl initialization failure

101 GUI Tk initialization failure

102 GUI IncrTk initialization failure

111 X11 display error

202 Interrupt (SIGINT)

Table C-2. Exit Codes (cont.)

Exit code Description

ModelSim User’s Manual, v10.4c636

Error and Warning Messages
Miscellaneous Messages

Miscellaneous Messages
This section describes miscellaneous messages that may appear for various ModelSim
commands, processes, or design languages.

Compilation of DPI Export TFs Error

** Fatal: (vsim-3740) Can't locate a C compiler for compilation of
DPI export tasks/functions.

• Description — ModelSim was unable to locate a C compiler to compile the DPI
exported tasks or functions in your design.

• Suggested Action —Make sure that a C compiler is visible from where you are running
the simulation.

Empty port name warning

** WARNING: [8] <path/file_name>: empty port name in port list.

• Description — ModelSim reports these warnings if you use the -lint argument to vlog.
It reports the warning for any NULL module ports.

• Suggested action — If you want to suppress this warning, do not use the -lint argument.

204 Illegal instruction (SIGILL)

205 Trace trap (SIGTRAP)

206 Abort (SIGABRT)

208 Floating point exception (SIGFPE)

210 Bus error (SIGBUS)

211 Segmentation violation (SIGSEGV)

213 Write on a pipe with no reader (SIGPIPE)

214 Alarm clock (SIGALRM)

215 Software termination signal from kill (SIGTERM)

216 User-defined signal 1 (SIGUSR1)

217 User-defined signal 2 (SIGUSR2)

218 Child status change (SIGCHLD)

230 Exceeded CPU limit (SIGXCPU)

231 Exceeded file size limit (SIGXFSZ)

Table C-2. Exit Codes (cont.)

Exit code Description

Error and Warning Messages
Miscellaneous Messages

ModelSim User’s Manual, v10.4c 637

Lock message

waiting for lock by user@user. Lockfile is <library_path>/_lock

• Description — ModelSim creates a _lock file in a library when you begin a compilation
into that library; it is removed when the compilation completes. This prevents
simultaneous updates to the library. If a previous compile did not terminate properly,
ModelSim may fail to remove the _lock file.

• Suggested action — Manually remove the _lock file after making sure that no one else
is actually using that library.

Metavalue detected warning

Warning: NUMERIC_STD.">": metavalue detected, returning FALSE

• Description — This warning is an assertion being issued by the IEEE numeric_std
package. It indicates that there is an 'X' in the comparison.

• Suggested action — The message does not indicate which comparison is reporting the
problem since the assertion is coming from a standard package. To track the problem,
note the time the warning occurs, restart the simulation, and run to one time unit before
the noted time. At this point, start stepping the simulator until the warning appears. The
location of the blue arrow in a Source window will be pointing at the line following the
line with the comparison.

You can turn off these messages by setting the NumericStdNoWarnings variable to 1
from the command line or in the modelsim.ini file.

Sensitivity list warning

signal is read by the process but is not in the sensitivity list

• Description — ModelSim displays this message when you use the -check_synthesis
argument to vcom. This warning occurs for any signal that is read by the process but is
not in the sensitivity list.

• Suggested action — There are cases where you may purposely omit signals from the
sensitivity list even though they are read by the process. For example, in a strictly
sequential process, you may prefer to include only the clock and reset in the sensitivity
list because it would be a design error if any other signal triggered the process. In such
cases, your only option is to omit the -check_synthesis argument.

Too few port connections

** Warning (vsim-3017): foo.v(1422): [TFMPC] - Too few port
connections. Expected 2, found 1.

Region: /foo/tb

ModelSim User’s Manual, v10.4c638

Error and Warning Messages
Miscellaneous Messages

• Description — This warning occurs when an instantiation has fewer port connections
than the corresponding module definition. The warning does not necessarily mean
anything is wrong; it is legal in Verilog to have an instantiation that does not connect all
of the pins. However, someone that expects all pins to be connected would like to see
such a warning.

The following examples demonstrate legal instantiations that will and will not cause the
warning message.

o Module definition

module foo (a, b, c, d);

o Instantiation that does not connect all pins but will not produce the warning

foo inst1(e, f, g,); // positional association
foo inst1(.a(e), .b(f), .c(g), .d()); // named association

o Instantiation that does not connect all pins but will produce the warning

foo inst1(e, f, g); // positional association
foo inst1(.a(e), .b(f), .c(g)); // named association

o Any instantiation above will leave pin d unconnected but the first example has a
placeholder for the connection. Another example is:

foo inst1(e, , g, h);
foo inst1(.a(e), .b(), .c(g), .d(h));

• Suggested actions —

o Check for an extra comma at the end of the port list. For example:

model(a,b,)

The extra comma is legal Verilog, but it implies that there is a third port connection
that is unnamed.

o If you are purposefully leaving pins unconnected, you can disable these messages
using the +nowarnTFMPC argument to vsim.

Error and Warning Messages
Enforcing Strict 1076 Compliance

ModelSim User’s Manual, v10.4c 639

VSIM license lost

Console output:
Signal 0 caught... Closing vsim vlm child.
vsim is exiting with code 4
FATAL ERROR in license manager

transcript/vsim output:
** Error: VSIM license lost; attempting to re-establish.
Time: 5027 ns Iteration: 2
** Fatal: Unable to kill and restart license process.
Time: 5027 ns Iteration: 2

• Description — ModelSim queries the license server for a license at regular intervals.
Usually a "License Lost" error message indicates that network traffic is high, and
communication with the license server times out.

• Suggested action — Any action you can take to improve network communication with
the license server has a chance of solving or decreasing the frequency of this problem.

Enforcing Strict 1076 Compliance
The optional -pedanticerrors argument to vcom enforces strict compliance to the IEEE Std
1076-2002, IEEE Standard VHDL Language Reference Manual (LRM) in the cases listed
below. The default behavior for these cases is to issue a warning message that is not
suppressible.

If you compile with vcom-pedanticerrors, the warnings change to an error, unless otherwise
noted. Descriptions in quotes are actual warning/error messages emitted by vcom. As noted, in
some cases you can suppress the warning using vcom -nowarn [level].

• Type conversion between array types, where the element subtypes of the arrays do not
have identical constraints.

• "Extended identifier terminates at newline character (0xa)."

• "Extended identifier contains non-graphic character 0x%x."

• "Extended identifier \"%s\" contains no graphic characters."

• "Extended identifier \"%s\" did not terminate with backslash character."

• "An abstract literal and an identifier must have a separator between them."

This is for forming physical literals, which comprise an optional numeric literal,
followed by a separator, followed by an identifier (the unit name). Warning is level 4,
which means "-nowarn 4" will suppress it.

• In VHDL 1993 or 2002, a subprogram parameter was declared using VHDL 1987
syntax (which means that it was a class VARIABLE parameter of a file type, which is
the only way to do it in VHDL 1987 and is illegal in later VHDLs). Warning is level 10.

ModelSim User’s Manual, v10.4c640

Error and Warning Messages
Enforcing Strict 1076 Compliance

• "Shared variables must be of a protected type." Applies to VHDL 2002 only.

• Expressions evaluated during elaboration cannot depend on signal values. Warning is
level 9.

• "Non-standard use of output port '%s' in PSL expression." Warning is level 11.

• "Non-standard use of linkage port '%s' in PSL expression." Warning is level 11.

• Type mark of type conversion expression must be a named type or subtype, it can't have
a constraint on it.

• When the actual in a PORT MAP association is an expression, it must be a (globally)
static expression. The port must also be of mode IN.

• The expression in the CASE and selected signal assignment statements must follow the
rules given in Section 8.8 of the IEEE Std 1076-2002. In certain cases we can relax these
rules, but -pedanticerrors forces strict compliance.

• A CASE choice expression must be a locally static expression. We allow it to be only
globally static, but -pedanticerrors will check that it is locally static. Same rule for
selected signal assignment statement choices. Warning level is 8.

• When making a default binding for a component instantiation, ModelSim's non-standard
search rules found a matching entity. Section 5.2.2 of the IEEE Std 1076-2002 describes
the standard search rules. Warning level is 1.

• Both FOR GENERATE and IF GENERATE expressions must be globally static. We
allow non-static expressions unless -pedanticerrors is present.

• When the actual part of an association element is in the form of a conversion function
call [or a type conversion], and the formal is of an unconstrained array type, the return
type of the conversion function [type mark of the type conversion] must be of a
constrained array subtype. We relax this (with a warning) unless -pedanticerrors is
present when it becomes an error.

• OTHERS choice in a record aggregate must refer to at least one record element.

• In an array aggregate of an array type whose element subtype is itself an array, all
expressions in the array aggregate must have the same index constraint, which is the
element's index constraint. No warning is issued; the presence of -pedanticerrors will
produce an error.

• Non-static choice in an array aggregate must be the only choice in the only element
association of the aggregate.

• The range constraint of a scalar subtype indication must have bounds both of the same
type as the type mark of the subtype indication.

• The index constraint of an array subtype indication must have index ranges each of
whose both bounds must be of the same type as the corresponding index subtype.

Error and Warning Messages
Enforcing Strict 1076 Compliance

ModelSim User’s Manual, v10.4c 641

• When compiling VHDL 1987, various VHDL 1993 and 2002 syntax is allowed. Use
-pedanticerrors to force strict compliance. Warnings are all level 10.

• For a FUNCTION having a return type mark that denotes a constrained array subtype, a
RETURN statement expression must evaluate to an array value with the same index
range(s) and direction(s) as that type mark. This language requirement (Section 8.12 of
the IEEE Std 1076-2002) has been relaxed such that ModelSim displays only a compiler
warning and then performs an implicit subtype conversion at run time.

To enforce the prior compiler behavior, use vcom -pedanticerrors.

ModelSim User’s Manual, v10.4c642

Error and Warning Messages
Enforcing Strict 1076 Compliance

ModelSim User’s Manual, v10.4c 643

Appendix D
Verilog Interfaces to C

This appendix describes the ModelSim implementation of the Verilog interfaces:

• Verilog PLI (Programming Language Interface)

• SystemVerilog DPI (Direct Programming Interface).

These three interfaces provide a mechanism for defining tasks and functions that communicate
with the simulator through a C procedural interface. . In addition, you may write your own
interface applications.

Implementation Information
This chapter describes only the details of using the Verilog interfaces with ModelSim Verilog
and SystemVerilog.

• ModelSim SystemVerilog implements DPI as defined in the IEEE Std 1800-2005.

• The PLI implementation (TF and ACC routines) as defined in IEEE Std 1364-2001 is
retained for legacy PLI applications. However, this interface was deprecated in IEEE
Std 1364-2005 and subsequent IEEE Std 1800-2009 (SystemVerilog) standards.

GCC Compiler Support for use with C
Interfaces

To use GCC compilers with C interfaces, you must acquire the gcc/g++ compiler for your given
platform.

Related Topics

Compiling and Linking C Applications for Interfaces

Compiling and Linking C++ Applications for Interfaces

Registering PLI Applications
Each PLI application must register its system tasks and functions with the simulator, providing
the name of each system task and function and the associated callback routines.

Since many PLI applications already interface to Verilog-XL, ModelSim Verilog PLI
applications make use of the same mechanism to register information about each system task

ModelSim User’s Manual, v10.4c644

Verilog Interfaces to C
Registering PLI Applications

and function in an array of s_tfcell structures. This structure is declared in the veriuser.h include
file as follows:

typedef int (*p_tffn)();
typedef struct t_tfcell {

short type;/* USERTASK, USERFUNCTION, or USERREALFUNCTION */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */
p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn misctf; /* miscellaneous reason callback function */
char *tfname;/* name of system task or function */

/* The following fields are ignored by ModelSim Verilog */
int forwref;
char *tfveritool;
char *tferrmessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *namecell_p;
int warning_printed;

} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in the
IEEE Std 1364. The simulator calls these functions for various reasons. All callback functions
are optional, but most applications contain at least the calltf function, which is called when the
system task or function is executed in the Verilog code. The first argument to the callback
functions is the value supplied in the data field (many PLI applications don't use this field). The
type field defines the entry as either a system task (USERTASK) or a system function that
returns either a register (USERFUNCTION) or a real (USERREALFUNCTION). The tfname
field is the system task or function name (it must begin with $). The remaining fields are not
used by ModelSim Verilog.

On loading of a PLI application, the simulator first looks for an init_usertfs function, and then a
veriusertfs array. If init_usertfs is found, the simulator calls that function so that it can call
mti_RegisterUserTF() for each system task or function defined. The mti_RegisterUserTF()
function is declared in veriuser.h as follows:

void mti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the simulation
because the simulator de-references the usertf pointer to call the callback functions. We
recommend that you define your entries in an array, with the last entry set to 0. If the array is
named veriusertfs (as is the case for linking to Verilog-XL), then you don't have to provide an
init_usertfs function, and the simulator will automatically register the entries directly from the
array (the last entry must be 0). For example,

Verilog Interfaces to C
Registering DPI Applications

ModelSim User’s Manual, v10.4c 645

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, abc_calltf, 0, "$abc"},
{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},
{0} /* last entry must be 0 */

};

Alternatively, you can add an init_usertfs function to explicitly register each entry from the
array:

void init_usertfs()
{

p_tfcell usertf = veriusertfs;
while (usertf->type)

mti_RegisterUserTF(usertf++);
}

It is an error if a PLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be a dynamically loadable library, see Compiling
and Linking C Applications for Interfaces). The PLI applications are specified as follows (note
that on a Windows platform the file extension would be .dll):

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used simultaneously. The libraries
are loaded in the order listed above. Environment variable references can be used in the paths to
the libraries in all cases.

Registering DPI Applications
DPI applications do not need to be registered. However, each DPI imported or exported task or
function must be identified using SystemVerilog ‘import “DPI-C”’ or ‘export “DPI-C”’syntax.

Examples of the syntax follow:

export "DPI-C" task t1;
task t1(input int i, output int o);
.
.
.
end task

ModelSim User’s Manual, v10.4c646

Verilog Interfaces to C
DPI Use Flow

import "DPI-C" function void f1(input int i, output int o);

Your C code must provide imported functions or tasks. An imported task must return an int
value, "1" indicating that it is returning due to a disable, or "0" indicating otherwise.

The default flow is to supply C/C++ files on the vlog command line. The vlog compiler will
automatically compile the specified C/C++ files and prepare them for loading into the
simulation. For example,

vlog dut.v imports.c
vsim top -do <do_file>

Optionally, DPI C/C++ files can be compiled externally into a shared library. For example, third
party IP models may be distributed in this way. The shared library may then be loaded into the
simulator with either the command line option -sv_lib <lib> or -sv_liblist <bootstrap_file>.
For example,

vlog dut.v
gcc -shared -Bsymbolic -o imports.so imports.c
vsim -sv_lib imports top -do <do_file>

The -sv_lib option specifies the shared library name, without an extension. A file extension is
added by the tool, as appropriate to your platform. For a list of file extensions accepted by
platform, see DPI File Loading.

You can also use the command line options -sv_root and -sv_liblist to control the process for
loading imported functions and tasks. These options are defined in the IEEE Std 1800-2005.

DPI Use Flow
Correct use of ModelSim DPI depends on the flow presented in this section.

Verilog Interfaces to C
DPI Use Flow

ModelSim User’s Manual, v10.4c 647

Figure D-1. DPI Use Flow Diagram

1. Run vlog to generate a dpiheader.h file.

This file defines the interface between C and ModelSim for exported and imported tasks
and functions. Though the dpiheader.h is a user convenience file rather than a
requirement, including dpiheader.h in your C code can immediately solve problems
caused by an improperly defined interface. An example command for creating the
header file would be:

vlog -dpiheader dpiheader.h files.v

2. Include the dpiheader.h file in your C code.

ModelSim recommends that any user DPI C code that accesses exported tasks/functions,
or defines imported tasks/functions, should include the dpiheader.h file. This allows the
C compiler to verify the interface between C and ModelSim.

3. Compile the C code using vlog. For example:

vlog *.c

4. Simulate the design. For example

vsim top

vlog -dpiheader dpiheader.h *.v

.v

dpiheader.h

.c

vsim

(include into .c files)

vlog *.c

ModelSim User’s Manual, v10.4c648

Verilog Interfaces to C
DPI Use Flow

DPI and the vlog Command
You can specify C/C++ files on the vlog command line, and the command will invoke the
correct C/C++ compiler based on the file type passed. For example, you can enter the following
command:

vlog verilog1.v verilog2.v mydpicode.c

This vlog command compiles all Verilog files and C/C++ files into the work library. The vsim
command automatically loads the compiled C code at elaboration time.

It is possible to pass custom C compiler flags to vlog using the -ccflags option. vlog does not
check the validity of option(s) you specify with -ccflags. The options are directly passed on to
the compiler, and if they are not valid, an error message is generated by the C compiler.

You can also specify C/C++ files and options in a -f file, and they will be processed the same
way as Verilog files and options in a -f file.

It is also possible to pass custom C/C++ linker flags to vsim using the -ldflags option. For
example,

vsim top -ldflags ‘-lcrypt’

This command tells vsim to pass -lcrypt to the GCC linker.

Deprecated Legacy DPI Flows
Legacy use flows may be in use for certain designs from previous versions of ModelSim.

These customized flows may have involved use of -dpiexportobj, -dpiexportonly, or -
nodpiexports, and may have been employed for the following scenarios:

• runtime work library locked

• running parallel vsim simulations on the same design (distributed vsim simulation)

None of the former special handling is required for these scenarios as of version 10.0d and
above. The recommended use flow is as documented in “DPI Use Flow”.

When Your DPI Export Function is Not Getting
Called

This issue can arise in your C code due to the way the C linker resolves symbols. It happens if a
name you choose for a SystemVerilog export function happens to match a function name in a
custom, or even standard C library (for example, “pow”). In this case, your C compiler will bind
calls to the function in that C library, rather than to the export function in the SystemVerilog
simulator.

Verilog Interfaces to C
DPI Use Flow

ModelSim User’s Manual, v10.4c 649

The symptoms of such a misbinding can be difficult to detect. Generally, the misbound function
silently returns an unexpected or incorrect value.

To determine if you have this type of name aliasing problem, consult the C library
documentation (either the online help or man pages) and look for function names that match any
of your export function names. You should also review any other shared objects linked into
your simulation and look for name aliases there. To get a comprehensive list of your export
functions, you can use the vsim -dpiheader option and review the generated header file.

Troubleshooting a Missing DPI Import Function
DPI uses C function linkage. If your DPI application is written in C++, it is important to
remember to use extern "C" declaration syntax appropriately. Otherwise the C++ compiler will
produce a mangled C++ name for the function, and the simulator is not able to locate and bind
the DPI call to that function.

Simplified Import of Library Functions
In addition to the traditional method of importing HDL interface, and C library functions, a
simplified method can be used: you can declare HDL interface functions as DPI-C imports.
When you declare HDL interface functions as DPI-C imports, the C implementation of the
import tf is not required.

Also, on most platforms (see Platform Specific Information), you can declare most standard C
library functions as DPI-C imports.

The following example is processed directly, without DPI C code:

package cmath;
 import "DPI-C" function real sin(input real x);
 import "DPI-C" function real sqrt(input real x);
endpackage

package fli;
 import "DPI-C" function mti_Cmd(input string cmd);
endpackage

module top;
 import cmath::*;
 import fli::*;
 int status, A;
 initial begin
 $display("sin(0.98) = %f", sin(0.98));
 $display("sqrt(0.98) = %f", sqrt(0.98));
 status = mti_Cmd("change A 123");
 $display("A = %1d, status = %1d", A, status);
 end
endmodule

To simulate, you would simply enter a command such as: vsim top.

ModelSim User’s Manual, v10.4c650

Verilog Interfaces to C
DPI Use Flow

Precompiled packages are available with that contain import declarations for certain commonly
used C calls.

<installDir>/verilog_src/dpi_cpack/dpi_cpackages.sv

You do not need to compile this file, it is automatically available as a built-in part of the
SystemVerilog simulator.

Platform Specific Information

On Windows, only FLI and PLI commands may be imported in this fashion. C library functions
are not automatically importable. They must be wrapped in user DPI C functions.

Optimizing DPI Import Call Performance
You can optimize the passing of some array data types across a language boundary.

Most of the overhead associated with argument passing is eliminated if the following conditions
are met:

• DPI import is declared as a DPI-C function, not a task.

• DPI function port mode is input or inout.

• DPI calls are not hierarchical. The actual function call argument must not make use of
hierarchical identifiers.

• For actual array arguments and return values, do not use literal values or concatenation
expressions. Instead, use explicit variables of the same datatype as the formal array
arguments or return type.

• DPI formal arguments can be either fixed-size or open array. They can use the element
types int, shortint, byte, or longint.

Fixed-size array arguments — declaration of the actual array and the formal array must
match in both direction and size of the dimension. For example: int_formal[2:0] and
int_actual[4:2] match and are qualified for optimization. int_formal[2:0] and
int_actual[2:4] do not match and will not be optimized.

Open-array arguments — Actual arguments can be either fixed-size arrays or dynamic
arrays. The topmost array dimension should be the only dimension considered open. All
lower dimensions should be fixed-size subarrays or scalars. High performance actual
arguments: int_arr1[10], int_arr2[], int_arr3[][2] int_arr4[][2][2]. A low performance
actual argument would be slow_arr[2][][2].

Verilog Interfaces to C
DPI Use Flow

ModelSim User’s Manual, v10.4c 651

Making Verilog Function Calls from non-DPI C
Models

Working in certain FLI or PLI C applications, you might want to interact with the simulator by
directly calling Verilog DPI export functions. Such applications may include complex 3rd party
integrations, or multi-threaded C test benches. Normally calls to export functions from PLI or
FLI code are illegal. These calls are referred to as out-of-the-blue calls, since they do not
originate in the controlled environment of a DPI import tf.

You can configure the ModelSim tool to allow out-of-the-blue Verilog function calls either for
all simulations (DpiOutOfTheBlue = 1 in modelsim.ini file), or for a specific simulation (vsim
-dpioutoftheblue 1).

The following is an example in which PLI code calls a SystemVerilog export function:

vlog test.sv
gcc -shared -o pli.so pli.c
vsim -pli pli.so top -dpioutoftheblue 1

One restriction applies: only Verilog functions may be called out-of-the-blue. It is illegal to call
Verilog tasks in this way. The simulator issues an error if it detects such a call.

Calling C/C++ Functions Defined in PLI Shared
Objects from DPI Code

In some instances you may need to share C/C++ code across different shared objects that
contain PLI and/or DPI code. There are two ways you can achieve this goal:

• The easiest is to include the shared code in an object containing PLI code, and then
make use of the vsim -gblso option.

• Another way is to define a standalone shared object that only contains shared function
definitions, and load that using vsim -gblso. In this case, the process does not require
PLI or DPI loading mechanisms, such as -pli or -sv_lib.

You should also take into consideration what happens when code in one global shared object
needs to call code in another global shared object. In this case, place the -gblso argument for the
calling code on the vsim command line after you place the -gblso argument for the called code.
This is because vsim loads the files in the specified order and you must load called code before
calling code in all cases.

Circular references aren't possible to achieve. If you have that kind of condition, you are better
off combining the two shared objects into a single one.

ModelSim User’s Manual, v10.4c652

Verilog Interfaces to C
Compiling and Linking C Applications for Interfaces

Compiling and Linking C Applications for
Interfaces

The following platform-specific instructions show you how to compile and link your
HDL interface C applications so that they can be loaded by ModelSim. Various native C/C++
compilers are supported on different platforms. The gcc compiler is supported on all platforms.

The following HDL interface routines are declared in the include files located in the ModelSim
<install_dir>/include directory:

• acc_user.h — declares the ACC routines

• veriuser.h — declares the TF routines

• svdpi.h — declares DPI routines

The following instructions assume that the HDL interface application is in a single source file.
For multiple source files, compile each file as specified in the instructions and link all of the
resulting object files together with the specified link instructions.

Although compilation and simulation switches are platform-specific, loading shared libraries is
the same for all platforms. For information on loading libraries for HDL interface see PLI and
VPI File Loading. For DPI loading instructions, see DPI File Loading.

Windows Platforms — C
Windows platforms for C are supported for Microsoft Visual Studio and MinGW.

• Microsoft Visual Studio 2008

For 32-bit:

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj <install_dir>\win32\mtipli.lib -out:app.dll

For 64-bit:

cl -c -I<install_dir>\modeltech\include app.c
link -dll -export:<init_function> app.obj <install_dir>\win64\mtipli.lib -out:app.dll

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there
is no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs".

If you have Cygwin installed, make sure that the Cygwin link.exe executable is not in
your search path ahead of the Microsoft Visual Studio 2008 link executable. If you
mistakenly bind your dll's with the Cygwin link.exe executable, the .dll will not function
properly. It may be best to rename or remove the Cygwin link.exe file to permanently
avoid this scenario.

• MinGW

Verilog Interfaces to C
Compiling and Linking C++ Applications for Interfaces

ModelSim User’s Manual, v10.4c 653

For 32-bit:

gcc -c -I<install_dir>\include app.c
gcc -shared -Bsymbolic -o app.dll app.o -L<install_dir>\win32 -lmtipli

The ModelSim tool requires the use of the MinGW gcc compiler rather than the Cygwin
gcc compiler. Remember to add the path to your gcc executable in the Windows
environment variables.

Compiling and Linking C++ Applications for
Interfaces

ModelSim does not have direct support for any language other than standard C; however, C++
code can be loaded and executed under certain conditions.

Since ModelSim's HDL interface functions have a standard C prototype, you must prevent the
C++ compiler from mangling the HDL interface function names. This can be accomplished by
using the following type of extern:

extern "C"
{
 <HDL interface application function prototypes>
}

The header files veriuser.h, acc_user.h, and vpi_user.h, svdpi.h, and dpiheader.h already
include this type of extern. You must also put the HDL interface shared library entry point
(veriusertfs, init_usertfs, or vlog_startup_routines) inside of this type of extern.

You must also place an ‘extern “C”’ declaration immediately before the body of every import
function in your C++ source code, for example:

extern "C"
int myimport(int i)
{
 vpi_printf("The value of i is %d\n", i);
}

The following platform-specific instructions show you how to compile and link your
HDL interface C++ applications so that they can be loaded by ModelSim.

Although compilation and simulation switches are platform-specific, loading shared libraries is
the same for all platforms. For information on loading libraries, see DPI File Loading.

For PLI only
If app.so is not in your current directory you must tell Linux where to search for the shared
object. You can do this one of two ways:

ModelSim User’s Manual, v10.4c654

Verilog Interfaces to C
Compiling and Linking C++ Applications for Interfaces

• Add a path before app.so in the foreign attribute specification. (The path may include
environment variables.)

• Put the path in a UNIX shell environment variable:
LD_LIBRARY_PATH_32= <library path without filename> (32-bit)
or
LD_LIBRARY_PATH_64= <library path without filename> (64-bit)

Windows Platforms — C++
Windows platforms for C++ are supported for Microsoft Visual Studio and MinGW.

• Microsoft Visual Studio 2008

For 32-bit:

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj

<install_dir>\modeltech\win32\mtipli.lib /out:app.dll

For 64-bit:

cl -c [-GX] -I<install_dir>\modeltech\include app.cxx
link -dll -export:<init_function> app.obj

<install_dir>\modeltech\win64\mtipli.lib /out:app.dll

The -GX argument enables exception handling.

For the Verilog PLI, the <init_function> should be "init_usertfs". Alternatively, if there
is no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs".

If you have Cygwin installed, make sure that the Cygwin link.exe executable is not in
your search path ahead of the Microsoft Visual C link executable. If you mistakenly bind
your dll's with the Cygwin link.exe executable, the .dll will not function properly. It may
be best to rename or remove the Cygwin link.exe file to permanently avoid this scenario.

• MinGW

For 32-bit:

g++ -c -I<install_dir>\modeltech\include app.cpp
g++ -shared -Bsymbolic -o app.dll app.o -L<install_dir>\modeltech\win32 -lmtipli

For 64-bit:

g++ -c -I<install_dir>\modeltech\include app.cpp
g++ -shared -Bsymbolic -o app.dll app.o -L<install_dir>\modeltech\win64 -lmtipli

ModelSim requires the use of the MinGW gcc compiler rather than the Cygwin gcc
compiler.

Verilog Interfaces to C
Specifying Application Files to Load

ModelSim User’s Manual, v10.4c 655

Specifying Application Files to Load
PLI and VPI file loading is identical. DPI file loading uses switches to the vsim command.

PLI and VPI File Loading
The PLI/VPI applications are specified as follows:

• As a list in the Veriuser entry in the modelsim.ini file:

Veriuser = pliapp1.so pliapp2.so pliappn.so

• As a list in the PLIOBJS environment variable:

% setenv PLIOBJS "pliapp1.so pliapp2.so pliappn.so"

• As a -pli argument to the simulator (multiple arguments are allowed):

-pli pliapp1.so -pli pliapp2.so -pli pliappn.so

Note
On Windows platforms, the file names shown above should end with .dll rather than .so.

The various methods of specifying PLI/VPI applications can be used simultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used in the
paths to the libraries in all cases.

See also “modelsim.ini Variables” for more information on the modelsim.ini file.

DPI File Loading
This section applies only to external compilation flows. It is not necessary to use any of these
options in the default autocompile flow (using vlog to compile).

DPI applications are specified to vsim using the following SystemVerilog arguments:

Table D-1. vsim Arguments for DPI Application Using External Compilation
Flows

Argument Description

-sv_lib <name> specifies a library name to be searched and used. No filename
extensions must be specified. (The extensions ModelSim expects
are: .dll for Win32/Win64, .so for all other platforms.)

-sv_root <name> specifies a new prefix for shared objects as specified by -sv_lib

ModelSim User’s Manual, v10.4c656

Verilog Interfaces to C
DPI Example

When the simulator finds an imported task or function, it searches for the symbol in the
collection of shared objects specified using these arguments.

For example, you can specify the DPI application as follows:

vsim -sv_lib dpiapp1 -sv_lib dpiapp2 -sv_lib dpiappn top

DPI Example
The following example is a trivial but complete DPI application. For additional examples, see
the <install_dir>/modeltech/examples/systemverilog/dpi directory.

hello_c.c:
#include "svdpi.h"
#include "dpiheader.h"
int c_task(int i, int *o)
{

printf("Hello from c_task()\n");
verilog_task(i, o); /* Call back into Verilog */
*o = i;
return(0); /* Return success (required by tasks) */

}
hello.v:
module hello_top;

int ret;
export "DPI-C" task verilog_task;
task verilog_task(input int i, output int o);

#10;
$display("Hello from verilog_task()");

endtask
import "DPI-C" context task c_task(input int i, output int o);
initial
begin

c_task(1, ret); // Call the c task named 'c_task()'
end

endmodule
Compile the Verilog code:

% vlib work
% vlog -sv -dpiheader dpiheader.h hello.v hello_c.c

Simulate the design:

-sv_liblist
<bootstrap_file>

specifies a “bootstrap file” to use. See The format for
<bootstrap_file> is as follows:

#!SV_LIBRARIES
<path>/<to>/<shared>/<library>
<path>/<to>/<another>
...

No extension is expected on the shared library.

Table D-1. vsim Arguments for DPI Application Using External Compilation
Flows (cont.)

Argument Description

Verilog Interfaces to C
The PLI Callback reason Argument

ModelSim User’s Manual, v10.4c 657

% vsim -c hello_top -do "run -all; quit -f"
Loading work.hello_c
VSIM 1> run -all
Hello from c_task()
Hello from verilog_task()
VSIM 2> quit

The PLI Callback reason Argument
The second argument to a PLI callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See the IEEE Std 1364 for a
description of the reason constants. The following details relate to ModelSim Verilog, and may
not be obvious in the IEEE Std 1364. Specifically, the simulator passes the reason values to the
misctf callback functions under the following circumstances:

reason_endofcompile
For the completion of loading the design.

reason_finish
For the execution of the $finish system task or the quit command.

reason_startofsave
For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its data with calls to tf_write_save() until it is called with reason_save.

reason_save
For the execution of the checkpoint command. This is when the PLI application must
save its state with calls to tf_write_save().

reason_startofrestart
For the start of execution of the restore command, but before any of the simulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restore its state with calls to tf_read_restart() until it is called with
reason_restart. The reason_startofrestart value is passed only for a restore command,
and not in the case that the simulator is invoked with -restore.

reason_restart
For the execution of the restore command. This is when the PLI application must
restore its state with calls to tf_read_restart().

reason_reset
For the execution of the restart command. This is when the PLI application should free
its memory and reset its state. We recommend that all PLI applications reset their
internal state during a restart as the shared library containing the PLI code might not be
reloaded. (See the -keeploaded and -keeploadedrestart arguments to vsim for related
information.)

reason_endofreset
For the completion of the restart command, after the simulation state has been reset but
before the design has been reloaded.

ModelSim User’s Manual, v10.4c658

Verilog Interfaces to C
The sizetf Callback Function

reason_interactive
For the execution of the $stop system task or any other time the simulation is interrupted
and waiting for user input.

reason_scope
For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope() if the callback_flag argument is
non-zero.

reason_paramvc
For the change of value on the system task or function argument.

reason_synch
For the end of time step event scheduled by tf_synchronize().

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize().

reason_reactivate
For the simulation event scheduled by tf_setdelay().

reason_paramdrc
Not supported in ModelSim Verilog.

reason_force
Not supported in ModelSim Verilog.

reason_release
Not supported in ModelSim Verilog.

reason_disable
Not supported in ModelSim Verilog.

The sizetf Callback Function
A user-defined system function specifies the width of its return value with the sizetf callback
function, and the simulator calls this function while loading the design. The following details on
the sizetf callback function are not found in the IEEE Std 1364:

• If you omit the sizetf function, then a return width of 32 is assumed.

• The sizetf function should return 0 if the system function return value is of Verilog type
"real".

• The sizetf function should return -32 if the system function return value is of Verilog
type "integer".

PLI Object Handles
Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid

Verilog Interfaces to C
Support for VHDL Objects

ModelSim User’s Manual, v10.4c 659

throughout the simulation, even after the acc_close() routine is called. However, some of the
objects are created on demand, and the handles to these objects become invalid after acc_close()
is called. The following object types are created on demand in ModelSim Verilog:

accOperator (acc_handle_condition)
accWirePath (acc_handle_path)
accTerminal (acc_handle_terminal, acc_next_cell_load, acc_next_driver, and

acc_next_load)
accPathTerminal (acc_next_input and acc_next_output)
accTchkTerminal (acc_handle_tchkarg1 and acc_handle_tchkarg2)
accPartSelect (acc_handle_conn, acc_handle_pathin, and acc_handle_pathout)

If your PLI application uses these types of objects, then it is important to call acc_close() to free
the memory allocated for these objects when the application is done using them.

If your PLI application places value change callbacks on accRegBit or accTerminal objects, do
not call acc_close() while these callbacks are in effect.

Support for VHDL Objects
The PLI ACC routines also provide limited support for VHDL objects in either an all VHDL
design or a mixed VHDL/Verilog design.

The following table lists the VHDL objects for which handles may be obtained and their type
and fulltype constants:

Table D-2. Supported VHDL Objects

Type Fulltype Description

accArchitecture accArchitecture instantiation of an architecture

accArchitecture accEntityVitalLevel0 instantiation of an architecture whose entity is
marked with the attribute VITAL_Level0

accArchitecture accArchVitalLevel0 instantiation of an architecture which is
marked with the attribute VITAL_Level0

accArchitecture accArchVitalLevel1 instantiation of an architecture which is
marked with the attribute VITAL_Level1

accArchitecture accForeignArch instantiation of an architecture which is
marked with the attribute FOREIGN and
which does not contain any VHDL statements
or objects other than ports and generics

accArchitecture accForeignArchMixed instantiation of an architecture which is
marked with the attribute FOREIGN and
which contains some VHDL statements or
objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

ModelSim User’s Manual, v10.4c660

Verilog Interfaces to C
Support for VHDL Objects

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include file. All
of these objects (except signals) are scope objects that define levels of hierarchy in the structure
window. Currently, the PLI ACC interface has no provision for obtaining handles to generics,
types, constants, variables, attributes, subprograms, and processes.

accForeign accShadow foreign scope created by mti_CreateRegion()

accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSignal signal declaration

Table D-2. Supported VHDL Objects (cont.)

Type Fulltype Description

Verilog Interfaces to C
IEEE Std 1364 ACC Routines

ModelSim User’s Manual, v10.4c 661

IEEE Std 1364 ACC Routines
ModelSim Verilog supports the following ACC routines:

Table D-3. Supported ACC Routines

Routines

acc_append_delays
acc_append_pulsere
acc_close
acc_collect
acc_compare_handles
acc_configure
acc_count
acc_fetch_argc
acc_fetch_argv
acc_fetch_attribute
acc_fetch_attribute_int
acc_fetch_attribute_str
acc_fetch_defname
acc_fetch_delay_mode
acc_fetch_delays
acc_fetch_direction
acc_fetch_edge
acc_fetch_fullname
acc_fetch_fulltype
acc_fetch_index
acc_fetch_location
acc_fetch_name
acc_fetch_paramtype
acc_fetch_paramval
acc_fetch_polarity
acc_fetch_precision
acc_fetch_pulsere
acc_fetch_range
acc_fetch_size
acc_fetch_tfarg
acc_fetch_itfarg
acc_fetch_tfarg_int
acc_fetch_itfarg_int
acc_fetch_tfarg_str
acc_fetch_itfarg_str
acc_fetch_timescale_info
acc_fetch_type
acc_fetch_type_str
acc_fetch_value

acc_free
acc_handle_by_name
acc_handle_calling_mod_m
acc_handle_condition
acc_handle_conn
acc_handle_hiconn
acc_handle_interactive_scope
acc_handle_loconn
acc_handle_modpath
acc_handle_notifier
acc_handle_object
acc_handle_parent
acc_handle_path
acc_handle_pathin
acc_handle_pathout
acc_handle_port
acc_handle_scope
acc_handle_simulated_net
acc_handle_tchk
acc_handle_tchkarg1
acc_handle_tchkarg2
acc_handle_terminal
acc_handle_tfarg
acc_handle_itfarg
acc_handle_tfinst
acc_initialize

acc_next
acc_next_bit
acc_next_cell
acc_next_cell_load
acc_next_child
acc_next_driver
acc_next_hiconn
acc_next_input
acc_next_load
acc_next_loconn
acc_next_modpath
acc_next_net
acc_next_output
acc_next_parameter
acc_next_port
acc_next_portout
acc_next_primitive
acc_next_scope
acc_next_specparam
acc_next_tchk
acc_next_terminal
acc_next_topmod
acc_object_in_typelist
acc_object_of_type
acc_product_type
acc_product_version
acc_release_object
acc_replace_delays
acc_replace_pulsere
acc_reset_buffer
acc_set_interactive_scope
acc_set_pulsere
acc_set_scope
acc_set_value
acc_vcl_add
acc_vcl_delete
acc_version

ModelSim User’s Manual, v10.4c662

Verilog Interfaces to C
IEEE Std 1364 ACC Routines

acc_fetch_paramval() cannot be used on 64-bit platforms to fetch a string value of a parameter.
Because of this, the function acc_fetch_paramval_str() has been added to the PLI for this use.
acc_fetch_paramval_str() is declared in acc_user.h. It functions in a manner similar to
acc_fetch_paramval() except that it returns a char *. acc_fetch_paramval_str() can be used on
all platforms.

Verilog Interfaces to C
IEEE Std 1364 TF Routines

ModelSim User’s Manual, v10.4c 663

IEEE Std 1364 TF Routines
ModelSim Verilog supports the following TF (task and function) routines;

SystemVerilog DPI Access Routines
ModelSim SystemVerilog supports all routines defined in the "svdpi.h" file defined in the IEEE
Std 1800-2005.

Table D-4. Supported TF Routines

Routines

io_mcdprintf
io_printf
mc_scan_plusargs
tf_add_long
tf_asynchoff
tf_iasynchoff
tf_asynchon
tf_iasynchon
tf_clearalldelays
tf_iclearalldelays
tf_compare_long
tf_copypvc_flag
tf_icopypvc_flag
tf_divide_long
tf_dofinish
tf_dostop
tf_error
tf_evaluatep
tf_ievaluatep
tf_exprinfo
tf_iexprinfo
tf_getcstringp
tf_igetcstringp
tf_getinstance
tf_getlongp
tf_igetlongp
tf_getlongtime
tf_igetlongtime
tf_getnextlongtime
tf_getp
tf_igetp
tf_getpchange
tf_igetpchange
tf_getrealp
tf_igetrealp

tf_getrealtime
tf_igetrealtime
tf_gettime
tf_igettime
tf_gettimeprecision
tf_igettimeprecision
tf_gettimeunit
tf_igettimeunit
tf_getworkarea
tf_igetworkarea
tf_long_to_real
tf_longtime_tostr
tf_message
tf_mipname
tf_imipname
tf_movepvc_flag
tf_imovepvc_flag
tf_multiply_long
tf_nodeinfo
tf_inodeinfo
tf_nump
tf_inump
tf_propagatep
tf_ipropagatep
tf_putlongp
tf_iputlongp
tf_putp
tf_iputp
tf_putrealp
tf_iputrealp
tf_read_restart
tf_real_to_long
tf_rosynchronize
tf_irosynchronize

tf_scale_longdelay
tf_scale_realdelay
tf_setdelay
tf_isetdelay
tf_setlongdelay
tf_isetlongdelay
tf_setrealdelay
tf_isetrealdelay
tf_setworkarea
tf_isetworkarea
tf_sizep
tf_isizep
tf_spname
tf_ispname
tf_strdelputp
tf_istrdelputp
tf_strgetp
tf_istrgetp
tf_strgettime
tf_strlongdelputp
tf_istrlongdelputp
tf_strrealdelputp
tf_istrrealdelputp
tf_subtract_long
tf_synchronize
tf_isynchronize
tf_testpvc_flag
tf_itestpvc_flag
tf_text
tf_typep
tf_itypep
tf_unscale_longdelay
tf_unscale_realdelay
tf_warning
tf_write_save

ModelSim User’s Manual, v10.4c664

Verilog Interfaces to C
Verilog-XL Compatible Routines

Verilog-XL Compatible Routines
The following PLI routines are not defined in IEEE Std 1364, but ModelSim Verilog provides
them for compatibility with Verilog-XL.

char *acc_decompile_exp(handle condition)

This routine provides similar functionality to the Verilog-XL acc_decompile_expr routine. The
condition argument must be a handle obtained from the acc_handle_condition routine. The
value returned by acc_decompile_exp is the string representation of the condition expression.

char *tf_dumpfilename(void)

This routine returns the name of the VCD file.

void tf_dumpflush(void)

A call to this routine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsimtime(int *aof_hightime)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are returned
by the routine, while the high-order bits are stored in the aof_hightime argument.

PLI/VPI Tracing
The foreign interface tracing feature is available for tracing PLI and VPI function calls. Foreign
interface tracing creates two kinds of traces: a human-readable log of what functions were
called, the value of the arguments, and the results returned; and a set of C-language files that
can be used to replay what the foreign interface code did.

The Purpose of Tracing Files
The purpose of the logfile is to aid you in debugging PLI or VPI code. The primary purpose of
the replay facility is to send the replay files to support for debugging co-simulation problems, or
debugging PLI/VPI problems for which it is impractical to send the PLI/VPI code. We still need
you to send the VHDL/Verilog part of the design to actually execute a replay, but many
problems can be resolved with the trace only.

Invoking a Trace
Context: PLI/VPI debugging

To invoke the trace, call vsim with the -trace_foreign argument.

Verilog Interfaces to C
Debugging Interface Application Code

ModelSim User’s Manual, v10.4c 665

Syntax

vsim
-trace_foreign <action> [-tag <name>]

Arguments

<action>
Can be either the value 1, 2, or 3. Specifies one of the following actions:

-tag <name>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 mydesign
Creates a logfile.

vsim -trace_foreign 3 mydesign
Creates both a logfile and a set of replay files.

vsim -trace_foreign 1 -tag 2 mydesign
Creates a logfile with a tag of "2".

The tracing operations will provide tracing during all user foreign code-calls, including PLI/VPI
user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL callbacks.

Related Topics

Debugging Interface Application Code
The flow for debugging HDL interface application code requires that you follow specific steps.

In order to debug your HDL interface application code in a debugger, you must first:

Table D-5. Values for action Argument

Value Operation Result

1 create log only writes a local file called
"mti_trace_<tag>"

2 create replay only writes local files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and
replay

writes all above files

vsim command PLI/VPI Tracing

ModelSim User’s Manual, v10.4c666

Verilog Interfaces to C
Debugging Interface Application Code

1. Compile the application code with debugging information (using the -g option) and
without optimizations (for example, don’t use the -O option).

2. Load vsim into a debugger.

Even though vsim is stripped, most debuggers will still execute it. You can invoke the
debugger directly on vsimk, the simulation kernel where your application code is loaded
(for example, "ddd `which vsimk`"), or you can attach the debugger to an already
running vsim process. In the second case, you must attach to the PID for vsimk, and you
must specify the full path to the vsimk executable (for example, "gdb
<modelsim_install_directory>/<platform>/vsimk 1234").

3. Set an entry point using breakpoint.

Since initially the debugger recognizes only vsim's HDL interface function symbols,
when invoking the debugger directly on vsim you need to place a breakpoint in the first
HDL interface function that is called by your application code. An easy way to set an
entry point is to put a call to acc_product_version() as the first executable statement in
your application code. Then, after vsim has been loaded into the debugger, set a
breakpoint in this function. Once you have set the breakpoint, run vsim with the usual
arguments.

When the breakpoint is reached, the shared library containing your application code has
been loaded.

4. In some debuggers, you must use the share command to load the application's symbols.

At this point all of the application's symbols should be visible. You can now set breakpoints in
and single step through your application code.

Related Topics

vsim command PLI/VPI Tracing

ModelSim User’s Manual, v10.4c 667

Appendix E
System Initialization

ModelSim goes through numerous steps as it initializes the system during startup. It accesses
various files and environment variables to determine library mappings, configure the GUI,
check licensing, and so forth.

Files Accessed During Startup
When you invoke ModelSim, it reads several files in file system and configuration
environment.

Table E-1 lists the files that are read during startup. They are listed in the order in which they
are accessed.

Initialization Sequence
The numberd items listed below describe the initialization sequence for ModelSim. The
sequence includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

Table E-1. Files That ModelSim Accesses During Startup

File Description

modelsim.ini Contains initial tool settings; see modelsim.ini
Variables for specific details on the modelsim.ini file
and Initialization Sequence for the search precedence

location map file Used by ModelSim tools to find source files based on
easily reallocated "soft" paths; default file name is
mgc_location_map

pref.tcl Contains defaults for fonts, colors, prompts, window
positions, and other simulator window characteristics

.modelsim (UNIX) or
Windows registry

Contains last working directory, project file, printer
defaults, and other user-customized GUI
characteristics

<project_name>.mpf If available, loads last project file which is specified
in the registry (Windows) or $(HOME)/.modelsim
(UNIX); see What are Projects? for details on project
settings

ModelSim User’s Manual, v10.4c668

System Initialization
Initialization Sequence

Names that appear in uppercase denote environment variables (except MTI_LIB_DIR which is
a Tcl variable). Instances of $(NAME) denote paths that are determined by an environment
variable (except $(MTI_LIB_DIR) which is determined by a Tcl variable).

1. Determines the path to the executable directory (../modeltech/<platform>). Sets
MODEL_TECH to this path, unless MODEL_TECH_OVERRIDE exists, in which case
MODEL_TECH is set to the same value as MODEL_TECH_OVERRIDE.

Environment Variables used: MODEL_TECH, MODEL_TECH_OVERRIDE

2. Finds the modelsim.ini file by evaluating the following conditions:

• If the -modelsimini option is used, then the file path specified is used if it exists; else

• use $MODELSIM (which specifies the directory location and name of a
modelsim.ini file) if it exists; else

• use $(MGC_WD)/modelsim.ini; else

• use ./modelsim.ini; else

• use $(MODEL_TECH)/modelsim.ini; else

• use $(MODEL_TECH)/../modelsim.ini; else

• use $(MGC_HOME)/lib/modelsim.ini; else

• set path to ./modelsim.ini even though the file doesn’t exist

Environment Variables used: MODELSIM, MGC_WD, MGC_HOME

You can determine which modelsim.ini file was used by executing the where command.

3. Finds the location map file by evaluating the following conditions:

• use MGC_LOCATION_MAP if it exists (if this variable is set to "no_map",
ModelSim skips initialization of the location map); else

• use mgc_location_map if it exists; else

• use $(HOME)/mgc/mgc_location_map; else

• use $(HOME)/mgc_location_map; else

• use $(MGC_HOME)/etc/mgc_location_map; else

• use $(MGC_HOME)/shared/etc/mgc_location_map; else

• use $(MODEL_TECH)/mgc_location_map; else

• use $(MODEL_TECH)/../mgc_location_map; else

• use no map

System Initialization
Initialization Sequence

ModelSim User’s Manual, v10.4c 669

Environment Variables used: MGC_LOCATION_MAP, MGC_HOME,
MODEL_TECH

4. Reads various variables from the [vsim] section of the modelsim.ini file. See
modelsim.ini Variables for more details.

5. Parses any command line arguments that were included when you started ModelSim and
reports any problems.

6. Defines the following environment variables:

• use MODEL_TECH_TCL if it exists; else

• set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl

• set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.4

• set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.4

• set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itcl3.0

• set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0

• set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

Environment Variables used: MODEL_TECH_TCL, TCL_LIBRARY, TK_LIBRARY,
MODEL_TECH, ITCL_LIBRARY, ITK_LIBRARY, VSIM_LIBRARY

7. Initializes the simulator’s Tcl interpreter.

8. Checks for a valid license (a license is not checked out unless specified by a
modelsim.ini setting or command line option).

9. The next four steps relate to initializing the graphical user interface.

10. Sets Tcl variable MTI_LIB_DIR=$(MODEL_TECH_TCL)

Environment Variables used: MTI_LIB_DIR, MODEL_TECH_TCL

11. Loads $(MTI_LIB_DIR)/vsim/pref.tcl.

Environment Variables used: MTI_LIB_DIR

12. Loads GUI preferences, project file, and so forth, from the registry (Windows).

13. Searches for the modelsim.tcl file by evaluating the following conditions:

• use MODELSIM_TCL environment variable if it exists (if MODELSIM_TCL is a
list of files, each file is loaded in the order that it appears in the list); else

• use ./modelsim.tcl; else

That completes the initialization sequence. Also note the following about the modelsim.ini file:

ModelSim User’s Manual, v10.4c670

System Initialization
Environment Variables

• When you change the working directory within ModelSim, it reads the [library], [vcom],
and [vlog] sections of the local modelsim.ini file. When you make changes in the
compiler or simulator options dialog box or use the vmap command, ModelSim updates
the appropriate sections of the file.

• The pref.tcl file references the default .ini file by using the [GetPrivateProfileString] Tcl
command. The .ini file that is read will be the default file defined at the time pref.tcl is
loaded.

Environment Variables
When you install ModelSim, the installation process creates and reads several environment
variables for the operating system of your computer. Most of these variables have default
values, which you can change to customize ModelSim operation.

Expansion of Environment Variables
ModelSim shell commands vcom, vlog, vsim, and vmap, do not expand environment variables
in filename arguments and options. Instead, you should expand variables in the shell window in
the usual manner before running these ModelSim commands. The -f switch that most of these
commands support performs environment variable expansion throughout the file.

Environment variable expansion is still performed in the following places:

• Pathname and other values in the modelsim.ini file

• Strings used as file pathnames in VHDL and Verilog

• VHDL Foreign attributes

• The PLIOBJS environment variable may contain a path that has an environment
variable.

• Verilog `uselib file and dir directives

• Anywhere in the contents of a -f file

The recommended method for using flexible pathnames is to make use of the MGC Location
Map system (see Using Location Mapping). When this is used, then pathnames stored in
libraries and project files (.mpf) will be converted to logical pathnames.

If a file or path name contains the dollar sign character ($), and must be used in one of the places
listed above that accepts environment variables, then the explicit dollar sign must be escaped by
using a double dollar sign ($$).

Related Topics

See the vcom, vlog, vmap, and vsim commands in the Command Reference.

System Initialization
Environment Variables

ModelSim User’s Manual, v10.4c 671

Setting Environment Variables
Before compiling or simulating, you can specify values for a variety of environment variables to
provide the functions described below.

You set the variables according the operating system of your computer, as follows:

• Windows — use the System control panel, refer to “Creating Environment Variables in
Windows” for more information.

The LM_LICENSE_FILE variable requires a value; all other variables are optional.

DISABLE_ELAB_DEBUG

The DISABLE_ELAB_DEBUG environment variable, if set, disables vsim elaboration error
debugging capabilities using the find insource and typespec commands.

DOPATH

The toolset uses the DOPATH environment variable to search for DO files. DOPATH consists
of a colon-separated (semi-colon for Windows) list of paths to directories. You can override this
environment variable with the DOPATH Tcl preference variable.

The DOPATH environment variable isn’t accessible when you invoke vsim from a UNIX shell
or from a Windows command prompt. It is accessible once ModelSim or vsim is invoked. If
you need to invoke from a shell or command line and use the DOPATH environment variable,
use the following syntax:

vsim -do "do <dofile_name>" <design_unit>

DP_INIFILE

The DP_INIFILE environment variable points to a file that contains preference settings for the
Source window. By default, this file is created in your $HOME directory. You should only set
this variable to a different location if your $HOME directory does not exist or is not writable.

EDITOR

The EDITOR environment variable specifies the editor to invoke with the edit command

From the Windows platform, you could set this variable from within the Transcript window
with the following command:

set PrefMain(Editor) {c:/Program Files/Windows NT/Accessories/wordpad.exe}

where you would replace the path with that of your desired text editor. The braces ({}) are
required because of the spaces in the pathname

ModelSim User’s Manual, v10.4c672

System Initialization
Environment Variables

ITCL_LIBRARY

Identifies the pathname of the [incr]Tcl library; set by ModelSim to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Mentor Graphics.

ITK_LIBRARY

Identifies the pathname of the [incr]Tk library; set by ModelSim to the same pathname as
MODEL_TECH_TCL; must point to libraries supplied by Mentor Graphics.

LM_LICENSE_FILE

The toolset’s file manager uses the LM_LICENSE_FILE environment variable to find the
location of the license file. The argument may be a colon-separated (semi-colon for Windows)
set of paths, including paths to other vendor license files. The environment variable is required.

MGC_AMS_HOME

Specifies whether vcom adds the declaration of REAL_VECTOR to the STANDARD package.
This is useful for designers using VHDL-AMS to test digital parts of their model.

MGC_HOME

Identifies the pathname of the Mentor product suite.

MGC_LOCATION_MAP

The toolset uses the MGC_LOCATION_MAP environment variable to find source files based
on easily reallocated “soft” paths.

MGC_WD

Identifies the Mentor Graphics working directory. This variable is used in the initialization
sequence.

MODEL_TECH

Do not set this variable. The toolset automatically sets the MODEL_TECH environment
variable to the directory in which the binary executable resides.

MODEL_TECH_OVERRIDE

Provides an alternative directory path for the binary executables. Upon initialization, the
product sets MODEL_TECH to this path, if set.

System Initialization
Environment Variables

ModelSim User’s Manual, v10.4c 673

MODEL_TECH_TCL

Specifies the directory location of Tcl libraries for Tcl/Tk and vsim, and may also be used to
specify a startup DO file. This variable defaults to <installDIR>/tcl, however you may set it to
an alternate path.

MODELSIM

The toolset uses the MODELSIM environment variable to find the modelsim.ini file. The
argument consists of a path including the file name.

An alternative use of this variable is to set it to the path of a project file
(<Project_Root_Dir>/<Project_Name>.mpf). This allows you to use project settings with
command line tools. However, if you do this, the .mpf file will replace modelsim.ini as the
initialization file for all tools.

MODELSIM_PREFERENCES

The MODELSIM_PREFERENCES environment variable specifies the location to store user
interface preferences. Setting this variable with the path of a file instructs the toolset to use this
file instead of the default location (your HOME directory in UNIX or in the registry in
Windows). The file does not need to exist beforehand, the toolset will initialize it. Also, if this
file is read-only, the toolset will not update or otherwise modify the file. This variable may
contain a relative pathname – in which case the file will be relative to the working directory at
the time ModelSim is started.

MODELSIM_TCL

identifies the pathname to a user preference file (for example, C:\questasim\modelsim.tcl); can
be a list of file pathnames, separated by semicolons (Windows) or colons (UNIX); note that user
preferences are now stored in the .modelsim file (Unix) or registry (Windows); QuestaSim will
still read this environment variable but it will then save all the settings to the .modelsim file
when you exit ModelSim.

MTI_COSIM_TRACE

The MTI_COSIM_TRACE environment variable creates an mti_trace_cosim file containing
debugging information about HDL interface function calls. You should set this variable to any
value before invoking the simulator.

MTI_LIB_DIR

Identifies the path to all Tcl libraries installed with ModelSim.

ModelSim User’s Manual, v10.4c674

System Initialization
Environment Variables

MTI_TF_LIMIT

The MTI_TF_LIMIT environment variable limits the size of the VSOUT temp file (generated
by the toolset’s kernel). Set the argument of this variable to the size of k-bytes

The environment variable TMPDIR controls the location of this file, while STDOUT controls
the name. The default setting is 10, and a value of 0 specifies that there is no limit. This variable
does not control the size of the transcript file.

MTI_RELEASE_ON_SUSPEND

The MTI_RELEASE_ON_SUSPEND environment variable allows you to turn off or modify
the delay for the functionality of releasing all licenses when operation is suspended. The default
setting is 10 (in seconds), which means that if you do not set this variable your licenses will be
released 10 seconds after your run is suspended. If you set this environment variable with an
argument of 0 (zero) ModelSim will not release the licenses after being suspended. You can
change the default length of time (number of seconds) by setting this environment variable to an
integer greater than 0 (zero).

MTI_USELIB_DIR

The MTI_USELIB_DIR environment variable specifies the directory into which object libraries
are compiled when using the -compile_uselibs argument to the vlog command

PLIOBJS

The toolset uses the PLIOBJS environment variable to search for PLI object files for loading.
The argument consists of a space-separated list of file or path names

STDOUT

The argument to the STDOUT environment variable specifies a filename to which the simulator
saves the VSOUT temp file information. Typically this information is deleted when the
simulator exits. The location for this file is set with the TMPDIR variable, which allows you to
find and delete the file in the event of a crash, because an unnamed VSOUT file is not deleted
after a crash.

TCL_LIBRARY

Identifies the pathname of the Tcl library; set by ModelSim to the same pathname as
MODEL_TECH_TCL; must point to libraries supplied by Mentor Graphics.

TK_LIBRARY

Identifies the pathname of the Tk library; set by ModelSim to the same pathname as
MODEL_TECH_TCL; must point to libraries supplied by Mentor Graphics.

System Initialization
Environment Variables

ModelSim User’s Manual, v10.4c 675

TMP

(Windows environments) The TMP environment variable specifies the path to a generated file
(VSOUT) containing all stdout from the simulation kernel.

TMPDIR

(UNIX environments) The TMPDIR environment variable specifies the path to a generated file
(VSOUT) containing all stdout from the simulation kernel. The priority for temporary file and
directory creation is as follows:

• $TMPDIR — if defined

• /var/tmp — if available

• /tmp — if available

VSIM_LIBRARY

Identifies the pathname of the Tcl files that are used by ModelSim; set by ModelSim to the
same pathname as MODEL_TECH_TCL; must point to libraries supplied by Mentor Graphics.

Creating Environment Variables in Windows
In addition to the predefined variables shown above, you can define your own environment
variables. This example shows a user-defined library path variable that you can reference by
using the vmap command to add library mapping to the modelsim.ini file.

Procedure

1. From your desktop, right-click your My Computer icon and select Properties

2. In the System Properties dialog box, select the Advanced tab

3. Click Environment Variables

4. In the Environment Variables dialog box and User variables for <user> pane, select
New:

5. In the New User Variable dialog box, add the new variable with this data

Variable name: MY_PATH
Variable value:\temp\work

6. OK (New User Variable, Environment Variable, and System Properties dialog boxes)

ModelSim User’s Manual, v10.4c676

System Initialization
Environment Variables

Library Mapping with Environment Variables
Once you have set the MY_PATH variable is set, you can use it with the vmap command to add
library mappings to the current modelsim.ini file.

You can easily add additional hierarchy to the path with an environment variable. For example:

vmap MORE_VITAL %MY_PATH%\more_path\and_more_path

vmap MORE_VITAL \$MY_PATH\more_path\and_more_path

Use braces ({}) for cases where the path contains multiple items that need to be escaped, such as
spaces in the pathname or backslash characters. For example:

vmap celllib {$LIB_INSTALL_PATH/Documents And Settings/All/celllib}

Related Topics

See the vmap command in the Command Reference.

Node-Locked License File
The ModelSim node-locked (also called mobile compute) license file installation location is
specified through the LM_LICENSE_FILE or MGLS_LICENSE_FILE environment variable
value. The node-locked license restricts you to one instance of each product and disallows
license check-out for any additional product invocations.

Attempts to invoke more than one instance of a node-locked product will result in an error
message similar to this example.

Example E-1. Node-Locked License Limit Error Message

** Error: License checkout has been disallowed because
only one session is allowed to run on an uncounted nodelocked
license and an instance of ModelSim is already running with a
nodelocked license on this machine.

Table E-2. Add Library Mappings to modelsim.ini File

Prompt Type Command Result added to modelsim.ini

DOS prompt vmap MY_VITAL %MY_PATH% MY_VITAL = c:\temp\work

ModelSim or
vsim prompt

vmap MY_VITAL \$MY_PATH1

or vmap MY_VITAL {$MY_PATH}

1. The dollar sign ($) character is Tcl syntax that indicates a variable. The backslash (\) character is an escape
character that prevents the variable from being evaluated during the execution of vmap.

MY_VITAL = $MY_PATH

System Initialization
Environment Variables

ModelSim User’s Manual, v10.4c 677

Referencing Environment Variables
There are two ways you can reference environment variables within ModelSim.

Environment variables are allowed in a FILE variable being opened in VHDL. For example,

use std.textio.all;
entity test is end;
architecture only of test is
begin

process
FILE in_file : text is in "$ENV_VAR_NAME";

begin
wait;

end process;
end;

Environment variables may also be referenced from the ModelSim command line or in DO files
using the Tcl env array mechanism. For example:

echo "$env(ENV_VAR_NAME)"

Note
Environment variable expansion does not occur in files that are referenced via the -f
argument to vcom, vlog, or vsim.

Removal of Temporary Files (VSOUT)
The temporary (temp) file named VSOUT is the communication mechanism between the
simulator kernel and the Graphical User Interface.

In normal circumstances, this temp file is deleted when the simulator exits. If ModelSim
crashes, however, you need to delete the temp file manually. If you specify the location of the
temp file with TMPDIR, you can locate the file more easily for deletion.

ModelSim User’s Manual, v10.4c678

System Initialization
Environment Variables

679

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

ModelSim User’s Manual, v10.4c

Index

— Symbols —
.ini control variables

AmsStandard, 464
AppendClose, 465
AssertFile, 466
BindAtCompile, 469
BreakOnAssertion, 470
CheckPlusargs, 471
CheckpointCompressMode, 472
CheckSynthesis, 473
ClassDebug, 474
CommandHistory, 475
CompilerTempDir, 476
ConcurrentFileLimit, 477
CreateDirForFileAccess, 478
CreateLib, 479
DatasetSeparator, 480
DefaultForceKind, 481
DefaultLibType, 482
DefaultRadix, 483
DefaultRadixFlags, 484
DefaultRestartOptions, 485
DelayFileOpen, 486
displaymsgmode, 487
DpiOutOfTheBlue, 488
DumpportsCollapse, 489
EnumBaseInit, 490
error, 491
ErrorFile, 492
Explicit, 493
Fatal, 494
FlateLibPageDeletePercentage, 496
FlateLibPageDeleteThreshold, 497
FlatLibPageSize, 495
floatfixlib, 498
ForceSigNextIter, 499
ForceUnsignedIntegerToVhdlInteger, 500
FsmImplicitTrans, 501
FsmResetTrans, 502

FsmSingle, 503
FsmXAssign, 504
GCThreshold, 505
GCThresholdClassDebug, 506
GenerateFormat, 507
GenerousIdentifierParsing, 508
GlobalSharedObjectList, 509
Hazard, 510
ieee, 511
IgnoreError, 512
IgnoreFailure, 513
IgnoreNote, 514
IgnorePragmaPrefix, 515
ignoreStandardRealVector, 516
IgnoreVitalErrors, 517
IgnoreWarning, 518
ImmediateContinuousAssign, 519
IncludeRecursionDepthMax, 520
InitOutCompositeParam, 521
IterationLimit, 522
LargeObjectSilent, 523
LargeObjectSize, 524
LibrarySearchPath, 525
MessageFormat, 526
MessageFormatBreak, 527
MessageFormatBreakLine, 528
MessageFormatError, 529
MessageFormatFail, 530
MessageFormatFatal, 531
MessageFormatNote, 532
MessageFormatWarning, 533
MixedAnsiPorts, 534
modelsim_lib, 535
MsgLimitCount, 536
msgmode, 537
mtiAvm, 538
mtiOvm, 539
MultiFileCompilationUnit, 540
NoCaseStaticError, 541
NoDebug, 542

Index

680 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

NoDeferSubpgmCheck, 543
NoIndexCheck, 544
NoOthersStaticError, 545
NoRangeCheck, 546
note, 547
NoVitalCheck, 548
NumericStdNoWarnings, 549
OldVHDLConfigurationVisibility, 550
OldVhdlForGenNames, 551
OnFinish, 552
Optimize_1164, 553
osvvm, 554
PathSeparator, 555
PedanticErrors, 556
pragmas, 463
PreserveCase, 557
PrintSimStats, 558
Quiet, 559
RequireConfigForAllDefaultBinding, 560
Resolution, 561
RunLength, 562
SeparateConfigLibrary, 563
Show_BadOptionWarning, 564
Show_Lint, 565
Show_source, 566
Show_VitalChecksWarning, 567
Show_Warning1, 568
Show_Warning2, 569
Show_Warning3, 570
Show_Warning4, 571
Show_Warning5, 572
ShowFunctions, 573
ShutdownFile, 574
SignalForceFunctionUseDefaultRadix,

575
SignalSpyPathSeparator, 576
SmartDbgSym, 577
Startup, 578
std, 581
std_developerskit, 582
StdArithNoWarnings, 583
support, 605
suppress, 584
SuppressFileTypeReg, 585
sv_std, 586

SVExtensions, 587
SVFileExtensions, 589
Svlog, 590
SVPrettyPrintFlags, 591
SyncCompilerFiles, 593
synopsys, 592
TranscriptFile, 594
UnbufferedOutput, 595
UndefSyms, 596
UserTimeUnit, 597
UVMControl, 598
verilog, 599
Veriuser, 600
VHDL93, 601
VhdlSeparatePduPackage, 602
VhdlVariableLogging, 603
vital2000, 604
WarnConstantChange, 606
warning, 607
WaveSignalNameWidth, 608
WildcardFilter, 609
WildcardSizeThreshold, 610
WildcardSizeThresholdVerbose, 611
WLFCacheSize, 612
WLFCollapseMode, 613
WLFCompress, 614
WLFDeleteOnQuit, 615
WLFFileLock, 616
WLFFilename, 617
WLFOptimize, 618
WLFSaveAllRegions, 619
WLFSimCacheSize, 620
WLFSizeLimit, 621
WLFTimeLimit, 622
WLFUpdateInterval, 623
WLFUseThreads, 624

.modelsim file
purpose, 667

.so, shared object file
loading PLI/VPI/DPI C applications, 652
loading PLI/VPI/DPI C++ applications,

653
#, comment character, 438
+protect

compile for encryption

681ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Compile
with +protect, 57

$disable_signal_spy, 370
$enable_signal_spy, 372
$finish

behavior, customizing, 552
$sdf_annotate system task, 404
$typename, 206
$unit scope, visibility in SV declarations, 169

— Numerics —
1076, IEEE Std, 45

differences between versions, 122
1364, IEEE Std, 46, 159
1364-2005

IEEE std, 49, 409
64-bit time

now variable, 443
Tcl time commands, 444

— A —
ACC routines, 661
accelerated packages, 111
access

hierarchical objects, 367
AccessObjDebug, 462
Active time indicator

schematic
Schematic

active time indicator, 332
Add cursor

to Wave window, 270
AddPragmaPrefix, 463
AddPragmaPrefix .ini file variable, 463
Algorithm

negative timing constraint, 190
AmsStandard .ini file variable, 464
AppendClose .ini file variable, 465
architecture simulator state variable, 442
argc simulator state variable, 442
arguments

passing to a DO file, 449
argv simulator state variable, 442
arithmetic package warnings, disabling, 626
AssertFile .ini file variable, 466
Assertions

break severity, 459
assertions

file and line number, 526
message display, 460
messages

turning off, 626
setting format of messages, 526
warnings, locating, 526

Asymmetric encryption, 76, 77

— B —
bad magic number error message, 249
base (radix)

Wave window, 296
batch-mode simulations, 40
BindAtCompile .ini file variable, 469
binding, VHDL

default, 126
blocking assignments, 182
bookmarks

Wave window, 284
Break severity

assertions, 459
BreakOnAssertion .ini file variable, 470
Breakpoints

command execution, 362
conditional, 233, 361
deleting, 325
edit, 322, 325
Run Until Here, 365
saving/restoring, 326

.bsm file, 343
buffered/unbuffered output, 595
busses

RTL-level, reconstructing, 260
user-defined, 313

— C —
C applications

compiling and linking, 652
C++ applications

compiling and linking, 653
cancelling scheduled events, performance, 150
Case sensitivity

for VHDL and Verilog, 117, 163
causality, tracing in Dataflow window, 339

682 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

cell libraries, 198
change command

modifying local variables, 202
chasing X, 339
-check_synthesis argument

warning message, 637
CheckPlusargs .ini file variable, 471
CheckpointCompressMode .ini file variable,

472
CheckSynthesis .ini file variable, 473
Class calling functions, 236
class debugging, 217

garbage collector, 505, 506
GCThreshold .ini variable, 505
GCThresholdClassDebug .ini variable, 506

Class instance
properties, 235
values, 235

Class Instances Window, 223
Class objects

view in Wave window, 219
class objects

breakpoints, 233
in Wave window, 225
logging, 218
viewing, 219

Class path expressions, 228
add to Wave, 229
syntax, 229
values, 229

ClassDebug .ini file variable, 474
clock cycles

display in timeline, 293
collapsing time and delta steps, 258
Color

for traces, 335
Combine Selected Signals dialog box, 306
combining signals, busses, 313
CommandHistory .ini file variable, 475
command-line mode, 36
commands

event watching in DO file, 449
system, 441
vcd2wlf, 428
VSIM Tcl commands, 444

comment character
Tcl and DO files, 438

Commonly Used modelsim.ini Variables, 624
compare signal, virtual

restrictions, 313
compare simulations, 247
compilation

multi-file issues (SystemVerilog), 169
compilation unit scope, 169
Compile

encryption
‘include, 54

VHDL, 116
Compile directive

encryption
‘include, 54

compile order
auto generate, 88
changing, 87
SystemVerilog packages, 166

Compiler Control Variables
Verilog

Hazard, 510
LibrarySearchPath, 525
MultiFileCompilationUnit, 540
Quiet, 559
Show_BadOptionWarning, 564
Show_Lint, 565
vlog95compat, 605

VHDL
AmsStandard, 464
BindAtCompile, 469
CheckSynthesis, 473
Explicit, 493
IgnoreVitalErrors, 517
NoCaseStaticError, 541
NoDebug, 542
NoIndexCheck, 544
NoOthersStaticError, 545
NoRangeCheckr, 546
NoVitalCheck, 548
Optimize_1164, 553
PedanticErrors, 556
RequireConfigForAllDefaultBinding,

560

683ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Show_source, 566
Show_VitalChecksWarning, 567
Show_Warning1, 568
Show_Warning2, 569
Show_Warning3, 570
Show_Warning4, 571
Show_Warning5, 572
VHDL93, 601

compiler directives, 213
IEEE Std 1364-2000, 214
XL compatible compiler directives, 214

CompilerTempDir .ini file variable, 476
Compiling

libraries
with -smartdbgsym option, 103

compiling
overview, 33
changing order in the GUI, 87
grouping files, 89
order, changing in projects, 87
properties, in projects, 96
range checking in VHDL, 119
Verilog, 162

incremental compilation, 165
XL ’uselib compiler directive, 172
XL compatible options, 171

VHDL, 115
VITAL packages, 136

compiling C code, gcc, 652
component

disabling default binding, 127, 560
component, default binding rules, 126
Compressing files

VCD tasks, 425
ConcurrentFileLimit .ini file variable, 477
configuration simulator state variable, 442
configurations

Verilog, 174
Configure

encryption envelope, 50
connectivity, exploring, 333
Constraint algorithm

negative timing checks, 190
context menus

Library tab, 104

Convergence
delay solution, 190

convert real to time, 140
convert time to real, 139
create debug database, 329
Create Patter Wizard, 392
CreateDirForFileAccess .ini file variable, 478
CreateLib .ini file variable, 479
Creating do file, 308, 326
Cursor

add, 270
Cursors

linking, 272
sync all active, 271

cursors
adding, deleting, locking, naming, 267
link to Dataflow window, 347
measuring time with, 271
saving waveforms between, 310
trace events with, 339
Wave window, 271, 310

Custom color
for trace, 336

— D —
deltas

explained, 128
Data query

$typename function, 206
database

post-sim debug, 329
Dataflow

post-sim debug database
create, 329

post-sim debug flow, 329
sprout limit readers, 334

Dataflow window, 327
extended mode, 327
see also windows, Dataflow window

dataflow.bsm file, 343
Dataset Browser, 256
Dataset Snapshot, 249
datasets, 247

managing, 256
opening, 253
prevent dataset prefix display, 258

684 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

view structure, 254
DatasetSeparator .ini file variable, 480
debug database

create, 329
debug flow

post-simulation, 329
debugging

null value, 185
SIGSEGV, 184

debugging the design, overview, 36
default binding

BindAtCompile .ini file variable, 469
disabling, 127, 560

default binding rules, 126
Default editor, changing, 671
DefaultForceKind .ini file variable, 481
DefaultLibType .ini file variable, 482
DefaultRadix .ini file variable, 483
DefaultRadixFlags .ini file variable, 484
DefaultRestartOptions .ini file variable, 485
DefaultRestartOptions variable, 627
delay

delta delays, 128
modes for Verilog models, 198

Delay solution convergence, 190
DelayFileOpen .ini file variable, 486
deleting library contents, 104
delta collapsing, 258
delta simulator state variable, 442
deltas

referencing simulator iteration
as a simulator state variable, 442

dependent design units, 117
design library

creating, 102
logical name, assigning, 105
mapping search rules, 105
resource type, 101
VHDL design units, 116
working type, 101

design units, 101
DEVICE

matching to specify path delays, 407
dialogs

Runtime Options, 457

directories
moving libraries, 107

disable_signal_spy, 370
Display mode

expanded time, 280
display preferences

Wave window, 291
displaymsgmode .ini file variable, 487
distributed delay mode, 201
dividers

Wave window, 299
DLL files, loading, 652, 653
DO files

executing at startup, 578, 673
parameters

as a simulator state variable (n), 442
passing, 449
total number passed, 442

parameters, passing to, 449
startup scripts, 626
vsim command arguments

list of, 442
DO files (macros)

error handling, 453
Tcl source command, 454

DOPATH environment variable, 671
DPI

and qverilog command, 648
export TFs, 636
missing DPI import function, 649
optimizing import call performance, 650
registering applications, 645
use flow, 646

DPI access routines, 663
DPI export TFs, 636
DpiOutOfTheBlue .ini file variable, 488
drivers

Dataflow Window, 333
show in Dataflow window, 320
Wave window, 320

dumpports tasks, VCD files, 424
DumpportsCollapse .ini file variable, 489

— E —
edit

breakpoints, 322, 325

685ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Editing the modelsim.ini file, 456
EDITOR environment variable, 671
editor, default, changing, 671
embedded wave viewer, 337
empty port name warning, 636
enable_signal_spy, 372
Encoding

methods, 76
encrypt

IP code
pulblic keys, 78
undefined macros, 60
vendor-defined macros, 62

IP source code, 49
usage models, 60

protect pragmas, 60
vencrypt utility, 60

vencrypt command
header file, 61, 66

vlog +protect, 74
encrypting IP code

vencrypt utility, 60
Encryption

asymmetric, 76, 77
compile with +protect, 57
configuring envelope, 50
creating envelope, 49
default asymmetric method for Questa, 77
default symmetric method for Questa, 77
envelopes

how they work, 78
for multiple simulators

Encryption
portable, 56

language-specific usage, 59
methods, 76
proprietary compile directives, 73
protection expressions, 53

unsupported, 54
raw, 77
runtime model, 59
symmetric, 76
usage models for VHDL, 65
using ‘include, 54
using Mentor Graphics public key, 79

vlog +protect, 63
encryption

‘protect compiler directive, 74
securing pre-compiled libraries, 75

Encryption and Encoding methods, 76
ENDFILE function, 134
ENDLINE function, 134
‘endprotect compiler directive, 74
entities

default binding rules, 126
disabling default binding, 127, 560

entity simulator state variable, 442
EnumBaseInit .ini file variable, 490
environment variables, 670

expansion, 670
referencing from command line, 677
referencing with VHDL FILE variable, 677
setting, 671
setting in Windows, 675
TranscriptFile, specifying location of, 594
used in Solaris linking for FLI, 654
using with location mapping, 629
variable substitution using Tcl, 441

error
can’t locate C compiler, 636

error .ini file variable, 491
ErrorFile .ini file variable, 492
errors

bad magic number, 249
DPI missing import function, 649
getting more information, 632
severity level, changing, 632
SystemVerilog, missing declaration, 540
VSIM license lost, 639

escaped identifiers, 197
Tcl considerations, 197

EVCD files
exporting, 398
importing, 399

event order
in Verilog simulation, 180

event queues, 180
event watching commands, placement of, 449
events, tracing, 339
examine command

686 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

expanded time, 282
exit codes, 634
exiting tool on sc_stop or $finish, 552
expand

environment variables, 670
expand net, 333
Expanded Time

customizing Wave window, 279
examine command, 282
expanding/collapsing sim time, 281

with commands, 282
with menu selections, 282
with toolbar buttons, 282

in Wave, 275
recording, 276
searchlog command, 282
selecting display mode, 280

with command, 281
with menus, 280
with toolbar buttons, 280

switching time mode, 281
terminology, 275
viewing in Wave window, 276

Explicit .ini file variable, 493
export TFs, in DPI, 636
Expression Builder, 287

saving expressions to Tcl variable, 289
Extended system tasks

Verilog, 210

— F —
Fatal .ini file variable, 494
Fatal error

SIGSEGV, 185
File compression

VCD tasks, 425
file I/O

TextIO package, 130
file-line breakpoints

edit, 325
files

.modelsim, 667
files, grouping for compile, 89
Find

stop, 286

FlateLibPageDeletePercentage .ini file
variable, 496

FlateLibPageDeleteThreshold .ini file variable,
497

FlatLibPageSize .ini file variable, 495
floatfixlib .ini file variable, 498
folders, in projects, 94
force command

defaults, 626
ForceSigNextIter .ini file variable, 499
ForceUnsignedIntegerToVhdlInteger .ini file

variable, 500
Format

saving/restoring, 308
format file, 307

Wave window, 307
FPGA libraries, importing, 112
FsmImplicitTrans .ini file variable, 501
FsmResetTrans .ini file variable, 502
FsmSingle .ini file variable, 503
FsmXAssign .ini file variable, 504
functions

virtual, 261

— G —
generate statements, Veilog, 176
GenerateFormat .ini file variable, 507
GenerousIdentifierParsing .ini file variable,

508
get_resolution() VHDL function, 137
Global signal radix, 297
GLOBALPATHPULSE

matching to specify path delays, 407
GlobalSharedObjectsList .ini file variable, 509
graphic interface, 263, 327, 351
grouping files for compile, 89
groups

in wave window, 301
GUI_expression_format

GUI expression builder, 287

— H —
Hazard .ini file variable, 510
hazards

limitations on detection, 184
hierarchy

687ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

driving signals in, 374
forcing signals in, 138, 382
referencing signals in, 138, 378
releasing signals in, 138, 386

Highlight trace, 335
Highlights

in Source window, 358
HOLD

matching to Verilog, 407

— I —
I/O

TextIO package, 130
identifiers

escaped, 197
ieee .ini file variable, 511
IEEE libraries, 111
IEEE Std 1076, 45

differences between versions, 122
IEEE Std 1364, 46, 159
IEEE Std 1364-2005, 49, 409
IgnoreError .ini file variable, 512
IgnoreFailure .ini file variable, 513
IgnoreNote .ini file variable, 514
IgnorePragmaPrefix .ini file variable, 515
ignoreStandardRealVector .ini file variable

.ini compiler control variables
ignoreStandardRealVector, 516

IgnoreVitalErrors .ini file variable, 517
IgnoreWarning .ini file variable, 518
ImmediateContinuousAssign .ini file variable,

519
importing EVCD files, waveform editor, 399
importing FPGA libraries, 112
IncludeRecursionDepthMax .ini file variable,

520
incremental compilation

automatic, 167
manual, 167
with Verilog, 165

index checking, 119
$init_signal_driver, 374
init_signal_driver, 374
$init_signal_spy, 378
init_signal_spy, 138, 378
init_usertfs function, 644

initialization sequence, 667
InitOutCompositeParam .ini file variable, 521
inlining

VHDL subprograms, 120
input ports

matching to INTERCONNECT, 406
matching to PORT, 406

INTERCONNECT
matching to input ports, 406

interconnect delays, 413
IOPATH

matching to specify path delays, 406
IP code

encrypt, 49
public keys, 78
undefined macros, 60
vendor-defined macros, 62

encryption usage models, 60, 65
using protect pragmas, 60
vencrypt usage models, 60

iteration_limit, infinite zero-delay loops, 130
IterationLimit .ini file variable, 522

— K —
keywords

SystemVerilog, 163

— L —
-L work, 169
Language Reference Manual (LRM), 45, 160
language versions, VHDL, 122
LargeObjectSilent .ini file variable, 523
LargeObjectSize .ini file variable, 524
Libraries

compile
with -smartdbgsym option, 103

mapping
from the GUI, 105

libraries
creating, 102
design libraries, creating, 102
design library types, 101
design units, 101
group use, setting up, 107
IEEE, 111
importing FPGA libraries, 112

688 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

mapping
from the command line, 106
hierarchically, 625
search rules, 105

modelsim_lib, 137
moving, 107
multiple libraries with common modules,

169
naming, 105
others clause, 107
predefined, 110
refreshing library images, 111
resource libraries, 101
std library, 110
Synopsys, 111
Verilog, 168, 431
VHDL library clause, 110
working libraries, 101
working vs resource, 31
working with contents of, 104

library map file, Verilog configurations, 174
library mapping, overview, 31
library maps, Verilog 2001, 174
library simulator state variable, 442
library, definition, 30
LibrarySearchPath .ini file variable, 525
Limiting WLF file, 253
Link cursors, 272
List window

virtual interfaces, 312
LM_LICENSE_FILE environment variable,

672
loading the design, overview, 34
local variables

modifying with change command, 202
location maps, referencing source files, 629
locations maps

specifying source files with, 629
lock message, 637
locking cursors, 267
log file

overview, 247
see also WLF files

long simulations
saving at intervals, 249

LRM, 45, 160

— M —
MacroNestingLevel simulator state variable,

442
macros (DO files)

depth of nesting, simulator state variable,
442

error handling, 453
mapping

libraries
from the command line, 106
hierarchically, 625

symbols
Dataflow window, 343

mapping signals, waveform editor, 399
math_complex package, 111
math_real package, 111
Memories

save to WLF file, 250
memory

modeling in VHDL, 140
memory leak, cancelling scheduled events, 150
message system, 631
MessageFormat .ini file variable, 526
MessageFormatBreak .ini file variable, 527
MessageFormatBreakLine .ini file variable,

528
MessageFormatError .ini file variable, 529
MessageFormatFail .ini file variable, 530
MessageFormatFatal .ini file variable, 531
MessageFormatNote .ini file variable, 532
MessageFormatWarning .ini file variable, 533
messages, 631

bad magic number, 249
empty port name warning, 636
exit codes, 634
getting more information, 632
lock message, 637
long description, 632
metavalue detected, 637
redirecting, 594
sensitivity list warning, 637
suppressing warnings from arithmetic

packages, 626
too few port connections, 637

689ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

turning off assertion messages, 626
VSIM license lost, 639
warning, suppressing, 633

metavalue detected warning, 637
MFCU, 170
MGC_LOCATION_MAP env variable, 629
MGC_LOCATION_MAP variable, 672
MinGW gcc, 652, 654
missing DPI import function, 649
MixedAnsiPorts .ini file variable, 534
MIxed-language

optimizing DPI import call performance,
650

MODEL_TECH environment variable, 672
MODEL_TECH_TCL environment variable,

673
modeling memory in VHDL, 140
MODELSIM environment variable, 673
modelsim_lib, 137
modelsim_lib .ini file variable, 535
MODELSIM_PREFERENCES variable, 673
modelsim.ini

found by the tool, 668
default to VHDL93, 627
delay file opening with, 628
editing,, 456
environment variables in, 624
force command default, setting, 626
hierarchical library mapping, 625
opening VHDL files, 628
restart command defaults, setting, 627
transcript file created from, 625
turning off arithmetic package warnings,

626
turning off assertion messages, 626

modes of operation, 36
Modified field, Project tab, 92
modify

breakpoints, 325
modifying local variables, 202
modules

handling multiple, common names, 169
.mpf file, 81

loading from the command line, 99
order of access during startup, 667

MsgLimitCount .ini file variable, 536
msgmode .ini file variable, 537
mti_cosim_trace environment variable, 673
mti_inhibit_inline attribute, 120
MTI_TF_LIMIT environment variable, 674
mtiAvm .ini file variable, 538
mtiOvm .ini file variable, 539
multi file compilation unit (MFCU), 170
multi-file compilation issues, SystemVerilog,

169
MultiFileCompilationUnit .ini file variable,

540
Multiple simulations, 247

— N —
n simulator state variable, 442
Name field

Project tab, 91
name visibility in Verilog generates, 176
names, modules with the same, 169
Negative timing

algorithm for calculating delays, 187
check limits, 187
constraint algorithm, 190
delay solution convergence, 190
syntax for $recrem, 188
syntax for $setuphold, 187
using delayed inputs for checks, 195

Negative timing checks, 186
nets

Dataflow window, displaying in, 327
values of

saving as binary log file, 247
new function

initialize SV object handle, 184
Nlview widget Symlib format, 344
NoCaseStaticError .ini file variable, 541
NOCHANGE

matching to Verilog, 409
NoDebug .ini file variable, 542
NoDeferSubpgmCheck .ini file variable, 543
NoIndexCheck .ini file variable, 544
non-blocking assignments, 182
NoOthersStaticError .ini file variable, 545
NoRangeCheck .ini file variable, 546
note .ini file variable, 547

690 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

NoVitalCheck .ini file variable, 548
Now simulator state variable, 442
now simulator state variable, 442
null value

debugging, 185
numeric_bit package, 111
numeric_std package, 111

disabling warning messages, 626
NumericStdNoWarnings .ini file variable, 549

— O —
object

defined, 45
Object handle

initialize with new function, 184
objects

virtual, 259
OldVHDLConfigurationVisibility .ini file

variable, 550
OldVhdlForGenNames .ini file variable, 551
OnFinish .ini file variable, 552
optimizations

VHDL subprogram inlining, 120
Optimize_1164 .ini file variable, 553
ordering files for compile, 87
organizing projects with folders, 94
osvvm .ini file variable, 554
Others clause

libraries, 107
overview, simulation tasks, 28

— P —
packages

standard, 110
textio, 110
util, 137
VITAL 1995, 135
VITAL 2000, 135

page setup
Dataflow window, 349

parameters
making optional, 450
using with DO files, 449

path delay mode, 201
path delays,matching to DEVICE statements,

407

path delays,matching to
GLOBALPATHPULSE statements,
407

path delays,matching to IOPATH statements,
406

path delays,matching to PATHPULSE
statements, 407

pathnames
hiding in Wave window, 292

PATHPULSE
matching to specify path delays, 407

PathSeparator .ini file variable, 555
PedanticErrors .ini file variable, 556
performance

cancelling scheduled events, 150
PERIOD

matching to Verilog, 409
PLI

specifying which apps to load, 645
Veriuser entry, 645

PLI/VPI
tracing, 664

PLI/VPI/DPI
registering DPIapplications, 645
specifying the DPI file to load, 655

PLIOBJS environment variable, 645, 674
plusargs

changing behavior of, 471
PORT

matching to input ports, 406
Port driver data, capturing, 428
Postscript

saving a waveform in, 308
saving the Dataflow display in, 347

post-sim debug flow, 329
pragmas

protecting IP code, 60
synthesis pragmas, 463

precision
in timescale directive, 177
simulator resolution, 177

preference variables
.ini files, located in, 461

preferences
Wave window display, 291

691ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

PreserveCase .ini file variable, 557
preserving case of VHDL identifiers, 557
primitives, symbols in Dataflow window, 343
printing

Dataflow window display, 347
waveforms in the Wave window, 308

printing simulation stats, 558
PrintSimStats .ini file variable, 558
project tab

sorting, 92
project window

information in, 91
projects, 81

accessing from the command line, 99
adding files to, 84
benefits, 81
compile order, 87

changing, 87
compiler properties in, 96
compiling files, 86
creating, 82
creating simulation configurations, 92
folders in, 94
grouping files in, 89
loading a design, 89
MODELSIM environment variable, 673
overview, 81

Proprietary compile directives
encryption, 73

protect
source code, 49

‘protect compiler directive, 74
protect pragmas

encrypting IP code, 60
protected types, 142
Protection expressions, 53
Public encryption key, 79
Public encryption keys, 78

— Q —
quick reference

table of simulation tasks, 28
Quiet .ini file variable, 559
qverilog command

DPI support, 648

— R —
race condition, problems with event order, 180
Radix

DefaultRadixFlags .ini variable, 484
set globally, 297

radix
SystemVerilog types, 297
Wave window, 296

range checking, 119
Raw encryption, 77
Readers

sprout limit in dataflow, 334
readers and drivers, 333
real type, converting to time, 140
Recall breakpoints, 326
reconstruct RTL-level design busses, 260
Recording

expanded time, 276
RECOVERY

matching to Verilog, 408
RECREM

matching to Verilog, 408
redirecting messages, TranscriptFile, 594
refreshing library images, 111
regions

virtual, 262
registers

values of
saving as binary log file, 247

REMOVAL
matching to Verilog, 408

RequireConfigForAllDefaultBinding .ini file
variable, 560

resolution
returning as a real, 137
truncated values, 179, 444
verilog simulation, 177
VHDL simulation, 126

Resolution .ini file variable, 561
resolution simulator state variable, 442
Resolving VCD values, 430

when force cmd used, 430
resource libraries

specifying, 108, 110
restart command

692 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

defaults, 627
Restore

breakpoints, 326
Restoring

window format, 308
results, saving simulations, 247
return to VSIM prompt on sc_stop or $finish,

552
RTL-level design busses

reconstructing, 260
RunLength .ini file variable, 562
Runtime

encryption, 59
Runtime Options dialog, 457

— S —
Saving

window format, 308
saving

simulation options in a project, 92
waveforms, 247

sc_stop()
behavior, customizing, 552

SDF, 35, 122
disabling timing checks, 413
errors and warnings, 402
instance specification, 401
interconnect delays, 413
mixed VHDL and Verilog designs, 413
specification with the GUI, 402
troubleshooting, 414
Verilog

$sdf_annotate system task, 405
optional conditions, 412
optional edge specifications, 411
rounded timing values, 412
SDF to Verilog construct matching, 406

VHDL
resolving errors, 404
SDF to VHDL generic matching, 403

SDF annotate
$sdf_annotate system task, 404

SDF annotation
matching single timing check, 415

SDF DEVICE
matching to Verilog constructs, 407

SDF GLOBALPATHPULSE
matching to Verilog constructs, 407

SDF HOLD
matching to Verilog constructs, 407

SDF INTERCONNECT
matching to Verilog constructs, 406

SDF IOPATH
matching to Verilog constructs, 406

SDF NOCHANGE
matching to Verilog constructs, 409

SDF PATHPULSE
matching to Verilog constructs, 407

SDF PERIOD
matching to Verilog constructs, 409

SDF PORT
matching to Verilog constructs, 406

SDF RECOVERY
matching to Verilog constructs, 408

SDF RECREM
matching to Verilog constructs, 408

SDF REMOVAL
matching to Verilog constructs, 408

SDF SETUPHOLD
matching to Verilog constructs, 408

SDF SKEW
matching to Verilog constructs, 408

SDF WIDTH
matching to Verilog constructs, 409

Search
stop, 286

searching
Expression Builder, 287
Verilog libraries, 108, 168

searchlog command
expanded time, 282

sensitivity list warning, 637
SeparateConfigLibrary .ini file variable, 563
SETUP

matching to Verilog, 407
SETUPHOLD

matching to Verilog, 408
Severity

break on assertions, 459
severity, changing level for errors, 632
SFCU, 170

693ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

shared objects
loading FLI applications

see FLI Reference manual
loading PLI/VPI/DPI C applications, 652
loading PLI/VPI/DPI C++ applications,

653
show drivers

Dataflow window, 333
Wave window, 320

Show_BadOptionWarning .ini file variable,
564

Show_Lint .ini file variable, 565
Show_source .ini file variable, 566
Show_VitalChecksWarning .ini file variable,

567
Show_Warning1 .ini file variable, 568
Show_Warning2 .ini file variable, 569
Show_Warning3 .ini file variable, 570
Show_Warning4 .ini file variable, 571
Show_Warning5 .ini file variable, 572
ShowFunctions .ini file variable, 573
ShutdownFile .ini file variable, 574
Signal

create virtual, 316
Virtual Signal Builder, 316

signal breakpoints
edit, 322

signal groups
in wave window, 301

Signal radix
set globally, 297

Signal Segmentation Violations
debugging, 184

Signal Spy, 138, 378
disable, 370
enable, 372

$signal_force, 382
signal_force, 138, 382
$signal_release, 386
signal_release, 138, 386
SignalForceFunctionUseDefaultRadix .ini file

variable, 575
signals

combining into a user-defined bus, 313
Dataflow window, displaying in, 327

driving in the hierarchy, 374
hierarchy

driving in, 374
referencing in, 138, 378
releasing anywhere in, 386
releasing in, 138, 386

transitions, searching for, 283
values of

forcing anywhere in the hierarchy, 138,
382

saving as binary log file, 247
virtual, 260

SignalSpyPathSeparator .ini file variable, 576
SIGSEGV

fatal error message, 185
SIGSEGV error, 184
simulating

batch mode, 36
command-line mode, 36
comparing simulations, 247
default run length, 459
iteration limit, 459
saving dataflow display as a Postscript file,

347
saving options in a project, 92
saving simulations, 247
saving waveform as a Postscript file, 308
Verilog, 177

delay modes, 198
hazard detection, 183
resolution limit, 177
XL compatible simulator options, 196

VHDL, 120
VITAL packages, 136

simulating the design, overview, 35
simulation

basic steps for, 29
time, current, 442

Simulation Configuration
creating, 92

simulation task overview, 28
simulations

event order in, 180
saving results, 247
saving results at intervals, 249

694 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Simulator Control Variables
UndefSyms, 596

simulator resolution
returning as a real, 137
Verilog, 177
VHDL, 126

simulator state variables, 442
single file compilation unit (SFCU), 170
sizetf callback function, 658
SKEW

matching to Verilog, 408
SmartDbgSym .ini file variable, 577
so, shared object file

loading PLI/VPI/DPI C applications, 652
loading PLI/VPI/DPI C++ applications,

653
source code, security, 74, 75
source files, referencing with location maps,

629
source files, specifying with location maps, 629
source libraries

arguments supporting, 171
Source window, 351

clear highlights, 358
Run Until Here, 365

specify path delays
matching to DEVICE construct, 407
matching to GLOBALPATHPULSE

construct, 407
matching to IOPATH statements, 406
matching to PATHPULSE construct, 407

Sprout limit
readers in dataflow, 334

Standard Delay Format (SDF), 35, 122
standards supported, 45
Startup

DO file in the modelsim.ini file, 578
startup

DO files, 626
files accessed during, 667
scripts, 626
startup macro in command-line mode, 38
using a startup file, 626

Startup .ini file variable, 578
state variables, 442

Status field
Project tab, 91

std .ini file variable, 581
std_arith package

disabling warning messages, 626
std_developerskit .ini file variable, 582
STD_INPUT, 132
std_logic_arith package, 111
std_logic_signed package, 111
std_logic_textio, 111
std_logic_unsigned package, 111
STD_OUTPUT, 132
StdArithNoWarnings .ini file variable, 583
STDOUT environment variable, 674
steps for simulation, overview, 29
Stop wave drawing, 286
subprogram inlining, 120
subprogram write is ambiguous error, fixing,

132
suppress .ini file variable, 584
SuppressFileTypeReg .ini file variable, 585
sv_std .ini file variable, 586
SVExtensions .ini file variable, 587
SVFileExtensions .ini file variable, 589
Svlog .ini file variable, 590
SVPrettyPrintFlags .ini file variable, 591
symbol mapping

Dataflow window, 343
symbolic link to design libraries (UNIX), 107
Symmetric encryption, 76
Sync active cursors, 271
SyncCompilerFiles .ini file variable, 593
synopsys .ini file variable, 592
Synopsys libraries, 111
synthesis

pragmas, 463
rule compliance checking, 473

System calls
VCD, 424

system calls
SystemVerilog

system tasks and functions, 201
system commands, 441
System tasks

VCD, 424

695ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

system tasks
Verilog-XL compatible, 208

System tasks and functions
SystemVerilog, 201

SystemVerilog
class debugging, 217
keyword considerations, 163
multi-file compilation, 169
object handle

initialize with new function, 184
virtual interface, 312

SystemVerilog classes
call command, 236
Class Instnaces Window, 223
classinfo command, 236
conditional breakpoints, 233
view in Wave window, 219, 225

SystemVerilog DPI
specifying the DPI file to load, 655

SystemVerilog tasks & functions
$typename data query, 206

SystemVerilog types
radix, 297

— T —
Tcl, ?? to 446

command separator, 439
command substitution, 439
command syntax, 436
evaluation order, 440
relational expression evaluation, 440
time commands, 444
variable

substitution, 440
VSIM Tcl commands, 444
with escaped identifiers, 197

temp files, VSOUT, 677
terminology

for expanded time, 275
testbench, accessing internal objectsfrom, 367
text and command syntax, 47
TEXTIO

buffer, flushing, 135
TextIO package

alternative I/O files, 134
containing hexadecimal numbers, 133

dangling pointers, 133
ENDFILE function, 134
ENDLINE function, 134
file declaration, 131
implementation issues, 132
providing stimulus, 135
standard input, 132
standard output, 132
WRITE procedure, 132
WRITE_STRING procedure, 133

TF routines, 663
TFMPC

explanation, 637
time

current simulation time as a simulator
statevariable, 442

measuring in Wave window, 271
time resolution as a simulator state

variable, 442
truncated values, 179, 444

time collapsing, 258
Time mode switching

expanded time, 281
time resolution

in Verilog, 177
in VHDL, 126

time type
converting to real, 139

timeline
display clock cycles, 293

timescale directive warning
investigating, 177

timing
disabling checks, 413

Timing checks
delay solution convergence, 190
negative

constraint algorithm, 190
syntax for $recrem, 188
syntax for $setuphold, 187
using delayed inputs for checks, 195

negative check limits, 187
TMPDIR environment variable, 675
to_real VHDL function, 139
to_time VHDL function, 140

696 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

too few port connections, explanation, 637
tool structure, 27
tracing

events, 339
source of unknown, 339

transcript
disable file creation, 625
file name, specifed in modelsim.ini, 625

TranscriptFile .ini file variable, 594
troubleshooting

DPI, missing import funtion, 649
TSSI

in VCD files, 428
type

converting real to time, 140
converting time to real, 139

Type field, Project tab, 92
types

virtual, 262

— U —
UDP, 108, 109, 163, 165, 168, 169, 177, 198
UnbufferedOutput .ini file variable, 595
UndefSyms .ini file variable, 596
ungrouping

in wave window, 305
unit delay mode, 201
unknowns, tracing, 339
usage models

encrypting IP code, 60
vencrypt utility, 60

use clause, specifying a library, 110
use flow

DPI, 646
user-defined bus, 259, 313
user-defined primitive (UDP), 108, 109, 163,

165, 168, 169, 177, 198
UserTimeUnit .ini file variable, 597
util package, 137
UVM-Aware debug

UVMControl .ini file variable, 598
UVMControl .ini file variable, 598

— V —
variables

editing,, 456

environment, 670
expanding environment variables, 670
LM_LICENSE_FILE, 672
modelsim.ini, 461
setting environment variables, 671
simulator state variables

iteration number, 442
name of entity or module as a variable,

442
resolution, 442
simulation time, 442

values of
saving as binary log file, 247

VCD files
capturing port driver data, 428
case sensitivity, 420
creating, 419
dumpports tasks, 424
exporting created waveforms, 398
from VHDL source to VCD output, 425
stimulus, using as, 421
supported TSSI states, 428
translate into WLF, 428
VCD system tasks, 424

VCD values
resolving, 430

when force cmd used, 430
vcd2wlf command, 428
vencrypt command

header file, 61, 66
Verilog

ACC routines, 661
capturing port driver data with -dumpports,

428
case sensitivity, 163
cell libraries, 198
compiler directives, 213
compiling and linking PLI C applications,

652
compiling and linking PLI C++

applications, 653
compiling design units, 162
compiling with XL ’uselib compiler

directive, 172
configurations, 174

697ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

DPI access routines, 663
event order in simulation, 180
extended system tasks, 210
force and release, 196
generate statements, 176
library usage, 168
resource libraries, 108
sdf_annotate system task, 404
simulating, 177

delay modes, 198
XL compatible options, 196

simulation hazard detection, 183
simulation resolution limit, 177
standards, 45
system tasks and functions, 201
TF routines, 663
XL compatible compiler options, 171
XL compatible routines, 664
XL compatible system tasks, 208

verilog .ini file variable, 599
Verilog 2001

disabling support, 605
Verilog PLI/VPI

debugging PLI/VPI code, 664
Verilog PLI/VPI/DPI

compiling and linking PLI/VPI C++
applications, 653

compiling and linking PLI/VPI/CPI C
applications, 652

PLI callback reason argument, 657
PLI support for VHDL objects, 659
registering PLI applications, 643
specifying the PLI/VPI file to load, 655

Verilog-XL
compatibility with, 159

Veriuser .ini file variable, 600, 645
Veriuser, specifying PLI applications, 645
VHDL

access type, 150
binding

disabling, 127, 560
RequireConfigForAllDefaultBinding

.ini variable, 127, 560
case sensitivity, 117
compile, 116

compiling design units, 115
creating a design library, 115
debugging access objects, 150
delay file opening, 628
dependency checking, 117
encryption, 65
file opening delay, 628
language versions, 122
library clause, 110
logging access objects, 150
object support in PLI, 659
optimizations

inlining, 120
resource libraries, 110
simulating, 120
standards, 45
timing check disabling, 121
variables

logging, 603
viewing, 603

VITAL package, 111
VHDL utilities, 137, 138, 378

get_resolution(), 137
to_real(), 139
to_time(), 140

VHDL-1987, compilation problems, 122
VHDL-1993

enabling support for, 601
VHDL-2002

enabling support for, 601
VHDL-2008

package STANDARD
REAL_VECTOR, 516

VHDL93 .ini file variable, 601
VhdlSeparatePduPackage .ini file variable, 602
VhdlVariableLogging .ini file variable, 603
viewing

library contents, 104
waveforms, 247

virtual compare signal, restrictions, 313
virtual hide command, 260
virtual interface, 312
virtual objects, 259

virtual functions, 261
virtual regions, 262

698 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

virtual signals, 260
virtual types, 262

virtual region command, 262
virtual regions

reconstruct RTL hierarchy, 262
virtual save command, 261
Virtual signal

create, 316
Virtual Signal Builder, 316

virtual signal command, 260
virtual signals

reconstruct RTL-level design busses, 260
reconstruct the original RTL hierarchy, 260
virtual hide command, 260

visibility
of declarations in $unit, 169

VITAL, 122
compiling and simulating with accelerated

VITAL packages, 136
disabling optimizations for debugging, 136
specification and source code, 135
VITAL packages, 136

vital2000 .ini file variable, 604
vl_logic, 431
vlog command

+protect argument, 63, 74
vlog95compat, 605
vlog95compat .ini file variable, 605
VPI/PLI/DPI

compiling and linking C applications, 652
compiling and linking C++ applications,

653
VSIM license lost, 639
VSOUT temp file, 677

— W —
WarnConstantChange .ini file variable, 606
warning .ini file variable, 607
warnings

empty port name, 636
exit codes, 634
getting more information, 632
messages, long description, 632
metavalue detected, 637
severity level, changing, 632

suppressing VCOM warning messages,
633

suppressing VLOG warning messages, 634
suppressing VSIM warning messages, 634
too few port connections, 637
turning off warnings from arithmetic

packages, 626
waiting for lock, 637

Wave drawing
stop, 286

wave groups, 301
add items to existing, 305
creating, 302
deleting, 305
drag from Wave to List, 306
drag from Wave to Transcript, 306
removing items from existing, 305
ungrouping, 305

Wave Log Format (WLF) file, 247
wave log format (WLF) file

see also WLF files
wave viewer, Dataflow window, 337
Wave window, 263

cursor linking, 272
customizing for expanded time, 279
expanded time viewing, 275, 276
in the Dataflow window, 337
saving layout, 307
sync active cursors, 271
timeline

display clock cycles, 293
view SV class objects, 219
virtual interfaces, 312
Virtual Signal Builder, 316
see also windows, Wave window

waveform editor
editing waveforms, 393
mapping signals, 399
saving stimulus files, 397
simulating, 397

waveform logfile
overview, 247
see also WLF files

waveforms, 247
optimize viewing of, 618

699ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

saving between cursors, 310
WaveSignalNameWidth .ini file variable, 608
WIDTH

matching to Verilog, 409
WildcardFilter .ini file variable, 609
WildcardSizeThreshold .ini file variable, 610
WildcardSizeThresholdVerbose .ini file

variable, 611
Window format

saving/restoring, 308
windows

Dataflow window, 327
Source window, 351

Run Until Here, 365
Wave window, 263

adding HDL items to, 265
cursor measurements, 271
display preferences, 291
display range (zoom), changing, 283
format file, saving, 307
path elements, changing, 608
time cursors, 271
zooming, 283

WLF file
limiting, 253
saving memories to, 250

WLF file parameters
cache size, 252
collapse mode, 252
compression, 252
delete on quit, 252
filename, 252
indexing, 252
optimization, 252
overview, 251
size limit, 252
time limit, 252

WLF files
collapsing events, 258
optimizing waveform viewing, 618
saving, 248
saving at intervals, 249

WLFCacheSize .ini file variable, 612
WLFCollapseMode .ini file variable, 613
WLFCompress .ini variable, 614

WLFDeleteOnQuit .ini variable, 615
WLFFileLock .ini file variable, 616
WLFFilename .ini file variable, 617
WLFOptimize .ini file variable, 618
WLFSaveAllRegions .ini file variable, 619
WLFSimCacheSize .ini variable, 620
WLFSizeLimit .ini variable, 621
WLFTimeLimit .ini variable, 622
WLFUpdateInterval .ini variable, 623
WLFUseThreads .ini file variable, 624
work library, 102

creating, 102
write format restart, 308, 326
WRITE procedure, problems with, 132

— X —
X

tracing unknowns, 339

— Z —
zero delay elements, 128
zero delay mode, 201
zero-delay loop, infinite, 130
zero-delay oscillation, 130
zero-delay race condition, 180
zoom

saving range with bookmarks, 284

700 ModelSim User’s Manual, v10.4c

A B F GDC E H I J K L M N O P Q R S T U V XW Y Z

Third-Party Information

This section provides information on third-party software that may be included in the ModelSim product, including any
additional license terms.

• Third-Party Software for Questa and Modelsim Products

End-User License Agreement

The latest version of the End-User License Agreement is available on-line at:
www.mentor.com/eula

END-USER LICENSE AGREEMENT (“Agreement”)

This is a legal agreement concerning the use of Software (as defined in Section 2) and hardware (collectively “Products”)
between the company acquiring the Products (“Customer”), and the Mentor Graphics entity that issued the corresponding
quotation or, if no quotation was issued, the applicable local Mentor Graphics entity (“Mentor Graphics”). Except for license
agreements related to the subject matter of this license agreement which are physically signed by Customer and an authorized
representative of Mentor Graphics, this Agreement and the applicable quotation contain the parties’ entire understanding
relating to the subject matter and supersede all prior or contemporaneous agreements. If Customer does not agree to these
terms and conditions, promptly return or, in the case of Software received electronically, certify destruction of Software and all
accompanying items within five days after receipt of Software and receive a full refund of any license fee paid.

1. ORDERS, FEES AND PAYMENT.

1.1. To the extent Customer (or if agreed by Mentor Graphics, Customer’s appointed third party buying agent) places and Mentor
Graphics accepts purchase orders pursuant to this Agreement (each an “Order”), each Order will constitute a contract between
Customer and Mentor Graphics, which shall be governed solely and exclusively by the terms and conditions of this Agreement,
any applicable addenda and the applicable quotation, whether or not those documents are referenced on the Order. Any
additional or conflicting terms and conditions appearing on an Order or presented in any electronic portal or automated order
management system, whether or not required to be electronically accepted, will not be effective unless agreed in writing and
physically signed by an authorized representative of Customer and Mentor Graphics.

1.2. Amounts invoiced will be paid, in the currency specified on the applicable invoice, within 30 days from the date of such invoice.
Any past due invoices will be subject to the imposition of interest charges in the amount of one and one-half percent per month
or the applicable legal rate currently in effect, whichever is lower. Prices do not include freight, insurance, customs duties, taxes
or other similar charges, which Mentor Graphics will state separately in the applicable invoice. Unless timely provided with a
valid certificate of exemption or other evidence that items are not taxable, Mentor Graphics will invoice Customer for all
applicable taxes including, but not limited to, VAT, GST, sales tax, consumption tax and service tax. Customer will make all
payments free and clear of, and without reduction for, any withholding or other taxes; any such taxes imposed on payments by
Customer hereunder will be Customer’s sole responsibility. If Customer appoints a third party to place purchase orders and/or
make payments on Customer’s behalf, Customer shall be liable for payment under Orders placed by such third party in the event
of default.

1.3. All Products are delivered FCA factory (Incoterms 2010), freight prepaid and invoiced to Customer, except Software delivered
electronically, which shall be deemed delivered when made available to Customer for download. Mentor Graphics retains a
security interest in all Products delivered under this Agreement, to secure payment of the purchase price of such Products, and
Customer agrees to sign any documents that Mentor Graphics determines to be necessary or convenient for use in filing or
perfecting such security interest. Mentor Graphics’ delivery of Software by electronic means is subject to Customer’s provision
of both a primary and an alternate e-mail address.

2. GRANT OF LICENSE. The software installed, downloaded, or otherwise acquired by Customer under this Agreement, including any
updates, modifications, revisions, copies, documentation and design data (“Software”) are copyrighted, trade secret and confidential
information of Mentor Graphics or its licensors, who maintain exclusive title to all Software and retain all rights not expressly granted
by this Agreement. Mentor Graphics grants to Customer, subject to payment of applicable license fees, a nontransferable, nonexclusive
license to use Software solely: (a) in machine-readable, object-code form (except as provided in Subsection 5.2); (b) for Customer’s
internal business purposes; (c) for the term of the license; and (d) on the computer hardware and at the site authorized by Mentor
Graphics. A site is restricted to a one-half mile (800 meter) radius. Customer may have Software temporarily used by an employee for
telecommuting purposes from locations other than a Customer office, such as the employee’s residence, an airport or hotel, provided
that such employee’s primary place of employment is the site where the Software is authorized for use. Mentor Graphics’ standard
policies and programs, which vary depending on Software, license fees paid or services purchased, apply to the following: (a)
relocation of Software; (b) use of Software, which may be limited, for example, to execution of a single session by a single user on the
authorized hardware or for a restricted period of time (such limitations may be technically implemented through the use of
authorization codes or similar devices); and (c) support services provided, including eligibility to receive telephone support, updates,
modifications, and revisions. For the avoidance of doubt, if Customer provides any feedback or requests any change or enhancement to
Products, whether in the course of receiving support or consulting services, evaluating Products, performing beta testing or otherwise,
any inventions, product improvements, modifications or developments made by Mentor Graphics (at Mentor Graphics’ sole discretion)
will be the exclusive property of Mentor Graphics.

3. ESC SOFTWARE. If Customer purchases a license to use development or prototyping tools of Mentor Graphics’ Embedded Software
Channel (“ESC”), Mentor Graphics grants to Customer a nontransferable, nonexclusive license to reproduce and distribute executable

 IMPORTANT INFORMATION

USE OF ALL SOFTWARE IS SUBJECT TO LICENSE RESTRICTIONS. CAREFULLY READ THIS LICENSE
AGREEMENT BEFORE USING THE PRODUCTS. USE OF SOFTWARE INDICATES CUSTOMER’S COMPLETE
AND UNCONDITIONAL ACCEPTANCE OF THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

ANY ADDITIONAL OR DIFFERENT PURCHASE ORDER TERMS AND CONDITIONS SHALL NOT APPLY.

http://www.mentor.com/eula

files created using ESC compilers, including the ESC run-time libraries distributed with ESC C and C++ compiler Software that are
linked into a composite program as an integral part of Customer’s compiled computer program, provided that Customer distributes
these files only in conjunction with Customer’s compiled computer program. Mentor Graphics does NOT grant Customer any right to
duplicate, incorporate or embed copies of Mentor Graphics’ real-time operating systems or other embedded software products into
Customer’s products or applications without first signing or otherwise agreeing to a separate agreement with Mentor Graphics for such
purpose.

4. BETA CODE.

4.1. Portions or all of certain Software may contain code for experimental testing and evaluation (which may be either alpha or beta,
collectively “Beta Code”), which may not be used without Mentor Graphics’ explicit authorization. Upon Mentor Graphics’
authorization, Mentor Graphics grants to Customer a temporary, nontransferable, nonexclusive license for experimental use to
test and evaluate the Beta Code without charge for a limited period of time specified by Mentor Graphics. Mentor Graphics may
choose, at its sole discretion, not to release Beta Code commercially in any form.

4.2. If Mentor Graphics authorizes Customer to use the Beta Code, Customer agrees to evaluate and test the Beta Code under normal
conditions as directed by Mentor Graphics. Customer will contact Mentor Graphics periodically during Customer’s use of the
Beta Code to discuss any malfunctions or suggested improvements. Upon completion of Customer’s evaluation and testing,
Customer will send to Mentor Graphics a written evaluation of the Beta Code, including its strengths, weaknesses and
recommended improvements.

4.3. Customer agrees to maintain Beta Code in confidence and shall restrict access to the Beta Code, including the methods and
concepts utilized therein, solely to those employees and Customer location(s) authorized by Mentor Graphics to perform beta
testing. Customer agrees that any written evaluations and all inventions, product improvements, modifications or developments
that Mentor Graphics conceived or made during or subsequent to this Agreement, including those based partly or wholly on
Customer’s feedback, will be the exclusive property of Mentor Graphics. Mentor Graphics will have exclusive rights, title and
interest in all such property. The provisions of this Subsection 4.3 shall survive termination of this Agreement.

5. RESTRICTIONS ON USE.

5.1. Customer may copy Software only as reasonably necessary to support the authorized use. Each copy must include all notices
and legends embedded in Software and affixed to its medium and container as received from Mentor Graphics. All copies shall
remain the property of Mentor Graphics or its licensors. Customer shall maintain a record of the number and primary location of
all copies of Software, including copies merged with other software, and shall make those records available to Mentor Graphics
upon request. Customer shall not make Products available in any form to any person other than Customer’s employees and on-
site contractors, excluding Mentor Graphics competitors, whose job performance requires access and who are under obligations
of confidentiality. Customer shall take appropriate action to protect the confidentiality of Products and ensure that any person
permitted access does not disclose or use Products except as permitted by this Agreement. Customer shall give Mentor Graphics
written notice of any unauthorized disclosure or use of the Products as soon as Customer becomes aware of such unauthorized
disclosure or use. Except as otherwise permitted for purposes of interoperability as specified by applicable and mandatory local
law, Customer shall not reverse-assemble, reverse-compile, reverse-engineer or in any way derive any source code from
Software. Log files, data files, rule files and script files generated by or for the Software (collectively “Files”), including without
limitation files containing Standard Verification Rule Format (“SVRF”) and Tcl Verification Format (“TVF”) which are Mentor
Graphics’ trade secret and proprietary syntaxes for expressing process rules, constitute or include confidential information of
Mentor Graphics. Customer may share Files with third parties, excluding Mentor Graphics competitors, provided that the
confidentiality of such Files is protected by written agreement at least as well as Customer protects other information of a
similar nature or importance, but in any case with at least reasonable care. Customer may use Files containing SVRF or TVF
only with Mentor Graphics products. Under no circumstances shall Customer use Products or Files or allow their use for the
purpose of developing, enhancing or marketing any product that is in any way competitive with Products, or disclose to any
third party the results of, or information pertaining to, any benchmark.

5.2. If any Software or portions thereof are provided in source code form, Customer will use the source code only to correct software
errors and enhance or modify the Software for the authorized use. Customer shall not disclose or permit disclosure of source
code, in whole or in part, including any of its methods or concepts, to anyone except Customer’s employees or on-site
contractors, excluding Mentor Graphics competitors, with a need to know. Customer shall not copy or compile source code in
any manner except to support this authorized use.

5.3. Customer may not assign this Agreement or the rights and duties under it, or relocate, sublicense, or otherwise transfer the
Products, whether by operation of law or otherwise (“Attempted Transfer”), without Mentor Graphics’ prior written consent and
payment of Mentor Graphics’ then-current applicable relocation and/or transfer fees. Any Attempted Transfer without Mentor
Graphics’ prior written consent shall be a material breach of this Agreement and may, at Mentor Graphics’ option, result in the
immediate termination of the Agreement and/or the licenses granted under this Agreement. The terms of this Agreement,
including without limitation the licensing and assignment provisions, shall be binding upon Customer’s permitted successors in
interest and assigns.

5.4. The provisions of this Section 5 shall survive the termination of this Agreement.

6. SUPPORT SERVICES. To the extent Customer purchases support services, Mentor Graphics will provide Customer with updates and
technical support for the Products, at the Customer site(s) for which support is purchased, in accordance with Mentor Graphics’ then
current End-User Support Terms located at http://supportnet.mentor.com/supportterms.

7. LIMITED WARRANTY.

7.1. Mentor Graphics warrants that during the warranty period its standard, generally supported Products, when properly installed,
will substantially conform to the functional specifications set forth in the applicable user manual. Mentor Graphics does not
warrant that Products will meet Customer’s requirements or that operation of Products will be uninterrupted or error free. The

http://supportnet.mentor.com/supportterms

warranty period is 90 days starting on the 15th day after delivery or upon installation, whichever first occurs. Customer must
notify Mentor Graphics in writing of any nonconformity within the warranty period. For the avoidance of doubt, this warranty
applies only to the initial shipment of Software under an Order and does not renew or reset, for example, with the delivery of (a)
Software updates or (b) authorization codes or alternate Software under a transaction involving Software re-mix. This warranty
shall not be valid if Products have been subject to misuse, unauthorized modification, improper installation or Customer is not
in compliance with this Agreement. MENTOR GRAPHICS’ ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE
REMEDY SHALL BE, AT MENTOR GRAPHICS’ OPTION, EITHER (A) REFUND OF THE PRICE PAID UPON
RETURN OF THE PRODUCTS TO MENTOR GRAPHICS OR (B) MODIFICATION OR REPLACEMENT OF THE
PRODUCTS THAT DO NOT MEET THIS LIMITED WARRANTY. MENTOR GRAPHICS MAKES NO WARRANTIES
WITH RESPECT TO: (A) SERVICES; (B) PRODUCTS PROVIDED AT NO CHARGE; OR (C) BETA CODE; ALL OF
WHICH ARE PROVIDED “AS IS.”

7.2. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE EXCLUSIVE. NEITHER MENTOR GRAPHICS NOR ITS
LICENSORS MAKE ANY OTHER WARRANTIES EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO
PRODUCTS PROVIDED UNDER THIS AGREEMENT. MENTOR GRAPHICS AND ITS LICENSORS SPECIFICALLY
DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT OF INTELLECTUAL PROPERTY.

8. LIMITATION OF LIABILITY. EXCEPT WHERE THIS EXCLUSION OR RESTRICTION OF LIABILITY WOULD BE VOID
OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL MENTOR GRAPHICS OR ITS LICENSORS BE
LIABLE FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING LOST PROFITS OR
SAVINGS) WHETHER BASED ON CONTRACT, TORT OR ANY OTHER LEGAL THEORY, EVEN IF MENTOR GRAPHICS
OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT SHALL MENTOR
GRAPHICS’ OR ITS LICENSORS’ LIABILITY UNDER THIS AGREEMENT EXCEED THE AMOUNT RECEIVED FROM
CUSTOMER FOR THE HARDWARE, SOFTWARE LICENSE OR SERVICE GIVING RISE TO THE CLAIM. IN THE CASE
WHERE NO AMOUNT WAS PAID, MENTOR GRAPHICS AND ITS LICENSORS SHALL HAVE NO LIABILITY FOR ANY
DAMAGES WHATSOEVER. THE PROVISIONS OF THIS SECTION 8 SHALL SURVIVE THE TERMINATION OF THIS
AGREEMENT.

9. HAZARDOUS APPLICATIONS. CUSTOMER ACKNOWLEDGES IT IS SOLELY RESPONSIBLE FOR TESTING ITS
PRODUCTS USED IN APPLICATIONS WHERE THE FAILURE OR INACCURACY OF ITS PRODUCTS MIGHT RESULT IN
DEATH OR PERSONAL INJURY (“HAZARDOUS APPLICATIONS”). EXCEPT TO THE EXTENT THIS EXCLUSION OR
RESTRICTION OF LIABILITY WOULD BE VOID OR INEFFECTIVE UNDER APPLICABLE LAW, IN NO EVENT SHALL
MENTOR GRAPHICS OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES RESULTING FROM OR IN CONNECTION
WITH THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS APPLICATIONS. THE PROVISIONS OF
THIS SECTION 9 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

10. INDEMNIFICATION. CUSTOMER AGREES TO INDEMNIFY AND HOLD HARMLESS MENTOR GRAPHICS AND ITS
LICENSORS FROM ANY CLAIMS, LOSS, COST, DAMAGE, EXPENSE OR LIABILITY, INCLUDING ATTORNEYS’ FEES,
ARISING OUT OF OR IN CONNECTION WITH THE USE OF MENTOR GRAPHICS PRODUCTS IN OR FOR HAZARDOUS
APPLICATIONS. THE PROVISIONS OF THIS SECTION 10 SHALL SURVIVE THE TERMINATION OF THIS AGREEMENT.

11. INFRINGEMENT.

11.1. Mentor Graphics will defend or settle, at its option and expense, any action brought against Customer in the United States,
Canada, Japan, or member state of the European Union which alleges that any standard, generally supported Product acquired
by Customer hereunder infringes a patent or copyright or misappropriates a trade secret in such jurisdiction. Mentor Graphics
will pay costs and damages finally awarded against Customer that are attributable to such action. Customer understands and
agrees that as conditions to Mentor Graphics’ obligations under this section Customer must: (a) notify Mentor Graphics
promptly in writing of the action; (b) provide Mentor Graphics all reasonable information and assistance to settle or defend the
action; and (c) grant Mentor Graphics sole authority and control of the defense or settlement of the action.

11.2. If a claim is made under Subsection 11.1 Mentor Graphics may, at its option and expense: (a) replace or modify the Product so
that it becomes noninfringing; (b) procure for Customer the right to continue using the Product; or (c) require the return of the
Product and refund to Customer any purchase price or license fee paid, less a reasonable allowance for use.

11.3. Mentor Graphics has no liability to Customer if the action is based upon: (a) the combination of Software or hardware with any
product not furnished by Mentor Graphics; (b) the modification of the Product other than by Mentor Graphics; (c) the use of
other than a current unaltered release of Software; (d) the use of the Product as part of an infringing process; (e) a product that
Customer makes, uses, or sells; (f) any Beta Code or Product provided at no charge; (g) any software provided by Mentor
Graphics’ licensors who do not provide such indemnification to Mentor Graphics’ customers; or (h) infringement by Customer
that is deemed willful. In the case of (h), Customer shall reimburse Mentor Graphics for its reasonable attorney fees and other
costs related to the action.

11.4. THIS SECTION 11 IS SUBJECT TO SECTION 8 ABOVE AND STATES THE ENTIRE LIABILITY OF MENTOR
GRAPHICS AND ITS LICENSORS, AND CUSTOMER’S SOLE AND EXCLUSIVE REMEDY, FOR DEFENSE,
SETTLEMENT AND DAMAGES, WITH RESPECT TO ANY ALLEGED PATENT OR COPYRIGHT INFRINGEMENT
OR TRADE SECRET MISAPPROPRIATION BY ANY PRODUCT PROVIDED UNDER THIS AGREEMENT.

12. TERMINATION AND EFFECT OF TERMINATION.

12.1. If a Software license was provided for limited term use, such license will automatically terminate at the end of the authorized
term. Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement immediately upon
written notice if Customer: (a) exceeds the scope of the license or otherwise fails to comply with the licensing or confidentiality
provisions of this Agreement, or (b) becomes insolvent, files a bankruptcy petition, institutes proceedings for liquidation or
winding up or enters into an agreement to assign its assets for the benefit of creditors. For any other material breach of any

provision of this Agreement, Mentor Graphics may terminate this Agreement and/or any license granted under this Agreement
upon 30 days written notice if Customer fails to cure the breach within the 30 day notice period. Termination of this Agreement
or any license granted hereunder will not affect Customer’s obligation to pay for Products shipped or licenses granted prior to
the termination, which amounts shall be payable immediately upon the date of termination.

12.2. Upon termination of this Agreement, the rights and obligations of the parties shall cease except as expressly set forth in this
Agreement. Upon termination, Customer shall ensure that all use of the affected Products ceases, and shall return hardware and
either return to Mentor Graphics or destroy Software in Customer’s possession, including all copies and documentation, and
certify in writing to Mentor Graphics within ten business days of the termination date that Customer no longer possesses any of
the affected Products or copies of Software in any form.

13. EXPORT. The Products provided hereunder are subject to regulation by local laws and United States (“U.S.”) government agencies,
which prohibit export, re-export or diversion of certain products, information about the products, and direct or indirect products thereof,
to certain countries and certain persons. Customer agrees that it will not export or re-export Products in any manner without first
obtaining all necessary approval from appropriate local and U.S. government agencies. If Customer wishes to disclose any information
to Mentor Graphics that is subject to any U.S. or other applicable export restrictions, including without limitation the U.S. International
Traffic in Arms Regulations (ITAR) or special controls under the Export Administration Regulations (EAR), Customer will notify
Mentor Graphics personnel, in advance of each instance of disclosure, that such information is subject to such export restrictions.

14. U.S. GOVERNMENT LICENSE RIGHTS. Software was developed entirely at private expense. The parties agree that all Software is
commercial computer software within the meaning of the applicable acquisition regulations. Accordingly, pursuant to U.S. FAR 48
CFR 12.212 and DFAR 48 CFR 227.7202, use, duplication and disclosure of the Software by or for the U.S. government or a U.S.
government subcontractor is subject solely to the terms and conditions set forth in this Agreement, which shall supersede any
conflicting terms or conditions in any government order document, except for provisions which are contrary to applicable mandatory
federal laws.

15. THIRD PARTY BENEFICIARY. Mentor Graphics Corporation, Mentor Graphics (Ireland) Limited, Microsoft Corporation and
other licensors may be third party beneficiaries of this Agreement with the right to enforce the obligations set forth herein.

16. REVIEW OF LICENSE USAGE. Customer will monitor the access to and use of Software. With prior written notice and during
Customer’s normal business hours, Mentor Graphics may engage an internationally recognized accounting firm to review Customer’s
software monitoring system and records deemed relevant by the internationally recognized accounting firm to confirm Customer’s
compliance with the terms of this Agreement or U.S. or other local export laws. Such review may include FlexNet (or successor
product) report log files that Customer shall capture and provide at Mentor Graphics’ request. Customer shall make records available in
electronic format and shall fully cooperate with data gathering to support the license review. Mentor Graphics shall bear the expense of
any such review unless a material non-compliance is revealed. Mentor Graphics shall treat as confidential information all information
gained as a result of any request or review and shall only use or disclose such information as required by law or to enforce its rights
under this Agreement. The provisions of this Section 16 shall survive the termination of this Agreement.

17. CONTROLLING LAW, JURISDICTION AND DISPUTE RESOLUTION. The owners of certain Mentor Graphics intellectual
property licensed under this Agreement are located in Ireland and the U.S. To promote consistency around the world, disputes shall be
resolved as follows: excluding conflict of laws rules, this Agreement shall be governed by and construed under the laws of the State of
Oregon, U.S., if Customer is located in North or South America, and the laws of Ireland if Customer is located outside of North or
South America. All disputes arising out of or in relation to this Agreement shall be submitted to the exclusive jurisdiction of the courts
of Portland, Oregon when the laws of Oregon apply, or Dublin, Ireland when the laws of Ireland apply. Notwithstanding the foregoing,
all disputes in Asia arising out of or in relation to this Agreement shall be resolved by arbitration in Singapore before a single arbitrator
to be appointed by the chairman of the Singapore International Arbitration Centre (“SIAC”) to be conducted in the English language, in
accordance with the Arbitration Rules of the SIAC in effect at the time of the dispute, which rules are deemed to be incorporated by
reference in this section. Nothing in this section shall restrict Mentor Graphics’ right to bring an action (including for example a motion
for injunctive relief) against Customer in the jurisdiction where Customer’s place of business is located. The United Nations
Convention on Contracts for the International Sale of Goods does not apply to this Agreement.

18. SEVERABILITY. If any provision of this Agreement is held by a court of competent jurisdiction to be void, invalid, unenforceable or
illegal, such provision shall be severed from this Agreement and the remaining provisions will remain in full force and effect.

19. MISCELLANEOUS. This Agreement contains the parties’ entire understanding relating to its subject matter and supersedes all prior
or contemporaneous agreements. Some Software may contain code distributed under a third party license agreement that may provide
additional rights to Customer. Please see the applicable Software documentation for details. This Agreement may only be modified in
writing, signed by an authorized representative of each party. Waiver of terms or excuse of breach must be in writing and shall not
constitute subsequent consent, waiver or excuse.

Rev. 140201, Part No. 258976

	Bookcase
	Table of Contents
	List of Examples
	List of Figures
	List of Tables
	Chapter 1 Introduction
	Operational Structure and Flow
	Simulation Task Overview
	Basic Steps for Simulation
	Files and Map Libraries
	What is a Library?
	Resource Libraries
	Mapping the Logical Work to the Physical Work Directory

	Step 1 — Create Work and Resource Libraries
	Step 2 — Compile the Design
	Step 3 — Load the Design for Simulation
	Step 4 — Simulate the Design
	Step 5 — Debug the Design

	Modes of Operation
	Command Line Mode
	Startup Variable Flow
	Here-Document Flow
	I/O Redirection Flow
	Supported Commands for Command Line Mode

	Batch Mode
	Saving Batch Mode Simulation Data
	Output Redirection With vsim -batch
	Simulator Control Variables

	Default stdout Messages
	Tool Statistics Messages
	Controlling the Display of Statistics Messages

	Definition of an Object
	Standards Supported
	Assumptions
	Text Conventions
	Installation Directory Pathnames

	Chapter 2 Protecting Your Source Code
	Encryption Envelopes
	Creating Encryption Envelopes
	Protection Expressions
	The `include Compiler Directive (Verilog only)

	Compiling with +protect
	The Runtime Encryption Model
	Language-Specific Usage Models
	Usage Models for Protecting Verilog Source Code
	Delivering IP Code with Undefined Macros
	Delivering IP Code with User-Defined Macros

	Usage Models for Protecting VHDL Source Code
	Using the vhencrypt Utility

	Proprietary Source Code Encryption Tools
	Using Proprietary Compiler Directives
	Protecting Source Code Using -nodebug

	Encryption Reference
	Encryption and Encoding Methods
	How Encryption Envelopes Work
	Using Public Encryption Keys
	Using the Mentor Graphics Public Encryption Key

	Chapter 3 Projects
	What are Projects?
	What are the Benefits of Projects?
	Project Conversion Between Simulator Versions

	Getting Started with Projects
	Open a New Project
	Add Source Files to the Project
	Compile the Files
	Change Compile Order
	Auto-Generate the Compile Order
	Grouping Files
	Simulate a Design

	The Project Window
	Creating a Simulation Configuration
	Organizing Projects with Folders
	Adding a Project Folder

	Set File Properties and Project Settings
	File Compilation Properties
	Project Settings
	Convert Pathnames to Softnames for Location Mapping

	Setting Custom Double-click Behavior

	Access Projects from the Command Line

	Chapter 4 Design Libraries
	Design Library Overview
	Design Unit Information
	Working Library Versus Resource Libraries
	The Library Named "work"

	Working with Design Libraries
	Creating a Library
	Library Size
	Library Window Contents
	Map a Logical Name to a Design Library
	Mapping a Library with the GUI
	Mapping a Library from the Command Line
	Modify the modelsim.ini Manually

	Move a Library
	Setting Up Libraries for Group Use

	Verilog Resource Libraries
	Library Search Rules and the vlog Command
	Handling Sub-Modules with the Same Name
	The LibrarySearchPath Variable

	VHDL Resource Libraries
	Predefined Libraries
	Alternate IEEE Libraries Supplied
	Regenerating Your Design Libraries

	Importing FPGA Libraries
	Protect Source Code

	Chapter 5 VHDL Simulation
	Basic VHDL Usage
	Compilation and Simulation of VHDL
	Creating a Design Library for VHDL
	Compilation of a VHDL Design—the vcom Command
	Range and Index Checking
	Subprogram Inlining
	mti_inhibit_inline Attribute

	Simulation of a VHDL Design—the vsim Command
	Timing Specification

	Usage Characteristics and Requirements
	Differences Between Supported Versions of the VHDL Standard
	Incompatibilities Among Versions of the VHDL Standard

	Naming Behavior of VHDL for Generate Blocks
	Simulator Resolution Limit for VHDL
	Overriding the Default Resolution
	Choosing a Resolution Value for VHDL

	Default Binding
	Default Binding Rules
	Disabling Default Binding

	Delta Delays
	Detecting Infinite Zero-Delay Loops

	The TextIO Package
	Syntax for File Declaration
	STD_INPUT and STD_OUTPUT Within ModelSim
	TextIO Implementation Issues
	WRITE Procedures for Strings and Aggregates
	Reading and Writing Hexadecimal Numbers
	Dangling Pointers
	The ENDLINE Function
	The ENDFILE Function

	Alternative Input/Output Files
	The TEXTIO Buffer
	Input Stimulus to a Design

	VITAL Usage and Compliance
	VITAL Source Code
	VITAL 1995 and 2000 Packages
	VITAL Compliance
	VITAL Compliance Checking

	Compiling and Simulating with Accelerated VITAL Packages

	VHDL Utilities Package (util)
	get_resolution
	init_signal_driver()
	init_signal_spy()
	signal_force()
	signal_release()
	to_real()
	to_time()

	Modeling Memory
	Examples of Different Memory Models
	Converting an Integer Into a bit_vector
	Examples Using VHDL1987, VHDL1993, and VHDL2002 Architectures

	Effects on Performance by Cancelling Scheduled Events

	VHDL Access Object Debugging
	Terminology and Naming Conventions
	VHDL Access Type
	Limitations
	Default Behavior—Logging and Debugging Disabled
	Logging and Debugging Enabled
	The examine and describe Commands

	Chapter 6 Verilog and SystemVerilog Simulation
	Standards, Nomenclature, and Conventions
	Supported Variations in Source Code
	for Loops
	Naming Macros with Integers

	Basic Verilog Usage
	Verilog Compilation
	Creating a Working Library
	Invoking the Verilog Compiler
	Verilog Case Sensitivity
	Parsing SystemVerilog Keywords
	Recognizing SystemVerilog Files by File Name Extension

	Initializing enum Variables
	Incremental Compilation
	Library Usage
	Library Search Rules for the vlog Command

	SystemVerilog Multi-File Compilation
	Declarations in Compilation Unit Scope
	Macro Definitions and Compiler Directives in Compilation Unit Scope

	Verilog-XL Compatible Compiler Arguments
	Arguments Supporting Source Libraries
	Verilog-XL uselib Compiler Directive

	Verilog Configurations
	Configurations and the Library Named work

	Verilog Generate Statements
	Name Visibility in Generate Statements

	Verilog Simulation
	Simulator Resolution Limit (Verilog)
	Modules Without Timescale Directives
	Multiple Timescale Directives
	Choosing the Resolution for Verilog
	Event Ordering in Verilog Designs
	Event Queues
	Controlling Event Queues with Blocking or Non-Blocking Assignments

	Debugging Event Order Issues
	Hazard Detection
	Hazard Detection and Optimization Levels

	Signal Segmentation Violations
	Negative Timing Checks
	vsim Arguments Related to Timing Checks
	Commands Supporting Negative Timing Check Limits
	$setuphold
	$recrem
	Timing Check Syntactical Conventions

	Negative Timing Constraint Algorithm
	Using Delayed Inputs for Timing Checks

	Force and Release Statements in Verilog
	Verilog-XL Compatible Simulator Arguments
	Using Escaped Identifiers
	Tcl and Escaped Identifiers

	Cell Libraries
	SDF Timing Annotation
	Delay Modes
	Delay Modes and the Verilog Standard
	Distributed Delay Mode
	Path Delay Mode
	Unit Delay Mode
	Zero Delay Mode

	SystemVerilog System Tasks and Functions
	IEEE Std 1800-2012 System Tasks and Functions
	Using the $typename Data Query Function
	Task and Function Names Without Round Braces ‘()’
	Verilog-XL Compatible System Tasks and Functions
	Supported Tasks and Functions Mentioned in IEEE Std 1364
	Supported Tasks and Functions Not Described in IEEE Std 1364
	Extensions to Supported System Tasks
	New Directory Path With $fopen
	Negative Timing Checks With $setuphold and $recrem

	Unsupported Verilog-XL System Tasks

	String Class Methods for Matching Patterns

	Compiler Directives
	IEEE Std 1364 Compiler Directives
	Verilog-XL Compatible Compiler Directives

	Unmatched Virtual Interface Declarations
	Verilog PLI and SystemVerilog DPI
	Extensions to SystemVerilog DPI

	SystemVerilog Class Debugging
	Enabling Class Debug
	The Class Instance Identifier
	Obtaining the CIID with the examine Command
	Obtaining the CIID With a System Function

	Logging Class Types and Class Instances
	Working with Class Types
	Authoritative and Descriptive Class Type Names
	Authoritative Class Type Names
	Descriptive Class Type Names

	Finding the Class Type Syntax
	Viewing Class Types in the GUI
	The Class Tree Window
	The Class Graph Window
	The Structure Window

	Working with Class Instances
	The Class Instances Window
	Viewing Class Instances in the Wave Window
	The Locals Window
	The Watch Window
	The Call Stack Window

	Working with Class Path Expressions
	Class Path Expression Syntax
	Adding a Class Path Expression to the Wave Window
	Class Path Expression Values
	Casting a Class Variable to a Specific Type
	Class Objects vs Class Path Expressions
	Disabling Class Path Expressions

	Conditional Breakpoints in Dynamic Code
	Stepping Through Your Design
	The Run Until Here Feature
	Command Line Interface
	Class Instance Values
	Class Instance Properties
	Calling Functions
	The classinfo Commands
	Finding the Full Path and Name of a Class Type
	Determining the Current State of a Class Instance
	Finding All Instances of a Class Type
	Reporting Statistics for All Class Instances
	Reporting Class Instance Statistics for a Simulation Run
	Reporting Active References to a Class Instance
	Finding Class Type Inheritance
	Listing Classes Derived or Extended From a Class Type
	Analyzing Class Types

	Class Instance Garbage Collection
	Default Garbage Collector Settings
	Changing the Garbage Collector Configuration
	Running the Garbage Collector

	Chapter 7 Recording Simulation Results With Datasets
	Saving a Simulation to a WLF File
	Saving at Intervals with Dataset Snapshot
	Saving Memories to the WLF
	WLF File Parameter Overview
	Limiting the WLF File Size
	Opening Datasets

	Dataset Structure
	Structure Window Columns

	Managing Multiple Datasets
	Managing Multiple Datasets in the GUI
	Managing Multiple Datasets from the Command Line
	Restricting the Dataset Prefix Display

	Collapsing Time and Delta Steps
	Virtual Objects
	Virtual Signals
	Virtual Functions
	Virtual Regions
	Virtual Types

	Chapter 8 Waveform Analysis
	Wave Window Overview
	Objects You Can View
	Adding Objects to the Wave Window
	Inserting Signals in a Specific Location

	Working with Cursors
	Adding Cursors
	Editing Cursor Properties
	Jump to a Signal Transition
	Measuring Time with Cursors in the Wave Window
	Syncing All Active Cursors
	Linking Cursors
	Understanding Cursor Behavior
	Shortcuts for Working with Cursors
	Two Cursor Mode
	Enable Two Cursor Mode
	Additional Mouse Actions

	Expanded Time in the Wave Window
	Expanded Time Terminology
	Recording Expanded Time Information
	Viewing Expanded Time Information in the Wave Window
	Customizing the Expanded Time Wave Window Display
	Expanded Time Display Modes
	Menu Selections for Expanded Time Display Modes
	Toolbar Selections for Expanded Time Modes
	Command Selection of Expanded Time Mode

	Switching Between Time Modes
	Expanding and Collapsing Simulation Time
	Expanded Time with examine and Other Commands

	Zooming the Wave Window Display
	Zooming with the Menu, Toolbar and Mouse
	Saving Zoom Range and Scroll Position with Bookmarks
	Editing Bookmarks

	Searching in the Wave Window
	Searching for Values or Transitions
	Search with the Expression Builder
	Using the Expression Builder for Expression Searches
	Saving an Expression to a Tcl Variable
	Searching for a Particular Value
	Evaluating Only on Clock Edges

	Filtering the Wave Window Display
	Formatting the Wave Window
	Setting Wave Window Display Preferences
	Hiding/Showing Path Hierarchy
	Double-Click Behavior in the Wave Window
	Setting the Timeline to Count Clock Cycles

	Formatting Objects in the Wave Window
	Changing Radix (base) for the Wave Window
	Setting the Global Signal Radix for Selected Objects

	Dividing the Wave Window
	Splitting Wave Window Panes

	Wave Groups
	Creating a Wave Group
	Grouping Signals through Menu Selection
	Adding a Group of Contributing Signals
	Grouping Signals with the add wave Command
	Grouping Signals with a Keyboard Shortcut

	Deleting or Ungrouping a Wave Group
	Adding Items to an Existing Wave Group
	Removing Items from an Existing Wave Group
	Miscellaneous Wave Group Features

	Composite Signals or Buses
	Creating Composite Signals through Menu Selection

	Saving the Window Format
	Exporting Waveforms from the Wave window
	Exporting the Wave Window as a Bitmap Image
	Printing the Wave Window to a Postscript File
	Printing the Wave Window on the Windows Platform
	Saving Waveform Sections for Later Viewing
	Saving Waveforms Between Two Cursors
	Viewing Saved Waveforms
	Working With Multiple Cursors

	Viewing System Verilog Interfaces
	Working with Virtual Interfaces
	Adding Virtual Interface References to the Wave Window

	Combining Objects into Buses
	Extracting a Bus Slice
	Wave Extract/Pad Bus Dialog Box
	Splitting a Bus into Several Smaller Buses

	Using the Virtual Signal Builder
	Creating a Virtual Signal

	Miscellaneous Tasks
	Examining Waveform Values
	Displaying Drivers of the Selected Waveform
	Sorting a Group of Objects in the Wave Window

	Creating and Managing Breakpoints
	Signal Breakpoints
	Setting Signal Breakpoints with the when Command
	Setting Signal Breakpoints with the GUI
	Modifying Signal Breakpoints

	File-Line Breakpoints
	Setting File-Line Breakpoints Using the bp Command
	Setting File-Line Breakpoints Using the GUI
	Modifying a File-Line Breakpoint

	Saving and Restoring Breakpoints

	Chapter 9 Debugging with the Dataflow Window
	Dataflow Window Overview
	Dataflow Usage Flow
	Live Simulation Debug Flow
	Post-Simulation Debug Flow Details
	Create the Post-Sim Debug Database
	Use the Post-Simulation Debug Database

	Common Tasks for Dataflow Debugging
	Add Objects to the Dataflow Window
	Exploring the Connectivity of the Design
	Analyzing a Scalar Connected to a Wide Bus
	Control the Display of Readers and Nets
	Limiting the Display of Readers
	Limit the Display of Readers and Drivers

	Controlling the Display of Redundant Buffers and Inverters
	Track Your Path Through the Design

	Explore Designs with the Embedded Wave Viewer
	Tracing Events
	Tracing the Source of an Unknown State (StX)
	Finding Objects by Name in the Dataflow Window
	Automatically Tracing All Paths Between Two Nets

	Dataflow Concepts
	Symbol Mapping
	User-Defined Symbols
	Current vs. Post-Simulation Command Output

	Dataflow Window Graphic Interface Reference
	What Can I View in the Dataflow Window?
	How is the Dataflow Window Linked to Other Windows?
	How Can I Print and Save the Display?
	Save a .eps File and Printing the Dataflow Display from UNIX
	Print from the Dataflow Display on Windows Platforms
	Configure Page Setup

	How Do I Configure Window Options?

	Chapter 10 Source Window
	Opening Source Files
	Changing File Permissions
	Updates to Externally Edited Source Files

	Navigating Through Your Design
	Data and Objects in the Source Window
	Object Values and Descriptions
	Setting Simulation Time in the Source Window
	Search for Source Code Objects
	Searching for One Instance of a String
	Searching for All Instances of a String
	Searching for the Original Declaration of an Object

	Debugging and Textual Connectivity
	Hyperlinked Text
	Highlighted Text in the Source Window
	Drag Objects Into Other Windows

	Breakpoints
	Setting Individual Breakpoints in a Source File
	Setting Breakpoints with the bp Command
	Editing Breakpoints
	Using the Modify Breakpoints Dialog Box
	Deleting Individual Breakpoints
	Deleting Groups of Breakpoints

	Saving and Restoring Breakpoints
	Setting Conditional Breakpoints
	Setting a Breakpoint For a Specific Instance
	Setting a Breakpoint For a Specified Value of Any Instance

	Run Until Here

	Source Window Bookmarks
	Setting and Removing Bookmarks

	Source Window Preferences

	Chapter 11 Signal Spy
	Signal Spy Concepts
	Signal Spy Formatting Syntax
	Signal Spy Supported Types

	Signal Spy Reference
	disable_signal_spy
	enable_signal_spy
	init_signal_driver
	init_signal_spy
	signal_force
	signal_release

	Chapter 12 Generating Stimulus with Waveform Editor
	Getting Started with the Waveform Editor
	Using Waveform Editor Prior to Loading a Design
	Using Waveform Editor After Loading a Design

	Accessing the Create Pattern Wizard
	Creating Waveforms with Wave Create Command
	Editing Waveforms
	Selecting Parts of the Waveform
	Selection and Zoom Percentage
	Auto Snapping of the Cursor
	Stretching and Moving Edges

	Simulating Directly from Waveform Editor
	Exporting Waveforms to a Stimulus File
	Driving Simulation with the Saved Stimulus File
	Signal Mapping and Importing EVCD Files

	Saving the Waveform Editor Commands

	Chapter 13 Standard Delay Format (SDF) Timing Annotation
	Specifying SDF Files for Simulation
	Instance Specification
	SDF Specification with the GUI
	Errors and Warnings

	VHDL VITAL SDF
	SDF to VHDL Generic Matching
	Resolving Errors

	Verilog SDF
	$sdf_annotate
	SDF to Verilog Construct Matching
	Retain Delay Behavior
	Optional Edge Specifications
	Optional Conditions
	Rounded Timing Values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect Delays
	Disabling Timing Checks
	Troubleshooting
	Specifying the Wrong Instance
	Matching a Single Timing Check
	Mistaking a Component or Module Name for an Instance Label
	Forgetting to Specify the Instance
	Reporting Unannotated Specify Path Objects

	Chapter 14 Value Change Dump (VCD) Files
	Creating a VCD File
	Four-State VCD File
	Extended VCD File
	VCD Case Sensitivity

	Using Extended VCD as Stimulus
	Simulating with Input Values from a VCD File
	Replacing Instances with Output Values from a VCD File
	Port Order Issues

	VCD Commands and VCD Tasks
	Compressing Files with VCD Tasks

	VCD File from Source to Output
	VHDL Source Code
	VCD Simulator Commands

	VCD to WLF
	Capturing Port Driver Data
	Resolving Values
	Default Behavior
	When force Command is Used
	Extended Data Type for VHDL (vl_logic)
	Ignoring Strength Ranges

	Chapter 15 Tcl and DO Files
	Tcl Features
	Tcl References

	Tcl Command Syntax
	If Command Syntax
	Command Substitution
	Command Separator
	Multiple-Line Commands
	Evaluation Order
	Tcl Relational Expression Evaluation
	Variable Substitution
	System Commands
	ModelSim Replacements for Tcl Commands

	Simulator State Variables
	Referencing Simulator State Variables
	Special Considerations for the now Variable

	List Processing
	Simulator Tcl Commands
	Simulator Tcl Time Commands
	Time Conversion Tcl Commands
	Time Relations Tcl Commands
	Tcl Time Arithmetic Commands

	Tcl Examples
	DO Files
	Creating DO Files
	Using Parameters with DO Files
	Deleting a File from a .do Script
	Making Script Parameters Optional
	Breakpoint Flow Control in Nested DO files
	Useful Commands for Handling Breakpoints and Errors
	Error Action in DO File Scripts
	Using the Tcl Source Command with DO Files

	Appendix A modelsim.ini Variables
	Organization of the modelsim.ini File
	Making Changes to the modelsim.ini File
	Editing modelsim.ini Variables
	Overriding the Default Initialization File
	The Runtime Options Dialog

	Variables
	AccessObjDebug
	AddPragmaPrefix
	AmsStandard
	AppendClose
	AssertFile
	BatchMode
	BatchTranscriptFile
	BindAtCompile
	BreakOnAssertion
	CheckPlusargs
	CheckpointCompressMode
	CheckSynthesis
	ClassDebug
	CommandHistory
	CompilerTempDir
	ConcurrentFileLimit
	vlogCreateDirForFileAccess
	CreateLib
	DatasetSeparator
	DefaultForceKind
	DefaultLibType
	DefaultRadix
	DefaultRadixFlags
	DefaultRestartOptions
	DelayFileOpen
	displaymsgmode
	DpiOutOfTheBlue
	DumpportsCollapse
	EnumBaseInit
	error
	ErrorFile
	Explicit
	fatal
	FlatLibPageSize
	FlatLibPageDeletePercentage
	FlatLibPageDeleteThreshold
	floatfixlib
	ForceSigNextIter
	ForceUnsignedIntegerToVHDLInteger
	FsmImplicitTrans
	FsmResetTrans
	FsmSingle
	FsmXAssign
	GCThreshold
	GCThresholdClassDebug
	GenerateFormat
	GenerousIdentifierParsing
	GlobalSharedObjectsList
	Hazard
	ieee
	IgnoreError
	IgnoreFailure
	IgnoreNote
	IgnorePragmaPrefix
	ignoreStandardRealVector
	IgnoreVitalErrors
	IgnoreWarning
	ImmediateContinuousAssign
	IncludeRecursionDepthMax
	InitOutCompositeParam
	IterationLimit
	LargeObjectSilent
	LargeObjectSize
	LibrarySearchPath
	MessageFormat
	MessageFormatBreak
	MessageFormatBreakLine
	MessageFormatError
	MessageFormatFail
	MessageFormatFatal
	MessageFormatNote
	MessageFormatWarning
	MixedAnsiPorts
	modelsim_lib
	MsgLimitCount
	msgmode
	mtiAvm
	mtiOvm
	MultiFileCompilationUnit
	NoCaseStaticError
	NoDebug
	NoDeferSubpgmCheck
	NoIndexCheck
	NoOthersStaticError
	NoRangeCheck
	note
	NoVitalCheck
	NumericStdNoWarnings
	OldVHDLConfigurationVisibility
	OldVhdlForGenNames
	OnFinish
	Optimize_1164
	osvvm
	PathSeparator
	PedanticErrors
	PreserveCase
	PrintSimStats
	Quiet
	RequireConfigForAllDefaultBinding
	Resolution
	RunLength
	SeparateConfigLibrary
	Show_BadOptionWarning
	Show_Lint
	Show_source
	Show_VitalChecksWarnings
	Show_Warning1
	Show_Warning2
	Show_Warning3
	Show_Warning4
	Show_Warning5
	ShowFunctions
	ShutdownFile
	SignalForceFunctionUseDefaultRadix
	SignalSpyPathSeparator
	SmartDbgSym
	Startup
	Stats
	std
	std_developerskit
	StdArithNoWarnings
	suppress
	SuppressFileTypeReg
	sv_std
	SvExtensions
	SVFileSuffixes
	Svlog
	SVPrettyPrintFlags
	synopsys
	SyncCompilerFiles
	TranscriptFile
	UnbufferedOutput
	UndefSyms
	UserTimeUnit
	UVMControl
	verilog
	Veriuser
	VHDL93
	VhdlSeparatePduPackage
	VhdlVariableLogging
	vital2000
	vlog95compat
	WarnConstantChange
	warning
	WaveSignalNameWidth
	WildcardFilter
	WildcardSizeThreshold
	WildcardSizeThresholdVerbose
	WLFCacheSize
	WLFCollapseMode
	WLFCompress
	WLFDeleteOnQuit
	WLFFileLock
	WLFFilename
	WLFOptimize
	WLFSaveAllRegions
	WLFSimCacheSize
	WLFSizeLimit
	WLFTimeLimit
	WLFUpdateInterval
	WLFUseThreads

	Commonly Used modelsim.ini Variables
	Common Environment Variables
	Hierarchical Library Mapping
	Creating a Transcript File
	Using a Startup File
	Turn Off Assertion Messages
	Turn Off Warnings from Arithmetic Packages
	Force Command Defaults
	Restart Command Defaults
	VHDL Standard
	Delay Opening VHDL Files

	Appendix B Location Mapping
	Referencing Source Files with Location Maps
	Using Location Mapping
	Pathname Syntax
	How Location Mapping Works

	Appendix C Error and Warning Messages
	Message System
	Message Format
	Getting More Information
	Message Severity Level
	Syntax Error Debug Flow

	Suppression of Warning Messages
	Exit Codes
	Miscellaneous Messages
	Enforcing Strict 1076 Compliance

	Appendix D Verilog Interfaces to C
	Implementation Information
	GCC Compiler Support for use with C Interfaces
	Registering PLI Applications
	Registering DPI Applications
	DPI Use Flow
	DPI and the vlog Command
	Deprecated Legacy DPI Flows
	When Your DPI Export Function is Not Getting Called
	Troubleshooting a Missing DPI Import Function
	Simplified Import of Library Functions
	Optimizing DPI Import Call Performance
	Making Verilog Function Calls from non-DPI C Models
	Calling C/C++ Functions Defined in PLI Shared Objects from DPI Code

	Compiling and Linking C Applications for Interfaces
	Windows Platforms — C

	Compiling and Linking C++ Applications for Interfaces
	For PLI only
	Windows Platforms — C++

	Specifying Application Files to Load
	PLI and VPI File Loading
	DPI File Loading

	DPI Example
	The PLI Callback reason Argument
	The sizetf Callback Function
	PLI Object Handles
	Support for VHDL Objects
	IEEE Std 1364 ACC Routines
	IEEE Std 1364 TF Routines
	SystemVerilog DPI Access Routines
	Verilog-XL Compatible Routines
	PLI/VPI Tracing
	The Purpose of Tracing Files
	Invoking a Trace

	Debugging Interface Application Code

	Appendix E System Initialization
	Files Accessed During Startup
	Initialization Sequence
	Environment Variables
	Expansion of Environment Variables
	Setting Environment Variables
	Creating Environment Variables in Windows
	Library Mapping with Environment Variables
	Node-Locked License File
	Referencing Environment Variables
	Removal of Temporary Files (VSOUT)

	Index
	Third-Party Information
	End-User License Agreement

