ModelSIim® User’'s Manual

Software Version 10.4c

© 1991-2015 Mentor Graphics Corporation
All rights reserved.

This document contains information that is proprietary to Mentor Graphics Corporation. The original recipient of this
document may duplicate this document in whole or in part for internal business purposes only, provided that this entire
notice appears in all copies. In duplicating any part of this document, the recipient agrees to make every reasonable
effort to prevent the unauthorized use and distribution of the proprietary information.

This document is for information and instruction purposes. Mentor Graphics reserves the right to make
changes in specifications and other information contained in this publication without prior notice, and the
reader should, in all cases, consult Mentor Graphics to determine whether any changes have been
made.

The terms and conditions governing the sale and licensing of Mentor Graphics products are set forth in
written agreements between Mentor Graphics and its customers. No representation or other affirmation
of fact contained in this publication shall be deemed to be a warranty or give rise to any liability of Mentor
Graphics whatsoever.

MENTOR GRAPHICS MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

MENTOR GRAPHICS SHALL NOT BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, OR
CONSEQUENTIAL DAMAGES WHATSOEVER (INCLUDING BUT NOT LIMITED TO LOST PROFITS)
ARISING OUT OF OR RELATED TO THIS PUBLICATION OR THE INFORMATION CONTAINED IN IT,
EVEN IF MENTOR GRAPHICS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

U.S. GOVERNMENT LICENSE RIGHTS: The software and documentation were developed entirely at
private expense and are commercial computer software and commercial computer software
documentation within the meaning of the applicable acquisition regulations. Accordingly, pursuant to
FAR 48 CFR 12.212 and DFARS 48 CFR 227.7202, use, duplication and disclosure by or for the U.S.
Government or a U.S. Government subcontractor is subject solely to the terms and conditions set forth
in the license agreement provided with the software, except for provisions which are contrary to
applicable mandatory federal laws.

TRADEMARKS: The trademarks, logos and service marks ("Marks") used herein are the property of
Mentor Graphics Corporation or other parties. No one is permitted to use these Marks without the prior
written consent of Mentor Graphics or the owner of the Mark, as applicable. The use herein of a third-
party Mark is not an attempt to indicate Mentor Graphics as a source of a product, but is intended to
indicate a product from, or associated with, a particular third party. A current list of Mentor Graphics’
trademarks may be viewed at: www.mentor.com/trademarks.

The registered trademark Linux® is used pursuant to a sublicense from LMI, the exclusive licensee of
Linus Torvalds, owner of the mark on a world-wide basis.

Mentor Graphics Corporation
8005 S.W. Boeckman Road, Wilsonville, Oregon 97070-7777
Telephone: 503.685.7000
Toll-Free Telephone: 800.592.2210
Website: www.mentor.com
SupportNet: supportnet.mentor.com/

Send Feedback on Documentation: supportnet.mentor.com/doc_feedback form

http://www.mentor.com/trademarks
http://www.mentor.com
http://supportnet.mentor.com/
http://supportnet.mentor.com/
http://supportnet.mentor.com/doc_feedback_form

Table of Contents

Chapter 1
LNt OdUCTION. . . .o 27
Operational Structureand FIOW. o 27
SIMUIEioN Task OVEIVIEWottt e ettt ettt 28
Basic Stepsfor SImulation. 29
Filesand Map Libraries e et e 30
Step 1 — Create Work and Resource Libraries. 31
Step2— CompiletheDesign e 33
Step 3— Load the Designfor Simulation 34
Step 4 — SimulatetheDesigno 35
Step 5 — Debugthe DESIgNo 36
Modes of OpErationco i 36
Command LINEMOdE.t 38
BalCh MOde. 40
Default StdOUt MESSAgES ottt 42
TOOl StAliSHCSMESSAgES. . . . oottt et e e e 42
Controlling the Display of StatisticSMessagesovvi i 43
Definitionof anObject 45
Standards SUPPOtedot e 45
ASSUMIPEIONS. . . . ottt e e e e e 46
TeXt CONVENTIONS.ottt et e e e e e 47
Installation Directory Pathnames. 47

Chapter 2
Protecting Your Source Codeottt 49
Encryption ENVEIOPESo 49
Creating ENCryption ENVEIOPESo 50
ProteCtiON EXPrESSIONS . . .\ ot ettt e e e 53
The “include Compiler Directive (Verilogonly) 54
Compiling WIth +proteCt o e 57
TheRuntime Encryption Model e 59
Language-Specific Usage MOodElS.o 59
Usage Models for Protecting Verilog SourceCode.co ..., 60
Usage Modelsfor Protecting VHDL SourceCode., 65
Proprietary Source Code ENCryption TOOIS.ot e 73
Using Proprietary Compiler DIrectivesot e 73
Protecting Source CodeUsing-nodebugt 75
Encryption Reference. o 76
Encryptionand Encoding Methods. 76
How Encryption EnvelopesWork 78
Using Public ENCryption Keyso e e 78
Using the Mentor Graphics Public EncryptionKey i, 79

ModelSim User’'s Manual, v10.4c 3

Table of Contents

Chapter 3
PO ECES. . o 81
WAt I PrOJEC S 7. . o . ottt e e 81
What arethe Benefitsof Projects? e 81
Project Conversion Between Simulator VErSIONS. 82
Getting Started With Projects. e 82
Open aNew Projectt 82
Add Source Filestothe Project 84
Compilethe Files 86
Change Compile Order.t e e e 87
Auto-Generatethe Compile Order i 88
Grouping Files e 89
SIMUIAE @ DESIgN . . . oot 89
TheProjeCt WIindow e e 91
Creating aSimulation Configuration.« 92
Organizing Projectswith Folders. i e 9
AddingaProject Folder 94
Set File Propertiesand Project Settings.o 96
File Compilation Properties e 96
ProjeCt SEttiNgS. oot 97
Setting Custom Double-click Behavior i, 99
Access ProjectsfromtheCommand Line. ... i, 99

Chapter 4
DeSigN Libraries 101
Design Library OVerview 101
DesignUnit Information. i 101
Working Library VersusResourceLibraries., 101
Working withDesign Libraries. e 102
Creating alibrary. e 102
Lirary SIzZe. . ..o 103
Library Window Contents. oot et et e 104
Map aLogical NametoaDesignLibrary 105
Movealibraryo 107
Setting Up Librariesfor Group UsSeo 107
VerilogResource Libraries 108
Library Search RulesandthevliogCommand, 108
Handling Sub-ModuleswiththeSameName. i, 109
TheLibrarySearchPath Variable. i 109
VHDL ReSoUrCe LIbraries.o 110
Predefined Librarieso 110
Alternate IEEE LibrariesSupplied. 111
Regenerating Your Design Libraries 111
Importing FPGA Libraries. e e et 112
Protect SOUrCE COUE.ottt e e e 113

4 ModelSim User's Manual, v10.4c

Table of Contents

Chapter 5
VHDL Simulation e 115
BasiC VHDL USage.o 115
Compilationand Simulationof VHDL e 115
CreatingaDesign Library for VHDL e 116
Compilation of aVHDL Design—thevcomCommand. 116
Simulation of aVHDL Design—thevsimCommand 120
Usage Characteristicsand Requirements.o e 121
Differences Between Supported Versionsof the VHDL Standard. 122
Naming Behavior of VHDL for GenerateBlocks 125
Simulator Resolution Limit for VHDL. 126
Default Binding. 126
DeltaDE AYS . . . oo 128
TheTextlO Packageo e e 130
Syntax for File Declaration.o 131
STD_INPUT and STD_OUTPUT WithinModelSim 132
TextlO Implementation [SSUESot e e e 132
Alternative Input/Output Files o 134
The TEXTIO BUIfero e e 135
INPUt SEMUIUSTO aDESIGN o e 135
VITAL Usageand ComplianCe. oottt e e e 135
VITAL SOUrCE COUR. . . . ottt et e e e e e e e e 135
VITAL 1995and 2000 Packageso vt 135
VITAL ComplianeCeot e e e e e e 136
Compiling and Simulating with Accelerated VITAL Packages. 136
VHDL UtilitiesPackage (Util)o 137
MOElING MEMOTYo e e e e 140
Examples of Different Memory Models. i 141
Effects on Performance by Cancelling Scheduled Events 150
VHDL AccessObject DebUGOINGo oo et 150
Terminology and Naming Conventionsttt i e 151
VHDL ACCESS TYPE . . o oottt e e e 152
LimMItaliONSo 153
Default Behavior—Logging and Debugging Disabled. 153
Loggingand Debugging Enabled 154
The examineand describe Commands.t 155

Chapter 6
Verilog and SystemVerilog Simulation. i i 159
Standards, Nomenclature, and Conventionsttt 159
Supported Variationsin Source Code.o o vt 160
FOF LOOPS. .« . o v ottt e e e e e 160
Naming Macroswith INtegErsS.ot e 161
Basic VerilogUsaget 161
Verilog Compilation. e 162
Initidizingenum Variables. 165
Incremental Compilation 165
Library Usageo 168

ModelSim User’'s Manual, v10.4c 5

Table of Contents

SystemVerilog Multi-File Compilation e 169
Verilog-XL Compatible Compiler Arguments., 171
Verilog Configurations.t 174
Verilog Generate Statementst 176
Verilog SIMUIEtion.o 177
Simulator Resolution Limit (Verilog). 177
Modules Without Timescale DIreCtiveS.ot e 177
Multiple Timescale DIreCtiVeSot e et e e 178
Choosing the Resolutionfor Verilog e 179
Event Ordering in Verilog Designs.ot e 180
Debugging Event Order ISSUES.ot e 183
Signal Segmentation Violations 184
Negative TImiNg ChecksS. oo e 186
Force and Release StatementsinVerilog. 196
Verilog-XL Compatible Simulator Argumentscoviiinenenen.n.. 196
Using Escaped Identifiers. 197
el Libraries. . .o 198
SDF Timing ANNOLatiON oo e e e e e 198
Delay MOOES. . . . oo 198
SystemVerilog System Tasksand FUNCLIONS.o 201
|EEE Std 1800-2012 System Tasksand Functions., 202
Using the $typename DataQuery Function 206
Task and Function Names Without Round Braces“ ().o 207
Verilog-XL Compatible System Tasksand Functions. 208
String Class Methods for Matching Patterns oo 211
Compiler DIreCtIVES. . . .ttt 213
|EEE Std 1364 Compiler DIreCtiVeS.ot e e 214
Verilog-XL Compatible Compiler Directives i .. 214
Unmatched Virtual Interface Declarationsc it 215
Verilog PLI and SystemVerilogDPl 216
Extensionsto SystemVerilog DPl 216
SystemVerilog Class Debugging.o oottt 217
EnablingClassDebug. i 217
The ClassInstance ldentifier e 217
Logging ClassTypesand ClassInstances, 218
WOorking With Class TYPES oot e 219
Working with Class INStanCes.o 223
Working with Class Path EXPressionst 228
Conditional BreakpointsinDynamicCodet 233
Stepping Through Your DESIQNot e e e 233
TheRunUntil HereFeature e 234
Command Linelnterface 234
ClassInstance Garbage Collectiont e 243
Chapter 7

Recording Simulation ResultsWith Datasets.t 247
SavingaSimulationto aWLF File. 248
Saving at IntervalswithDataset Snapshot 249

6 ModelSim User's Manual, v10.4c

Table of Contents

Saving Memoriestothe WLF. 250
WLF File Parameter OVEIVIEW.ottt et ettt e 251
LimitingtheWLF FIleSize e e 253
OpeNiNg DatasatSot 253
Dataset SITUCLUNE e e e e 254
Structure Window Columns o 255
Managing Multiple Datasetsot 256
Managing Multiple Datasetsinthe GUI. 256
Managing Multiple Datasets fromthe CommandLine 256
Restricting the Dataset Prefix Display e 258
Collapsing Timeand DeltaSteps.ot e 258
Virtual ODJECES.o 259
Virtual SIgnals 260
Virtual FUNCLIONSo e e e e e e 261
VirtUal REQIONS.o 262
VirtUal TYPES . .ot 262
Chapter 8

Waveform ANalYSiS. . ..o e 263
Wave WINdow OVEIVIEW.ot e e e e et 263
ObJectS YOU Can VieWo e e e e e e 264
Adding ObjectstotheWave Window e 265
Inserting SignalsinaSpecific Location.t 266
WOorking With CUISOrSo e e e e 267
AddiNg CUISOIS. . . .o 270
Editing Cursor Propertieso 270
JumptoaSignal TranSition 270
Measuring Time with CursorsintheWaveWindow, 271
SyNCING All ACHVE CUISOIS . . . ottt et e et e ettt e 271
LiNKING CUISO S . .ottt e e e e e e 272
Understanding Cursor BEhavior 273
Shortcuts for Working With CUrsors.t e e 273
TWO CUISOr MOGE. . . .o e e e 274
Expanded TimeintheWave Window. e 275
Expanded Time Terminologyo oo ettt et et e 275
Recording Expanded Time Information. 276
Viewing Expanded Time Information inthe WaveWindow. 276
Customizing the Expanded TimeWaveWindow Display 279
Expanded TimeDisplay MOOESo 280
Switching Between TIMeMOdESottt 281
Expanding and Collapsing Simulation Timet 281
Expanded Time with examineand Other Commands 282
ZoomingtheWaveWindow Displayt 283
Zooming withthe Menu, ToolbarandMouse 283
Saving Zoom Range and Scroll Position with Bookmarks. 284
Editing BoOKMarks. 285
Searching inthe Wave WIndow i e 286
Searching for Valuesor Transitions.t e e 286

ModelSim User’'s Manual, v10.4c 7

Table of Contents

Search withthe Expression Builder e 287
FilteringtheWave Window Displayo e 291
Formattingthe Wave Window. e e 291

Setting Wave Window Display Preferences. 291

Formatting ObjectsintheWave Window 295

Dividingthe Wave WIndow ot e 299

Splitting Wave Window Panes. 300
WAV GIOUPSt ittt e e e e e e e e e e 301

Creating aWaVe GrOUD . ..o ottt et e et et et e 302

Deleting or Ungrouping aWave GroUDo o v i v e et 305

Adding Itemsto an EXiSingWave Group 305

Removing Itemsfrom an Existing Wave Group. 305

Miscellaneous Wave Group Features.ot 306
Composite SIgNalS or BUSESot 306
Savingthe Window Format e e 307
Exporting WaveformsfromtheWavewindow. 308

Exporting the Wave Window asaBitmapimage., 308

Printing the Wave Window to aPostscript File i i 309

Printing the Wave Window on the Windows Platform 309

Saving Waveform Sectionsfor Later Viewing. 310
Viewing System Verilog Interfaces. 312

Working with Virtual Interfaces. 312
Combining ObJecCtSINtO BUSES o 313

ExtractingaBus SliCe. o 314

Wave Extract/Pad Bus Dialog BOX.ot 315

Splitting aBusinto Several Smaller Buses ... 316
UsingtheVirtual Signal Builder e 316

CreatingaVirtual Signal e 318
MisCallanEoUS Tasks oo 320

Examining Waveform Values. 320

Displaying Drivers of the Selected Waveform. 320

Sorting a Group of ObjectsintheWaveWindowt 321
Creating and Managing BreakpointS.t e 321

Signal Breakpointsot 321

File-Line Breakpoints.o e e e 324

Saving and Restoring Breakpoints 326

Chapter 9

Debugging with the Dataflow Window. 327
Dataflow WIindow OVEIVIEWot e et 327
Dataflow Usage FlOW 328

Live SimulationDebug Flow 328

Post-Simulation Debug Flow Details.o 329
Common Tasksfor Dataflow Debuggingt e 331

Add Objectsto the Dataflow Window e 331

Exploring the Connectivity of theDesign 333

Explore Designs with the Embedded Wave Viewer. 337

TraCing EVENtSo e 339

8 ModelSim User's Manual, v10.4c

Table of Contents

Tracing the Source of an Unknown State (SEX)o oo 339
Finding Objects by Name in the Dataflow Window. 341
Automatically Tracing All PathsBetween TWoNets. 341
DatafloW CONCEPLS. . . . ot e e 343
Symbol Mapping.o 343
User-Defined SymboIS o 344
Current vs. Post-Simulation Command OUtputt 346
Dataflow Window Graphic Interface Reference 346
What Can | View inthe Dataflow Window? i 346
How isthe Dataflow Window Linked to Other Windows? 347
How Can | Print and Savethe Display?. e 347
How Do | Configure Window OptionS?.ot e e 349
Chapter 10
SOUrCEWINAOW . . .o e e 351
Opening SourCe Files. 351
Changing File PErmissioNSt e et 351
Updatesto Externally Edited SourceFiles. 352
Navigating Through Your DeSIgN oot i it e et 352
Dataand Objectsinthe Source Windowot e 353
Object Valuesand DeSCriptionS oottt 353
Setting Simulation Timeinthe SourceWindow i, 354
Searchfor Source Code ObJECES.ottt e 355
Debugging and Textual Connectivity, 357
Hyperlinked TeXt e e e e 357
Highlighted Text inthe Source Window 358
Drag Objects Into Other Windows. e e 358
Breakpoints 359
Setting Individual BreakpointsinaSourceFile............ 359
Setting BreakpointswiththebpCommand 359
Editing Breakpointst e 360
Saving and Restoring BreakpointSt 362
Setting Conditional Breakpoints. 363
RUNUNtI HEre . ..o 365
Source Window Bookmarks i 366
Setting and Removing Bookmarks. 366
Source Window Preferencesot e 366
Chapter 11
SIONAl SPY . o e e 367
Signal SPY CONCEPES . ..ot e 367
Signal Spy Formatting Syntax 368
Signal Spy SUPPOrted TYPES.ot 368
Signal SPY REfEreNnCe.o 369
disable Signal Sy . ..o 370
enable SIgNal SOyo e 372
INIE_Signal_ariVer ... e 374
NI SIONAl Sy - o ittt e e e 378

ModelSim User’'s Manual, v10.4c 9

Table of Contents

SIgNAl_fOrCe. . . 382
SIgNAl TRl EASE . . . ot it 386
Chapter 12
Generating Stimuluswith Waveform Editor 389
Getting Started with the Waveform Editor 390
Using Waveform Editor Prior to LoadingaDesign., 390
Using Waveform Editor After LoadingaDesign. ..., 391
Accessing the Create Pattern Wizard. e 392
Creating Waveforms with Wave Create Command., 393
Editing Waveforms 393
Selecting Partsof the Waveform e 395
Selectionand Zoom Percentage e 396
Auto Snapping of the Cursor o 396
Stretchingand MoviNg EAQES.o 397
Simulating Directly from Waveform Editor i 397
Exporting WaveformstoaStimulusFile. i 397
Driving Simulation with the Saved StimulusFile. 399
Signal Mapping and Importing EVCD Files o i 399
Saving the Waveform Editor Commands 400
Chapter 13
Standard Delay Format (SDF) Timing Annotation.ciinon... 401
Specifying SDF Filesfor Simulation. 401
INstance SPeCifiCation.o 401
SDF Specificationwiththe GUI e 402
Errorsand Warnings.ottt 402
VHDL VITAL SDF . . . e e e e e 403
SDFto VHDL Generic MatChing.ot e 403
VErlog SDF 404
Bstf aNNOtateo 405
SDFto Verilog Construct MatChing. e e 406
SDF for Mixed VHDL and VerilogDesigns.ot e 413
Interconnect DElaysS. oo 413
Disabling TImiNng Checks e e 413
Troubleshooting.o 414
Specifying the Wrong INStance.ot 414
MatchingaSingle Timing Check i e 415
Mistaking a Component or Module Name for an InstancelLabel. 415
Forgettingto Specify thelnstance i e 415
Reporting Unannotated Specify PathObjects. 416
Chapter 14
ValueChange Dump (VCD) Files.o e e e 419
Creating @V CD File 419
Four-State VCD File. . .o 419
Extended VCD File. . ..o 420
VECD Case SaNSItIVITY . . . vttt e e 420

10 ModelSim User's Manual, v10.4c

Table of Contents

Using Extended VCD asSHMUIUS.ot e 421
Simulating with Input ValuesfromaVCDFile.......... 421
Replacing Instances with Output ValuesfromaVCD File........................ 422
POt Order ISSUES. . . . ot e e 423

VCD Commands and VECD TaskS. . ..o v ittt e et 424
Compressing FileswithVCD Tasks.o e 425

VCD Filefrom Sourceto OULPUL. oot e e e e e 425
VHDL SOUICE COOR ottt ettt e e e e e e e e 425
VCD Simulator Commandso vttt e 426

VD IO WL . o 428

Capturing POrt Driver Data oo ettt e e 428

ReSOIVING ValUES.o 430
Default BENaVIOr.o 430
Whenforce Command isUSed.t 430
Extended Data Typefor VHDL (VI _10gIiC). 431
Ignoring Strength RaNges o e 431

Chapter 15
Tl and DO FIleS. . ..o e e e 435

TCl FEaIUNES . . . 435
TCl REfErENCES . ..o 435

Tl CommMAaNd SYNEaX oot e e e 436
If Command SYNtaXxi it 438
Command SUDSHITULIONt 439
ComMMaANd SEPAraLOrot e e 439
Multiple-Line Commands. e 439
Evaluation Order.o 440
Tcl Relational Expression Evaluation.t 440
Variable SUDSHITULION 440
SyStEM ComMMEANASot ot 441
ModelSim Replacementsfor Tcl Commands. 441

Simulator State Variables 442
Referencing Simulator State Variables. 443
Specia Considerationsforthenow Variable. 443

LISt PrOCESSING . .« o vttt ettt e e e 443

Simulator Tl CommaNdSot e e 444
Simulator Tcl TIme Commands v e e e e e 444

Tl EXamMPIES . . . e 446

DO FIIES. oot 448
Creating DO FIles. o e 448
Using Parameterswith DO Files. e 449
DeletingaFilefroma.do SCript.t e 449
Making Script ParametersOptional 450
Breakpoint Flow Control in Nested DOfiles. 451
Useful Commands for Handling Breakpointsand Errors. 453
Error ActioniNnDO FIle SCriptso o 453
Using the Tcl Source Command withDOFiles. 454

ModelSim User’'s Manual, v10.4c 11

Table of Contents

Appendix A
modelsim.ini Variables. 455
Organization of themodelsim.ini File. 455
Making Changestothemodelsim.iniFile 456
Editing modelsm.ini Variables 456
Overriding the Default InitidizationFile. i 456
TheRuntime OptionsDialogo e 457
VaaDlES . 461
ACCESSODIDEDUG. . . . o ettt 462
AdAPragmaPrefiX . . .o 463
AMSSIANAAId. . . . o 464
APPENACIOSE. . . .ot e 465
ASSEItRIl e . 466
BalChM OOo 467
BatchTranseriptRile. 468
BiNdALCOMPIlE. 469
BreakONnASSEITION.o 470
CheCKPIUSAIgS. . . o oot 471
CheckpointCompressMode.ot 472
CheckSynthesis. 473
ClassDEDUG ettt 474
CommMaNdHISIOrY . . . ot 475
CompilerTemMPDIr. . . 476
ConcurrentFileLimit. 477
VIogCreateDirFOrFIl@ACCESS. oo 478
Createlib. 479
DatasetSEParaloro 480
DefaultForceKindo 481
DefaultLibType. . .o 482
DefaultRadiX. 483
DefaultRadiXFlags 484
DefaultRestartOptioNS. oo 485
DAyl EOPEN . . o 486
displaymsgmode.o 487
DpiOUtOfTheBIUE. o e e e e 488
DUMPPOISCOllADSE. oot 489
EnUMBaESEINIto 490
< 0 491
ErrOrFile . .o 492
EXPIICIT . . 493
L=, €= 494
FlatLibPageSize oo 495
FlatLibPageDeletePercentage. 496
FlatLibPageDeleteThreshold e 497
floatfixlib. 498
FOrCeSIgNEXTIE 499
ForceUnsignedinteger TOVHDLINtegert e 500
FSmMIMpPliCItTranSo e 501
12 ModelSim User's Manual, v10.4c

Table of Contents

FSMRESE T raNS o 502
FSMSINgIE. . . o 503
FOM X A S N . .ottt 504
GCThreshold. oo e 505
GCThresholdClassDebug oo e 506
GeNEratEFOIMEL. ot 507
GenerousldentifierParSingt 508
GlobalSharedObjectsListo 509
Hazard.o 510
== 511
gNOrEETTOr . . . e 512
IgnoreFailure. 513
[gNOTENOLEo 514
[gnorePragmaPrefiX 515
ignoreStandardRealVeCtOrt 516
IgNOreVItalEImOrSo 517
[gNOrEWEAININGo e e e e 518
IMMediateCoNtINUOUSASSION . . . o .ttt e e e e et 519
IncludeRecursionDepthMaxo 520
INItOUtCOMPOSItEPAraMo 521
IterationLimit 522
LargeObjectSIlento 523
LargeOb eCtSize oo 524
LibrarySearchPath. 525
MeESSagEFOIMELo 526
MessageFormatBreak 527
MessageFormatBreakLine 528
MeESSageF oML e TOr.o e 529
MessageFormatFall. 530
MessageFormatFatal 531
MessageFormatNOte. 532
MessageFormatWarning.o vt 533
MiIXEAANSIPOITS 534
MOdelSIM LD ... 535
MSOLIMITCOUNL.o e e 536
MSOMOTE. . . . ettt e e e e e e e e 537
0101 0 538
1011 Y o P 539
MultiFileCompilationUnit e e 540
NOCASESIAICEITOr . . o\ttt e e e e e e e e e 541
NOD UG . . . oot 542
NoDeferSubpgmCheck. oo 543
NOINAEXCNECK . . .o 544
NOOThErsSStatiCEITOr oottt e e e ettt 545
NORANGECNECK 546
10 P 547
NOVItalCheCK 548
NUMENCSIANOWEININGS. . . . o . oo ettt e e e e e e e 549
OldVHDL ConfigurationVisibility 550

ModelSim User’'s Manual, v10.4c 13

Table of Contents

OldV hdIFOrGeNNaMES.ottt et e e et et ettt et 551
ONFINISN . L 552
OptiMIZE L1684 . . o 553
01 AT 554
PathSEparalor 555
PEdaNtiCEITOrS. . . . ot 556
PrESEr e A, . . . o 557
PrNtSIMSIALS . . . oo 558
QUIBL . . . 559
RequireConfigForAllIDefaultBinding. i 560
RESOIULION . . . 561
RUNLENGEN. . . o 562
SeparateConfigLibraryo 563
Show_BadOptionWarningottt e et 564
SHOW LN, . 565
SNOW . SOUICE. . . ottt et e e e 566
Show_VitalCheckSWarningsot e e 567
Show_Warninglo 568
Show_WarningZ o 569
SNOW Warning3 . . . o 570
ShoW Warningd 571
ShOW WarmingSo 572
SNOWRUNCHIONSo e e e 573
ShUtdOWNFILE . . . e 574
SignalForceFunctionUseDefaultRadiX 575
SignalSpyPathSeparator e 576
SMAt DSy M. . . .o e 577
AU . .« oot 578
S £ 579
S . o 581
St _deVElOPEISKITt 582
StAANTANOWAININGSottt 583
SUP P S, .« o v vt e e e 584
SUPPresSHIlETYPERE oo e 585
5T (0 586
SVEXIENSIONS. . . . oo 587
SV ESUIfIXES . . . e 589
SVIOg . oot 590
SVPrettyPrintFlags e 591
S0P ISYS .+« v vt e e e e 592
SyncCompilerFiles e 593
TransCriptRile 594
UnbufferedOUtpUL. 595
UNdef SymS . . o 596
UsSarTimeUnit . . .o e e e 597
UVMECONIOL . . e e e e e e 598
VENIOg . . o 599
N BIUSEY . oottt e 600
VHDL OB . . o e 601

14

ModelSim User's Manual, v10.4c

Table of Contents

VhdlSeparatePduPackage. 602
VhdlVariableLogging oot 603
VIl 2000 . . oo 604
VIOgOSCOMPALot 605
WarnConstantChange.ot 606
WAIMING .+« e v et e e e et e e e e e e e e e e e 607
WaveSignalNameWidth 608
WildeardFIIter. . . .o 609
WildcardSizeThreshold. 610
WildcardSizeThresholdVerbose. 611
WLEFCAChESIZE. . . . oo e e 612
WLFCOH@PSEMOUE. o 613
WELFCOMPIESS . . .ottt e e e e e 614
WLFDEateONQUILottt e e e 615
WELFFIELOCK . . . e e 616
WL ename. . . . 617
WELFOPDUMIZE. . . .ottt e e e 618
WLFSaVEAIIREGIONS . . . o 619
WLFSIMCaChESIZe.o e 620
WELFSIZELIMIt . . 621
WELFTIMELIMIt. ..o 622
WLFUpdatelnterval e 623
WLFUSETIIEaAS. . . . oot e e e e e e 624
Commonly Used modelsim.ini Variables i 624
Common Environment Variables. 624
Hierarchical Library Mapping e 625
CreatingaTranscript File.o e e e e 625
UsingaStartup File 626
Turn Off ASSErtioN MESSagES i ot 626
Turn Off Warnings from Arithmetic Packages. 626
ForceCommand DefaultS.t 626
Restart Command Defaults. 627
VHDL Standard e 627
Delay Opening VHDL Files. e 628
Appendix B
LoCation MapPing. . ..ottt et e e 629
Referencing Source Fileswith LocationMapso i 629
USINg LOCAHON MaPPING . . . o oo e et et e e e e e e e e e 629
Pathname SYNtaX.o 630
How Location Mapping WOrKSt e 630
Appendix C
Error and Warning MESSagesS oottt e e 631
M ESSagE Sy S I, . . ottt 631
MESSagE FOIrMaL . . . oo 631
Getting More INformation. it e 632
Message Severity Level 632

ModelSim User’'s Manual, v10.4c 15

Table of Contents

Syntax Error Debug FIOW oo 632
Suppression of WarNiNg MeSSages . . . oot i e e ettt et 633
EXIt COUES . . ot 634
MiSCEllaNEOUS MESSA0ESo ittt 636
Enforcing Strict 1076 ComplianCe.ottt 639

Appendix D

VerilogInterfacesto C o e 643
Implementation Information 643
GCC Compiler Support for usewithC Interfaces. 643
Registering PLI AppPliCatioNS.o vt e e 643
Registering DPI Applicationst e 645
DI USEFIOW. . . . 646

DPl andtheviogCommand i e 648

Deprecated Legacy DPI FIOWS.t e 648

When Y our DPI Export FunctionisNot GettingCalled 648

Troubleshooting aMissing DPI Import Function., 649

Simplified Import of Library Functions. i 649

Optimizing DPI Import Call Performance i 650

Making Verilog Function Callsfromnon-DPI CModels 651

Calling C/C++ Functions Defined in PLI Shared ObjectsfromDPI Code 651
Compiling and Linking C Applicationsfor Interfaces 652

Windows Platforms— C o 652
Compiling and Linking C++ Applicationsfor Interfaces 653

FOr PLI ONlY .. 653

Windows Platforms — CH+ oo 654
Specifying Application FilestoLoad 655

PLI and VPl FleLoading.o e 655

DPIFileLoading.o 655
Dl EXaMple . .o 656
ThePLI Calback reason Argument it it 657
Thesizetf Callback Function. e 658
PLIObject Handleso 658
Support for VHDL OBJeCtSo 659
[EEE Std 1364 ACC ROULINES. . . . o\ ottt et e e e e et e et 661
[EEE Std 1364 TF ROULINES.ot ittt et e e e e e 663
SystemVerilog DPl ACCESSROULINES.o ittt 663
Verilog-XL Compatible ROULINES oo e 664
PLINVPETIACING. . . oottt e e e e e e e e e e e e e e e 664

ThePurposeof TraCing Files e 664

INVOKING @ TTaCE. . . . oot e e e e e e 664
Debugging Interface Application Code. 665

Appendix E

System Initialization e 667
FilesAccessed DUring Startup. oo ot 667
INitialiZation SEQUENCE.ttt e e 667
Environment Variables 670

16 ModelSim User's Manual, v10.4c

Table of Contents

Expansion of Environment Variables. 670
Setting Environment Variables. 671
Creating Environment VariablesinWindows 675
Library Mapping with Environment Variables. 676
Node-Locked License Fileo 676
Referencing Environment Variables. 677
Removal of Temporary Files(VSOUT)o 677
I ndex

Third-Party Information

End-User License Agreement

ModelSim User’'s Manual, v10.4c 17

List of Examples

Example 2-1. Encryption Envelope Contains Design Datato be Protected 51
Example 2-2. Encryption Envelope Contains “include Compiler Directives 52
Example 2-3. Results After Compiling with vlog +protect. 58
Example 2-4. Using the Mentor Graphics Public Encryption Key in Verilog/SystemVerilog 80
Example 5-1. Memory Model Using VHDL87 and VHDL 93 Architectures............ 142
Example 5-2. ConversionsPackage. 144
Example 5-3. Memory Model Using VHDLO2 Architecture 146
Example 6-1. Incremental Compilation Example, 166
Example 6-2. Sub-ModuleswithCommonNames., 169
Example 6-3. Delay Mode DirectivesinaVerilogCell 200
Example 14-1. VCD Output from ved dumpports.o 433
Example E-1. Node-Locked LicenseLimit ErrorMessage., 676

18 ModelSim User's Manual, v10.4c

List of Figures

Figure 1-1. Operational Structureand Flow 28
Figure 1-2. Work Library.o 32
Figure 1-3. Compiled DeSIgN.ot e 34
Figure 2-1. Create an Encryption Envelope.o 51
Figure 2-2. Verilog/SystemVerilog EncryptionUsageFlow 61
Figure 2-3. Delivering IP Code with User-DefinedMacros 63
Figure 2-4. Delivering |P with “protect Compiler Directives 74
Figure 3-1. Create Project Dialogo v v e e 83
Figure 3-2. Project Window Detail i, 83
Figure 3-3. Add itemstothe Project Dialogo 84
Figure 3-4. Create Project FileDialog.o 85
Figure 3-5. Add fileto Project Diadlog. oo 85
Figure 3-6. Right-click Compile Menu in Project Window 87
Figure 3-7. Click Plus Signto Show DesignHierarchy 87
Figure 3-8. Setting Compile Order e 88
Figure 3-9. Grouping Files. 89
Figure 3-10. Add Simulation Configuration Dialog Box — DesignTab 90
Figure 3-11. Structure Window with Projects. 91
Figure 3-12. Project Window OVEIVIEWo e 91
Figure 3-13. Add Simulation Configuration DialogBox 93
Figure 3-14. Simulation Configuration in the Project Window. 94
Figure 3-15. Add Folder Dialog.o 9
Figure 3-16. SpecifyingaProject Folder. i 95
Figure 3-17. Project Compiler SettingsDialogot 96
Figure 3-18. Specifying File Properties. 97
Figure 3-19. Project SettingsDialog BOXo oo 98
Figure4-1. CreatingaNew Library. e 103
Figure 4-2. Design Unit Information intheWorkspace 104
Figure 4-3. Edit Library Mapping Dialog oo 106
Figure 4-4. Sub-ModuleswiththeSameName. 109
Figure4-5. Import Library Wizard 112
Figure5-1. VHDL DeltaDelay Process e 128
Figure 6-1. Fatal Signal Segmentation Violation (SIGSEGV) 185
Figure 6-2. Current ProcessWhere Error Occurred, 185
Figure 6-3. Blue Arrow Indicating Where Code Stopped Executing 186
Figure 6-4. Null ValuesintheLocalsWindow., 186
Figure 6-5. Classesinthe Class TreeWindow 221
Figure 6-6. Classinthe ClassGraph Window. 222
Figure 6-7. Classesinthe Structure Window 223
Figure 6-8. The ClassInstancesWindowt 224

ModelSim User’'s Manual, v10.4c 19

List of Figures

Figure 6-9. Placing Class Instancesinthe WaveWindow 226
Figure 6-10. Class Information Popup inthe WaveWindow 227
Figure 6-11. Class Viewing intheWatchWindow 228
Figure 6-12. Class Path Expressionsinthe WaveWindow. 230
Figure 6-13. /top/aCastascland CIprime. oottt e 231
Figure 6-14. Casting CLtO CAPIimMeottt e et e e e et e 232
Figure 6-15. Extensionsfor aClass Typeot 242
Figure 6-16. Garbage Collector Configuration 244
Figure 7-1. Displaying Two DatasetsintheWaveWindow 248
Figure 7-2. Dataset Snapshot Dialog BOXo 250
Figure 7-3. Open Dataset DialogBOXot e 254
Figure 7-4. Structure Tabso 255
Figure 7-5. The Datasat BrOWSEYttt et e e e e e 256
Figure 7-6. Virtual Objects Indicated by OrangeDiamond. 260
Figure8-1. TheWave WINndow oot e 264
Figure8-2. Insertion POINt Bar 267
Figure8-3. Gridand Timeline Propertiest 269
Figure 8-4. Find Previous and Next Transitionlcons., 270
Figure 8-5. Origina Names of Wave Window CUursorsoouiinnennnn.. 271
Figure 8-6. Sync All ACtiVE CUISOISottt et et 272
Figure 8-7. Cursor LINKINg MenUo e 272
Figure 8-8. Configure Cursor LinksDialog. oo 273
Figure 8-9. Waveform Pane with Collapsed Event and DeltaTime. 277
Figure 8-10. Waveform Pane with Expanded Time at a SpecificTime 277
Figure 8-11. Waveform Panewith Event NotLogged, 278
Figure 8-12. Waveform Pane with Expanded Time Over aTimeRange 279
Figure 8-13. Bookmark PropertiesDialog. ooo i 285
Figure 8-14. Wave Signal Search DialogBOX.o 287
Figure 8-15. Expression Builder Dialog BOXcco i, 288
Figure 8-16. Selecting Signalsfor ExpressionBuilder 289
Figure 8-17. Display Tab of the Wave Window Preferences DialogBox. 292
Figure 8-18. Grid and Timeline Tab of Wave Window Preferences Dialog Box 294
Figure 8-19. Clock Cyclesin Timeline of WaveWindow 295
Figure 8-20. Wave Format Menu Selections.t 295
Figure 8-21. Format Tab of Wave PropertiesDialog, 296
Figure 8-22. Changing Signal RadiX i e 297
Figure 8-23. Global Signal Radix Dialog in WaveWindow. 298
Figure 8-24. Separate Signals with Wave Window Dividers 299
Figure 8-25. Splitting Wave Window Panes., 301
Figure 8-26. Wave Groups Denoted by Red Diamond, 303
Figure 8-27. Contributing SIgnalsSGroupttt 304
Figure 8-28. Save Format Dialog. oo oot 308
Figure 8-29. Waveform Save Between CUrSOrSo v vt e e 310
Figure8-30. Wave Filter Dialog oo 311
Figure 8-31. Wave Filter Datasett e 312

20 ModelSim User's Manual, v10.4c

List of Figures

Figure 8-32. Virtua Interface Objects Added to WaveWindow 313
Figure 8-33. Signals Combined to Create Virtual Bus 314
Figure 8-34. Wave Extract/Pad BusDialogBoX., 315
Figure 8-35. Virtua Signal Builder 317
Figure 8-36. Virtual Signal Builder Help 318
Figure 8-37. Creating aVirtual Signal. 319
Figure 8-38. Virtua Signal intheWaveWindow. 320
Figure 8-39. Modifying the BreakpointsDialog, 323
Figure 8-40. Signal Breakpoint Dialogco i 324
Figure 8-41. Breakpointsinthe Source Window., 325
Figure 8-42. File Breakpoint Dialog BOX, 326
Figure 9-1. The Dataflow Window (undocked) - ModelSim 327
Figure 9-2. Dataflow DebuggingUsage Flow 329
Figure 9-3. Dot Indicates Input in Process Sensitivity Lis 332
Figure 9-4. CurrentTime Label in Dataflow Window 333
Figure 9-5. Controlling Display of Redundant Buffersand Inverters. 335
Figure 9-6. Green Highlighting Shows Y our Path ThroughtheDesign. 336
Figure 9-7. Highlight Selected Tracewith Custom Color. 337
Figure 9-8. Wave Viewer Displays Inputs and Outputs of Selected Process 338
Figure 9-9. Unknown States Shown as Red Linesin WaveWindow 340
Figure 9-10. Dataflow: Point-to-Point Tracing 343
Figure 9-11. The Print Postscript Dialog.o oo e 348
Figure9-12. The Print Dialog oo e 348
Figure9-13. ThePage Setup Dialogo oo e 349
Figure 9-14. Dataflow OptionsDialogot 350
Figure 10-1. Setting Context from SourceFiles 353
Figure 10-2. Examine POp UpP . ..o e 354
Figure 10-3. Current Time Label in SourceWindowo, 354
Figure 10-4. Enter an Event TimeValue. i i, 355
Figure 10-5. Bookmark All Instancesof aSearch. o ... 356
Figure 10-6. Breakpoint inthe SourceWindow, 359
Figure 10-7. Editing EXisting Breakpoints, 361
Figure 10-8. Source Code for SOUICE.SV. . . .ottt i e e e 363
Figure 12-1. Waveform Editor: Library Window 390
Figure 12-2. Resultsof Create Wave Operation, 391
Figure 12-3. Opening Waveform Editor from ObjectsWindows. 391
Figure 12-4. Create Pattern Wizard.o 392
Figure 12-5. Wave Edit Toolbar, 394
Figure 12-6. Manipulating Waveforms with the Wave Edit Toolbar and Cursors.. 396
Figure 12-7. Export WaveformDialogo oo 398
Figure 12-8. Evcd Import Dialog. oo 399
Figure 13-1. SDF Tab in Start Smulation Dialog.t 402
Figure 15-1. Breakpoint Flow Control in Nested DOFiles. 452
Figure A-1. Runtime Options Dialog: DefaultsTab 458
Figure A-2. Runtime Options Dialog Box: Message Severity Tab. 459

ModelSim User’'s Manual, v10.4c 21

List of Figures

Figure A-3. Runtime Options Dialog Box: WLF FilesTab 460

Figure D-1. DPI Use Flow Diagram

22

ModelSim User's Manual, v10.4c

List of Tables

Table 1-1. Simulation Tasks— ModelSIm 29
Table 1-2. Use Modesfor ModelSim e 37
Table 1-3. Message StatistiCS TYPES v v vttt e et e 43
Table 1-4. MeSsage MO TYPESo vttt e e e 44
Table 1-5. Commands with StatisticsMessage Optionso 44
Table 1-6. Possible Definitions of an Object, by Language 45
Table 1-7. Text CONVENtIONSottt e ettt 47
Table 2-1. Compile Options for the -nodebug Compiling 75
Table 5-1. Using the examine Command to Obtain VHDL Integer Data 156
Table 5-2. Using the examine Command to Obtain VHDL StringData 156
Table 5-3. Using the examine Command to Obtain VHDL RecordData 157
Table 6-1. Evaluation 1 of dwaysStatements, 181
Table 6-2. Evaluation 2 of alwaysStatement 181
Table 6-3. Utility System Tasksand FuNctionsc.ccviiiirnnnnn... 202
Table 6-4. Utility SystemFunctions e 202
Table 6-5. Utility SystemMath Functions 203
Table 6-6. Utility System AnalysisTasksand Functions 203
Table 6-7. Input/Output System Tasksand Functions 204
Table 6-8. Input/Output System Memory and Argument Tasks. 204
Table 6-9. Input/Output System File /O Tasks ... 204
Table 6-10. Other System Tasksand Functions, 206
Table 6-11. Stepping Withinthe Current Context. 234
Table 6-12. Garbage Collector Modes ...t e 243
Table 6-13. CLI Garbage Collector Commandsand INI Variables 245
Table7-1. WLF File Parametersot e e 251
Table 7-2. Structure Tab Columns 255
Table 7-3. vsim Arguments for Collapsing Timeand DeltaSteps 258
Table 8-1. Add Objectstothe WaveWindowc ... 265
Table 8-2. ACtiONSTOr CUISOISot e 267
Table8-3. TWO CUIrsor ZOOMttt e e e e e 274
Table 8-4. Recording Deltaand Event Time Information 276
Table 8-5. Menu Selections for Expanded Time DisplayModes 280
Table 8-6. Actionsfor Bookmarks 285
Table8-7. Actionsfor DIVIAErs e 300
Table 9-1. Icon and Menu Selections for Exploring Design Connectivity 333
Table 9-2. Dataflow Window Linksto Other WindowsandPanes 347
Table10-1. OpenaSourceFile e 351
Table 11-1. Signal Spy Reference Comparisoncviiiiiiiinnnnnn... 367
Table 12-1. Signal Attributesin Create Pattern Wizard 393
Table 12-2. Waveform EditingCommands, 394

ModelSim User’'s Manual, v10.4c 23

List of Tables

Table 12-3. Selecting Partsof theWaveform e 395
Table 12-4. Wave Editor Mouse/Keyboard Shortcuts 397
Table 12-5. Formatsfor SavingWaveforms. i 398
Table 12-6. Examplesfor Loadinga StimulusFile 399
Table 13-1. Matching SDFto VHDL Generics ... 403
Table 13-2. Matching SDF IOPATH to Verilog i 406
Table 13-3. Matching SDF INTERCONNECT and PORT toVerilog 406
Table 13-4. Matching SDF PATHPUL SE and GLOBALPATHPULSE to Verilog 407
Table 13-5. Matching SDF DEVICEtoVerilogc ... 407
Table 13-6. Matching SDF SETUPto Verilog 407
Table 13-7. Matching SDFHOLD toVerilog ... 407
Table 13-8. Matching SDF SETUPHOLD toVerilog, 408
Table 13-9. Matching SDF RECOVERY to Verilog ..., 408
Table 13-10. Matching SDF REMOVAL toVerilog ..., 408
Table 13-11. Matching SDFRECREM toVerilog 408
Table 13-12. Matching SDF SKEW to Verilog ... 408
Table 13-13. Matching SDFWIDTHtoVerilog o ... 409
Table 13-14. Matching SDF PERIOD toVerilogo 409
Table 13-15. Matching SDF NOCHANGE toVerilog 409
Table 13-16. RETAIN Delay Usage (default)cco .. 410
Table 13-17. RETAIN Delay Usage (with +vlog_retain_same2same on) 410
Table 13-18. Matching Verilog Timing Checksto SDFSETUP 411
Table 13-19. SDF DataMay Be More Accurate ThanModel 411
Table 13-20. Matching Explicit Verilog Edge Transitionsto Verilog 411
Table 13-21. SDF Timing Check Conditionst e 412
Table 13-22. SDF Path Delay Conditions. e 412
Table 13-23. Disabling Timing Checks i, 413
Table 14-1. VCD Commandsand SystemTasksSo v it e e 424
Table 14-2. VCD Dumpport Commandsand System Tasks 424
Table 14-3. VCD Commands and System Tasks for MultipleVCD Files 425
Table 14-4. Driver StaleSottt e e 428
Table 14-5. State When DirectionisUnknown 428
Table 14-6. Driver Strength 429
Table 14-7. VCD Vaues When Force CommandisUsed 430
Table 14-8. Valuesfor file format Argument, 432
Table14-9. SampleDriver Data oo 433
Table15-1. Tcl Backslash Sequenceso 437
Table 15-2. Changesto ModelSim Commandsccoiiiinnnnn... 441
Table 15-3. Simulator State Variables ... 442
Table15-4. Tcl ListCommandsoi i e e e e 443
Table 15-5. Simulator-Specific Tcl Commands von... 444
Table 15-6. Tcl Time ConversionCommands, 445
Table 15-7. Tcl TimeRelationCommands.t 445
Table 15-8. Tcl Time ArithmeticCommands 446
Table 15-9. Commands for Handling Breakpoints and Errorsin DO scripts 453

24 ModelSim User's Manual, v10.4c

List of Tables

Table A-1. Commands for Overriding the Default InitializationFile 457
Table A-2. Runtime Option Dialog: Defaults Tab Contents 458
Table A-3. Runtime Option Dialog: Message Severity Tab Contents 460
Table A-4. Runtime Option Dialog: WLF FilesTabContents. 460
Table A-5. MessageFormat Variable: AcceptedValues. 526
Table C-1. Severity Level Types ... e 631
Table C-2. EXit COUBSottt e e e e 634
Table D-1. vaim Arguments for DPI Application Using External Compilation Flows 655
Table D-2. Supported VHDL ObJEeCtSo e 659
Table D-3. Supported ACC ROULINES oottt e e 661
Table D-4. Supported TF ROULINESot et 663
Table D-5. Valuesfor action Argumentttt 665
Table E-1. Files That ModelSim AccessesDuring Startup oo 667
Table E-2. Add Library Mappingsto modelsm.ini File 676

ModelSim User’'s Manual, v10.4c 25

List of Tables

26

ModelSim User’'s Manual, v10.4c

Chapter 1
Introduction

Documentation for ModelSim is intended for users of Microsoft Windows.
Not all versions of Model Sim are supported on al platforms.

Operational Structure and Flow

The following graphic illustrates the structure and general usage flow for verifying adesign
with Model Sim.

ModelSim User’'s Manual, v10.4c 27

Introduction

Simulation Task Overview

Figure 1-1. Operational Structure and Flow

>
VHDL

~N_
< >

Vendor
Libraries

~ N

>

Design
files

~N__

< >
.ini or
.mpf file

Design ,.-
Libraries| V“b

_ vma local work

l_____l

v
viog/
vcom

Analyze/
Compile

~

(. vim)

Interactive Debuggi ng>

activities

Simulation Output
(for example, vcd)

(Post-processing Debug)

Map libraries

Verilog/VHDL

Analyze/
Compile

Simulate

Debug

Simulation Task Overview

The following table provides a reference for the tasks required for compiling, loading, and
simulating a design in ModelSim.

28

ModelSim User's Manual, v10.4c

Introduction

Basic Steps for Simulation

Table 1-1. Simulation Tasks — ModelSim

Task Example Command Line | GUI Menu Pull-down GUI Icons
Entry
Step 1: vlib <library_name> a File>New > Project | N/A
Map libraries | vmap work <library_name> | b. Enter library name
c. Add design filesto
project
Step 2: vliog filel.v file2.v ... a. Compile> Compile | Compileor
Compilethe | (Verilog) or Compile All
design vcom filel.vhd file2.vhd ... | Compile> CompileAll
(VHDL) 22 b
Step 3: vsim <top> a. Simulate > Start Simulateicon:
Load the Simulation
designintothe b. Click on top design ﬁ
simulator module
c. Click OK
This action loads the
design for ssimulation
Step 4: run Simulate > Run Run, or
Run the step Run continue, or
simulation Run -all
B
Step 5: Common debugging N/A N/A
Debug the commands:
design bp
describe
drivers
examine
force
log
show

Basic Steps for Simulation

This section describes the types of files and basic procedures needed to simulate your design

using ModelSim.

ModelSim User’'s Manual, v10.4c

29

Introduction
Basic Steps for Simulation

Files and Map Libraries
Y ou need several filesto simulate your design with Model Sim.
® designfiles(VHDL and/or Verilog), including stimulus for the design.
® libraries, both working and resource.
* modelsim.ini file (automatically created by the library mapping command).

For detailed information about the files accessed during system startup (including the
modelsim.ini file), initialization sequences, and system environment variables, refer to the
“System Initialization” appendix.

What is a Library?

A library isalocation on your file system where Model Sim stores data to be used for
simulation. Model Sim uses one or more libraries to manage the creation of data before the data
Is needed for ssimulation. A library also helps to streamline simulation invocation.

Y ou can use libraries in the following ways.

® Asaloca working library that contains the compiled version of your design

® Asaresourcelibrary

Resource Libraries

A resource library istypically unchanging, and serves as a parts source for your design. Y ou can
create your own resource libraries, or they may be supplied by another design team or athird
party (for example, asilicon vendor).

Examples of resource libraries:

® Shared information within your group

® Vendor libraries

® Packages

® Previously compiled elements of your own working design

Instead of compiling all design data each time you simulate, Model Sim makes use of pre-
compiled resource libraries supplied in the installation tree. Using the pre-compiled libraries
hel ps to minimize errors during compilation and simulation startup. Also, if you make changes
to asingle Verilog module, Model Sim recompiles only that module, rather than all modulesin
the design.

30 ModelSim User's Manual, v10.4c

Introduction
Basic Steps for Simulation

Related Topics

Working Library Versus Resource Libraries
Library Window Contents

Working with Design Libraries

Verilog Resource Libraries

VHDL Resource Libraries

Creating aLibrary

Mapping the Logical Work to the Physical Work Directory

VHDL useslogical library names that can be mapped to Model Sim library directories. If
libraries are not mapped properly, and you invoke your simulation, necessary components will
not be loaded and simulation will fail. Similarly, compilation can also depend on proper library
mapping.

By default, Model Sim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries |ocated elsewhere, you need to map alogical library name to
the pathname of the library.

Step 1 — Create Work and Resource Libraries

Before you can compile your source files, you must create aworking library with the vlib
command in which to store the compilation results. The contents of your working library will
change as you update your design and recompile.

Vlib creates a"flat" library type by default. Flat libraries condense library information into a
small collection of files compared to the legacy library type. This remedies performance and
capacity issues seen with very large libraries.

Restrictions and Limitations

The vmake command does not support the flat library type, flows requiring the vmake
command can revert to the legacy library type when you do any of the following:

® Specify "-type directory" in the vlib command.
® Set the DefaultLibType variable in your modelsim.ini file to the value O.
® Set the shell environment variable MTI_DEFAULT _LIB_TYPE to the value 0.

Use braces ({}) for cases where the path contains multiple items that need to be escaped, such as
spaces in the pathname or backslash characters. For example:

vmap celllib {SLIB_INSTALL_PATH/Documents And Settings/All/celllib}

Prerequisites

® Know the paths to the directories that contain your design files and resource libraries.

ModelSim User’'s Manual, v10.4c 31

Introduction
Basic Steps for Simulation

®* Start ModelSim

Procedure
1. Select File > Change Directory to open the Browse For Folder dialog box.
2. Navigate to the directory where your source files are located.
3. Createthe Logical Work Library with the vlib command in one of the following ways:
® Enter the vlib command in the a UNIX shell or the Transcript window:
v1lib work
* File>New > Library from the main menu.

4. Map one or more user provided libraries between alogical library name and a directory
with the vmap command:

vmap <logical_name> <directory_pathname>

Results

Creates alibrary named work, placesit in the current directory and displays the work library in
the Structure window (Figure 1-2).

Figure 1-2. Work Library

M Library
T‘IName
A work empty)) Work Library
+-l}, fioatfixib Library
ﬂ—ml infact Library
M mc2_lib {empty) Library "
<1k, mtiavm - Pre-Compiled
ﬂ—ml miCwm Library : .
+|—jll miP & Library LIbI‘ﬂI‘IEE
+|—JI[milPF Library
Related Topics
The Library Named "work™ Map aLogical Nameto aDesign Library
Working Library Versus Resource Libraries Getting Started with Projects
Working with Design Libraries Creating aLibrary

Map aLogical Nameto a Design Library

32 ModelSim User's Manual, v10.4c

Introduction
Basic Steps for Simulation

Step 2 — Compile the Design

After you have collected the design files and created the working directory, you compile the
design. Y ou must choose the appropriate compiler command based on the programming
language used to writed the design code.

® Verilog and SystemVerilog — compile with the vlog command.

®* VHDL — compile with the vcom command.

Prerequisites
® Create the work library and map required resource libraries to the work library. Refer to
Step 1 — Create Work and Resource Libraries for more information.
Procedure

Depending on the language used to create your design, you will use one of the following
Model Sim commands to compile the design:

If your sourcefiles | Enter thefollowing in the Transcript window ...
arewrittenin ...

Verilog and/or Y ou can compile Verilog filesin any order, since they are
SystemVerilog not order dependent. For example:

vlog gates.v and2.v cache.v memory.v

VHDL VHDL units are compiled in the order they appear on the
command line. For VHDL, the order of compilation is
important — you must compile any entities or
configurations before an architecture that references them.
Projects may assist you in determining the compile order.
For example:

vcom v_and2.vhd util.vhd set.vhd

Results
By default, compilation results are stored in the work library. (Figure 1-3)

ModelSim User’'s Manual, v10.4c 33

Introduction
Basic Steps for Simulation

Figure 1-3. Compiled Design

Library —_—
#|Mame | Type | Path =
= ok Library C:/modeltech/examplesmisedHDLAwork,
{hl] cache b odule C:AmodeltechhexampleshmisedHD L cach...
E] cache_zet E nitity C:hmodeltechhexampleshmimedHD L et
1] memary b odule C:hmodeltechhexampleshmizedHD L merm...
1] proc b odule C:AmodeltechhexampleshmizedHD L proc. v
P ztd_logic_uti Package ChmodeltechherampleshminedHDLAUKL ...
=-E] top Ertity C:hmodeltechhexamplesmizedHDLop....
A anly Architecture s
wital2000 Library $A0DEL_TECH/.. Avital2000
[1=0=) Library FAODEL_TECH!. figee
rnodelzim_lib Library FA0DEL_TECH/. fmodelzim_lib J
Library

Related Topics

Verilog Compilation
Compilation and Simulation of VHDL
Auto-Generate the Compile Order

Step 3 — Load the Design for Simulation

After compiling the design, you need to load the design with the vsim command using the
names of any top-level modules (many designs contain only one top-level module). For
example, if your top-level modules are named “testbench” and “globals,” then invoke the
simulator.

vsim testbench globals

Prerequisites

® Create the work library and map required resource libraries to the work library. Refer to
Step 1 — Create Work and Resource Libraries for more information.

® Compile the design. Refer to Step 2 — Compile the Design.
Procedure
Enter the following command on the command line:

vsim testbench globals

where testbench and globals are the two top level modules.

34 ModelSim User's Manual, v10.4c

Introduction
Basic Steps for Simulation

Results

After the smulator loads the top-level modules, it iteratively loads the instantiated modules and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references.

Note
Y ou can incorporate actual delay values to the simulation by applying standard delay

format (SDF) back-annotation files to the design.

Related Topics

Specifying SDF Files for Simulation

Step 4 — Simulate the Design

Once you have successfully loaded the design, simulation timeis set to zero, and you must enter
arun command to begin simulation.

The basic commands you use to run asimulation are:
* addwave
* bp
* force

® run

[] Step

Add Stimulus to the Design

Y ou can add stimulus to your design in several ways.

® | anguage-based test bench.
® Tcl-based Model Sim interactive commands. For example, force and bp.

®* VCD files/ commands.
Refer to “Creating aVCD File” and “Using Extended VCD as Stimulus.”

® Third-party test bench generation tools.

Related Topics

Verilog and SystemVerilog Simulation
VHDL Simulation

ModelSim User’'s Manual, v10.4c 35

Introduction

Modes of Operation

Step 5 — Debug the Design

The ModelSim GUI provides numerous commands, operations, and windows useful in
debugging your design. In addition, you can also use the command line to run the following

basic simulation commands for debugging.

Modes of Operation

describe
drivers
examine
force

log
show

The Model Sim User’ s Manual focuses primarily on the Graphical User Interface (GUI) mode of
operation — interacting with your ssmulation by working in the Model Sim desktop with
windows, menus, and dialog boxes. However, Model Sim also has a Command Line Mode and

Batch Mode for compiling and simulating a design.

36

ModelSim User's Manual, v10.4c

Introduction
Modes of Operation

The following table provides short descriptions of the three modes.

Table 1-2. Use Modes for ModelSim

Mode ModelSim isinvoked: Characteristics Recommended
For
GUI by specifying vsim from the | Interactive; has graphical Viewing
OS command or shell windows, push-buttons, waveforms and
prompt menus. Stderr isredirected | graphically
to the shell unlessstdinisa | based
file redirection. debugging.
by specifying vsim -gui Interactive; has graphical
from the OS command or | windows, push-buttons,
shell prompt menus. Stderr is redirected
to the GUI Transcript
window.
by specifying vaim -i from | Interactive; has graphical
the OS command or shell windows, push-buttons,
prompt menus. Stderr is redirected
to the OS shell from which
vsim -i was invoked.
from a Windows desktop Interactive; has graphical
icon windows, push-buttons,
menus. Stderr is redirected
to the GUI Transcript
window.
Command | with thevsim -c argument | Non-interactive, no GUI. DO file based
Line at the OS command or shell simulations
Mode prompt Supports al commands that
Example: are not GUI based. ! Executing
0S> vsim -c commands from
aprompt
Batch at OS command or shell Non-interactive batch Large, high-
Mode prompt script; no windows or performance
interactive command line. | simulations
Example: Most commands and
0S> vsim -batch command options are
supported. *

1. Refer to the Supported Commands table in the Command Reference Manual to see which
commands are supported for use with vsim -c and vsim -batch.

ModelSim User’'s Manual, v10.4c

37

Introduction
Modes of Operation

Command Line Mode

Command line simulations are executed from a Windows or UNIX command prompt and can
be either interactive or non-interactive. For the most part, command line simulations operate in
non-interactive mode, for example, when a DO fileis being processed or a stdin redirect is
present. Otherwise, the simulator operates in interactive mode, for example, when aDO file
script requires input from the user to continue execution.

Note
Y ou can use the CTRL-C keyboard interrupt to terminate batch simulation in both the

UNIX and Windows environments.

Startup Variable Flow

In command line mode Model Sim executes any startup command specified by the Startup
variable in the modelsim.ini file. If vsim isinvoked with the -do "command_string" option, a
DO fileiscalled. A DO file executed in this manner will override any startup command in the
modelsim.ini file.

Stand-alone tools pick up project settings in command-line mode if you invoke them in the
project's root directory. If invoked outside the project directory, stand-alone tools pick up
project settings only if you set the MODEL SIM environment variable to the path to the project
file (<Project_Root_Dir>/<Project Name>.mpf).

Related Topics

Startup modelsim.ini Variable
vsim

Here-Document Flow

Y ou can use the “here-document” technique to enter a string of commandsin a UNIX shell or
Windows command window. Y ou invoke vsim and redirect standard input using the
exclamation character (!) to initiate and terminate a sequence of commands.

The following is an example of the "here-document” technique:

vsim top <<!
log -r *
run 100

do test.do
quit -f

|

The file test.do can run until completion or contain commands that return control of the
simulation to the command line and wait for user input. Y ou can also use this technique to run
multiple simulations.

38 ModelSim User's Manual, v10.4c

Introduction
Modes of Operation

/O Redirection Flow

Y ou can use a script with output and input redirection to and from user specified files. The
script can be set up to run interactively or non-interactively.

For example:

vsim -c counter <infile >outfile

where “counter” isthe design top, “infile” represents a script containing various Model Sim
commands, and the angle brackets (< >) are redirection indicators.

Use the batch_mode command to verify that you arein Command Line Mode. stdout returns
“1” if you specify batch_mode while you arein Command Line Mode (vsim -c) or Batch Mode
(vsim -batch).

DO Files Generated from Transcript Files

By default, atranscript file is created during simulation and contains stdout messages. A
transcript file may be used as the basisfor aDO file if you invoke the transcript command with
the on argument after the design loads (refer to the example below). The transcript on command
writes all of the commands you invoke to the transcript file.

The following series of commands results in atranscript file that can be used for command
input if top isre-simulated (remove the quit -f command from the transcript file if you want to
remain in the simulator).

vsim -c top

library and design loading messages. .. then execute:

transcript on

force clk 1 50, 0 100 -repeat 100
run 500

run @5000

quit -f

Y ou should rename atranscript file that you intend to use asa DO file. If you do not rename the
file, Model Sim will overwrite it the next time you run vsim. Also, simulator messages are
already commented out with the pound sign (#), but any messages generated from your design
(and subsequently written to the transcript file) will cause the simulator to pause. A transcript
file that contains only valid simulator commands will work fine; comment out anything else
with a pound sign.

Refer to Creating a Transcript File for more information about creating, locating, and saving a
transcript file.

ModelSim User’'s Manual, v10.4c 39

Introduction
Modes of Operation

Related Topics

Default stdout Messages

Stats modelsim.ini Variable

vsim command

transcript command

transcript on command

Controlling the Display of Statistics Messages

Supported Commands for Command Line Mode

GUI based commands are not available for use with vsim -c. Refer to the Supported Commands
table to see which commands are supported for use with vsim -c.

Related Topics

Supported Commands

Batch Mode

Batch Mode is an operational mode that provides the user with the ability to perform
simulations without invoking the GUI. The simulations are executed via scripted filesfrom a
Windows command prompt or UNIX shell and do not provide for interaction with the design
during ssimulation. Datafrom the simulation run istypically sent to stdout and may be redirected
toalogfile.

Simulating with Batch Mode can yield faster ssmulation times especially for simulations that
generate alarge amount of textual output. Refer to Saving Batch Mode Simulation Data for
information about saving transcript data.

The commands supported within aDO file script for Batch Mode simulation are similar to those
available for Command Line Mode (vsim -c) however, not all commands or command options
are supported by vaim -batch. Refer to the Supported Commands table to see which commands
can be used with vsim -batch.

There are two options for enabling Batch Mode:

1. Specifying vsim -batch with scripted simulations via the -do “<command_string>" |
<do_file_name> argument. Running vsim -batch with output redirection is
recommended asit yields the best simulation performance. Refer to Output Redirection
With vsim -batch for more information.

2. Enabling the BatchM ode modelsim.ini variable. If thisvariableisset to 1, vsSimrunsasif
the vaim -batch option were specified. If thisvariableis set to O (default), vsim runs asiif
the vsim -i option were specified. Transcript datais sent to stdout by default. Y ou can

40 ModelSim User's Manual, v10.4c

Introduction
Modes of Operation

automatically create alog file by enabling the BatchTranscriptFile modelsim.ini
variable.

Note

D Y ou will receive awarning message if you specify vsim -batch with the -c, -gui, or the -i
options and -c, -gui, and -i will be ignored. If you enable the BatchMode variable, the
variable isignored if you specify the -batch, -c, -gui, or -i optionsto vsim.

Saving Batch Mode Simulation Data

The default behavior when using vsim -batch or the BatchM ode modelsim.ini variableisto send
transcript data to stdout and not create alog file. Y ou can save simulation datain one of three

ways:

Procedure
® Specify vaim -batch with output redirection (recommended).
® Specify vaim -batch -logfile <file_name>.

® Enablethe BatchTranscriptFile modelsim.ini variable to automatically create alog file.
If you enable BatchTranscriptFile, you can disable log file creation from the command
lineor inaDO file by specifying vsim -nolog.

Related Topics

BatchMode

Output Redirection With vsim -batch

Y ou can specify output redirection in Batch Mode with scripts. In the following example, the
-batch argument to vsim isincluded which prevents the GUI from opening.

vsim -batch counter -do "run -all; quit -f" > outfile

where “outfile’ represents a script containing various Model Sim commands, and the angle
bracket (>) is the output redirection indicator.

Simulator Control Variables

Aswith GUI Mode and Command Line Mode, simulator control for Batch Mode simulation is
governed by which modelsim.ini variables are enabled and each variable's setting.

AccessObjDebug IgnoreSV AError StdArithNoWarnings
BreakOnAssertion IgnoreSV AFatal UserTimeUnit
CheckpointCompressM ode IgnoreSV AInfo PrintSimStats

ModelSim User’'s Manual, v10.4c 41

Introduction
Default stdout Messages

ClassDebug
DefaultForceKind
DefaultRadix
DelayFileOpen
ForceSigNextlter
GCThreshold
IgnoreError
IgnoreFailure
IgnoreNote

IgnoreSVAWarning WildcardFilter
IgnoréWarning WLFCompress
[terationLimit WLFFilename
NoQuitOnFinish WLFMCL
NumericStdNoWarnings WLFOptimize
OnBreakDefaultAction WLFSizeLimit
OnErrorDefaultAction WLFTimeLimit
PathSeparator WLFUseThreads
RunLength

In addition, ssmulator behavior is controlled by a number of Tcl variables. Refer to the table
below for the list of default Tcl variables.

now
delta

Related Topics

library architecture
entity resolution

For more information about setting simulator
variables, refer to the modelsim.ini Variables

appendix.

Default stdout Messages

By default, the simulator sendsinformation about the simulator, commands executed, start time,
end time, warnings, errors, and other data to stdout.

Tool Statistics Messages

Each time you enter acommand, datais printed out and sent to the Transcript window and/or a

logfile.

The datais displayed with the following format:

Start time:

vsim topopt -c¢ -do "run -all; quit -f" -warning 3053
18:06:45 on May 13,2014
// Questa Sim-64

// Version <information>
Loading sv_std.std
Loading work.top(fast)
Loading work.pads (fast)

0 Jo U WN R
LT -

connection for "port 'AVSS'".

** Warning: (vsim-3053) test.sv(2):

Illegal output or inout port

42

ModelSim User's Manual, v10.4c

Introduction
Default stdout Messages

10
11
12
13
14

Y

run -all
0: Z=1,
quit -f

Region: /top/pads

AVSS=0

End time: 18:06:45 on May 13,2014, Elapsed time: 0:00:00

Errors:

0, Warnings: 1

Line 1 — The command with arguments.

Line 2 — The Start time and date the command was executed.

Line 3— Themti_version

Line 4 — Release information:

Number and letter release

Executable Type — For example, compiler (viog, vcom). However thisinformation
IS not sent to the transcript for the vsim command.

OSversion

Build date

Lines 5 through 12 — Logged messages.

Line 16 — The end time, date the command finished, and elapsed time.

Line 17 — The total number of errors and warningsin the following format:

Errors: [number], Warnings [number], Suppressed Errors: [number], Suppressed

Warnings: [number]. For zero suppressed errors and warnings, the corresponding count
message is not displayed.

Controlling the Display of Statistics Messages

All of the above statistics are printed by default. However, you can use the Stats modelsim.ini
variable or the -stats argument to a number of commands to display or suppress each type of

statistical data. The following tables describe the types of datathat can be displayed.

Table 1-3. Message Statistics Types

Option Description

al Display all statistics features (cmd, msg, perf, time). Mutually
exclusive with the none option. When specified in a string with
other options, +|-all isapplied first.

cmd (default) Echo the command line.

msg (default) Display error and warning summary at the end of

command execution.

ModelSim User’'s Manual, v10.4c

43

Introduction
Default stdout Messages

Table 1-3. Message Statistics Types

Option Description

none Disable all statistics features. Mutually exclusive with all option.
When specified in a string with other options, +|-none is applied
first.

perf Display time and memory performance statistics.

time (default) Display Start, End, and Elapsed times.

Table 1-4. Message Mode Types

Option Description

kb Print memory statistics in Kb units with no auto-scaling.

list Display performance statisticsin aTcl list format when available.

verbose Display verbose performance statistics information when
available.

Modes can be set for a specific feature or globally for all features. To add or subtract a mode for
aspecific feature, specify using the plus (+) or minus (-) character with the feature, for example,
vsim -stats=cmd+verbose,perf+list. To add or subtract a mode globally for al features, specify
the modes in a comma-separated list, for example, Stats=time,perf,list,-verbose. Y ou cannot
specify global and feature specific modes together.

Refer to the Stats variable description for more information.

Message Control with the Stats Variable

Y ou can set default message display and mode with the Stats modelsim.ini variable for vcom,
vlog, and vsim.

Refer to the Stats variable description for more information.

Message Control from the Command Line

Y ou can also modify message type and mode from the command line by specifying the -stats
argument and message options with the following commands.

Table 1-5. Commands with Statistics Message Options

vcom vencrypt vhencrypt vlog

vsim

For example,

44 ModelSim User's Manual, v10.4c

Introduction
Definition of an Object

Enable the display of Start, End, and Elapsed time as well as a message count summary.
Echoing of the command line is disabled

vcom -stats=time, -cmd,msg

The first -stats option isignored. The none option disables all default settings and then
enables the perf option.

vlog -stats=time,cmd,msg -stats=none,perf

Note

Not al Message Statistics Types or Message Mode Types are available with each
command. Refer to the command description for more information.

Definition of an Object

Because Model Sim supports a variety of design languages (Verilog, VHDL, and
SystemV erilog), the word “object” is used to refer to any valid design element in those
languages, whenever a specific language reference is not needed.

Figure 1-6 summarizes the language constructs that an object can refer to.

Table 1-6. Possible Definitions of an Object, by Language

Design Language An object can be

VHDL block statement, component instantiation, constant,
generate statement, generic, package, signal, alias,
variable

Verilog function, module instantiation, named fork, named
begin, net, task, register, variable

SystemVerilog In addition to those listed above for Verilog:
class, package, program, interface, array, directive,
property, sequence

Standards Supported

Standards documents are sometimes informally referred to as the Language Reference Manual
(LRM). This standards listed here are the complete name of each manual. Elsewherein this
manual the individual standards are referenced using the IEEE Std number.

The following standards are supported for the Model Sim products:

VHDL —
o |EEE Std 1076-2008, |IEEE Standard VHDL Language Reference Manual.

Model Sim supports the VHDL 2008 standard features with afew exceptions. For
detailed standard support information see the vhdl2008 technote available at

ModelSim User’'s Manual, v10.4c 45

Introduction
Assumptions

<install_dir>/docs/technotes/vhdl2008.note, or from the GUI menu pull-down Help
> Technotes > vhdl2008.

Potential migration issues and mixing use of VHDL 2008 with older VHDL code are
addressed in the vhdl2008migration technote.

o |EEE Std 1164-1993, Sandard Multivalue Logic System for VHDL Model
Interoperability

o |EEE Std 1076.2-1996, Standard VHDL Mathematical Packages

Any design developed with Model Sim will be compatible with any other VHDL system
that is compliant with the 1076 specifications.

Verilog/SystemVerilog —
o |EEE Std 1364-2005, |IEEE Standard for Verilog Hardware Description Language

o |EEE Std 1800-2012. |IEEE Standard for SystemVerilog -- Unified Hardware
Design, Specification, and Verification Language

Both PLI (Programming Language Interface) and VCD (Vaue Change Dump) are
supported for Model Sim users.

SDF and VITAL —

o SDF-IEEE Std 1497-2001, |EEE Standard for Standard Delay Format (SDF) for
the Electronic Design Process

o VITAL 2000 - |IEEE Std 1076.4-2000, |EEE Sandard for VITAL ASC Modeling
Soecification

Assumptions

Using the Model Sim product and its documentation is based on the following assumptions.

Y ou are familiar with how to use your operating system and its graphical interface.

Y ou have aworking knowledge of the design languages. Although ModelSim is an
excellent application to use whilelearning HDL concepts and practices, thisdocument is
not written to support that goal.

Y ou have worked through the appropriate lessons in the Model Sim Tutorial and are
familiar with the basic functionality of Model Sim. Y ou can find the ModelSim Tutorial
by choosing Help from the main menu.

46

ModelSim User's Manual, v10.4c

Introduction
Text Conventions

Text Conventions

The table below lists the text conventions used in this manual.

Table 1-7. Text Conventions

Text Type Description

italic text provides emphasis and sets off filenames,
pathnames, and design unit names

bold text indicates commands, command options, menu
choices, package and library logical names, as
well as variables, dialog box selections, and

language keywords

monospace type monospace type is used for program and
command examples

Theright angle (>) is used to connect menu choices when
traversing menus asin: File > Quit

UPPER CASE denotes file types used by Model Sim (such as

DO, WLF, INI, MPF, PDF.)

Installation Directory Pathnames

When referring to installation paths, this manual uses “<installdir>" as a generic representation
of the installation directory for all versions of Model Sim. The actual installation directory on
your system may contain version information.

ModelSim User’'s Manual, v10.4c 47

Introduction
Installation Directory Pathnames

48

ModelSim User’'s Manual, v10.4c

Chapter 2
Protecting Your Source Code

Model Sim’ s encryption solution allows | P authors to deliver encrypted | P code for awide range
of EDA tools and design flows. Y ou can, for example, make module ports, parameters, and
specify blocks publicly visible while keeping the implementation private.

Model Sim supports VHDL, Verilog, and SystemVerilog | P code encryption by means of
protected encryption envelopes. VHDL encryption is defined by the IEEE Std 1076-2008,
section 24.1 (titled “Protect tool directives’) and Annex H, section H.3 (titled “Digital
envelopes’). Verilog/SystemVerilog encryption is defined by the IEEE Std 1364-2005, section
28 (titled “Protected envelopes’) and Annex H, section H.3 (titled “ Digital envelopes’). The
protected envel opes usage model, as presented in Annex H section H.3 of both standards, isthe
recommended methodology for users of VHDL'’s "protect and Verilog's “pragma protect
compiler directives. We recommend that you obtain these specifications for reference.

In addition, Questa supports the recommendations from the |EEE P1735 working group for
encryption interoperability between different encryption and decryption tools. The current
recommendations are denoted as “version 1” by P1735. They address use model, algorithm
choices, conventions, and minor corrections to the HDL standards to achieve useful
interoperability.

Model Sim also supports encryption using the vcom/vlog -nodebug command.

Encryption Envelopes

Encryption envelopes define aregion of textual design data or code to be protected with
protection expressions. The protection expressions specify the encryption algorithm used to
protect the source code, the encryption key owner, the key name, and envel ope attributes.

The beginning and ending protection expressions for Verilog/SystemVerilog are "pragma
protect begin and “pragma protect end, respectively.

The beginning and ending protection expressions for VHDL are "protect BEGIN
PROTECTED and "protect END PROTECTED, respectively.

The encryption envelope may contain the code to be encrypted or it may contain “include
compiler directives that point to files containing the code to be encrypted.

Symmetric and asymmetric keys can be combined in encryption envelopes to provide the saf ety
of asymmetric keys with the efficiency of symmetric keys (see Encryption and Encoding
Methods). Encryption envel opes can also be used by the IP author to produce encrypted source

ModelSim User’'s Manual, v10.4c 49

Protecting Your Source Code
Encryption Envelopes

filesthat can be safely decrypted by multiple authors. For these reasons, encryption envelopes
are the preferred method of protection.

Creating Encryption Envelopes

Y ou may configure encryption envelopes to contain the actual code to be encrypted or you may
use “include compiler directivesto point to files containing the code to be encrypted.
Prerequisite
Identify the region(s) of code to be encrypted, or the files that contain the code to be
encrypted.
Procedure

1. Enclosethe code to be encrypted within protection directives; or, enclose the names of
the files that contain the code to be encrypted within protection directives.

2. Compile your code with Model Sim encryption utilities.
® Usethe vencrypt command for Verilog and SystemV erilog design code.
® Usethe vhencrypt command for VHDL design code.
® Or, usethe vcom/vlog +protect command.

The flow diagram for creating encryption envelopesis shown in Figure 2-1.

50 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Encryption Envelopes

Figure 2-1. Create an Encryption Envelope

ldentify source code to be protected

I

Create encryption envelopes to
protect regions of code

VerilogiSystem Verilog VYHDL
Compile with Compile with
vencrypt vhencrypt
or ar
vlog +protect vCcom +protect
{creates .vo or .svp file) {creates .vhdo or .vhdp file)

!

Deliver encrypted IP code

Examples

In Example 2-1 the Verilog design data to be encrypted follows the "pragma protect begin
expression and ends with the “pragma protect end expression. If the design data had been
written in VHDL, the data to be protected would follow a "protect begin expression and would
end with a "protect end expression.

Example 2-1. Encryption Envelope Contains Design Data to be Protected

module test_dff4 (output [3:0] g, output err);
parameter WIDTH = 4;
parameter DEBUG = 0;
reg [3:0] d;
reg clk;

dff4 d4 (g, clk, 4d);
assign err = 0;
initial

begin

Sdump_all_vpi;
Sdump_tree_vpi (test_dff4);

ModelSim User’'s Manual, v10.4c 51

Protecting Your Source Code
Encryption Envelopes

Sdump_tree_vpil (test_dff4.d4);

Sdump_tree_vpi ("test_dff4d");

Sdump_tree_vpi("test_dff4.d4");

Sdump_tree_vpi("test_dff4.d", "test_dffd.clk", "test_dffd.qg");
Sdump_tree_vpi ("test_dff4.d4.d40", "test_dff4.d4.d43");
Sdump_tree_vpi("test_dff4.d4.g", "test_dff4.d4d.clk");

end

endmodule
module dff4 (output [3:0] g, input clk, input [3:0] 4);
‘pragma protect data_method = "aesl28-cbc"
‘pragma protect author = "IP Provider"
‘pragma protect author_info = "Widget 5 version 3.2"
‘pragma protect key_ keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"
‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"
‘pragma protect begin

dff_gate d0(qgl0], clk, d[0]);

dff_gate dl(gll], clk, dll]);

dff_gate d2(qgl2], clk, d[2]);

dff_gate d3(gl3], clk, dl3]);

endmodule // dff4

module dff_gate(output g, input clk, input 4d);
wire preset = 1;
wire clear = 1;

nand #5
gl(ll,preset,14,12),
g2(12,11,clear,clk),
g3(13,12,clk,14),
g4 (14,13,clear,d),
g5 (g, preset,12,gbar) ,
g6 (gbar, g, clear,13);

endmodule
‘pragma protect end

In Example 2-2, the design data is contained in three files - diff.v, prim.v, and top.v. This
example shows how to configure the encryption envel ope so the entire contents of diff.v, prim.v,
and top.v are encrypted.

Example 2-2. Encryption Envelope Contains ‘include Compiler Directives

“timescale 1ns / lps
“cell define

module dff (g, d, clear, preset, clock);

output qg;

input d, clear, preset, clock;

reg q;

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider", author_info = "Widget 5 v3.2"
‘pragma protect key_keyowner = "Mentor Graphics Corporation"

‘pragma protect key_method = "rsa"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

52 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Encryption Envelopes

‘pragma protect begin
‘include diff.v
“include prim.v
“include top.v

‘pragma protect end

always @ (posedge clock)
qg=4d;

endmodule

“endcelldefine

For amore technical explanation, see How Encryption Envelopes Work and The “include
Compiler Directive (Verilog only).

Protection Expressions

The encryption envelope contains a number of “pragma protect (Verilog/SystemVerilog) or
“protect (VHDL) expressions.

The following protection expressions are expected when creating an encryption envelope:

® data_method — defines the encryption algorithm that will be used to encrypt the
designated source text. Model Sim supports the following encryption algorithms: des-
cbc, 3des-cbc, aes128-cbc, aes256-cbe, blowfish-cbc, cast128-cbe, and rsa.

* key keyowner — designates the owner of the encryption key.
* key_keyname — specifies the keyowner’s key name.
* key method — specifies an encryption algorithm that will be used to encrypt the key.

Note

D The combination of key _keyowner and key keyname expressions uniquely identify a
key. Thekey _method is required with these two expressions to complete the definition of
the key.

® begin — designates the beginning of the source code to be encrypted.

* end — designates the end of the source code to be encrypted

Note
D Encryption envel opes cannot be nested. A “pragma protect begin/end pair cannot bracket
another “pragma protect begin/end pair.

ModelSim User’'s Manual, v10.4c 53

Protecting Your Source Code
Encryption Envelopes

Optional “protect (VHDL) or “pragma protect (Verilog/SystemV erilog) expressions that may
be included are as follows:

® author — designatesthe IP provider.

® author_info— designates optional author information.

® encoding — specifies an encoding method. The default encoding method, if noneis
specified, is“base 64.”

If anumber of protection expressions occur in asingle protection directive, the expressions are
evaluated in sequence from left to right. In addition, the interpretation of protected envelopesis
not dependent on this sequence occurring in a single protection expression or a sequence of
protection expressions. However, the most recent value assigned to a protection expression
keyword will be the one used.

Unsupported Protection Expressions

Optional protection expressions that are not currently supported include the following:

® anydigest * expression
® decrypt_license
® runtime_license

® viewport

The ‘include Compiler Directive (Verilog only)

If any “include directives occur within a protected region of Verilog code and you use the viog
+protect command to compile, the compiler generates a copy of theinclude filewith a*“.vp” or
a“.svp” extension and encrypts the entire contents of the includefile.

For example, if we have a header file, header.v, with the following source code:

initial begin
a <= b;
b <= ¢;
end

and the file we want to encrypt, top.v, contains the following source code:

module top;
‘pragma protect begin
“include "header.v"
‘pragma protect end
endmodule

then, when we use the vlog +protect command to compile, the source code of the header file
will be encrypted. If we could decrypt the resulting work/top.vp file it would look like:

54 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Encryption Envelopes

module top;
‘pragma protect begin
initial begin
a <= b;
b <= ¢;
end
‘pragma protect end
endmodule

In addition, vlog +protect creates an encrypted version of header.v in work/header.vp.

When using the vencrypt compile utility (see Delivering |P Code with Undefined Macros), any
“include statements will be treated astext just like any other source code and will be encrypted
with the other Verilog/SystemV erilog source code. So, if we used the vencrypt utility on the
top.v file above, the resulting work/top.vp file would look like the following (if we could
decrypt it):

module top;
‘protect
“include "header.v"
“endprotect
endmodule

The vencrypt utility will not create an encrypted version of header.h.

When you use vlog +protect to generate encrypted files, the original source files must all be
complete Verilog or SystemV erilog modules or packages. Compiler errors will result if you

attempt to perform compilation of a set of parameter declarations within amodule. (See also
Compiling with +protect.)

Y ou can avoid such errors by creating a dummy modul e that includes the parameter
declarations. For example, if you have afilethat contains your parameter declarationsand afile
that uses those parameters, you can do the following:

module dummy;
‘protect
‘include "params.v" // contains various parameters
‘include "tasks.v" // uses parameters defined in params.v
“endprotect

endmodule

Then, compile the dummy module with the +protect switch to generate an encrypted output file
with no compile errors.

vlog +protect dummy.v

After compilation, the work library will contain encrypted versions of params.v and tasks.v,
called params.vp and tasks.vp. Y ou may then copy these encrypted files out of the work
directory to more convenient locations. These encrypted files can be included within your
design files; for example:

module main

ModelSim User’'s Manual, v10.4c 55

Protecting Your Source Code
Encryption Envelopes

'include "params.vp"
'include "tasks.vp"

Portable Encryption for Multiple Tools

An [P author can use the concept of multiple key blocks to produce code that is secure and
portable across any tool that supports Version 1 recommendations from the IEEE P1735
working group. This capability is not language-specific - it can be used for VHDL or Verilog.

To illustrate, suppose the author wants to modify the following VHDL samplefile so the
encrypted model can be decrypted and simulated by both Model Sim and by a hypothetical
company named XY Z inc.

========== gample file ==========

-- The entity "ipl" is not protected

éﬁéity ipl is

end ipl;

-- The architecture "a" is protected

-- The internals of "a" are hidden from the user

‘protect data_method "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect KEY_BLOCK
‘protect begin
architecture a of ipl is
end a;

‘protect end

-- Both the entity "ip2" and its architecture "a" are completely protected
‘protect data_method = "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

“protect KEY_BLOCK

‘protect begin

library ieee;

use ieee.std_logic_1164.all;
entity ip2 is

end ip2;

architecture a of ip2 is
end a;

‘protect end

========== end of sample file ==========

56

ModelSim User's Manual, v10.4c

Protecting Your Source Code
Compiling with +protect

The author does this by writing a key block for each decrypting tool. If XY Z publishes a public
key, the two key blocks in the IP source code might look like the following:

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_method = "rsa"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect KEY_BLOCK

‘protect key_keyowner = "XYZ inc"

‘protect key _method = "rsa"

‘protect key_keyname = "XYZ-keyPublicKey"

‘protect key_public_key = <public key of XYZ inc.>
‘protect KEY_BLOCK

The encrypted code would ook very much like the sample file, with the addition of another key
block:

‘protect key_keyowner = "XYZ inc"
‘protect key_method = "rsa"
‘protect key_keyname = "XYZ-keyPublicKey"

‘protect KEY_BLOCK
<encoded encrypted key information for "XYZ inc">

Model Sim usesits key block to determine the encrypted session key and XY Z Incorporated
uses the second key block to determine the same key. Consequently, both implementations
could successfully decrypt the code.

Note
D The IP owner is responsible for obtaining the appropriate key for the specific tool(s)

protected IP isintended for, and should validate the encrypted results with those tools to
ensure his 1P is protected and will function as intended in those tools.

Compiling with +protect

To encrypt |P code with Model Sim, the +protect argument must be used with either the vcom
command (for VHDL) or the viog command (for Verilog and SystemVerilog).

Procedure

1. If aVerilog source code file containing encryption envelopes is named encrypt.v,
compileit asfollows:

vlog +protect encrypt.v

When +protect is used with vcom or vlog, encryption envelope expressions are
transformed into decryption envel ope expressions and decryption content expressions.
Source text within encryption envelopes is encrypted using the specified key and is
recorded in the decryption envelope within adata_block. The new encrypted fileis
created with the same name as the original unencrypted file but with a‘p’ added to the

ModelSim User’'s Manual, v10.4c 57

Protecting Your Source Code
Compiling with +protect

filename extension. For Verilog, the filename extension for the encrypted fileis .vp; for
SystemVerilogitis.svp, and for VHDL it is.vhdp. This encrypted fileis placed in the
current work library directory.

2. You can designate the name of the encrypted file using the +protect=<filename>
argument with vcom or vlog as follows:

vlog +protect=encrypt.vp encrypt.v

Example

Example 2-3 shows the resulting source code when the Verilog | P code used in Example 2-1 is
compiled with vlog +protect.

Example 2-3. Results After Compiling with vlog +protect

module test_dff4d (output [3:0] g, output err);
parameter WIDTH = 4;
parameter DEBUG = 0;
reg [3:0] d;

reg clk;
dff4 d4 (g, clk, d);
assign err = 0;
initial

begin

Sdump_all_vpi;
Sdump_tree_vpil (test_dff4);
Sdump_tree_vpi (test_dff4.d4);
Sdump_tree_vpi ("test_dff4d");
Sdump_tree_vpi("test_dff4.d4");
Sdump_tree_vpi("test_dff4.d", "test_dffd.clk", "test_dffd.qg");
Sdump_tree_vpi ("test_dff4.d4.d0", "test_dff4.d4.d4d3");
Sdump_tree_vpi ("test_dff4.d4.q", "test_dff4d4.dd.clk");
end
endmodule

module dff4 (output [3:0] g, input clk, input [3:0] 4d);
‘pragma protect begin_protected
‘pragma protect version = 1

‘pragma protect encrypt_agent = "Model Technology"

‘pragma protect encrypt_agent_info = "6.6a"

‘pragma protect author = "IP Provider"

‘pragma protect author_info = "Widget 5 version 3.2"

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_ keyowner = "Mentor Graphics Corporation"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key_method = "rsa"

‘pragma protect key_block encoding = (enctype = "base64", line_length =

64, bytes = 128)
SdI6t9ewd9GE4va+2BgfnRuBNc45wVwjyPeSD/5gnojnbAHdpjWa/0/TyhwlaglT
NbDGrDg6I5dbzbLs5UQGFtB21g0OBMNE4JTpGREVOSEqUAibBHITpsNrbLppliJLi
714kQhnivnUuCx87GugXIf5AaoLGBz5rCxKyA47E1QM=

‘pragma protect data_block encoding = (enctype = "base64", line_length =
64, bytes = 496)
efkkPz4gJS06zZfYdr37fgEoxgLZ30Tgu8y34GTYkKkO0ZZGKkyonE9zDQct5d0dfe

58 ModelSim User's Manual, v10.4c

Protecting Your Source Code
The Runtime Encryption Model

/BZwoHCWng4xqUp2dxF4x6cwb6gBIcSEL fCPDY1hJASoVX+70wIPGnLh5U0P/Wohp
LvkfhIuk2FENGZh+y3rWZAC1vFYKXwDakSJ3neSglHkwYr+T8vGviohIPKet+CPC
d/RxX012ChI6f4KaMY2/fKlerXrnXV709ZIrJRHL/CtQ/uxY7aMioR3 /WobFrnuoz
P8fH7x/I30takK25KiL6qgvuN0jf7g4LiozSTvcT61TTHXOMBOfZiC1leREMF835Q8D
K51zU+rcbl7Wyt8utm71WSu+2gtwvEP39G6R60fkQAUVGW+xsgtmWyyTOdM+PKW1
SsgeoVOsBUHFY3x85F534PQONVIVAT1VzZzFeioMxmIJWV+pfT301rcIJGgX1AXAG25CkY
M1zF77caF8LAsKbvCTgOVsHb7NEqQOVTVJIZZydVy23VswClYcrxroOhPzmgNgndpf
zqcFpP+yBnt4UELa630s60fsAu7DZ /4kWPAwWExyvaahI2ciWs3HREcCZEO+aveulT
gxEFSmO0TvBBsMwLc7UvjjC0aF1vUWhDxhwQDAFYT89r2h1G7Y0OPG1G0024s0/A2+
TjdCcOogiGsTDKx6Bxf91g==

‘pragma protect end_protected

In this example, the “pragma protect data_ method expression designates the encryption
algorithm used to encrypt the Verilog I P code. The key for this encryption algorithm is also
encrypted —in this case, with the RSA public key. The key isrecorded in the key _block of the
protected envelope. The encrypted IP code is recorded in the data_block of the envelope.
Model Sim allows more than one key _block to be included so that a single protected envelope
can be encrypted by Model Sim then decrypted by tools from different users.

The Runtime Encryption Model

After you compile with the +protect compile argument, all source text, identifiers, and line
number information are hidden from the end user in the resulting compiled object. ModelSim
cannot locate or display any information of the encrypted regions.

Specificaly, this means that:

a Source window will not display the design units’ source code
a Structure window will not display the internal structure

the Objects window will not display internal signals

the Processes window will not display internal processes

the Locals window will not display internal variables

none of the hidden objects may be accessed through the Dataflow window or with
Model Sim commands.

Language-Specific Usage Models

This section includes usage models that are language-specific.

Usage Models for Protecting Verilog Source Code
o Délivering IP Code with Undefined Macros

o Délivering IP Code with User-Defined Macros
Usage Models for Protecting VHDL Source Code

ModelSim User’'s Manual, v10.4c 59

Protecting Your Source Code
Language-Specific Usage Models

o Using the vhencrypt Utility

o Using ModelSim Default Encryption for VHDL
o User-Selected Encryption for VHDL

o Using raw Encryption for VHDL

o Encrypting Severa Parts of aVHDL Source File
o Portable Encryption for Multiple Tools

Usage Models for Protecting Verilog Source Code

Model Sim’ s encryption capabilities support Verilog and SystemV erilog usage models for IP
authors and their customers.

® |Pauthors may use the vencrypt utility to deliver Verilog and SystemVerilog code
containing undefined macros and "directives. The |P user can then define the macros and
“directives and use the code in awide range of EDA tools and design flows. See
Delivering IP Code with Undefined Macros.

® |Pauthors may use "pragma protect directivesto protect Verilog and SystemVerilog
code containing user-defined macros and “directives. The IP code can be delivered to IP
customers for use in awide range of EDA tools and design flows. See Delivering IP
Code with User-Defined Macros.

Delivering IP Code with Undefined Macros

The vencrypt utility enables |P authors to deliver VHDL and Verilog/ SystemVerilog | P code
(respectively) that contains undefined macros and “directives. The resulting encrypted |P code
can then be used in awide range of EDA tools and design flows.

The recommended encryption usage flow is shown in Figure 2-2.

60 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

Figure 2-2. Verilog/SystemVerilog Encryption Usage Flow

1. Create IP code with undefined macros
2 Create encryption envelopes to protect

) selected regions of code

— IP Author

3 vencrypt

) (creates .vo or .svp file)
A Deliver encrypted P

) {.vo or s file)
5. Define macros
6. Compile encrypted IP with vilog —— User
7. Simulate

Procedure
1. ThelP author creates code that contains undefined macros and “directives.

2. ThelP author creates encryption envel opes (see Encryption Envelopes) to protect
selected regions of code or entire files (see Protection Expressions).

3. ThelP author uses Model Sim’ s vencrypt utility to encrypt Verilog and SystemVerilog
code contained within encryption envelopes. Macros are not pre-processed before
encryption so macros and other “directives are unchanged.

The vencrypt utility produces afile with a.vp or a.svp extension to distinguish it from
non-encrypted Verilog and SystemVerilog files, respectively. The file extension may be
changed for use with simulators other than ModelSim. The original file extension is
preserved if the -d <dirname> argument is used with vencrypt, or if a “directive is used
in the file to be encrypted.

With the -h <filename> argument for vencrypt the | P author may specify a header file
that can be used to encrypt alarge number of files that do not contain the “pragma
protect (or proprietary “protect information - see Proprietary Source Code Encryption
Tools) about how to encrypt the file. Instead, encryption information is provided in the

ModelSim User’'s Manual, v10.4c 61

Protecting Your Source Code
Language-Specific Usage Models

<filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of filesin order to add in the same “pragma protect to every file. For
example,

vencrypt -h encrypt_head top.v cache.v gates.v memory.v

concatenates the information in the encrypt_head file into each verilog file listed. The
encrypt_head file may look like the following:

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect author = "IP Provider"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect encoding = (enctype = "base64")

‘pragma protect begin

Notice, thereis no "pragma protect end expression in the header file, just the header
block that starts the encryption. The “pragma protect end expression isimplied by the
end of thefile.

4. The IP author delivers encrypted IP with undefined macros and "directives.
5.
6
7

The I P user defines macros and “directives.

. TheIP user compiles the design with vlog.

. TheIP user simulates the design with Model Sim or other simulation tools.

Delivering IP Code with User-Defined Macros

| P authors may use "pragma protect expressions to protect proprietary code containing user-
defined macros and “directives. The resulting encrypted IP code can be delivered to customers
for usein awide range of EDA tools and design flows.

The recommended usage flow for Verilog and SystemVerilog IP is shown in Figure 2-3.

62

ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

Figure 2-3. Delivering IP Code with User-Defined Macros

Create Verlog/SystemWerilog IP code
1. with user-defined macros

I

Create encryption envelopes to
2. protect regions of code

l — IP Author

vlog +protect
3. (creates vp or . svp file)

!

4 Deliver encrypted IP code
. [.vo or 5o file)
5. Simulate User

Procedure
1. ThelPauthor creates proprietary code that contains user-defined macros and “directives.

2. ThelP author creates encryption envelopeswith “pragma protect expressionsto protect
regions of code or entire files. See Encryption Envelopes and Protection Expressions.

3. ThelP author uses the +protect argument for the viog command to encrypt |P code
contained within encryption envelopes. The “pragma protect expressions are ignored
unless the +protect argument is used during compile. (See Compiling with +protect.)

The vlog +protect command produces a .vp or a.svp extension for the encrypted file to
distinguish it from non-encrypted Verilog and SystemVerilog files, respectively. The
file extension may be changed for use with simulators other than ModelSim. The
original file extension is preserved if a “directive is used in the file to be encrypted. For
more information, see Compiling with +protect.

4. TheIP author delivers the encrypted IP.
5. ThelP user simulates the code like any other file.

When encrypting source text, any macros without parameters defined on the command line are
substituted (not expanded) into the encrypted file. This makes certain macros unavailable in the
encrypted source text.

ModelSim User’'s Manual, v10.4c 63

Protecting Your Source Code
Language-Specific Usage Models

Model Sim takes every simple macro that is defined with the compile command (vlog) and
substitutes it into the encrypted text. This prevents third party users of the encrypted blocks
from having access to or modifying these macros.

Note
Macros not specified with vlog via the +define+ option are unmodified in the encrypted

block.

For example, the code below is an example of an file that might be delivered by an IP provider.
The filename for this module is exampl€00.sv.

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"

‘pragma protect key_ keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect author = "Mentor", author_info = "Mentor_author"

‘pragma protect begin
“timescale 1 ps / 1 ps

module example00 () ;
“ifdef IPPROTECT
reg ' IPPROTECT ;
reg otherReg ;
initial begin
"IPPROTECT = 1;
otherReg = 0;

Sdisplay ("ifdef defined as true");

“define FOO O

$display ("FOO is defined as: ", "FOO);
Sdisplay ("reg IPPROTECT has the value: ", “IPPROTECT);
end

“else

initial begin
Sdisplay("ifdef defined as false");
end
“endif
endmodule
‘pragma protect end

We encrypt the example00.sv module with the viog command as follows:

vlog +define+IPPROTECT=ip_value +protect=encrypted00.sv example00.sv

This creates an encrypted file called encrypted00.sv. We can then compile thisfile with amacro
override for the macro “FOQO” asfollows:

vlog +define+F00=99 encrypted00.sv

64 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

The macro FOO can be overridden by a customer while the macro IPPROTECT retains the
value specified at the time of encryption, and the macro IPPROTECT no longer existsin the
encrypted file.

Usage Models for Protecting VHDL Source Code

ModelSim’ s encryption capabilities for VHDL support a number of usage models.
Supported usage models include:

* |Pauthorsmay use "protect directivesto create an encryption envel ope (see Encryption
Envelopes) for the VHDL code to be protected and use Model Sim’ s vhencrypt utility to
encrypt the code. The encrypted IP code can be delivered to IP customersfor usein a
wide range of EDA tools and design flows. See Using the vhencrypt Utility.

® |Pauthorsmay use "protect directivesto create an encryption envelope (see Encryption
Envelopes) for the VHDL code to be protected and use Model Sim’ s default encryption
and decryption actions. The IP code can be delivered to | P customers for use in awide
range of EDA tools and design flows. See Using Model Sim Default Encryption for
VHDL.

® |Pauthorsmay use "protect directivesto create an encryption envelope for VHDL code
and select encryption methods and encoding other than Model Sim’ s default methods.
See User-Selected Encryption for VHDL.

® |Pauthors may use“raw” encryption and encoding to aid debugging. See Using raw
Encryption for VHDL.

* |Pauthorsmay encrypt several parts of the sourcefile, choose the encryption method for
encrypting the source (the data_method), and use a key automatically provided by
Model Sim. See Encrypting Several Parts of a VHDL Source File.

® |Pauthors can use the concept of multiple key blocks to produce code that is secure and
portable across different ssimulators. See Portable Encryption for Multiple Tools.

The usage models areillustrated by examplesin the sections below.

Note
VHDL encryption requires that the KEY_BLOCK (the sequence of key_keyowner,

key keyname, and key_method directives) end with a ‘protect KEY_BLOCK directive.

Using the vhencrypt Utility

The vhencrypt utility enables IP authors to deliver encrypted VHDL IP code to users. The
resulting encrypted | P code can then be used in awide range of EDA tools and design flows.

ModelSim User’'s Manual, v10.4c 65

Protecting Your Source Code
Language-Specific Usage Models

Procedure

1. ThelP author creates code.

2. ThelP author creates encryption envel opes (see Encryption Envelopes) to protect

selected regions of code or entire files (see Protection Expressions).

. TheIP author uses Model Sim’ s vhencrypt utility to encrypt code contained within

encryption envelopes.

The vhencrypt utility produces a file with a.vhdp or a .vhdlp extension to distinguish it
from non-encrypted VHDL files. The file extension may be changed for use with
simulators other than ModelSim. The original file extension is preserved if the

-d <dirname> argument is used with vhencrypt.

With the -h <filename> argument for vencrypt the | P author may specify a header file
that can be used to encrypt alarge number of files that do not contain the "protect
information about how to encrypt thefile. Instead, encryption information is provided in
the <filename> specified by -h <filename>. This argument essentially concatenates the
header file onto the beginning of each file and saves the user from having to edit
hundreds of filesin order to add in the same “protect to every file. For example,

vhencrypt -h encrypt_head top.vhd cache.vhd gates.vhd memory.vhd

concatenates the information in the encrypt_head file into each VHDL filelisted. The
encrypt_head file may look like the following:

‘protect data_method = "aesl28-cbc"

‘protect author = "IP Provider"

‘protect encoding = (enctype = "base64")

‘protect key_ keyowner = "Mentor Graphics Corporation"
‘protect key_method = "rsa"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect KEY_BLOCK
‘protect begin

Notice, thereisno “protect end expression in the header file, just the header block that
starts the encryption. The "protect end expression isimplied by the end of thefile.

4. ThelP author delivers encrypted IP.

5. ThelP user compiles the design with vcom.

6. ThelP user simulates the design with Model Sim or other simulation tools.

Examples

Using ModelSim Default Encryption for VHDL

Suppose an I P author needs to make a design entity, called IP1, visible to the user so the user
can instantiate the design, but the author wants to hide the architecture implementation from the
user. In addition, suppose that 1P1 instantiates entity 1P2, which the author wants to hide
completely from the user. The easiest way to accomplish thisisto surround the regionsto be

66

ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

protected with “protect begin and “protect end directives and let Model Sim choose default
actions. For this example, all the source code existsin asingle file, examplel.vhd:

=—========= file examplel.vhd =—=========
-- The entity "ipl" is not protected
entity ipl is
end ipl;
-- The architecture "a" is protected
-- The internals of "a" are hidden from the user
‘protect begin
architecture a of ipl is
end a;
‘protect end
-- Both the entity "ip2" and its architecture "a" are completely protected
‘protect begin
entity ip2 is
end ip2;
architecture a of ip2 is
end a;
‘protect end
========== end of file examplel_vhd —=========
The IP author compiles this file with the vcom +protect command as follows:
vcom +protect=examplel.vhdp examplel.vhd
The compiler produces an encrypted file, examplel.vhdp which looks like the following:
========== file examplel.vhdp ==========
-- The entity "ipl" is not protected
entity ipl is
end ipl;
-- The architecture "a" is protected
-- The internals of "a" are hidden from the user

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect key_keyowner = "Mentor Graphics Corporation"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect encoding = (enctype = "base64")

‘protect KEY_BLOCK
<encoded encrypted session key>

ModelSim User’'s Manual, v10.4c 67

Protecting Your Source Code
Language-Specific Usage Models

‘protect data_method="aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 224)
‘protect DATA_BLOCK
<encoded encrypted IP>
‘protect END_PROTECTED

-- Both the entity "ip2" and its architecture "a" are completely protected
‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect key_keyowner = "Mentor Graphics Corporation"

‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect encoding = (enctype = "base64")

‘protect KEY_BLOCK
<encoded encrypted session key>
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 224)
‘protect DATA_BLOCK
<encoded encrypted IP>
‘protect END_PROTECTED

========== end of file examplel_vhdp —=========

When the | P author surrounds atext region using only “protect begin and “protect end,
Model Sim uses default values for both encryption and encoding. The first few lines following
the "protect BEGIN_PROTECTED region in file examplel.vhdp contain the key keyowner,
key keyname, key method and KEY _BLOCK directives. The session key is generated into the
key block and that key block is encrypted using the “rsa” method. The data_method indicates
that the default data encryption method is aes128-cbc and the “ enctype” value shows that the
default encoding is base64.

Alternatively, the | P author can compile file examplel.vhd with the command:

vcom +protect examplel.vhd

Here, the author does not supply the name of the file to contain the protected source. Instead,
Model Sim creates a protected file, givesit the name of the original source file with a'p' placed
at the end of the file extension, and puts the new file in the current work library directory. With
the command described above, Model Sim creates file wor k/examplel.vhdp. (See Compiling
with +protect.)

The IP user compiles the encrypted file wor k/examplel.vhdp the ordinary way. The +protect
switch is not needed and the IP user does not have to treat the .vhdp file in any special manner.
Model Sim automatically decrypts the file internally and keeps track of protected regions.

If the P author compiles the file examplel.vhd and does not use the +protect argument, then the
fileiscompiled, various "protect directives are checked for correct syntax, but no protected file
is created and no protection is supplied.

68 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

Model Sim’ s default encryption methods provide an easy way for |P authors to encrypt VHDL
designs while hiding the architecture implementation from the user. It should be noted that the
results are only usable by Model Sim tools.

User-Selected Encryption for VHDL

Suppose that the I P author wants to produce the same code as in the examplel.vhd file used
above, but wants to provide specific values and not use any default values. To do this the author
adds “protect directives for keys, encryption methods, and encoding, and places them before
each “protect begin directive. The input file would look like the following:

========== file example2.vhd ==========

-- The entity "ipl" is not protected

éﬁéity ipl is

end ipl;

-- The architecture "a" is protected

-- The internals of "a" are hidden from the user

‘protect data_method "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key _method = "rsa"

‘protect KEY_BLOCK
‘protect begin
architecture a of ipl is
end a;

‘protect end

-- Both the entity "ip2" and its architecture "a" are completely protected

‘protect data_method = "aesl28-cbc"

‘protect encoding = (enctype = "base64")

‘protect key_keyowner = "Mentor Graphics Corporation"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_method = "rsa"

‘protect KEY_BLOCK

‘protect begin

library ieee;

use ieee.std_logic_1164.all;
entity ip2 is

end ip2;

architecture a of ip2 is
end a;

‘protect end

========== end of file example2_vhd —=========

The data_method directive indicates that the encryption algorithm “aes128-cbc” should be used
to encrypt the source code (data). The encoding directive selectsthe “ base64” encoding method,

ModelSim User’'s Manual, v10.4c 69

Protecting Your Source Code
Language-Specific Usage Models

and the various key directives specify that the Mentor Graphic key named “MGC-VERIF-SIM-
RSA-1" and the “RSA” encryption method are to be used to produce a key block containing a
randomly generated session key to be used with the “aes128-cbc” method to encrypt the source
code. See Using the Mentor Graphics Public Encryption Key.

Using raw Encryption for VHDL

Suppose that the | P author wants to use “raw” encryption and encoding to help with debugging
the following entity:

entity example3_ent is
port (
inl : in bit;
outl : out bit);

end example3_ent;

Then the architecture the author wants to encrypt might be this:
========== File example3_arch.vhd
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw")
‘protect begin
architecture arch of example3_ent is
begin

outl <= inl after 1 ns;

end arch;
‘protect end

========== End of file example3_arch.vhd ==========
If (after compiling the entity) the example3_arch.vhd file were compiled using the command:
vcom +protect example3_arch.vhd
Then the following file would be produced in the work directory
========== File work/example3_arch.vhdp ==========
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw")

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "raw"
‘protect encoding = (enctype = "raw", bytes = 81)

‘protect DATA_BLOCK
architecture arch of example3_ent is

begin

70 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Language-Specific Usage Models

outl <= inl after 1 ns;

end arch;
‘protect END_PROTECTED

========== End of file work/example3_arch.vhdp

Notice that the protected file is very similar to the origina file. The differences arethat “protect
begin isreplaced by "protect BEGIN_PROTECTED, “protect end is replaced by “protect
END_PROTECTED, and some additional encryption information is supplied after the BEGIN
PROTECTED directive.

See Encryption and Encoding Methods for more information about raw encryption and
encoding.

Encrypting Several Parts of a VHDL Source File

This example shows the use of symmetric encryption. (See Encryption and Encoding Methods
for more information on symmetric and asymmetric encryption and encoding.) It also
demonstrates another common use model, in which the IP author encrypts several parts of a
source file, chooses the encryption method for encrypting the source code (the data_method),
and uses a key automatically provided by ModelSim. (Thisisvery similar to the proprietary
“protect method in Verilog - see Proprietary Source Code Encryption Tools.)

========== file example4_vhd —=========
entity ex4_ent is
end ex4_ent;

architecture ex4_arch of ex4_ent is
signal sl: bit;
‘protect data_method = "aesl28-cbc"
‘protect begin
signal s2: bit;
‘protect end
signal s3: bit;

begin -- ex4_arch

‘protect data_method "aesl28-cbc"

‘protect begin

s2 <= sl after 1 ns;
‘protect end

s3 <= s2 after 1 ns;
end ex4_arch;

========== end of file exampled.vhd

If this file were compiled using the command:

ModelSim User’'s Manual, v10.4c 71

Protecting Your Source Code
Proprietary Source Code Encryption Tools

vcom +protect example4.vhd

Then the following file would be produced in the work directory:
========== File Work/example4.vhdp ==========
entity ex4_ent is
end ex4_ent;
architecture ex4_arch of ex4_ent is

signal sl: bit;
‘protect data_method = "aesl28-cbc"

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 18)

“protect DATA_BLOCK
<encoded encrypted declaration of s2>
‘protect END_PROTECTED

signal s3: bit;

begin -- ex4_arch
‘protect data_method = "aesl28-cbc"

‘protect BEGIN_PROTECTED
‘protect version = 1

‘protect encrypt_agent = "Model Technology", encrypt_agent_info = "DEV"
‘protect data_method = "aesl28-cbc"
‘protect encoding = (enctype = "base64" , bytes = 21)

‘protect DATA_BLOCK

<encoded encrypted signal assignment to s2>
‘protect END_PROTECTED

s3 <= s2 after 1 ns;

end ex4_arch;

========== End of file work/exampled.vhdp

The encrypted exampled.vhdp file shows that an | P author can encrypt both declarations and
statements. Also, note that the signal assignment

s3 <= s2 after 1 ns;

is not protected. This assignment compiles and simulates even though signal s2 is protected. In
general, executable VHDL statements and declarations simul ate the same whether or not they
refer to protected objects.

Proprietary Source Code Encryption Tools

Mentor Graphics provides two proprietary methods for encrypting source code.

72 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Proprietary Source Code Encryption Tools

®* The protect / "endprotect compiler directives allow you to encrypt regions within
Verilog and SystemVerilog files.

® The-nodebug argument for the vcom and vliog compile commands allows you to
encrypt entire VHDL, Verilog, or SystemV erilog source files.

Using Proprietary Compiler Directives

The proprietary “protect viog compiler directive is not compatible with other ssmulators.
Though other smulators have a "protect directive, the algorithm Model Sim uses to encrypt
Verilog and SystemVerilog source filesis different. Therefore, even though an uncompiled
source file with “protect is compatible with another simulator, once the source is compiled in
Model Sim, the resulting .vp or .svp source file is not compatible.

IPauthors and | P users may use the "protect compiler directive to define regions of Verilog and
SystemV erilog code to be protected. The code is then compiled with the vlog +protect
command and simulated with Model Sim. The vencrypt utility may be used if the code contains
undefined macros or “directives, but the code must then be compiled and simulated with
ModelSim.

Note

D While Model Sim supports both “protect and “pragma protect encryption directives,
these two approaches to encryption are incompatible. Code encrypted by one type of
directive cannot be decrypted by another.

The usage flow for delivering IP with the Mentor Graphics proprietary “protect compiler
directiveisasfollows:

Figure 2-4. Delivering IP with "protect Compiler Directives

Protect selected regions of Werilog
or SystemVerilog code with
"protect compiler directives

!

vlog +protect

{creates .vp or .svo file) | IP Author
. — or User
b
Simulate

ModelSim User’'s Manual, v10.4c 73

Protecting Your Source Code
Proprietary Source Code Encryption Tools

Procedure

1. ThelP author protects selected regions of Verilog or SystemVerilog IP with the

“protect / “endprotect directive pair. The codein “protect / “endprotect encryption
envelopes has all debug information stripped out. This behaves exactly asif using

vlog -nodebug=ports+pli

except that it applies to selected regions of code rather than the wholefile.

. TheIP author uses the vlog +protect command to encrypt IP code contained within

encryption envelopes. The “protect / “endprotect directives are ignored by default
unless the +protect argument is used with viog.

Once compiled, the original sourcefileis copied to anew filein the current work
directory. The vlog +protect command produces a.vp or a.svp extension to distinguish
it from other non-encrypted Verilog and SystemV erilog files, respectively. For example,
top.v becomes top.vp and cache.sv becomes cache.svp. This new file can be delivered
and used as a replacement for the original source file. (See Compiling with +protect.)

Note

D The vencrypt utility may be used if the code aso contains undefined macros or

“directives, but the code must then be compiled and simulated with Model Sim.

Y ou can use vlog +protect=<filename> to create an encrypted output file, with the
designated filename, in the current directory (not in the work directory, asin the default
case where [=<filename>] is not specified). For example:

vlog test.v +protect=test.vp

If the filename is specified in this manner, all source files on the command line will be
concatenated together into a single output file. Any “include files will also be inserted
into the output file.

Caution
“protect and “endpr otect directives cannot be nested.

If errors are detected in a protected region, the error message always reportsthefirst line
of the protected block.

Protecting Source Code Using -nodebug

Verilog/SystemVerilog and VHDL 1P authors and users may use the proprietary vliog -nodebug
or vcom -nodebug command, respectively, to protect entire files. The -nodebug argument for
both vcom and vlog hides internal model data, allowing you to provide pre-compiled libraries
without providing source code and without revealing internal model variables and structure.

74

ModelSim User's Manual, v10.4c

Protecting Your Source Code
Proprietary Source Code Encryption Tools

Prerequisite

Identify files to be encrypted.

Note
The -nodebug argument encrypts entire files. The "protect compiler directive allowsyou

to encrypt regions within afile. Refer to Compiler Directives for details.

Procedure
1. Compile VHDL filesto be encrypted with the vcom -nodebug command.
2. Compile Verilog/SystemV erilog files to be encrypted with the vlog -nodebug command.

When you compile with -nodebug, all source text, identifiers, and line number
information are stripped from the resulting compiled object, so Model Sim cannot locate
or display any information of the model except for the external pins.

Y ou can access the design units comprising your model viathe library, and you may
invoke vsim directly on any of these design units to see the ports. To restrict even this
accessin the lower levels of your design, you can use the following -nodebug options
when you compile:

Table 2-1. Compile Options for the -nodebug Compiling
Command and Switch Result

vcom -nodebug=ports makes the ports of aVHDL design unit
invisible

vlog -nodebug=ports makes the ports of a Verilog design unit
invisible

vlog -nodebug=pli prevents the use of PLI functionsto
interrogate the module for information

vlog -nodebug=ports+pli combines the functions of -nodebug=ports
and -nodebug=pli

Note

D Do not use the =ports option on a design without hierarchy, or on the top level of a
hierarchical design. If you do, no portswill be visible for simulation. Rather, compile all
lower portions of the design with -nodebug=ports first, then compile the top level with
-nodebug alone.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug.

Do not use -nodebug=ports for mixed language designs, especially for Verilog modules
to be instantiated inside VHDL.

ModelSim User’'s Manual, v10.4c 75

Protecting Your Source Code
Encryption Reference

Encryption Reference

The Encryption Reference includes important information about encryption and encoding
methods, details on how encryption envelopes work, how to use public encryption keys, and
how to use the Mentor Graphics public encryption key.

Encryption and Encoding Methods

There are two basic encryption techniques — symmetric and asymmetric.

® Symmetric encryption uses the same key for both encrypting and decrypting the code
region.

® Asymmetric encryption methods use two keys: a public key for encryption, and a private
key for decryption.
Symmetric Encryption

For symmetric encryption, security of the key is critical and information about the key must be
supplied to Model Sim. Under certain circumstances, Model Sim will generate a random key for
use with a symmetric encryption method or will use an internal key.

The symmetric encryption algorithms Model Sim supports are:

® des-chc
® 3des-cbc
® aesl28-cbc
® aes192-cbe
® aes256-chc
* blowfish-cbc
® cast128-chc
The default symmetric encryption method Model Sim uses for encrypting I P source codeis
aes128-chc.
Asymmetric Encryption

For asymmetric encryption, the public key is openly available and is published using some form
of key distribution system. The private key is secret and is used by the decrypting tool, such as
Model Sim. Asymmetric methods are more secure than symmetric methods, but take much
longer to encrypt and decrypt data.

The only asymmetric method Model Sim supportsis:

76 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Encryption Reference

rsa

Thismethod isonly supported for specifying key information, not for encrypting | P source code
(i.e., only for key methods, not for data methods).

For testing purposes, Model Sim also supports raw encryption, which doesn't change the
protected source code (the simulator still hides information about the protected region).

All encryption algorithms (except raw) produce byte streams that contain non-graphic
characters, so there needs to be an encoding mechanism to transform arbitrary byte streamsinto
portable sequences of graphic characters which can be used to put encrypted text into source
files. The encoding methods supported by ModelSim are:

® uuencode

* base64

* raw
Base 64 encoding, which istechnically superior to uuencode, is the default encoding used by
Model Sim, and is the recommended encoding for all applications.

Raw encoding must only be used in conjunction with raw encryption for testing purposes.

How Encryption Envelopes Work

Encryption envel opes handle the code you need to protect in a very specific manner.

1. Theencrypting tool generates arandom key for use with a symmetric method, called a
“session key.”

2. ThelP protected source code is encrypted using this session key.

3. Theencrypting tool communicates the session key to the decrypting tool —which can
be Model Sim or some other tool — by means of aKEY _BLOCK.

4. For each potential decrypting tool, information about that tool must be provided in the
encryption envelope. Thisinformation includes the owner of the key (key keyowner),
the name of the key (key_keyname), the asymmetric method for encrypting/decrypting
the key (key_method), and sometimes the key itself (key_public_key).

5. Theencrypting tool uses thisinformation to encrypt and encode the session key into a
KEY_BLOCK. The occurrence of aKEY _BLOCK in the source code tells the
encrypting tool to generate an encryption envelope.

6. The decrypting tool reads each KEY _BLOCK until it finds one that specifies akey it
knows about. It then decrypts the associated KEY_ BLOCK datato determine the
original session key and uses that session key to decrypt the IP source code.

ModelSim User’'s Manual, v10.4c 77

Protecting Your Source Code
Encryption Reference

Note
VHDL encryption requires that the KEY_ BLOCK (the sequence of key keyowner,

key keyname, and key method directives) end with a “protect KEY_BLOCK directive.

Using Public Encryption Keys

If IP authors want to encrypt for third party EDA tools, other public keys need to be specified
with the key_public_key directive as follows.

For Verilog and SystemVerilog:

‘pragma protect key_keyowner="Acme"

‘pragma protect key_keyname="AcmeKeyName"

‘pragma protect key_public_key

MIGEMAOGCSOGSIb3DOEBAQUAA4AGNADCBIQKBgQOCNI fQb+LLzTMX3NRARSV7A8+LV5SgMEJCvI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcIm4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

For VHDL:

‘protect key_keyowner="Acme"

‘protect key_keyname="AcmeKeyName"

‘protect key_public_key

MIGEMAOGCSOGSIb3DQOEBAQUAA4AGNADCBIQKBgQOCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCvI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcImM4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQARB

This defines a new key named “ AcmeKeyName” with a key owner of “Acme.” The data block
following key_public_key directive is an example of a base64 encoded version of a public key
that should be provided by atool vendor.

Using the Mentor Graphics Public Encryption Key
Mentor Graphics supplies this public encryption key without exception to support
interoperability across products.

The Mentor Graphics base64 encoded RSA public key is:

MIGEMAOGCSQGSIb3DQEBAQUAAAGNADCBiQKBgQCNI fQb+LLzTMX3NRARSV7A8+LV5SgMEJCVI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcImM4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

For Verilog and SystemV erilog applications, copy and paste the entire Mentor Graphics key
block, asfollows, into your code:

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key_method = "rsa"
‘pragma protect key_ keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key_public_key

78 ModelSim User's Manual, v10.4c

Protecting Your Source Code
Encryption Reference

MIGEMAOGCSOGSIb3DOEBAQUAA4AGNADCBIQKBgQOCNI fQb+LLZzTMX3NRARSV7A8+LV5SgMEJCVI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcImM4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

The vencrypt utility will recognize the Mentor Graphics public key. If vencrypt is not used, you
must use the +protect switch with the viog command during compile.

For VHDL applications, copy and paste the entire Mentor Graphics key block, as follows, into
your code:

‘protect key_ keyowner = "Mentor Graphics Corporation"
‘protect key_method = "rsa"
‘protect key_keyname = "MGC-VERIF-SIM-RSA-1"

‘protect key_public_key

MIGEMAOGCSgGSIb3DQEBAQUAAAGNADCBIQKBgQCNT fQb+LLzTMX3NRARSV7A8+LV5SgMEJCvI
f9Tif2emidz0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIJcpqUgTTD+mI6grIST+R4AAXXCgVHYUwWOT
80Xs0QgRgkrGYXWI1RUNNBcImM4ZULexYz89720j6rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

The vhencrypt utility will recognize the Mentor Graphics public key. If vhencrypt is not used,
you must use the +protect switch with the vcom command during compile.

Example 2-4 illustrates the encryption envelope methodology for using thiskey in
Verilog/SystemVerilog. With this methodol ogy you can collect the public keysfrom the various
companies whose tools process your | P, then create atemplate that can be included into thefiles
you want encrypted. During the encryption phase anew key is created for the encryption
algorithm each time the source is compiled. These keys are never seen by a human. They are
encrypted using the supplied RSA public keys.

Example 2-4. Using the Mentor Graphics Public Encryption Key in
Verilog/SystemVerilog

//

// Copyright 1991-2009 Mentor Graphics Corporation
//

// All Rights Reserved.

//

// THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION WHICH IS THE
PROPERTY OF

// MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS SUBJECT TO LICENSE TERMS.
/7

“timescale 1ns / lps
‘celldefine

module dff (g, d, clear, preset, clock); output g; input d, clear, preset, clock;

reg a;

‘pragma protect data_method = "aesl28-cbc"

‘pragma protect key_keyowner = "Mentor Graphics Corporation"
‘pragma protect key _method = "rsa"

‘pragma protect key_ keyname = "MGC-VERIF-SIM-RSA-1"

‘pragma protect key public_key

MIGEMAOGCSgGSIb3DQEBAQUAA4AGNADCBiQKBgQCNI fQb+LLZTMX3NRARSV7A8+LV5SgMEJCvILOTif2em
14z0gtp8E+nX7QFzocT1C1C6Dcg2gIvEIcpqUgTTD+mI6grJST+R4AAxXxCgvHYUwoT80Xs0QgRakrGYxW1
RUNNBcIm4ZULexYz8972036rQ99n5elkDa/eBcszMIyOkcGQIDAQAB

‘pragma protect key_ keyowner = "XYZ inc"

ModelSim User’'s Manual, v10.4c 79

80

Protecting Your Source Code
Encryption Reference

‘pragma protect key_method =
‘pragma protect key_keyname =
‘pragma protect key_ public_key

MIGEMAOGCSQGSIb3DQEBAQUAALAGNADCBiQKBgODZQOT]5T5j010g8ykyaxVgIB+4V+smyCIGW3 6ZjogEGy

6 XHxfgB2VAMIC/jIx4xRxtCa0eBxRpcrnIKTP13Y3ydHgpYW0s0+R4h5+cMwCzWgB18Fn0ibSEW+8gW/
/BP4dHzaJApEZz2Ryj+IG3UinvviWNheZd+j0ULHGMgrOQgrwIDAQAB

"rsa”
"XYZ-keyPublicKey"

‘pragma protect begin
always @(clear or preset)

if (!clear)
assign g = 0;
else if (!preset)
assign g = 1;
else

deassign q;
‘pragma protect end

always @ (posedge clock)
g =4d;

endmodule

“endcelldefine

ModelSim User's Manual, v10.4c

Chapter 3
Projects

Projects simplify the process of compiling and simulating a design and are a great tool for
getting started with Model Sim.

What are Projects?

Projects are a collection of entities for designs under specification or test. At aminimum,
projects have aroot directory, awork library, and "metadata’ which are stored in an .mpf file
located in a project's root directory. The metadata include compiler switch settings, compile
order, and file mappings. Projects may also include the following items.

Source files or references to source files

Other files, such as READMEs or other project documentation
Local libraries

Referencesto global libraries

Simulation configurations

Folders

What are the Benefits of Projects?

Projects offer benefits to both new and advanced users.

Projects simplify interaction with Model Sim. For example, you don’'t need to
understand the intricacies of compiler switches and library mappings

Projects eliminate the need to remember the conceptual model of the design; the
compile order is maintained for you in the project.

Note

Compile order is maintained for HDL-only designs.

Projects remove the necessity to re-establish compiler switches and settings for each
new session. Settings and compiler switches are stored in the project metadata as are
mappings to source files.

Projects allow you to share libraries without copying files to alocal directory. For
example, you can establish references to source files that are stored remotely or locally.

ModelSim User’'s Manual, v10.4c 81

Projects
Getting Started with Projects

® Projectsalow you to changeindividual parameters across multiplefiles. In previous
versions you could only set parameters onefile at atime.

® Projects enable "what-if" analysis. For example, you can copy a project, manipulate the
settings, and rerun it to observe the new results.

* Projectsreload theinitial settings from the project .mpf file every time the project is
opened.

Related Topics
See Creating a Simulation Configuration and Organizing Projects with Folders.

Project Conversion Between Simulator Versions

Projects are generally not backwards compatible for either number or letter releases. When you
open a project created in an earlier version, you will see amessage warning that the project will
be converted to the newer version. Y ou have the option of continuing with the conversion or
cancelling the operation.

As stated in the warning message, a backup of the original project is created before the
conversion occurs. The backup file is named < project name>.mpf.bak and is created in the
same directory in which the original project is located.

Getting Started with Projects

You do theintitial set up compile and simulation of a design by working with several windows
and dialog boxes. The following sections show you the necessary steps.

® OpenaNew Project
® Add Source Filesto the Project
® CompiletheFiles

® Simulate aDesign

Open a New Project

This procedure shows you how to do the initital setup necessary for creating a project.

Procedure

1. Select File > New > Project to create a new project. This opens the Create Proj ect
dialog

2. Specify aproject name, location, and default library name. Y ou can generally leave the
Default Library Name set to "work." The name you specify will be used to create a

82 ModelSim User's Manual, v10.4c

Projects
Getting Started with Projects

working library subdirectory within the Project Location. This dialog also allows you to
reference library settings from a selected .ini file or copy them directly into the project.

Figure 3-1. Create Project Dialog

Create Project x|

— Project Mame
||:|r|:|i1

— Project Lozation

|C:/Tutorial/examples Browse...

— Drefault Library Mame
|w::|rk

— Copy Settings From

|a’m|:u:|elsim.ini Browse...

* Copy Library Mappings Feference Library Mappings

OF. | Eann::el|

3. Click OK.

Results

A blank Project window opensin the Main window (Figure 3-2)

Figure 3-2. Project Window Detail

Froject L A X
¥*|Name Statui Type | Ordel Modifiec

EL

and the Add Itemsto the Project dialog box opens. (Figure 3-3)

ModelSim User’'s Manual, v10.4c 83

Projects
Getting Started with Projects

Figure 3-3. Add items to the Project Dialog
|

— Click on the icon to add items of that type:——

]]

Create Hew File Add E wisting File
Create Simulation Create Mew Folder

Cloze |

The name of the current project is displayed at the bottom bar of the Main window.

If you exit Model Sim with a project open, Model Sim automatically opens that same project
upon startup.

Y ou can open adifferent or existing project by selecting File > Open and choosing Project Files
from the Files of type drop-down.

To close aproject file, right-click in the Project window and select Close Project. This closes
the Project window but leaves the Library window open. Y ou cannot close a project while a
simulation isin progress.

Add Source Files to the Project

Once you have created a project, you need to add the design files. Y ou can either write and edit
anew source file or add a pre-existing file.
Procedure
1. Create anew project file

a. Select Project > Add to Project > New File (the Project window must be active).
Thiswill open the Create Project File dialog (Figure 3-4).

84 ModelSim User's Manual, v10.4c

Projects
Getting Started with Projects

Figure 3-4. Create Project File Dialog

Create Project File fi: k|
— File Mame

Ifu:u:u.v Browsze. .. |

— Addfile aztwpe——— Folder
I‘v"erilug ZI FITDp Lewvel 1'

k. Cancel

b. Specify aname, file type, and folder location for the new file.

When you select OK, thefileislisted in the Project window. If you double-click the
name of the new file in the Project window a Source editor window will open, allowing
you to create source code.

2. Addan existing file
a. Select Project > Add to Project > Existing File.

Figure 3-5. Add file to Project Dialog

Add file to Projeck x|
— File Mame
|-:|:uunter.v toounter. v Browse...
—Add file as tupe Faolder

|default] ’;:up Lewvel wl

' Feference from curent location € Copy to project directany
OF. | Cancel |
b. OK.
Results

The files are added to the Project window.

ModelSim User’'s Manual, v10.4c 85

Projects
Getting Started with Projects

Mame Status |Type |QOrder-*|Modified
g counter,v ? Verilog 0 03/15/2013 0902
g tcounter.w P Verilog 03/15/2013 0902

1
>

Verilog

06/11/2014 01:48:

N [__| '
]il Library |ﬂ| Praoject |_ ﬂ_?'|
Note

You can send alist of al project filenames to the Transcript window by entering the
command project filenames. This command only works when a project is open.

Compile the Files

The question marks in the Status column in the Project window indicate that either the files
have not been compiled into the project or the source has changed since the last compile.

Note
D Project metadata is updated and stored only for actions taken within the project itself. For
example, if you have afilein aproject, and you compile that file from the command line

rather than using the project menu commands, the project will not update to reflect any
new compile settings.

Procedure

Select Compile > Compile All or right click in the Project window and select Compile >
CompileAll.

86 ModelSim User's Manual, v10.4c

Projects
Getting Started with Projects

Figure 3-6. Right-click Compile Menu in Project Window

Proiect

B A

L Edit
' Execute
Comnpile
Add ko Project
Femove From Project
Close Project
Update

Folder

TIName |5I:atus |T3.f|:|e |Or|:|er |I"-’I|:u:|ified | |
= Design Files Folder
-H] HOL

07j12/0

0712/07 05:52:15 PM

r Compile Selected

r |
CDmpiIﬁut-nF-Date

Compile Order. ..
Compile Repart. .

Propetties. ..

Project Settings...

Compile Summarsy. ..

Compile Properties. ..

=

W |i| Project J;Il Librarsy |

2 A

Results

Once compilation isfinished, click the Library window, expand the library work by clicking the

"+", and you will see the compiled design units.

Figure 3-7. Click Plus Sign to Show Design Hierarchy

Library B
*|Mame [Tvpe ©|Path -
- ik, Library wark,

|] test_counter Module C: [Tutorialfexamplesitutorials

[counter Module Z:JTutarialfexamplesftutarial:
+ kg Library $MODEL_TECH/../avm
1,m sy _std Library $MODEL_TECH/. . /5w _std
1,-_1]1 wital2000 Library $MODEL_TECH].. fvital2000
1,m ieee Library $MODEL_TECH). . Jieee j
| | i

3]

Change Compile Order

The Compile Order dialog box is functional for HDL-only designs. When you compile all files
inaproject, Model Sim by default compilesthe filesin the order in which they were added to the

project.

ModelSim User’'s Manual, v10.4c

87

Projects
Getting Started with Projects

Y ou have two alternatives for changing the default compile order:

® Select and compile each file individually

® Specify acustom compile order

Procedure

1. Choose Compile> Compile Order from the main menu or from the context menu in
the Project window.

Figure 3-8. Setting Compile Order

Compile Order |

— Current Order

] it vhd [

] cachew
;_,'j EMAY. Y
;_,'j proc. v
@ zet.vhd
;_ﬁl top.whd

[T [

Auto Generate| OF. | Eancell

2. Dragthefilesinto the correct order or use the up and down arrow buttons. Note that you
can select multiple files and drag them simultaneously.

Auto-Generate the Compile Order

If you have an HDL-only design, you can automatically generate the compile order of itsfiles.

When you click the Auto Gener ate button in the Compile Order dialog box (Figure 3-8),

M odel Sim determines the correct compile order by making multiple passes over thefiles. It
starts compiling from the top; if afile failsto compile due to dependencies, it moves that file to
the bottom and then recompilesit after compiling the rest of thefiles. It continuesin this manner
until all files compile successfully or until afile(s) can’'t be compiled for reasons other than
dependency.

88 ModelSim User's Manual, v10.4c

Projects
Getting Started with Projects

Y ou can display filesin the Project window in alphabetical or in compilation order (by clicking
the column headings). Keep in mind that the order you see in the Project window is not
necessarily the order in which the files will be compiled.

Grouping Files

Y ou can group two or more filesin the Compile Order dialog so they are sent to the compiler at
the same time. For example, you might have one file with a bunch of Verilog define statements
and a second file that is a Verilog module. Y ou would want to compile these two files together.

Procedure
1. Select thefiles you want to group.

Figure 3-9. Grouping Files
x|

— Current Order

proc.

1 kil vhd
1] setvhd
o topvhd

[T [

2. Click the Group button. |

To ungroup files, select the group and click the Ungroup button. E

.ﬁ.utDEeneratel OF. | Eanu:el|

Simulate a Design

After you have finished compiling the files contained in your design, you are ready to perform
simulation.

To simulate adesign, do one of the following.

ModelSim User’'s Manual, v10.4c 89

Projects
Getting Started with Projects

* Double-click the Name of an appropriate design object (such as atest bench module or
entity) in the Library window.

* Right-click the Name of an appropriate design object and choose Simulate from the
popup menu.

® Choose Simulate > Start Simulation from the main menu to open the Add Simulation
Configuration dialog box (Figure 3-10). Select adesign unit in the Design tab. Set other
optionsin the VHDL, Verilog, Libraries, SDF, and Others tabs. Click OK to start the
simulation.

Figure 3-10. Add Simulation Configuration Dialog Box — Design Tab

Add Simulation Configuration x|

Simulation Configuration Mame———— ~Place in Folder
’7|Simulatinn 1 ’7|T|:rp Lewvel ﬁ Add Folder...
Design I VHOL] Verilog] Libraries] SDF] Others] ﬂﬂ
*|Name [Type |Path | | &
— il work Library C:fmodeltech_pe_ 10, 2afexamplesftut...

counter Module C:fmodeltech_pe_ 10, 2afexamplesftut...
l test_counter Module C:fmodeltech_pe_10. Zafexamplesftut...

ﬂ—m floatfixdib Library SMODEL_TECHY/. . ffloatfixlib

M mc?_lib {unavailabl... Library SMODEL_TECH/.. fmc2_lib

M mtifdvm {unavailabl... Library SMODEL_TECH/. . favm

M mtCvm (unavailabl... Library SMODEL_TECH/.. fovm-2.1.2

i

i

mtPA& (unavailable) Library SMODEL_TECH/. . fpa_lib
M mtillvm {unavailabl... Library SMODEL_TECH/. . fuvm-1. 1d

mtUPF (unavailabl... Library SMODEL_TECH/. . fupf_lib

ﬂ—m Qsvvm Library SMODEL_TECH/. . foswvm d
—Design Unit(s) Resolution
|m:| rk.test_counter ’V|default. 1'

A new Structure window, named sim, appears that shows the structure of the active simulation
(Figure 3-11).

90 ModelSim User's Manual, v10.4c

Projects
The Project Window

Figure 3-11. Structure Window with Projects

|‘l"| Inztance _".| Dezign unit |Design Lt type |"-.fisi|:|ilit_l,l |
B test_counter tezt_counter bk odule +acc=<full:
=+ dut courter Module +acc=<full:

ol increment counter Function +acc=<fullz

7] | B

¥ Project J;Il Library | @ &im | £ Filez | BE Memories EIE

At this point you are ready to run the simulation and analyze your results. Y ou often do this by
adding signals to the Wave window and running the simulation for a given period of time. See
the ModelSm Tutorial for examples.

The Project Window

To access:
* New Project: File > New > Project.
® Saved Project: File > Open > Filesof Type > Project File (.mpf)

The Project window contains information about the objects in your project. By default the
window is divided into five columns. Y ou can display this window to create a new project or to
work on an existing project that you have saved

Figure 3-12. Project Window Overview

"IName |Status |T_I,I|:ue |Elr|:|er |M|:n:|ifieu:| |
== YHOL files Folder
adder vhd ? WHDL 3 0BA07 /06 07:35: 45 Phd
testadder vhd ? WHOL 2 0B/07 /06 07 36: 26 Ph
=H_] Yerlog files Folder
boounber.y v Yerilog 1] 0BA07A06 07 36: 21 P
courter, v Yerlog 0B/07 /06 07 35:56 Ph
werlog_sim Simulation

Project | Library

Fields
®* Name-The name of afile or object.

® Status—ldentifieswhether a source file has been successfully compiled. Appliesonly to
VHDL or Verilog files. A guestion mark means the file hasn’t been compiled or the

ModelSim User’'s Manual, v10.4c 91

Projects
Creating a Simulation Configuration

source file has changed since the last successful compile; an X means the compile
failed; a check mark means the compile succeeded; a checkmark with ayellow triangle
behind it means the file compiled but there were warnings generated.

* Type-Thefiletype as determined by registered file types on Windows or the type you
specify when you add the file to the project.

® Order —The order in which the file will be compiled when you execute a Compile All
command.

* Modified — The date and time of the last modification to thefile.

Y ou can hide or show columns by right-clicking on a column title and selecting or deselecting
entries.

Usage Notes

Y ou can sort the list by any of the five columns. Click on a column heading to sort by that
column; click the heading again to invert the sort order. An arrow in the column heading
indicates which field the list is sorted by and whether the sort order is descending (down arrow)
or ascending (up arrow).

Creating a Simulation Configuration

A Simulation Configuration associates a design unit(s) and its ssimulation options. Ordinarily,
you would have to specify those options each time you load the design. With a Simulation
Configuration, you specify the design and those options and then save the configuration with a
name.

For example, assume you routinely load a particular design and you also have to specify the
simulator resolution limit, generics, and SDF timing files. With a Simulation Configuration,
you would specify the design and those options and then save the configuration and name it
top_config. Thisname isthen listed in the Project window where you can double-click it to load
the design along with its options.

Procedure

1. Add asimulation configuration to the project by doing either of the following:

® Choose Project > Add to Project > Simulation Configuration from the main
menu.

® Right-click the Project window and choose Add to Project > Simulation
Configuration from the popup menu in the Project window.

This displays the dialog box shown in Figure 3-13.

92 ModelSim User's Manual, v10.4c

Projects
Creating a Simulation Configuration

5.
6.

Figure 3-13. Add Simulation Configuration Dialog Box

Add Simulation Configuration x|

— Simulation Configuration Mame Plaze in Folder

|Simu|atiu:un 1 ’?ﬂp Lewel ﬂ Add Falder...
Design] VHDL | Verlog | Libraries | SDF | Others | m
*|Name [Tupe =[Path 1=
1,{'1 ok, Library . /T utonal/examples/tutonals/mized/compareworlk
<l sv_std Library $MODEL_TECH/. /ev_std

1,{'1 wital2000 Library FMODEL_TECH/.. Avital2000

<] ie=e Library $MODEL_TECH/. fieee

1,{'1 rnodelzim_lib Library $MODEL_TECH/../modelzim_lib

<] s Library ~ $MODEL_TECH/./std

] std_developerskit Libray $MODEL_TECH/../std_developerskit

1,{'1 FPNopays Library FMODEL_TECH.../synopsys -

An o - dt e m—— o =

1| | B
— Dezign Unit[z] — Rezolutian

| default !I

O ptimization
’TV Enable optimization Cptimization Elptin:nns...|

Sac | Cancel |

Specify aname in the Simulation Configuration Name field.

Specify the folder in which you want to place the configuration (see Organizing Projects
with Folders).

Select one or more design unit(s). Use the Control and/or Shift keys to select more than
one design unit. The design unit names appear in the Simulate field when you select
them.

Use the other tabs in the dialog box to specify any required simulation options.
Click OK

Results

The simulation configuration is added to the Project window, as shown in Figure 3-14.
As noted, the name of the new simulation configuration you have added is verilog_sim.

To load the design, double-click on verilog_sim.

ModelSim User’'s Manual, v10.4c 93

Projects
Organizing Projects with Folders

Figure 3-14. Simulation Configuration in the Project Window

Project - el 3¢
* Name Status |Type Order | Modified
E-_] YHDL files Folder
adder.vhd ? WHDL 3 06/07/04 07:35.46 PM
testadder. vhd ? YHOL 2 06/07/04 07:36:26 PM
B-_] Verilog files Folder
tcounter. v v Yerlog 0 06/07/04 07:36:21 P

counter. v Verilog 06/07/04 07:35:56 PM

verilog_sim Simulation

This is the new simulation configuration.

] Project | Library |

Organizing Projects with Folders

The more files you add to a project, the harder it can be to locate the item you need. Y ou can
add "folders' to the project to organize your files.

Adding a Project Folder

Project folders are similar to directories in that they are containers that allow you to organize
multiple levels of folders and sub-folders. However, no actual project directories are created in
the file system—the folders are present only within the project file.

Procedure
1. Select Project > Add to Project > Folder or right-click in the Project window and
select Add to Project > Folder.

Figure 3-15. Add Folder Dialog

Add Folder x|

— Folder Mame

IDesign Files

— Folder Location

|T|:||:| Lewvel ZI

OF. | Ean-:ell

94 ModelSim User's Manual, v10.4c

Projects
Organizing Projects with Folders

2. Specify the Folder Name, the location for the folder, and click OK. The folder will be
displayed in the Project tab.

Examples
For example, when you add afile, you can select which folder to placeitin.
Figure 3-16. Specifying a Project Folder

Add file to Project El

—File Name
| caunter. v tcounter. v

—Add file as type Folder

j H Specity a folder here.

Idefault :I |Uerul|:1g fites

& Reference from curent location ¢ Copy to project directory
ok | Cancel |

If you want to move afileinto afolder later on, you can do so using the Properties dialog for the

file. Simply right-click on the filename in the Project window and select Properties from the
context menu that appears. Thiswill open the Project Compiler Settings Dialog (Figure 3-17).

Use the Place in Folder field to specify afolder.

ModelSim User’'s Manual, v10.4c

95

Projects
Set File Properties and Project Settings

Figure 3-17. Project Compiler Settings Dialog

Project Compiler Settings H

General] "-.J'HDL] Enverage]

— General Settings

[~ DoMot Compile Compile to library: |wu:urk
Place in Folder: [VHDL

KRCH

— File Froperties

File: ztimuluz. vhd
Location: C: /examples/ztimulus. vhd

MS-D0S name: C:hexampleshatimulus. vhd

Type: WYHOL Change Type |

Size: 3145 [3KEB]

Modification Time: 13:47:28 Pacific Standard Time
Last Compile: Source haz not been compiled.
File Attributes: Archive

] | Eancell

On Windows platforms, you can aso just drag-and-drop afileinto afolder.

Set File Properties and Project Settings

Y ou can set two types of propertiesin a project: file properties and project settings. File
properties affect individual files; project settings affect the entire project.

File Compilation Properties

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options that
affect how adesign is compiled and subsequently simulated. Y ou can customize the settings on
individual files or agroup of files.

Note
D Any changes you make to the compile properties outside of the project, whether from the

command line, the GUI, or the modelsim.ini file, will not affect the properties of files
already in the project.

To customi ze specific files, select thefile(s) in the Project window, right click on the file names,
and select Properties. The resulting Project Compiler Settings dialog (Figure 3-18) varies

96 ModelSim User's Manual, v10.4c

Projects
Set File Properties and Project Settings

depending on the number and type of files you have selected. If you select asingle VHDL or
Verilog file, you will see the General tab, Coverage tab, and the VHDL or Verilog tab,
respectively.

In the General tab, you will see file properties such as Type, Location, and Size. If you select
multiple files, the file properties on the General tab are not listed. Finally, if you select both a
VHDL fileand a Verilog file, you will see al tabs but no file information on the General tab.

Figure 3-18. Specifying File Properties

x|
General] Yerlog] Coverage] ﬂ_ﬂ
— General Settings
[T Do Mot Compile Compile ta lbrany: |wu:urk ZI
Flace in Folder: |Tn:||:| Level ZI
— File Properties
File: .y
Location: C:/eramplesdcoverageswenlogdsm. v
kS-D0S name: C:hexampleshcoveragehwenlogham. v
Type: Yerlog Change Typel
Size 2459 [2KB]
Modification Tine: Thu Moyv 04 7:35:08 P Pacific Standard Time
Last Campile: Source haz not been compiled.
Filz Attributes: Archive

OF. I Cancel

When setting options on a group of files, keep in mind the following:

* If two or more files have different settings for the same option, the checkbox in the
dialog will be "grayed out." If you change the option, you cannot change it back to a
"multi- state setting” without cancelling out of the dialog. Once you click OK,
Model Sim will set the option the same for all selected files.

® |f you select acombination of VHDL and Verilog files, the options you set on the
VHDL and Verilog tabs apply only to those file types.

Project Settings

To modify project settings, right-click anywhere within the Project window and choose Pr oj ect
Settings from the popup menu. This opens the Project Settings Dialog Box.

ModelSim User’'s Manual, v10.4c 97

Projects
Set File Properties and Project Settings

The Project Settings Dialog Box allows you to select the compile output you want, the location
map, what to do with source files when you open or close a project, and how the double-click
action of your mouse will operate on specific file types.

Figure 3-19. Project Settings Dialog Box
x|

— Campile Dukpuk

[Display compiler oukput
¥ save compile report

— Location map
[Convert pathnames ta softnames

—Additional Properties
¥ Restore open source files when opening a project

¥ automatically close all source Files when closing a project

— Dauble-click Behaviar

File Type [wHDL wl
Action |Edit wl
Cuskanm |
Ok | Cancel|

Convert Pathnames to Softnames for Location Mapping

If you are using alocation map, you can convert relative pathnames, full pathnames, and
pathnames with an environment variable into a soft pathname.

0 Tip: The term softname denotes a pathname that uses location mapping using the
MGC_LOCATION_MAP environment variable. The soft pathname looks like a
pathname containing an environment variable, it locates the source using the location
map rather than the environment.

Prerequisites

® Under the Location map section of the Project Settings dialog box (Figure 3-19), enable
the checkbox for Convert pathnames to softnames.

Procedure
1. Right-click anywhere within the Project window and select Project Settings

2. Enablethe Convert pathnamesto softnames within the Location map area of the
Project Settings dialog box (Figure 3-19).

98 ModelSim User's Manual, v10.4c

Projects
Access Projects from the Command Line

Results

Once enabled, all pathnames currently in the project and any that are added later are then
converted to softnames.

During conversion, if there is no softname in the mgc location map matching the entry, the
pathname is converted in to afull (hardened) pathname. A pathname is hardened by removing
the environment variable or the relative portion of the path. If this happens, any existing
pathnames that are either relative or use environment variables are also changed: either to
softnames if possible, or to hardened pathnames if not.

Related Topics
See Using Location Mapping.

Setting Custom Double-click Behavior
Use the Project Settings dialog box to control the double-click behavior of the Proj ect

window.
Procedure
1. Select the desired File Typein the Double-click Behavior pane.
2. Select Custom from the Action dropdown.

3. Inthe Custom text entry box enter a Tcl command, using %f for filename substitution.

Examples

The following example shows how the Custom text entry box could appear.
notepad %$f

where the double-click behavior will substitute %f with the filename that was clicked, then
execute the string.

Access Projects from the Command Line

Generally, projects are used from within the Model Sim GUI. However, standal one tools will
use the project file if they are invoked in the project's root directory. If you want to invoke
outside the project directory, set the MODEL SIM environment variable with the path to the
project file (<Project_Root_Dir>/<Project_ Name>.mpf).

Y ou can aso use the project command from the command line to perform common operations
on projects.

ModelSim User’'s Manual, v10.4c 99

Projects
Access Projects from the Command Line

100 ModelSim User’'s Manual, v10.4c

Chapter 4
Design Libraries

VHDL designs are associated with libraries, which are objects that contain compiled design
units. Verilog and SystemV erilog designs simulated within Model Sim are compiled into
libraries as well.

Design Library Overview

A design library isadirectory or archive that serves as arepository for compiled design units.
The design units contained in adesign library consist of VHDL entities, packages, architectures,
and configurations; Verilog modules and UDPs (user-defined primitives). The design units are
classified in two ways.

®* Primary design units— Consist of entities, package declarations, configuration
declarations, modules, and UDPs. Primary design unitswithin agiven library must have
unigue names.

® Secondary design units— Consist of architecture bodies, and package bodies.
Secondary design units are associated with a primary design unit. Architectures by the
same name can exist if they are associated with different entities or modules.

Design Unit Information
The information stored for each design unit in adesign library is:
® retargetable, executable code
® debugging information

® dependency information

Working Library Versus Resource Libraries

Design libraries can be used in two ways.
1. Asaloca working library that contains the compiled version of your design;

2. Asaresourcelibrary.

The contents of your working library will change as you update your design and recompile. A
resource library istypically static and serves as a parts source for your design. Y ou can create
your own resource libraries or they may be supplied by another design team or athird party (for
example, asilicon vendor).

ModelSim User’s Manual, v10.4c 101

Design Libraries
Working with Design Libraries

Only one library can be the working library.

Any number of libraries can be resource libraries during a compilation. Y ou specify which
resource libraries will be used when the design is compiled, and there are rules to specify in
which order they are searched (refer to Verilog Resource Libraries and VHDL Resource
Libraries).

A common example of using both aworking library and aresource library is onein which your
gate-level design and test bench are compiled into the working library and the design references
gate-level modelsin a separate resource library.

The Library Named "work"

The library named "work" has specia attributes within ModelSim — it is predefined in the
compiler and need not be declared explicitly (that is, library work). It is also the library name
used by the compiler asthe default destination of compiled design units (that is, it does not need
to be mapped). In other words, the work library is the default working library.

Working with Design Libraries

The implementation of adesign library is not defined within standard VHDL or Verilog. Within
Model Sim, design libraries are implemented as directories and can have any legal name allowed
by the operating system, with one exception: extended identifiers are not supported for library
names.

Creating a Library

Y ou need to create aworking design library before you run the compiler. This can be done from
either the command line or from the Model Sim graphic interface.

Note
When you create a project, Model Sim automatically creates aworking design library.

Procedure

Y ou have two ways to create aworking design library:

® From the Model Sim prompt or a UNIX/DOS prompt, use the vlib command:
vlib <directory_pathname>

* With the graphic interface, select File> New > Library.

102 ModelSim User’'s Manual, v10.4c

Design Libraries
Working with Design Libraries

Figure 4-1. Creating a New Library

Create a New Library x|

—Create

" anew library
" amap to an existing library

& 3 new library and a logical mapping to it

—Library Name:

|wcrk

—Library Physical Mame:

|wcrk

QK Cancel

Results

When you click OK, Model Sim creates the specified library directory and writes a specially-
formatted file named _info into that directory. The _info file must remain in the directory to
distinguish it asaModelSim library.

The new map entry is written to the modelsim.ini file in the [Library] section. Refer to
modelsim.ini Variables for more information.

Note
Remember that adesign library isaspecial kind of directory. The only way to create a
library isto use the Model Sim GUI or the vlib command. Do not try to create libraries
using UNIX, DOS, or Windows commands.

Related Topics
See Getting Started with Projects and modelsim.ini Variables.

Library Size

The -smartdbgsym option for the vcom and vliog commands helps to reduce the size of
debugging database symbol files generated at compile time from the design libraries. With

-smartdbgsym, most design-units have their debugging symbol files generated on-demand by
vsim.

A companion SmartDbgSym variable in modelsim.ini allows you to permanently enable or
disable this function. By default, the function is disabled and a debugging symbol file database
Is generated for all design units.

ModelSim User’s Manual, v10.4c 103

Design Libraries
Working with Design Libraries

Related Topics

See vcom and vlog.

Library Window Contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the graphic

interface or command line.

The Library window provides access to design units (configurations, modules, packages,
entities, and architectures) in alibrary. Various information about the design unitsis displayed

in columns to the right of the design unit name.

The Library window has a popup menu with various commands that you access by clicking

Figure 4-2. Design Unit Information in the Workspace

Likrary
'l"| M ame |T_I,I|:-e |F'ath | |
= ok Libirary C:/modeltech/eramples/mixedH DL Awark
) cache b odule C:vmodeltechtexamplezhmisedHDL zach. .
E] cache_set E ritiky C:“modeltechexamples‘mizedH DL zet...
1] memary Module C:\modeltechexamples'mizedHDL mem. .
1] proc b odule C:vmodeltechtexamplezhmisedH DL proc.
P] ghd_logic_util Package C:‘modetechexamplesimimedHDLAnL...
EHE] top Entity C:\modeltechexamples'mizedHDL top. ...
18] anly Architecture
[yl wital2000 Library $MODEL_TECH. Avital2000
| REEE Library $MODEL_TECH/!. fieee
[l rmodelzim_lib Library $MODEL_TECH/.. /modelsim_lib

Library |

your right mouse button.

The context menu includes the following commands:

Simulate — L oads the selected design unit(s) and opens Structure (sim) and Files
windows. Related command line command isvsim.

Edit — Opens the selected design unit(s) in the Source window; or, if alibrary is
selected, opens the Edit Library Mapping dialog (refer to Map aLogical Nameto a
Design Library).

Refresh — Rebuilds the library image of the selected library without using source code.
Related command line command is vcom or vlog with the -refresh argument.

Recompile — Recompiles the selected design unit(s). Related command line command
isvcom or vlog.

104

ModelSim User's Manual, v10.4c

Design Libraries
Working with Design Libraries

® Update — Updates the display of available libraries and design units.

Map a Logical Name to a Design Library

VHDL useslogical library names that can be mapped to Model Sim library directories. By
default, ModelSim can find libraries in your current directory (assuming they have the right
name), but for it to find libraries located el sewhere, you need to map alogical library name to
the pathname of the library.

For Verilog and SystemVerilog libraries, the system searches for the mapping of alogical name
in the following order:

® First the system looks for amodelsim.ini file.

® If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

The compiler generates an error if you specify alogical name that does not resolve to an
existing directory.

Y ou can use the GUI, acommand, or a project to assign alogical nameto adesign library. You
can also map multiple logical names to the same design library.

Mapping a Library with the GUI
Y ou can map alibrary with the GUI using the Edit Library Mapping dialog box.

Procedure
1. Select thelibrary inthe Library window,
2. Right-click your mouse

3. Select Edit from the context menu that appears. This brings up a dialog box that alows
you to edit the mapping.

ModelSim User’s Manual, v10.4c 105

Design Libraries
Working with Design Libraries

Figure 4-3. Edit Library Mapping Dialog

Edit Library Mapping B #
— Library b apping Hame

Isimprim

— Library Pathname

Browse. .. |

k. | Cancel

The dialog box includes these options:
o Library Mapping Name — Thelogical name of thelibrary.
o Library Pathname — The pathname to the library.

Mapping a Library from the Command Line

Use the vmap command to map alibrary from the command line.

Procedure
Use the vmap command. For example:

vmap <logical_name> <directory_pathname>

Y ou may invoke this command from either a UNIX/DOS prompt or from the command line
within ModelSim.

The vmap command adds the mapping to the library section of the modelsim.ini file.

Modify the modelsim.ini Manually

Y ou can map alibrary by manually modifying the modelsim.ini file.

Procedure
1. Openthe modelsim.ini file with atext editor
2. Add aline under the [Library] section heading using the syntax:
<logical_name> = <directory_pathname>
To map more than one logical name to asingle directory:

a. Open the modelsim.ini file with atext editor

106 ModelSim User’'s Manual, v10.4c

Design Libraries
Working with Design Libraries

b. Addalibrary logical name and pathname for the same library under the [Library]
section heading using the syntax. For example:

[Library]
work = /usr/rick/design
my_asic = /usr/rick/design

Thiswould alow you to use either the logical namework or my_asicinalibrary or
use clause to refer to the same design library.

Y ou can also create a UNIX symbolic link to the library using the host platform
command. For example:

In -s <directory_pathname> <logical_name>

The vmap command can aso be used to display the mapping of alogical library nameto a
directory. To do this, enter the shortened form of the command:

vmap <logical_name>

Related Topics
See modelsim.ini Variables and vmap.

Move a Library

Individual design unitsin adesign library cannot be moved. An entire design library can be
moved, however, by using standard operating system commands for moving a directory or an
archive.

Setting Up Libraries for Group Use

By adding an “others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the tool does not find a mapping in the modelsim.ini file, then it will search the
[library] section of theinitialization file specified by the “others’ clause. For example:
[library]
asic_1lib = /cae/asic_1lib

work = my_work
others = /usr/modeltech/modelsim.ini

Y ou can specify only one "others' clause in the library section of agiven modelsim.ini file.

The“others’ clause only instructsthe tool to look in the specified modelsim.ini filefor alibrary.
It does not load any other part of the specified file.

If there are two libraries with the same name mapped to two different locations — one in the
current modelsim.ini file and the other specified by the "others’ clause — the mapping specified
in the current .ini file will take effect.

ModelSim User’s Manual, v10.4c 107

Design Libraries
Verilog Resource Libraries

Verilog Resource Libraries

All modules and UDPsin a Verilog design must be compiled into one or more libraries. One
library isusually sufficient for asimple design, but you may want to organize your modulesinto
various libraries for acomplex design. If your design uses different modules having the same
name, then you need to put those modules in different libraries because design unit names must
be unique within alibrary.

Thefollowing is an example of how to organize your ASIC cellsinto one library and the rest of
your design into another:

% vlib work

% vlib asiclib

% vlog -work asiclib and2.v or2.v
-- Compiling module and2

-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v

-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
theresultsin the asiclib library rather than the default work library.

Library Search Rules and the viog Command

Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded
from the library named work unless you prefix the modules with the <library>. option. All other
Verilog instantiations are resolved in the following order.

® Search libraries specified with -Lf arguments in the order they appear on the command
line.

® Search the library specified in the Verilog-XL uselib Compiler Directive section.

® Search libraries specified with -L arguments in the order they appear on the command
line.

® Searchthework library.
® Search thelibrary explicitly named in the specia escaped identifier instance name.

Related Topics
See SystemV erilog Multi-File Compilation.

108 ModelSim User’'s Manual, v10.4c

Design Libraries
Verilog Resource Libraries

Handling Sub-Modules with the Same Name

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Figure 4-4. Sub-Modules with the Same Name

top
modA| |modB

lib1: lib2:
modA modB

The normal library search rules do not work in this situation. For example, if you load the
design asfollows:

vsim -L lib1 -L lib2 top
both instantiations of cellX resolve to the libl version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, Model Sim implements a specia interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the exampl e above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

The LibrarySearchPath Variable

The LibrarySearchPath variable in the modelsim.ini file (in the [vlog] section) can be used to
define a space-separated list of resource library paths and/or library path variables. This
behavior isidentical with the -L argument for the viog command.

LibrarySearchPath = <path>/1ibl <path>/1ib2 <path>/1ib3

The default for LibrarySearchPath is:

ModelSim User’s Manual, v10.4c 109

Design Libraries
VHDL Resource Libraries

LibrarySearchPath = mtiAvm mtiOvm mtiUvm mtiUPF

Related Topics
See LibrarySearchPath and vlog.

VHDL Resource Libraries

Within aVHDL sourcefile, you use the VHDL library clause to specify logical names of one

or more resource libraries to be referenced in the subsequent design unit. The scope of alibrary
clause includesthetext region that startsimmediately after thelibrary clause and extendsto the
end of the declarative region of the associated design unit. It does not extend to the next design

unit in thefile.

Notethat thelibrary clauseis not used to specify the working library into which the design unit
is placed after compilation. The vcom command adds compiled design units to the current
working library. By default, thisisthe library named work. To change the current working
library, you can use vcom -wor k and specify the name of the desired target library.

Predefined Libraries

Certain resource libraries are predefined in standard VHDL. The library named std contains the
packages standard, env, and textio, which should not be modified. The contents of these
packages and other aspects of the predefined language environment are documented in the IEEE
Sandard VHDL Language Reference Manual, Sd 1076.

A VHDL use clause can be specified to select particular declarationsin alibrary or package that
are to be visible within adesign unit during compilation. A use clause references the compiled
version of the package—not the source.

By default, every VHDL design unit is assumed to contain the following declarations:

LIBRARY std, work;
USE std.standard.all

To specify that all declarationsin alibrary or package can be referenced, add the suffix .all to
the library/package name. For example, the use clause above specifiesthat all declarationsin
the package standard, in the design library named std, are to be visibleto the VHDL design unit
immediately following the use clause. Other libraries or packages are not visible unlessthey are
explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where adesign unit is stored after it is compiled
as described earlier. Thereisno limit to the number of libraries that can be referenced, but only
one library is modified during compilation.

Related Topics

110 ModelSim User’'s Manual, v10.4c

Design Libraries
VHDL Resource Libraries

See The TextlO Package.

Alternate IEEE Libraries Supplied

The installation directory may contain two or more versions of the |IEEE library.
* jeeepure— Contains only |IEEE approved packages (accelerated for ModelSim).

® jeee—(default) Contains precompiled Synopsys and | EEE arithmetic packages which
have been accelerated for Model Sim including math_complex, math_real, numeric_bit,
numeric_std, std_logic_1164, std_logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std logic_unsigned, vital_primitives, and vital_timing.

Y ou can select which library to use by changing the mapping in the modelsim.ini file.

Regenerating Your Design Libraries

Depending on your current Model Sim version, you may need to regenerate your design libraries
before running asimulation. Check theinstallation README fileto seeif your librariesrequire
an update.

By default, the work library is updated. An important feature of -refresh isthat it rebuilds the
library image without using source code. This means that models delivered as compiled
libraries without source code can be rebuilt for a specific release of ModelSim. In generdl, this
works for moving forwards or backwards on arelease. Moving backwards on arelease may not
work if the models used compiler switches, directives, language constructs, or features that do
not exist in the older release.

Restrictions and Limitations

Y ou don't need to regenerate the std, ieee, vital22b, and verilog libraries. Also, you cannot use
the -refresh option to update libraries that were built before the 4.6 release.

Y ou may specify a specific design unit name with the -refresh argument to vcom and vlog in
order to regenerate a library image for only that design, but you may not specify afile name.
Procedure
®* Fromthe GUI — Library > Regener ate. Updates the work library.
® From the command line:

o VHDL design unitsin alibrary, use vcom with the -refresh argument. Updates the
work library.

o Verilog design unitsin alibrary, use vlog with the -refresh argument. Updates the
work library.

ModelSim User’s Manual, v10.4c 111

Design Libraries
Importing FPGA Libraries

® Update adifferent library. — Use either vcom or vlog with the -work <library>
argument to update a different library. For example, if you have alibrary named mylib
that contains both VHDL and Verilog design units:

vcom -work mylib -refresh

vlog -work mylib -refresh

Related Topics

See Library Window Contents, vcom, and vlog.

Importing FPGA Libraries

Model Sim includes an import wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependenciesin the libraries and determines the correct mappings
and target directories.

Prerequisites

The FPGA libraries you import must be pre-compiled. Most FPGA vendors supply pre-
compiled libraries configured for use with ModelSim.

Procedure
1. Select File>Import > Library to open the Import Library Wizard. (Figure 4-5)

Figure 4-5. Import Library Wizard

Import Library Wizard |

The Import Library Wizard will step you
through the tasks necessary to reference and
use a library.

L library can be either an existing Model
Technology library or an FPGA library that you
received from an FPGA wendor. If the library
was received from an FPGA wendor, it must be a
precompiled library.

Please enter the location of the library to be
imported below.

Import Library Pathname

Browse,..
Mext E: @ Cancel |

Previous

112 ModelSim User’'s Manual, v10.4c

Design Libraries
Protect Source Code

2. Follow theinstructions in the wizard to compl ete the import.

Protect Source Code

The Protecting Y our Source Code chapter provides details about protecting your internal model
data. Thisalowsamodel supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

Related Topics
See Protecting Y our Source Code.

ModelSim User’s Manual, v10.4c 113

Design Libraries
Protect Source Code

114 ModelSim User’'s Manual, v10.4c

Chapter 5
VHDL Simulation

This chapter provides basic information on how to use VHDL for Model Sim simulation.

Basic VHDL Usage — A brief outline of the stepsfor using VHDL inaModelSim
design.

Compilation and Simulation of VHDL — How to compile, optimize, and ssmulate a
VHDL design

The TextlO Package — Using the Textl O package provided with ModelSim

VITAL Usage and Compliance — Implementation of the VITAL (VHDL Initiative
Towards ASIC Libraries) specification for ASIC modeling

VHDL Utilities Package (util) — Using the special built-in utilities package (Util
Package) provided with ModelSim

Modeling Memory — The advantages of using VHDL variables or protected types
instead of signals for memory designs.

VHDL Access Object Debugging — Logging an access type variable will automatically
also log any designated objects that the variable value points to during simulation.

Basic VHDL Usage

Using a VHDL design with Model Sim consists of running the vcom and vsim commands to
compile, load, and simulate. Note that you need to be familiar with any setup requirements for
running these commands, such as using the vlib command to create adesign library.

The following basic sequence of steps summarizes this process:

1

Compileyour VHDL code into one or more libraries using the vcom command. Refer to
Compilation of aVHDL Design—the vcom Command for more information.

Load your design with the vsim command. Refer to Simulation of aVHDL Design—the
vsim Command.

Simulate the loaded design, then debug as needed.

Compilation and Simulation of VHDL

The basic operations for using VHDL with Model Sim are establishing alibrary for compilation
results, compilation, and simulation.

ModelSim User’s Manual, v10.4c 115

VHDL Simulation
Compilation and Simulation of VHDL

Creating a Design Library for VHDL

Before you can compile your VHDL sourcefiles, you must create alibrary in which to store the
compilation results.
Procedure

Use the vlib command to create a new library. For example:

vlib work

Results

Running the vlib command creates a library named work. By default, compilation results are
stored in the work library.

Caution
The work library is actually a subdirectory named work. This subdirectory contains a

specia file named _info. Do not create aVHDL library as a directory by using a system
command—always use the vlib command.

Related Topics

Design Libraries

Compilation of a VHDL Design—the vcom
Command

Model Sim compiles one or more VHDL design units with a single invocation of the vcom
command, which functions as the VHDL compiler. The design units are compiled in the order
that they appear on the command line. For VHDL, the order of compilation is important—you
must compile any entities or configurations before an architecture that references them.

Y ou can simulate a design written with any of the following versions of VHDL.:
¢ 1076-1987
* 1076-1993
¢ 1076-2002
¢ 1076-2008

To do so you need to compile units from each VHDL version separately.

116 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Compilation and Simulation of VHDL

The vcom command compiles using 1076 -2002 rules by default; use the -87, -93, or -2008
arguments to compile units written with version 1076-1987, 1076 -1993, or 1076-2008
respectively. You can also change the default by modifying the VHDL93 variable in the
modelsim.ini file (see modelsim.ini Variables for more information).

Note
D Only alimited number of VHDL 1076-2008 constructs are currently supported.

Dependency Checking

Y ou must re-analyze dependent design units when you change the design units they depend on
in the library. The vcom command determines whether or not the compilation results have
changed.

For example, if you keep an entity and its architectures in the same source file and you modify
only an architecture and recompile the source file, the entity compilation results will remain
unchanged. This means you do not have to recompile design units that depend on the entity.

VHDL Case Sensitivity

VHDL is acase-insensitive language for al basic identifiers. For example, clk and CLK are
regarded as the same name for a given signal or variable. This differs from the Verilog and
SystemV erilog languages, both of which are case-sensitive.

The vcom command preserves both uppercase and lowercase |etters of all user-defined object
namesin a VHDL sourcefile.

Usage Notes

® You can make the vcom command convert uppercase letters to lowercase by either of
the following methods:

o Usethe-lower argument with the vcom command.
o Set the PreserveCase variable to 0 in your modelsim.ini file.

® The supplied precompiled packagesin STD and |EEE have their case preserved. This
resultsin slightly different version numbers for these packages. As aresult, you may
receive out-of-date reference messages when refreshing to the current release. To
resolve this, use vcom -force_refresh instead of vcom -refresh.

* Mixed language interactions

o Design unit names— Because VHDL and Verilog design units are mixed in the
same library, VHDL design units are treated as if they are lowercase. Thisisfor
compatibility with previous releases. This also to provide consistent filenamesin the
file system for make files and scripts.

ModelSim User’s Manual, v10.4c 117

VHDL Simulation
Compilation and Simulation of VHDL

o Verilog packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion.

o VHDL packages compiled with -mixedsvvh — not affected by VHDL uppercase
conversion; VHDL basic identifiersare still converted to lowercase for compatibility
with previous releases.

o FLI — Functions that return names of an object will not have the original case
unless the source is compiled using vcom -lower. Port and Generic hamesin the
mitilnterfaceListT structure are converted to lowercase to provide compatibility with
programs doing case sensitive comparisons (strcmp) on the generic and port names.

How Case Affects Default Binding
The following rules describe how Model Sim handles uppercase and lowercase namesin default
bindings.
1. All VHDL names are case-insensitive, so Model Sim always storesthem in the library in

lowercase to be consistent and compatible with older releases.

2. Whenlooking for adesign unitin alibrary, Model Simignoresthe VHDL case and |ooks
first for the namein lowercase. If present, Model Sim uses it.

3. If no lowercase version of the design unit name existsin the library, then ModelSim
checksthe library, ignoring case.

a. If ONE match isfound this way, Model Sim selects that design unit.

b. If NO matches or TWO or more matches are found, Model Sim does not select
anything.

The following examples demonstrate these rules. Here, the VHDL compiler needsto find a
design unit named Test. Because VHDL is case-insensitive, Model Sim looks for "test” because
previous rel eases always converted identifiers to lowercase.

Example 1

Consider the following library:

work
entity test
Module TEST

The VHDL entity test is selected because it is stored in the library in lowercase. The original
VHDL could have contained TEST, Test, or TeSt, but the library always contains the entity as
Ilta-ll

118 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Compilation and Simulation of VHDL

Example 2

Consider the following library:

work
Module Test

No design unit named "test" exists, but "Test" matches when case isignored, so ModelSim
selectsit.

Example 3

Consider the following library:

work
Module Test
Module TEST

No design unit named "test" exists, but both "Test" and "TEST" match when caseisignored, so
Model Sim does not select either one.

Range and Index Checking

A range check verifies that a scalar value defined to be of a subtype with arange is aways
assigned a value within itsrange. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Range and index checks are performed by default when you compile your design. Y ou can
disable range checks (potentially offering a performance advantage) using arguments to the
vcom command. Or, you can use the NoRangeCheck and NolndexCheck variablesin the
[vcom] section of the modelsim.ini file to specify whether or not they are performed. Refer to
modelsim.ini Variables for more information.

Generally, these checks are disabled only after the design is known to be error-free. If you run a
simulation with range checking disabled, any scalar valuesthat are out of range are indicated by
showing the value in the following format: 2(N) where N is the current value. For example, the
range constraint for STD_ULOGIC is'U' to '-'; if the valueis reported as 2(25), the value is out
of range because the type STD_ULOGIC vaueinternaly is between 0 and 8 (inclusive). A
similar thing will arise for integer subtypes and floating point subtypes. This generally
indicates that there is an error in the design that is not being caught because range checking was
disabled.

Range checksin Model Sim are slightly more restrictive than those specified by the VHDL
Language Reference Manua (LRM). Model Sim requires any assignment to asignal to also be
in range whereas the LRM requires only that range checks be done whenever asignal is

ModelSim User’s Manual, v10.4c 119

VHDL Simulation
Compilation and Simulation of VHDL

updated. Most assignments to signals update the signal anyway, and the more restrictive
requirement allows Model Sim to generate better error messages.

Subprogram Inlining

Model Sim attempts to inline subprograms at compile time to improve simulation performance.
This happens automatically and should be largely transparent. However, you can disable
automatic inlining two ways.

® Invoke vcom with the -O0 or -O1 argument
® Usethemti_inhibit_inline attribute as described below

Single-stepping through a simulation varies slightly, depending on whether inlining occurred.
When single-stepping to a subprogram call that has not been inlined, the simulator stopsfirst at
the line of the call, and then proceeds to the line of the first executable statement in the called
subprogram. If the called subprogram has been inlined, the ssmulator does not first stop at the
subprogram call, but stops immediately at the line of the first executable statement.

mti_inhibit_inline Attribute

You can disable inlining for individual design units (a package, architecture, or entity) or
subprograms with the mti_inhibit_inline attribute. Follow these rulesto use the attribute:

® Declare the attribute within the design unit's scope as follows:

attribute mti_inhibit_inline : boolean;

® Assign the value true to the attribute for the appropriate scope. For example, to inhibit
inlining for a particular function (for example, "foo"), add the following attribute
assignment:

attribute mti_inhibit_inline of foo : procedure is true;

Toinhibit inlining for a particular package (for example, "pack™), add the following
attribute assignment:

attribute mti_inhibit_inline of pack : package 1is true;

Do similarly for entities and architectures.

Simulation of a VHDL Design—the vsim Command

A VHDL design isready for simulation after it has been compiled with vcomY ou can then use
the vsim command to invoke the ssmulator with the name(s) of the configuration or
entity/architecture pair.

120 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Usage Characteristics and Requirements

Note
D This section discusses invoking simulation from the command line (in UNIX or

Windows/DOS). Alternatively, you can also use aproject to simulate (see Getting Started
with Projects) or use the Start Simulation dialog box (choose Simulate > Start
Simulation from the main menu).

The following example uses the vsim command to begin simulation on adesign unit that has an
entity named my_asic and an architecture named structure:

vsim my_asic structure

Timing Specification

The vsim command can annotate a design using VITAL-compliant models with timing data
from an SDF file. Y ou can specify delay by invoking vsim with the -sdfmin, -sdftyp, or -sdfmax
arguments.

The following example uses an SDF file named f1.sdf in the current work directory, and an
invocation of vsim annotating maximum timing values for the design unit my_asic:

vsim -sdfmax /my_asic=fl.sdf my_asic

By default, the timing checks within VITAL models are enabled (refer to VITAL Usage and
Compliance). Y ou can disable them with the +notimingchecks argument. For example:

vsim +notimingchecks topmod

If you specify vsim +notimingchecks, the generic TimingChecksOn is set to FALSE for all
VITAL modelswith the Vital_levelO or Vital_levell attribute. Setting this generic to FALSE
disables the actual calls to the timing checks along with anything else that is present in the
model's timing check block. In addition, if these models use the generic TimingChecksOn to
control behavior beyond timing checks, this behavior will not occur. This can cause designs to
simulate differently and provide different results.

Usage Characteristics and Requirements

Model Sim supports the use of VHDL in compliance with the IEEE Standard VHDL Language
Reference Manual (IEEE Std 1076), which was originally adopted in 1987. This standard has
undergone several revisions, each of which isidentified by a suffix indicating the year of its
approval by the IEEE. There are considerationsin using VHDL with Model Sim that are not
explicitly covered by the Language Reference Manual (LRM).

ModelSim User’s Manual, v10.4c 121

VHDL Simulation
Usage Characteristics and Requirements

Differences Between Supported Versions of the
VHDL Standard

There are four versions of the VHDL standard (IEEE Std 1076). each consisting of the standard
in effect in the year it was approved by the IEEE: 1076-1987, 1076-1993, 1076-2002, and 1076-
2008. The default language version supported for ModelSim is 1076-2002.

If your VHDL design was written according to the 1987, 1993, or 2008 version, you may need
to update your code or instruct Model Sim to use rules for different version.

To select a specific language version, do one of the following:

Select the appropriate version from the compiler options menu in the GUI
Invoke vcom using the argument -87, -93, -2002, or -2008.

Set the VHDL 93 variable in the [vcom] section of the modelsim.ini file to one of the
following values:

- 0, 87, or 1987 for 1076-1987
- 1, 93, or 1993 for 1076-1993
- 2,02, or 2002 for 1076-2002
- 3, 08, or 2008 for 1076-2008

Incompatibilities Among Versions of the VHDL Standard

Thefollowingisalist of language incompatibilities that may cause problems when compiling a
design.

Refer to Model Sim Release Notes for the most current and comprehensive description of
differences between supported versions of the VHDL standard.

VHDL-93 and VHDL -2002 — The only major problem between VHDL-93 and
VHDL-2002 is the addition of the keyword "PROTECTED". VHDL-93 programs
which use this as an identifier should choose a different name.

All other incompatibilities are between VHDL-87 and VHDL-93.

VITAL and SDF — It isimportant to use the correct language version for VITAL.
VITAL2000 must be compiled with VHDL-93 or VHDL-2002. VITAL95 must be
compiled with VHDL-87. A typical error message that indicates the need to compile
under language version VHDL-87 is:

"VITALPathDelay DefaultDelay parameter must be locally static"

122

ModelSim User's Manual, v10.4c

VHDL Simulation
Usage Characteristics and Requirements

® Purity of “now” function— In VHDL-93, the function "now" isimpure. Consequently,
any function that invokes "now" must also be declared to be impure. Such callsto "now"
occur in VITAL. A typical error message:

"Cannot call impure function 'now' from inside pure function
1 <name> Trn

® Files— File syntax and usage changed between VHDL-87 and VHDL-93. In many
cases vcom issues awarning and continues:

"Using 1076-1987 syntax for file declaration."

In addition, when files are passed as parameters, the following warning message is
produced:

"Subprogram parameter name is declared using VHDL 1987 syntax."
This message often involves calls to endfile(<name>) where <name> is afile parameter.

* Filesand packages — Each package header and body should be compiled with the
same language version. Common problemsin this areainvolve files as parameters and
the size of type CHARACTER. For example, consider a package header and body with
aprocedure that has afile parameter:

procedure procl (out_file : out std.textio.text)

If you compile the package header with VHDL-87 and the body with VHDL-93 or
VHDL-2002, you will get an error message such as.

"*% Error: mixed_package_b.vhd(4): Parameter kinds do not conform
between declarations in package header and body: 'out_file'."

® Direction of concatenation — To solve some technical problems, the rules for
direction and bounds of concatenation were changed from VHDL-87 to VHDL-93. You
won't see any difference in simple variable/signal assignments such as:

vl := a & b;

But if you (1) have afunction that takes an unconstrained array as a parameter, (2) pass
aconcatenation expression as aformal argument to this parameter, and (3) the body of
the function makes assumptions about the direction or bounds of the parameter, then you
will get unexpected results. This may be a problem in environments that assume all
arrays have "downto" direction.

® xnor — "xnor" isareserved word in VHDL-93. If you declare an xnor functionin
VHDL-87 (without quotes) and compile it under VHDL-2002, you will get an error
message like the following:

** Error: xnor.vhd(3): near "xnor": expecting: STRING IDENTIFIER

ModelSim User’s Manual, v10.4c 123

VHDL Simulation
Usage Characteristics and Requirements

'"FOREIGN attribute — In VHDL-93 package STANDARD declares an attribute
'FOREIGN. If you declare your own attribute with that name in another package, then
Model Sim issues a warning such as the following:

-- Compiling package foopack

** Warning: foreign.vhd(9): (vcom-1140) VHDL-1993 added a definition
of the attribute foreign to package std.standard. The attribute is
also defined in package 'standard'. Using the definition from
package 'standard'.

Size of CHARACTER type— In VHDL-87 type CHARACTER has 128 values; in
VHDL-93 it has 256 values. Code which depends on this size will behave incorrectly.
This situation occurs most commonly in test suites that check VHDL functionality. It's
unlikely to occur in practical designs. A typical instance is the replacement of warning
message:

"range nul downto del is null"

by

"range nul downto 'y' is null" -- range is nul downto y(umlaut)

bit string literals— In VHDL-87 bit string literals are of type bit_vector. In VHDL-93
they can aso be of type STRING or STD_LOGIC_VECTOR. Thisimplies that some
expressions that are unambiguousin VHDL-87 now become ambiguousisVHDL-93. A
typical error messageis:

** Error: bit_string literal.vhd(5): Subprogram '=' is ambiguous.
Suitable definitions exist in packages 'std_logic_1164' and
'standard’.

Sub-element association — In VHDL-87 when using individual sub-element
association in an association list, associating individual sub-elementswith NULL is
discouraged. In VHDL-93 such association is forbidden. A typical messageis:

"Formal '<name>' must not be associated with OPEN when subelements
are associated individually."

VHDL -2008 packages — Model Sim does not provide VHDL source for VHDL-2008
| EEE-defined standard packages because of copyright restrictions. Y ou can obtain
VHDL source from http://standards.ieee.org//downl oads/1076/1076-2008/ for the
following packages:

IEEE.fixed_float_types
IEEE. fixed_generic_pkg
IEEE. fixed_pkg

IEEE. float_generic_pkg
IEEE. float_pkg
TEEE.MATH_REAL
TEEE.MATH_COMPLEX
TEEE.NUMERIC_BIT
TEEE.NUMERIC_BIT UNSIGNED
TEEE.NUMERIC_STD

124

ModelSim User's Manual, v10.4c

http://standards.ieee.org//downloads/1076/1076-2008/
http://standards.ieee.org//downloads/1076/1076-2008/

VHDL Simulation
Usage Characteristics and Requirements

IEEE.NUMERIC_STD_UNSIGNED
IEEE.std_logic_1164
IEEE.std_logic_textio

Naming Behavior of VHDL for Generate Blocks

A VHDL for ... generate statement, when elaborated in a design, places a given number of
for ... generate equivaent blocks into the scope in which the statement exists; either an
architecture, ablock, or another generate block. The simulator constructs a design path name for
each of thesefor ... generate equivalent blocks based on the original generate statement's |abel
and the value of the generate parameter for that particular iteration.

For example, given the following code:

gl: for I in 1 to Depth generate
L: BLK port map (A(I), B(I+1));
end generate gl

the default names of the blocksin the design hierarchy would be:

gl(l), g1(2),

This name appearsin the GUI to identify the blocks. Y ou should use this name with any
commands when referencing a block that is part of the simulation environment. The format of
the name is based on the VHDL Language Reference Manual P1076-2008 section 16.2.5
Predefined Attributes of Named Entities.

If the type of the generate parameter is an enumeration type, the value within the parenthesis
will be an enumeration literal of that type; such as. g1(red).

For mixed-language designs, in which a Verilog hierarchical reference is used to reference
something inside a VHDL for ... generate equivalent block, the parentheses are replaced with
brackets ([]) to match Verilog syntax. If the name is dependent upon enumeration literas, the
literal will be replaced with its position number because V erilog does not support using
enumerated literalsin itsfor ... generate equivalent block.

In releases prior to the 6.6 series, this default name was controlled by the GenerateFormat
modelsim.ini file variable would have appeared as:

gl 1, gl_ 2,

All previously-generated scripts using this old format should work by default. However, if not,
you can use the GenerateFormat and OldV hdlForGenNames modelsim.ini variables to ensure
that the old and current names are mapped correctly.

ModelSim User’s Manual, v10.4c 125

VHDL Simulation
Usage Characteristics and Requirements

Simulator Resolution Limit for VHDL

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time, also known as the simulator resolution limit.

The default resolution limit is set to the value specified by the Resolution variable in the
modelsim.ini file. Y ou can view the current resolution by invoking the report command with the
simulator state argument.

Note
In Verilog, this representation of time unitsis referred to as precision or timescale.

Overriding the Default Resolution

To override the default resolution of Model Sim, specify avalue for the -t argument of the vsim
command line or select a different Simulator Resolution in the Simulate dialog box. Available
values of smulator resolution are:

1fs, 10fs, 100 fs

1 ps, 10 ps, 100 ps
1ns, 10 ns, 100 ns

1 us, 10 us, 100 us

1 ms, 10 ms, 100 ms
1s,10s,100s

For example, the following command sets resolution to 10 ps:

vsim -t 10ps topmod

Note that you need to take care in specifying aresolution value larger than adelay valuein your
design—delay valuesin that design unit are rounded to the closest multiple of the resolution. In
the example above, adelay of 4 pswould be rounded down to O ps.

Choosing a Resolution Value for VHDL

Y ou should specify the coarsest value for time resolution that does not result in undesired
rounding of your delay times. The resolution value should not be unnecessarily small because it
decreases the maximum simulation time limit and can cause longer simulations.

Default Binding

By default, Model Sim performs binding when you load the design with the vsim command. The
advantage of this default binding at load timeisthat it provides more flexibility for compile
order. Namely, VHDL entities do not necessarily have to be compiled before other
entities/architectures that instantiate them.

126 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Usage Characteristics and Requirements

However, you can force Model Sim to perform default binding at compile time instead. This
may allow you to catch design errors (for example, entities with incorrect port lists) earlier in
the flow. Use one of these two methods to change when default binding occurs:

® Specify the -bindAtCompile argument to vcom

® Set the BindAtCompile variable in the modelsim.ini to 1 (true)

Default Binding Rules

When searching for aVHDL entity with which to bind, Model Sim searches the currently visible
libraries for an entity with the same name as the component. Model Sim does this because |EEE
Std 1076-1987 contained a flaw that made it amost impossible for an entity to be directly
visibleif it had the same name as the component. This meant if acomponent was declared in an
architecture, any entity with the same name above that declaration would be hidden because
component/entity names cannot be overloaded. As aresult, Model Sim observes the following
rules for determining default binding:

* |f performing default binding at load time, search the libraries specified with the -L
argument to vsim.

* |f adirectly visible entity has the same name as the component, useit.
* |f an entity would be directly visible in the absence of the component declaration, useit.

* If the component is declared in a package, search the library that contained the package
for an entity with the same name.

® If aconfiguration declaration contains library and use clauses, use them.

If none of these methods are successful, Model Sim then does the following:

® Search thework library.
® Search all other libraries that are currently visible by means of the library clause.

* |f performing default binding at load time, search the libraries specified with the -L
argument to vsim.

Note that these last three searches are an extension to the 1076 standard.

Disabling Default Binding

If an appropriate binding cannot be made between an entity and an architecture, default port,
and generic maps, Model Sim will issue an error or warning. Y ou can disable normal default
binding methods and require a user specified binding by setting the
RequireConfigForAllDefaultBinding variable in the modelsim.ini file to 1 (true) or by
specifying the -ignor edefaultbind argument to vcom.

ModelSim User’s Manual, v10.4c 127

VHDL Simulation
Usage Characteristics and Requirements

When you specify the RequireConfigForAllDefaultBinding, Model Sim requires the user to
provide a configuration specification or component configuration in order to bind an entity with
an architecture. You must explicitly bind all componentsin the design through either
configuration specifications or configurations. If an explicit binding is not fully specified,
defaults for the architecture, port maps, and generic maps will be used as needed.

Delta Delays

Event-based simulators such as Model Sim may process many events at agiven simulation time.
Multiple signals may need updating, statements that are sensitive to these signals must be
executed, and any new events that result from these statements must then be queued and
executed as well. The steps taken to evaluate the design without advancing simulation time are
referred to as "deltatimes” or just "deltas.”

Figure 5-1 illustrates the process for VHDL designs. This process continues until the end of
simulation time.

Figure 5-1. VHDL Delta Delay Process

Execute concurrent

__pp-|Statements at — ppAdvance deltatime |q—
current time i

Advance simulation No |Any transactions to
time ~®—— process?
¢Yes

Any events to No
process?

¢Y6

Execute concurrent
statements that are
sensitive to events

This mechanism in event-based simulators may cause unexpected results. Consider the
following code fragment:

128 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Usage Characteristics and Requirements

clk2 <= clk;

process (rst, clk)
begin
if(rst = '0')then
sO0O <= '0';
elsif (clk'event and clk='1l') then
s0 <= inp;
end if;
end process;

process (rst, clk2)

begin
if(rst = '0')then
sl <= '0';
elsif (clk2'event and clk2='1') then
sl <= s0;
end if;

end process;

In thisexample, there are two synchronous processes, one triggered with clk and the other with
clk2. Consider the unexpected situation of the signals changing in the clk2 process on the same
edge as they are set in the clk process. As aresult, the value of inp appears at sl rather than s0.

During simulation an event on clk occurs (from the test bench). From this event, ModelSim
performsthe "clk2 <= clk" assignment and the process which is sensitive to clk. Before
advancing the simulation time, Model Sim finds that the process sensitive to clk2 can also be
run. Since there are no delays present, the effect is that the value of inp appears at sl in the same
simulation cycle.

In order to correct this and get the expected results, you must do one of the following:

®* |nsert adelay at every output
* Make certain to use the same clock
® Insert adeltadelay
To insert adelta delay, you would modify the code like this:

process (rst, clk)
begin
if(rst = '0’)then
sO0O <= '0’;
elsif(clk’event and clk='1’) then
s0 <= inp;
end 1if;
end process;
s0_delayed <= s0;
process (rst, clk2)
begin
if(rst = '0’)then
sl <= '0";

ModelSim User’s Manual, v10.4c 129

VHDL Simulation
The TextlO Package

elsif (clk2’event and clk2='1') then
sl <= s0_delayed;
end if;
end process;

The best way to debug delta delay problems is observe your signalsin the Wave Window or
List Window. There you can see how values change at each deltatime.

Detecting Infinite Zero-Delay Loops

If alarge number of deltas occur without advancing time, it is usually a symptom of an infinite
zero-delay loop in the design. In order to detect the presence of these loops, Model Sim definesa
limit, the “iteration limit", on the number of successive deltas that can occur. When ModelSim

reaches the iteration limit, it stops the simulatin and issues an error message.

The iteration limit default value is 10 million (10000000).

If you receive an iteration limit error, first increase the iteration limit and try to continue
simulation. and then try single stepping to attempt to determine which instances in the design
may be oscillating or run the simulation again with the vsim +autofindloop argument.

Y ou can set the iteration limit from the Simulate > Runtime Options menu or by modifying
the IterationLimit variable in the modelsim.ini. See modelsim.ini Variables for more
information on modifying the modelsim.ini file.

If the problem persists, look for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which signals
or variables are continuously oscillating. Two common causes are aloop that has no exit, or a
series of gates with zero delay where the outputs are connected back to the inputs.

The TextlO Package

The TextlO package for VHDL is defined within the |EEE Std 1076-2002, | EEE Standard
VHDL Language Reference Manual. This package allows human-readable text input from a
declared source within aVVHDL file during simulation.

To access the routines in Textl O, include the following statement in your VHDL source code:

USE std.textio.all;

A simple example using the package TextlO is:

130 ModelSim User’'s Manual, v10.4c

VHDL Simulation
The TextlO Package

USE std.textio.all;
ENTITY simple_textio IS
END;

ARCHITECTURE simple_behavior OF simple_textio IS
BEGIN
PROCESS
VARIABLE i: INTEGER:= 42;
VARIABLE LLL: LINE;
BEGIN
WRITE (LLL, 1);
WRITELINE (OUTPUT, LLL) ;
WAIT;
END PROCESS;
END simple_behavior;

Syntax for File Declaration

The syntax supported for Text 10 can vary according to the version of IEEE Std 1076 you are
using.

For |IEEE Std 1076-1987, the supported syntax for afile declaration is the following:
file identifier : subtype_indicationis [mode] file_ logical_name ;
where "file_logical_name" must be a string expression.
For newer versions of IEEE Std 1076, supported syntax for afile declaration is the following:
file identifier_list : subtype_indication [file_open_information] ;
where "file_open_information" is:

[open file_open_kind_expression] is file_logical_name

Y ou can specify afull or relative path asthe file_logica _name. For example (VHDL 1987):
file filename : TEXT is in "usr\rick\myfile";

Normally, if afileisdeclared within an architecture, process, or package, thefileis opened
when you start the simulator and is closed when you exit from it. If afileisdeclared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNSs from the subprogram.

Alternatively, you can delay the opening of filesuntil the first read or write by setting the
DelayFileOpen variable in the modelsim.ini file. Also, you can control the number of
concurrently open files with the ConcurrentFileLimit variable. These variables help you
manage a large number of files during simulation. See modelsim.ini Variables for more details.

ModelSim User’s Manual, v10.4c 131

VHDL Simulation
The TextlO Package

STD_INPUT and STD_OUTPUT Within ModelSim

STD_INPUT isafile logica _name that refers to characters that are entered interactively from
the keyboard, and STD_OUTPUT refers to text that is displayed on the screen. The syntax
supported for STD_INPUT and STD_OUTPUT for Text 10 can vary according to the version
of IEEE Std 1076 you are using.

In ModelSim, reading from the STD_INPUT file allows you to enter text into the current buffer
from a prompt in the Transcript pane. The lines written to the STD_OUTPUT file appear in the
Transcript.

For |IEEE Std 1076-1987, Textl O package contains the following file declarations:
file input: TEXT is in "STD_INPUT";
file output: TEXT is out "STD_OUTPUT";

For newer versions of |IEEE Std 1076, TextlO package contains these file declarations:

file input: TEXT open read_mode is "STD_INPUT";
file output: TEXT open write_mode is "STD_OUTPUT";

TextlO Implementation Issues

Some aspects of using TextlO with Model Sim are not fully supported or can have ambiguous
implementations.

WRITE Procedures for Strings and Aggregates

A common error in VHDL source code occurs when a call to a WRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the VHDL
procedure:

WRITE (L, "hello");

will cause the following error:

ERROR: Subprogram "WRITE" is ambiguous.

In the Textl O package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRITE(L: inout LINE; VALUE: in BIT _VECTOR;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

procedure WRITE(L: inout LINE; VALUE: in STRING;
JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

132 ModelSim User’'s Manual, v10.4c

VHDL Simulation
The TextlO Package

The error occurs because the argument "hello” could be interpreted as a string or a bit vector,
but the compiler is not allowed to determine the argument type until it knows which function is
being called.

The following procedure call also generates an error:

WRITE (L, "010101");

Thiscall iseven more ambiguous, because the compiler could not determine, evenif allowed to,
whether the argument "010101" should be interpreted as a string or a bit vector.

There are two possible solutions to this problem:

® Useadqualified expression to specify the type, asin:
WRITE (L, string’ ("hello"));

® (Call aprocedurethat is not overloaded, asin:

WRITE_STRING (L, "hello");

The WRITE_STRING procedure simply defines the value to be a STRING and calls the
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the
overloading problem. For further details, refer to the WRITE_STRING procedureintheio_utils
package, which islocated in thefile
<install_dir>/modeltech/examples/vhdl/io_utils/io_utils.vhd.

Reading and Writing Hexadecimal Numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The I ssues
Screening and Analysis Committee of the VHDL Analysis and Standardization Group (ISAC-
VASG) has specified that the TextlO package reads and writes only decimal numbers.

To expand this functionality, Model Sim supplies hexadecimal routinesin the packageio_utils,
whichislocated in thefile <install_dir>/modeltech/examples/gui/io_utils.vhd. To use these
routines, compiletheio_utils package and then include the following use clausesin your VHDL
source code:

use std.textio.all;
use work.io_utils.all;

Dangling Pointers

Dangling pointers are easily created when using the TextlO package, because WRITELINE de-
allocates the access type (pointer) that is passed to it. Following are examples of good and bad
VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

ModelSim User’s Manual, v10.4c 133

VHDL Simulation
The TextlO Package

READLINE (infile, L1); -- Read and allocate buffer
L2 := L1; -- Copy pointers
WRITELINE (outfile, Ll); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and allocate buffer
L2 := new string’(Ll.all); -- Copy contents
WRITELINE (outfile, L1); -- Deallocate buffer

The ENDLINE Function

The ENDLINE function — described in the IEEE Std 1076-2002, |EEE Sandard VHDL
Language Reference Manual — containsinvalid VHDL syntax and cannot be implemented in
VHDL. Thisis because access values must be passed as variables, but functions do not allow
variable parameters.

Based on an I SAC-V ASG recommendation the ENDLINE function has been removed from the
TextlO package. The following test may be substituted for this function:

(L = NULL) OR (L'LENGTH = 0)

The ENDFILE Function
In the VHDL Language Reference Manuals, the ENDFILE function islisted as:
-- function ENDFILE (L: in TEXT) return BOOLEAN;

Note tht this function is commented out of the standard TextlO package. Thisis because the
ENDFILE function isimplicitly declared, so you can use it with files of any type, not just files
of type TEXT.

Alternative Input/Output Files

Y ou can use the Textl O package to read and write to your own files. To do this, just declare an
input or output file of type TEXT. The following examples show how to do thisfor an input file.

The VHDL1987 declaration is:

file myinput : TEXT is in "pathname.dat";

The VHDL1993 declaration is:

file myinput : TEXT open read_mode is "pathname.dat";

After making these declarations, you then include the identifier for thisfile ("myinput” in this
example) inthe READLINE or WRITELINE procedure call.

134 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VITAL Usage and Compliance

The TEXTIO Buffer

Flushing of the TEXTIO buffer depends on whether VHDL files are open for writing.

The status is controlled by the UnbufferedOutput variable in the modelsim.ini file, which you
can turn on (1) or off (0, default).

Input Stimulus to a Design
Y ou can provide an input stimulusto a design by reading data vectors from afile and assigning
their valuesto signals. Y ou can then verify the results of thisinput.

A VHDL test bench has been included as part of the Model Sim installation as an example.
Check for thisfile in your installation directory:

<install_dir>/examples/gui/stimulus.vhd

VITAL Usage and Compliance

TheVITAL (VHDL Initiative Towards ASIC Libraries) modeling specification is sponsored by
the |EEE to promote the development of highly accurate, efficient simulation models for ASIC
(Application-Specific Integrated Circuit) componentsin VHDL.

The |EEE Std 1076.4-2000, | EEE Standard for VITAL AS C Modeling Specification isavailable
from the Institute of Electrical and Electronics Engineers, Inc.

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08854-1331

Tel: (732) 981-0060
Fax: (732) 981-1721

http://www.ieee.org

VITAL Source Code

The source code for VITAL packagesis provided in the following Model Sim installation
directories:

/<install_dir>/vhdl_src/vital22b
/vital9s
/vital2000

VITAL 1995 and 2000 Packages

VITAL 2000 accelerated packages are pre-compiled into the ieee library in the installation
directory. VITAL 1995 accelerated packages are pre-compiled into the vital 1995 library. If you

ModelSim User’s Manual, v10.4c 135

http://www.ieee.org

VHDL Simulation
VITAL Usage and Compliance

need to use the older library, you either need to change the ieee library mapping or add ause
clause to your VHDL code to accessthe VITAL 1995 packages.

To change the ieee library mapping, run the following vmap command:
vmap ieee <modeltech>/vitall995
Or, aternatively, you can add use clauses to your code:

LIBRARY vitall995;

USE vitall995.vital_primitives.all;
USE vitall995.vital_timing.all;

USE vitall995.vital_ memory.all;

Note that if your design uses two libraries—one that depends on vital 95 and one that depends
on vital2000—then you will have to change the references in the source code to vital 2000.
Changing the library mapping will not work.

ModelSim VITAL built-ins are generally updated as new releases of the VITAL packages
become available.

VITAL Compliance

A smulator isVITAL-compliant if it implements the SDF mapping and if it correctly simulates
designs using the VITAL packages—as outlined in the VITAL Model Development
Specification. Model Sim is compliant with |EEE Std 1076.4-2002, IEEE Sandard for VITAL
ASIC Modeling Specification. In addition, Model Sim accelerates the VITAL_Timing,
VITAL_Primitives, and VITAL_memory packages. The optimized procedures are functionally
equivalent to the IEEE Std 1076.4 VITAL ASIC Modeling Specification (VITAL 1995 and
2000).

VITAL Compliance Checking

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not setting
the attributes, or by invoking vcom with the argument -novitalcheck.

Compiling and Simulating with Accelerated VITAL
Packages

When you run the vcom command, Model Sim automatically recognizes that aVITAL function
is being referenced from the ieee library and generates code to call the optimized built-in
routines.

If you do not want to use the built-in VITAL routines (when debugging for instance), invoke
vcom with the -novital argument. The -novital switch only affects callsto VITAL functions
from the design units currently being compiled. Pre-compiled design units referenced from the

136 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Utilities Package (util)

current design units will still call the built-in functions unless they too are compiled with the

-novital argument.

®* Toexcludeal VITAL functions, use -novital all. For example:

vcom -novital all design.vhd

®* Toexclude selected VITAL functions, use one or more -novital <fhame> arguments.

For example:

vcom -novital VitalTimingCheck -novital VitalAND design.vhd

VHDL Utilities Package (util)

The util package contains various VHDL utilities that you can run as Model Sim commands.
The package is part of the modelsim_lib library, which islocated in the /modeltech tree of your
installation directory and is mapped in the default modelsim.ini file.

To include the utilities in this package, add the following lines similar to your VHDL code:

library modelsim_lib;

use modelsim lib.util.all;

get _resolution

The get_resolution utility returns the current ssmulator resolution as areal number. For
example, aresolution of 1 femtosecond (1 fs) corresponds to 1e-15.

Syntax

resval := get_resolution;

Arguments

None

Return Values

Name Type
resval real

Related functions
® to red()
* to time()

Description

The simulator resolution represented as a
real

ModelSim User’'s Manual, v10.4c

137

VHDL Simulation
VHDL Utilities Package (util)

Examples
If the ssimulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution;

the value returned to resval would be 1e-11.

init_signal_driver()

Theinit_signal_driver() utility drives the value of aVHDL signal or Verilog net onto an
existing VHDL signal or Verilog net. Thisallowsyou to drive signals or nets at any level of the
design hierarchy from within a VHDL architecture (such as a test bench).

Seeinit_signa_driver for complete details.

init_signal_spy()

Theinit_signal_spy() utility mirrorsthe value of aVHDL signal or Verilog register/net onto an
existing VHDL signal or Verilog register. Thisalowsyou to reference signals, registers, or nets
at any level of hierarchy from within aVHDL architecture (such as atest bench).

Seeinit_signal_spy for complete details.

signal_force()

The signal_force() utility forces the value specified onto an existing VHDL signal or Verilog
register or net. This alows you to force signals, registers, or nets at any level of the design
hierarchy from within aVHDL architecture (such as atest bench). A signa_force works the
same as the force command when you set the modelsim.ini variable named ForceSigNextlter to
1. The variable ForceSigNextlter in the modelsim.ini file can be set to honor the signal update
event in next iteration for all force types. Note that the signal_force utility cannot issue a
repeating force.

Seesignal_force for complete details.

signal_release()

The signal_release() utility releases any force that was applied to an existing VHDL signal or
Verilog register or net. This alowsyou to release signals, registers, or nets at any level of the
design hierarchy from within aVVHDL architecture (such as atest bench). A signal_release
works the same as the noforce command.

See signal_release for compl ete details.

138 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Utilities Package (util)

to_real()

Theto real() utility converts the physical type time value into area value with respect to the
current value of simulator resolution. The precision of the converted value is determined by the

simulator resolution.

For example, if you were converting 1900 fsto areal and the simulator resolution was ps, then
the real value would be rounded to 2.0 (that is, 2 ps).

Syntax

realval :=to_real(timeval);

Returns
Name Type
realval real
Arguments
Name Type
timeval time

Related functions
® get resolution

e to_time)

Examples

Description

The time value represented as areal with
respect to the ssmulator resolution

Description
The value of the physical typetime

If the simulator resolution is set to ps, and you enter the following function:

realval :=to_real(12.99 ns);

then the value returned to realval would be 12990.0. If you wanted the returned value to bein
units of nanoseconds (ns) instead, you would use the get_resolution function to recal culate the

value:

realval := 1e+9 * (to_real(12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the

function thisway:

realval := 1le+15 * (to_real(12.99 ns)) * get_resolution();

ModelSim User’'s Manual, v10.4c

139

VHDL Simulation
Modeling Memory

to_time()

Theto_time() utility converts areal value into atime value with respect to the current simulator
resolution. The precision of the converted value is determined by the ssmulator resolution. For
example, if you converted 5.9 to atime and the ssmulator resolution was 1 ps, then the time
value would be rounded to 6 ps.

Syntax

timeval :=to_time(realval);

Returns
Name Type Description
timeval time Thereal value represented as a physical
type time with respect to the simulator
resolution
Arguments
Name Type Description
realval real The value of the type real

Related functions
® get_resolution
® to red()

Examples

If the simulator resolution is set to 1 ps, and you enter the following function:

timeval :=to_time(72.49);

then the value returned to timeval would be 72 ps.

Modeling Memory

If you want to model a memory with VHDL using signals, you may encounter either of the
following common problems with ssmulation:

®* Memory alocation error, which typically means the simulator ran out of memory and
failed to allocate enough storage.

* Verylongtimesto load, elaborate, or run.

140 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Modeling Memory

These problems usually result from the fact that signals consume a substantial amount of
memory (many dozens of bytes per bit), all of which must be loaded or initialized before your
simulation starts.

Asan alternative, you can model amemory design using variables or protected typesinstead of
signals, which provides the following performance benefits:

® Reduced storage required to model the memory, by as much as one or two orders of
magnitude

® Reduced startup and run times

® Elimination of associated memory alocation errors

Examples of Different Memory Models

Y ou should avoid using VHDL signals to model memory. For large memories especialy, the
run time for aVHDL model using asignal is many times longer than using variablesin the
memory process or as part of the architecture. A signal also uses and uses much more memory.

Example 5-1 shown below uses different VHDL architectures for the entity named memory to
provide the following models for storing RAM:

®* bad style 87 — usesaVHDL signa
* gyle 87 — usesvariablesin the memory process
® style 93 — usesvariablesin the architecture
To implement this model, you will need functions that convert vectorsto integers. To useit, you
will probably need to convert integersto vectors.
Converting an Integer Into a bit_vector

The following code shows how to convert an integer variable into a bit_vector.

ModelSim User’s Manual, v10.4c 141

VHDL Simulation
Modeling Memory

library ieee;
use ieee.numeric_bit.ALL;

entity test is
end test;

architecture only of test is
signal sl : bit_vector (7 downto 0);
signal int : integer := 45;
begin
p:process
begin
wait for 10 ns;
sl <= bit_vector(to_signed(int,8)) ;
end process p;
end only;

Examples Using VHDL1987, VHDL1993, and VHDL2002
Architectures

The VHDL code for the examples demonstrating the approaches to modeling memory are
provided below.

® Example 5-1 containstwo VHDL architectures that demonstrate recommended memory
models: style 93 uses shared variables as part of a process, style 87 uses For
comparison, athird architecture, bad_style 87, shows the use of signals.

The style 87 and style 93 architectures work with equal efficiency for this example.
However, VHDL 1993 offers additional flexibility because the RAM storage can be
shared among multiple processes. This example shows a second process that initializes
the memory—you could add other processes to create a multi-ported memory.

® Example 5-2 isapackage (named conversions) that isincluded by the memory model in
Example 5-1.

® Example 5-3isprovided for completeness—it shows protected typesusing VHDL 2002.
Note that using protected types offers no advantage over shared variables.

Example 5-1. Memory Model Using VHDL87 and VHDL93 Architectures

Example functions are provided below in package “conversions.”

-—- Source: memory .vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Provides three different architectures

142 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Modeling Memory

library ieee;
use ieee.std_logic_1164.all;
use work.conversions.all;

entity memory is
generic(add_bits : integer := 12;
data_bits : integer := 32);
port(add_in : in std_ulogic_vector (add_bits-1 downto 0);
data_in : in std_ulogic_vector (data_bits-1 downto 0);
data_out : out std_ulogic_vector (data_bits-1 downto 0);
cs, mwrite : in std_ulogic;
do_init : in std_ulogic);
subtype word is std_ulogic_vector (data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;
type ram_type is array (0 to nwords-1) of word;
end;

architecture style_93 of memory is

begin
memory :
process (cs)
variable address : natural;

begin

if rising_edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then

ram(address) := data_in;

end 1if;
data_out <= ram(address) ;

end if;

end process memory;
-- i1llustrates a second process using the shared variable
initialize:
process (do_init)
variable address : natural;
begin
if rising edge(do_init) then
for address in 0 to nwords-1 loop
ram(address) := data_in;
end loop;
end 1if;
end process initialize;
end architecture style_93;

ModelSim User’s Manual, v10.4c 143

VHDL Simulation
Modeling Memory

architecture style_87 of memory is
begin

memory :

process (cs)

variable address : natural;

begin

if rising edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then

ram(address) := data_in;

end if;
data_out <= ram(address) ;

end if;

end process;
end style_87;

architecture bad_style_87 of memory is

begin
memory:
process (cs)
variable address : natural := 0;
begin
if rising edge(cs) then
address := sulv_to_natural (add_in) ;
if (mwrite = '1l') then
ram(address) <= data_in;
data_out <= data_in;
else
data_out <= ram(address) ;
end if;
end 1if;
end process;
end bad_style_87;

Example 5-2. Conversions Package

library ieee;
use ieee.std_logic_1164.all;

package conversions 1is
function sulv_to_natural (x : std_ulogic_vector) return
natural;
function natural_to_sulv(n, bits : natural) return
std_ulogic_vector;
end conversions;

144 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Modeling Memory

package body conversions is

function sulv_to_natural (x
natural is
variable n natural := 0;
variable failure boolean := false;
begin
assert (x'high - x'low + 1) <= 31

std_ulogic_vector)

return

report "Range of sulv_to_natural argument exceeds

natural range"
severity error;
for i in x'range loop

n :=n * 2;
case x(i) 1is
when 'l' | 'H' =>n :=n + 1;
when '0' | 'L' => null;
when others => failure := true;
end case;
end loop;

assert not failure

report "sulv_to_natural cannot convert

std_ulogic_vector"
severity error;

if failure then
return O;
else
return n;
end if;
end sulv_to_natural;
function natural_to_sulv(n, bits natural)
std_ulogic_vector is
variable x
(others => '0');

variable tempn natural := n;
begin

for i in x'reverse_range loop

if (tempn mod 2) = 1 then
x(i) := '1';

end if;
tempn := tempn / 2;

end loop;

return x;
end natural_to_sulv;

end conversions;

indefinite

return

std_ulogic_vector(bits-1 downto 0) :=

ModelSim User’'s Manual, v10.4c

145

VHDL Simulation
Modeling Memory

Example 5-3. Memory Model Using VHDLO2 Architecture

-- Source: sp_syn_ram_protected.vhd
-- Component: VHDL synchronous, single-port RAM
-- Remarks: Various VHDL examples: random access memory (RAM)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY sp_syn_ram_protected IS
GENERIC (

data_width : positive := 8;
addr_width : positive := 3
)
PORT (
inclk : IN std_logic;
outclk : IN std_logic;
we : IN std_logic;
addr : IN unsigned(addr_width-1 DOWNTO O0) ;
data_in : IN std_logic_vector (data_width-1 DOWNTO O0) ;

data_out : OUT std_logic_vector (data_width-1 DOWNTO O0)
) ;

END sp_syn_ram_protected;

ARCHITECTURE intarch OF sp_syn_ram protected IS

TYPE mem_type IS PROTECTED
PROCEDURE write (data : IN std_logic_vector (data_width-1 downto 0);
addr : IN unsigned(addr_width-1 DOWNTO 0)) ;
IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO O0))
RETURN
std_logic_vector;
END PROTECTED mem_type;

TYPE mem_type IS PROTECTED BODY
TYPE mem_array IS ARRAY (0 TO 2**addr_width-1) OF
std_logic_vector (data_width-1 DOWNTO O0) ;
VARIABLE mem : mem_array;

PROCEDURE write (data : IN std_logic_vector (data_width-1 downto 0);
addr : IN unsigned(addr_width-1 DOWNTO 0)) IS

BEGIN
mem (to_integer (addr)) := data;
END;
IMPURE FUNCTION read (addr : IN unsigned(addr_width-1 DOWNTO 0))
RETURN
std_logic_vector IS
BEGIN
return mem(to_integer (addr)) ;
END;

END PROTECTED BODY mem_type;

146 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Modeling Memory

SHARED VARIABLE memory

BEGIN

ASSERT data_width <= 32

mem_type;

REPORT "### Illegal data width detected"
SEVERITY failure;

control_proc : PROCESS

(inclk, outclk)

BEGIN

IF (inclk'event AND inclk = '1l') THEN

IF (we = '1l') THEN
memory.write(data_in, addr);

END IF;

END IF;

IF (outclk'event AND outclk = 'l') THEN
data_out <= memory.read(addr) ;

END IF;

END PROCESS;

END intarch;

-— Source: ram_tb.vhd
-- Component: VHDL test bench for RAM memory example
-- Remarks: Simple VHDL example: random access memory (RAM)

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

ENTITY ram _tb IS
END ram_tb;

ARCHITECTURE testbench OF ram_tb IS

COMPONENT sp_syn_ram_protected

GENERIC (
data_width : positive := 8;
addr_width : positive := 3
)
PORT (
inclk : IN std_logic;
outclk : IN std_logic;
we : IN std_logic;
addr : IN wunsigned(addr_width-1 DOWNTO O0) ;
data_in : IN std_logic_vector (data_width-1 DOWNTO O) ;

data_out : OUT std_logic_vector (data_width-1 DOWNTO O0)

)
END COMPONENT;

ModelSim User’'s Manual, v10.4c

147

VHDL Simulation
Modeling Memory

-- Intermediate signals and constants

SIGNAL addr unsigned (19 DOWNTO 0) ;
SIGNAL inaddr unsigned (3 DOWNTO O0) ;
SIGNAL outaddr unsigned (3 DOWNTO O0) ;
SIGNAL data_in unsigned (31 DOWNTO 0) ;
SIGNAL data_inl std_logic_vector (7 DOWNTO 0) ;
SIGNAL data_spl std_logic_vector (7 DOWNTO 0) ;
SIGNAL we std_logic;
SIGNAL clk std_logic;
CONSTANT clk_pd time := 100 ns;
BEGIN

instantiations of single-port RAM architectures.
All architectures behave equivalently, but they
have different implementations. The signal-based
architecture (rtl) is not a recommended style.
spraml entity work.sp_syn_ram_ protected
GENERIC MAP (

data_width => 8,

addr_width => 12)

PORT MAP (
inclk => clk,
outclk => clk,
we => we,
addr => addr (11 downto 0),
data_in => data_inl,
data_out => data_spl);
-- clock generator
clock_driver PROCESS
BEGIN
clk <= '0';
WAIT FOR clk_pd / 2;
LOOP
clk <= '1', '0' AFTER clk pd / 2;
WAIT FOR clk_pd;
END LOOP;

END PROCESS;

datain_drivers PROCESS (data_in)
BEGIN
data_inl <= std_logic_vector(data_in (7 downto 0));

END PROCESS;

ctrl_sim PROCESS

148 ModelSim User’'s Manual, v10.4c

VHDL Simulation
Modeling Memory

BEGIN
FOR 1 IN 0 TO 1023 LOOP
we <= '1l";
data_in <= to_unsigned (9000 +
addr <= to_unsigned(i,
inaddr <= to_unsigned(i,
outaddr <= to_unsigned(1i,

WAIT UNTIL clk'EVENT AND clk =
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned(7 + 1,
addr <= to_unsigned(l + i,
inaddr <= to_unsigned (1l + 1

I~

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned(3,
addr <= to_unsigned(2 + i,
inaddr <= to_unsigned(2 + 1,

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

data_in <= to_unsigned (30330,
addr <= to_unsigned(3 + i,
inaddr <= to_unsigned(3 + 1

I~

WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk =

we <= '0";
addr <= to_unsigned (i,
outaddr <= to_unsigned(1i,

WAIT UNTIL clk'EVENT AND clk =
WAIT UNTIL clk'EVENT AND clk =

addr <= to_unsigned(l + 1,
outaddr <= to_unsigned(l + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk =

addr <= to_unsigned(2 + 1,
outaddr <= to_unsigned(2 + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

addr <= to_unsigned(3 + 1,
outaddr <= to_unsigned(3 + i,
WAIT UNTIL clk'EVENT AND clk
WAIT UNTIL clk'EVENT AND clk

END LOOP;

ASSERT false
"### End of Simulation!"

REPORT

SEVERITY failure;

END PROCESS;

END testbench;

i, data_in'length);

addr'length) ;
inaddr'length) ;
outaddr'length) ;

IOI;
IOI;

data_in'length) ;
addr'length) ;
inaddr'length) ;
IOI;

IOI;

data_in'length) ;

addr'length) ;
inaddr'length) ;
IOI;

IOI;

data_in'length) ;
addr'length) ;
inaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;

IOI;
IOI;

addr'length) ;
outaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;
IOI;

IOI;

addr'length) ;
outaddr'length) ;
IOII.

lol;

ModelSim User’'s Manual, v10.4c

149

VHDL Simulation
VHDL Access Object Debugging

Effects on Performance by Cancelling Scheduled
Events

Simulation performanceislikely to get worse if events are scheduled far into the future but then
cancelled before they take effect. This situation acts like a memory leak and slows down
simulation.

In VHDL, this situation can occur several ways. The most common are waits with time-out
clauses and projected waveformsin signal assignments.

The following shows await with atime-out:
signal synch : bit := '0';

p: process
begin

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0, process p makes an event for time 10ms. When synch goesto 1 at 10 ns, the event at
10 msis marked as cancelled but not deleted, and anew event is scheduled at 10ms + 10ns. The
cancelled events are not reclaimed until time 10msis reached and the cancelled event is
processed. As aresult, there will be 500000 (10ms/20ns) cancelled but un-deleted events. Once
10msis reached, memory will no longer increase because the simulator will be reclaiming
events as fast as they are added.

For projected waveforms, the following would behave the same way:
signals synch : bit := '0';

p: process (synch)
begin

output <= '0', 'l' after 10ms;
end process;

synch <= not synch after 10 ns;

VHDL Access Object Debugging

VHDL isastrongly typed language with arich set of types. Although VHDL does not have an
objected-oriented modeling capability, VHDL variables of access type allow you to use
ModelSim to log and display dynamic simulation data. Y ou enable thislogging by specifying
vsim -accessobjdebug.

When logging a VHDL variable of an accesstype, Model Sim also automatically logs any
designated objects that the variable value points to as the simulation progresses. By default,

150 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Access Object Debugging

these objects are unnamed, in accordance with the VHDL LRM (IEEE Std-1076). When you
enable logging, each object is given a unique generated name that you can manipulate as a
design pathname. The conceptual differenceisthat the nameisnot rooted at any particular place
in the design hierarchy. Various windows in the GUI display (such as the Wave window,
Objects window, Locals window, Watch window, and Memory window) can display both the
access variable and any such designated objects.

Tip: You can use the examine and the describe commands in the normal manner for
variables and objects displayed in a Model Sim window.

In general, such designated objects have alimited lifespan, which corresponds to the VHDL
alocator "new." This alocator creates one at a particular time, and the deallocate() procedure
that destroys one at a particular time, as the simulation runs. Each designated object receivesits
unique name when the new allocation occurs; the name is unique over the life of the simulation.

Terminology and Naming Conventions

Using VHDL access type variables for logging dynamic data entails various names and
descriptors.

® accessvariable— A VHDL variable declared to be of an access type. An access
variable can be either a shared variable or not.

NOTE: The VHDL LRM defines “access value” to mean the value of such avariable.
Thisvalue can be either NULL, or it can denote (point to) some unnamed object, which
isthe "designated object” and isreferred to as an “access object.” That is, when an
access variable has avalue that is not NULL, then it points to an access object.

® accessobject — Thus, the term "access object” means the designated object of an access
variable. An access object is created with the VHDL alocator “new,” which returns the
access value. Thisvalue isthen assigned to an access variable, either in an assignment
statement or an association element in a subprogram call.

® AIID — accessinstance identifier. Each access object gets aunique identifier, its access
instance identifier, which is unfortunately named in the manner of class instance
identifier (CIID) for SystemVerilog (which is also known as a handle—refer to
SystemVerilog Class Debugging).

®* DOID — dynamic object identifier. The name of aVHDL an access object. The terms
DOID and AlID are interchangeable. Access object names have two different forms,
depending on whether or not the vsim-accessobjdebug command isin effect. Refer to
Default Behavior—L ogging and Debugging Disabled and L ogging and Debugging
Enabled.

® deeplogging — If an access variable islogged, then the DOID of any access object that
it points to during the simulation is also logged automatically. Any embedded access
type subelements of an access type are also logged automatically. Similarly, logging an

ModelSim User’s Manual, v10.4c 151

VHDL Simulation
VHDL Access Object Debugging

access object by name (its access instance identifier) will log not only the access object
itself but any embedded access objects (if the outer access object is of a composite type
that contains a subelement of an access type).

® prelogging — The logging of an access object by name, even if you have not declared it
(that is, it does not yet exist at thetime an "add log" command isissued but you can till
log it by name). This produces useful results only if you use a DOID (dynamic object
identifier) that matches the name of an access object that will exist at some future
simulation time.

VHDL Access Type

Once you have declared an access type, you can declare an access variable within a process or
subprogram. In using an access type to create dynamic datain VHDL, the usual strict rules
apply to assignment of newly constructed objects to an access type. For instance, thereis no
implicit casting and no such thing as an access that can point to anything (such asavoid * in C).

For example, any VHDL subtype "foo" may be used to declare an access type, whichisa
pointer to objects of type foo. This can be afully constrained type but it is also legal to point to
an unconstrained or partialy constrained type.

In this example, subtype foo is called the designated subtype, and the base type of the
designated subtypeis called the designated type. The designated type of an access type cannot
be afiletype or a protected type. Note that composite types cannot contain elements that are of
file types or protected types, so if the designated type of an access type is a composite type, it
will not have any file type or protected type subelements.

Lifespan of an Access Object

Y ou construct a dynamic access object in VHDL with a"new" operator and destroy it with a
"deallocate” procedure. They are only referenced through pointers declared by the HDL author.
An access object can be assigned avaue of NULL, or the value of another compatible access
type object, or the result of the new operator that constructs a compatible object. The only way
to track an access object is during this lifespan; otherwise, only the access variable is available.

Restrictions and Requirements

® Beginning with VHDL 2002, shared variables technically must be of a protected type
and cannot be of an access type, but Model Sim usage does not enforce this restriction.
This means that an access variable can be a shared variable, which presents a different
set of implementation details. Thisis because shared variables are context tree items,
and non-shared variables (local PROCESS statement variables, local subprogram
variables, and class VARIABLE subprogram formals, in general) are debug section
objects and not context tree items.

® You cannot point to an elaborated object of the same type as a dynamic object—access
types point only to objects constructed by new. (There is no address_of operator.)

152 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Access Object Debugging

® According to the formal definition, dynamic objects have no simple name. That means
logging and debugging requires the generation of an internal, authoritative name for the
table of contents of any logging database.

® Only aVHDL variable (ordinary or shared) may be declared as an access type, not
signals or constants. This access variable has a value of either the literal NULL (which
means there is no designated object), or an AlID, which is a pointer to the designated
object, which we will call the access object. An access variable is of an access type, and
an access object is of the designated type of that access type (not of an access type itself
in general). Note that an access variable, when it isnot NULL, will always point to an
access object. Conversely, an access object, when it is pointed to, will be pointed to by
an access variable. However, an access object does not have to be pointed to by an
access variable, except when it isoriginally created with "new". That is, whileitisnot a
good ideato "orphan” an access object, it is possible. The simulator is free to deallocate
such an orphaned access object by using (perhaps) some garbage collection method, but
is not required to do so—M odel Sim does not.

Limitations

It isnot possible to log a variable (access variable or not) that is declared in the declarative
region of aFUNCTION or PROCEDURE. Thisisnot realy alimitation of this new access
object debug, but it isagenera limitation. Thus, only shared variables and variables that are
declared in a PROCESS declarative region can be logged (whether access variables or not).

The List window can display the value of an access variable, but cannot display the
corresponding access objects.

Currently, while variables of type STD.TEXTIO.LINE can be logged, the access objects, which
will be of type STD.STANDARD.STRING, will not be logged if such avariableislogged.
Thus, "deep logging" of variables of type LINE does not occur.

Default Behavior—Logging and Debugging
Disabled

By default, logging access objects by name is not turned on. This means that while access
variables themselves can be logged and displayed in the various display windows, the access
object(s) that they point to will not be logged. That is, the value of an access variable (the
"name" of the access object it points to) is suitable only for displaying and cannot be used as a
way for acommand to reference it.

ModelSim User’s Manual, v10.4c 153

VHDL Simulation
VHDL Access Object Debugging

ﬂ Default behavior is applied by either of the following methods:
* Inmodelsm.ini ([vsim] section), set AccessObjDebug = 0.

* Run vsim -noaccessobjdebug (overrides AccessObjDebug variable).

Y ou can use and update the value of the access object by using the VHDL keyword “al” asa
suffix to the access variable name.

Examples

® Declarean accessvariable “v1’ that designates some access object. The value of v1 will
display as[10001]. This nameisfor display only—it cannot be used as input to any
command that expects an object name. However, it isaunique identifier for any access
object that the design may produce. Note that this value replaces any hexadecimal
address-based value that may have been displayed in previous versions of Model Sim.

® Usevariablevl withthe VHDL keyword “all” asan argument to the examine command,
which returns the current value of the access object. This essentially dereferences the
object.

examine vl1.al

Logging and Debugging Enabled

Logging an access variable will log both the variable value and any access object that the
variable happens to point to during the simulation.

Access object logging and debugging behavior is applied by either of the following
methods:

* Inmodelsm.ini, set AccessObjDebug = 1.

* Runvsim -accessobjdebug (overrides AccessObjDebug variable).

With logging enabled for a VHDL access variable, display-only names (such as[10001]) take
on adifferent form, as follows:

* theinitial character, @
® the name of the access type or subtype
® another @

® auniqueinteger N that represents the sequence number (starting with 1) of the objects of
that designated type that were created with the VHDL allocator called new.

154 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Access Object Debugging

Displaying Objects in ModelSim Windows

When an access variable is displayed in the Wave window, the wave trace is not expandable
(thereisno "+" next to the variable name). When the access variable points to an access object,
suchthat aDOID (such as @ptr@1) appearsin the values column of the Wave window, you can
then right-click to add the access object under the cursor pointer. This allows adding composite
type access objects to the Wave window.

Tip: An aternative method would be to use the add wave command with the DOID of
the access object. For example:

add wave @ptr@1

Example

An example of alogged access variable in this form:
@ptr@1

Related Topics

Waveform Analysisin the User’s Manual
Wave Window in the GUI Reference Manua

The examine and describe Commands

Whether access logging is enabled or disabled, you can use the examine command with a
declared access variable to obtain adisplay of the current value of its access object. However,
the returned value will be different for each mode.

Disabled The returned value of the access object will be its display-only DOID (as per
Default Behavior—L ogging and Debugging Disabled).

Enabled The returned value of the access object will be the logged name that you
assigned (as per Logging and Debugging Enabled).

Tip: You can also use the describe command with an access variable in asimilar way as
with the examine command (for example, describe v1.all). This command returns amore
gualitative description of the variable' s characteristics.

Depending on the data type of the access object, you can use the examine command in different
ways to obtain avariety of access object values. In particular, you can use examine to obtain
object values for the following VHDL data types:

ModelSim User’s Manual, v10.4c 155

VHDL Simulation
VHDL Access Object Debugging

* Integer
® String
®* Record

The following examples show how to use access variables of these different typesto specify
arguments to the examine command, with access object logging disabled and enabled. Each
example uses an access variable named v1, declared as one of these data types, and an access
object named @ptr@1.

Integer

Table 5-1 shows examples of how to use v1 and @ptr@1 as arguments to the examine
command to obtain the current value of the access object, @ptr@1, which is an integer.

Table 5-1. Using the examine Command to Obtain VHDL Integer Data

Command Value Returned Value Returned
withL ogging Disabled withL ogging Enabled
(vsim -noaccessobjdebug) | (vsim -accessobjdebug)

examine vl [10001] @ptr@1
examinevl.al 5 5
examine @ptr@1 error 5

Here, the current integer value is 5. Note that an error results when attempting to use @ptr@1 as
an examine argument with access object logging disabled.

String

Table 5-2 shows examples of how to use v1 and @ptr@1 as arguments to the examine
command to obtain the current value of the access object, @ptr@1, which isastring.

Table 5-2. Using the examine Command to Obtain VHDL String Data

Command Value Returned Value Returned
withL ogging Disabled withL ogging Enabled
(vsim -noaccessobjdebug) | (vsim -accessobjdebug)

examine vl [10001] @ptr@1

examinevl.al "abcdef" "abcdef"

examine v1(4) ‘d ‘d

examine v1.al(4) ‘d ‘d

examine @ptr@1 error "abcdef”

examine @ptr@1(4) error ‘d

156 ModelSim User’'s Manual, v10.4c

VHDL Simulation
VHDL Access Object Debugging

Here, the value of the entire string is abcdef. Note that specifying an index of 4 in the string
obtains the fourth character of the string, d. Also, note that an error results when attempting to
use @ptr@1 as an examine argument with access object logging disabled.

Record

A VHDL record is composite data type, consisting of multiple fields (also referred to as
elements) each of which contains its own separate data. Record fields may be of the same or of
different types.

Table 5-3 shows examples of using the examine command on arecord object with an integer
field (f1) and astring field (f2).

Table 5-3. Using the examine Command to Obtain VHDL Record Data

Command Value Returned with Value Returned
L ogging Disabled withL ogging Enabled
(vsim -noaccessobjdebug) | (vsim -accessobjdebug)
examine vl [10001] @ptr@1
examinevl.al {5, "abcdef"} {5, "abcdef"}
examinev1.fl 5 5
examinevl.al.fl 5 5
examine @ptr@1.f1 error 5

Here, the current value of integer field f1is 5, and the current value of string field f2 is abcdef.
Note that an error results when attempting to use @ptr@1 as an examine argument with access
object logging disabled.

Related Topics

The describe command
The examine command

ModelSim User’s Manual, v10.4c 157

VHDL Simulation
VHDL Access Object Debugging

158 ModelSim User’'s Manual, v10.4c

Chapter 6
Verilog and SystemVerilog Simulation

This chapter describes how to compile and simulate Verilog and SystemVerilog designs with
ModelSim.

This chapter covers the following topics:

® Basic Verilog Usage — A brief outline of the stepsfor using Verilog inaModelSim
design.

® Verilog Compilation — Information on the requirements for compiling Verilog designs
and libraries.

® Veilog Simulation — Information on the requirements for running simulation.

® Cedll Libraries— Criteriafor using Verilog cell libraries from ASIC and FPGA vendors
that are compatible with Model Sim.

® SystemVerilog System Tasks and Functions — System tasks and functions that are built
into the simulator.

® Compiler Directives— Verilog compiler directives supported for Model Sim.

® Unmatched Virtua Interface Declarations — Allowing virtual interfacesto exist even
when the underlying interface design unit does not exist, even in the design libraries.

® Verilog PLI and SystemVerilog DPI — Verilog and SystemV erilog interfaces that you
can use to define tasks and functions that communicate with the ssimulator through aC
procedural interface.

* SystemVerilog Class Debugging — Information on debugging SV Class objects.

Standards, Nomenclature, and Conventions

SystemVerilog is built “on top of” IEEE Std 1364 for the Verilog HDL and improves the
productivity, readability, and reusability of Verilog-based code. The language enhancementsin
SystemV erilog provide more concise hardware descriptions, while still providing an easy route
with existing design and verification products into current hardware implementation flows.

Model Sim implements the Verilog and SystemV erilog languages as defined by the following
standards:

* |EEE 1364-2005 and 1364-1995 (Verilog)
* |EEE 1800-2012, 1800-2009 and 1800-2005 (SystemV erilog)

ModelSim User’s Manual, v10.4c 159

Verilog and SystemVerilog Simulation
Standards, Nomenclature, and Conventions

Note

D Model Sim supports partial implementation of SystemVerilog |EEE Std 1800-2012.
For release-specific information on currently supported implementation, refer to the
following text file located in the Model Sim installation directory:

<install_dir>/docs/technotes/sysvlog.note

The standard for SystemV erilog specifies extensions for a higher level of abstraction for
modeling and verification with the Verilog hardware description language (HDL).

In this chapter, the following terms apply:

* “Verilog” refersto |IEEE Std 1364 for the Verilog HDL.

* “Verilog-1995” refersto IEEE Std 1364-1995 for the Verilog HDL.
* “Verilog-2001" refersto |IEEE Std 1364-2001 for the Verilog HDL.
® “Verilog-2005" refersto IEEE Std 1364-2005 for the Verilog HDL.

* “SystemVerilog” refersto the extensions to the Verilog standard (IEEE Std 1364) as
defined in IEEE Std 1800-2012.

Note
Theterm “Language Reference Manual” (or LRM) is often used informally to refer to the
current |EEE standard for Verilog or SystemVerilog.

Supported Variations in Source Code

It is possible to use syntax variations of constructs that are not explicitly defined as being
supported in the Verilog LRM (such as “shortcuts’ supported for similar constructs in another
language).

for Loops

ModelSim allows using Verilog syntax that omits any or all three specifications of afor loop —
initialization, termination, increment. Thisis similar to allowed usage in C and is shown in the
following examples.

Note
If you use this variation, a suppressible warning (2252) is displayed, which you can
change to an error if you use the vlog -pedanticerrors command.

® Missinginitializer (in order to continue where you left off):

for (; incr < foo; incr++) begin ... end

160 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

® Missing incrementer (in order to increment in the loop body):

for (ii = 0; ii <= foo;) begin ... end

® Missinginitializer and terminator (in order to implement awhile loop):

for (; goo < foo;) begin ... end

® Missing al specifications (in order to create an infinite loop):

for (;;) begin ... end

Naming Macros with Integers

The viog command will compile macros named with integers in addition to identifiers.
For example:

“define 11 22
‘define g(s) " s "
module defineIdent;
string s2 = “g(“11);
int 1 = “11;
initial begin
Sdisplay("i: %d\n", 1);
#10;
Sdisplay("s2: %s\n", s2);
end
endmodule

Also, the following compiler directives accept integer names as well as |EEE-1800 Language
Reference Manua macro names:

‘define
‘else
‘elsif
‘endif
‘fdef
‘undefine

Y ou can disable this functionality with vlog -pedanticerrors.

Basic Verilog Usage

Basic Verilog usage consists of afew simple steps that include compiling, optimizing, loading,
and simulating.

The Verilog usage flow generally consists of the following steps:

ModelSim User’s Manual, v10.4c 161

Verilog and SystemVerilog Simulation
Basic Verilog Usage

1. Compileyour Verilog codeinto one or more libraries using the viog command. See
Verilog Compilation for details.

2. Load your design with the vsim command. Refer to Verilog Simulation.
3. Simulate the loaded design and debug as needed.

Verilog Compilation
Compiling your Verilog design for the first time is a two-step process.
1. Create aworking library with the vlib command, or select File> New > Library.

2. Compile the design using the viog command, or select Compile > Compile.

Creating a Working Library
Before you can compile your design, you must create alibrary in which to store the compilation
results.
Procedure
1. Usethevlib command or select File > New > Library to create anew library.

For example, the command vlib work creates alibrary named wor k. By default
compilation results are stored in the work library.

Thework library is actually a subdirectory named work. This subdirectory contains a
specia filenamed _info. Do not create librariesusing UNIX commands — always use the
vlib command.

See Design Libraries for additional information on working with libraries.

Invoking the Verilog Compiler

The Verilog compiler compiles Verilog source code into retargetable, executable code. Y ou can
then simulate your design on any supported platform without having to recompile your design;
the library format is also compatible across all platforms.

Prerequisite

Create aworking library.

Procedure

Use the vlog command or the Compile > Compile menu selection to invoke the Verilog
compiler.

162 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

As the design compiles, the resulting object code for modules and user-defined
primitives (UDPs) is generated into alibrary. As noted above, the compiler places
results into the work library by default. Y ou can specify an aternate library with the
-work argument of the viog command.

The following example shows how to use the viog command to invoke the Verilog
compiler:

vlog top.v +libext+.v+.u -y vlog_lib

After compiling top.v, vliog searches the viog_lib library for files with modules with the
same name as primitives referenced, but undefined in top.v. The use of +libext+.v+.u
impliesfilenameswith a.v or .u suffix (any combination of suffixes may be used). Only
referenced definitions are compiled. Compressed SystemVerilog source files (.gz
extension, compressed with zlib) are accepted.

Verilog Case Sensitivity

Note that Verilog and SystemV erilog are case-sensitive languages. For example, c1kx and cL.k
are regarded as different names that you can apply to different signals or variables. This differs
from VHDL, which is case-insensitive.

Parsing SystemVerilog Keywords

With standard Verilog files (<filename>.v), vliog does not automatically parse SystemV erilog
keywords.

SystemVerilog keywords are parsed when either of the following situations exists:

* Any filewithin the design contains the .sv file extension
® You usethe-sv argument with the viog command

The following examples of the viog command show how to enable SystemVerilog features and
keywordsin Model Sim:
vlog testbench.sv top.v memory.v cache.v

vlog -sv testbench.v proc.v

In the first example, the .sv extension for testbench automatically causes Model Sim to parse
SystemVerilog keywords. In the second example, the -sv argument enables SystemVerilog
features and keywords.

Keyword Compatibility

One of the primary goals of SystemV erilog standardization has been to ensure full backward
compatibility with the Verilog standard. Questa recognizes all reserved keywords listed in
Table B-1in Annex B of IEEE Std 1800-2012.

ModelSim User’s Manual, v10.4c 163

Verilog and SystemVerilog Simulation
Basic Verilog Usage

The following reserved keywords have been added since IEEE Std 1800-2009:

implements Interconnect nettype
soft

If you use or produce SystemV erilog code that uses any identifiers from a previousreleasein
which they were not considered reserved keywords, you can do either of the following to avoid
acompilation error:

® Useadifferent set of stringsin your design. Y ou can add one or more charactersas a
prefix or suffix (such as an underscore,) to the string, which will cause the string to be
read in as an identifier and not as areserved keyword.

® Usethe SystemVerilog pragmas *begin_keywords and * end_keywords to define
regions where only the older keywords are recognized.

Recognizing SystemVerilog Files by File Name Extension

If you use the -sv argument with the viog command, then Model Sim assumes that all input files
are SystemVerilog, regardless of their respective filename extensions.

If you do not use the -sv argument with the viog command, then Model Sim assumes that only
files with the extension .sv, .svh, or .svp are SystemV erilog.
File extensions of include files

Similarly, if you do not use the -sv argument while reading in afile that uses an “include
statement to specify an include file, then the file extension of the include file isignored and the
language is assumed to be the same as the file containing the “include. For example, if you do
not use the -sv argument:

If a.v included b.sv, then b.sv would be read asa Verilog file.
If c.sv included d.v, then d.v would be read as a SystemVerilog file.

File extension settings in modelsim.ini

Y ou can define which file extensions indicate SystemV erilog files with the SV FileExtensions
variable in the modelsim.ini file. By default, this variable is defined in modelsim.ini asfollows:

; SVFileExtensions = sv svp svh
For example, the following command:

vlog a.v b.sv c.svh d.v

readsin av and d.v asa Verilog files and reads in b.sv and c.svh as SystemVerilog files.

164 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

File types affecting compilation units

Note that whether afileis Verilog or SystemVerilog can affect when Model Sim changes from
one compilation unit to another.

By default, Model Sim instructs the compiler to treat all files within acompilation command line
as separate compilation units (single-file compilation unit mode, which is the equivalent of
using vlog -sfcu).

vlog a.v aa.v b.sv c.svh d.v

Model Sim would group these source files into three compilation units:

Filesin first unit — av, aa.v, b.sv
Filein second unit — c.svh
Filein third unit — d.v

This behavior is governed by two basic rules:

® Anything read in is added to the current compilation unit.

* A compilation unit ends at the close of a SystemVerilog file.

Initializing enum Variables

By default, Model Sim initializes enum variables using the default value of the base type instead
of the leftmost value.

However, you can change this so that Model Sim setsthe initial value of an enum variable to the
left most value in the following ways:

® Run vlog -enumfirstinit when compiling and run vsim -enumfirstinit when simulating.

® Set EnumBaselnit = 0 in the modelsim.ini file.

Incremental Compilation

Model Sim supports incremental compilation of Verilog designs—there is no requirement to
compile an entire design in one invocation of the compiler.

Y ou are not required to compile your design in any particular order (unless you are using
SystemV erilog packages; see Note below) because all module and UDP instantiations and
external hierarchical references are resolved when the design isloaded by the simulator.

ModelSim User’s Manual, v10.4c 165

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Note

O

Compilation order may matter when using SystemV erilog packages. As stated in the
section Referencing data in packages of IEEE Std 1800-2005: “ Packages must exist in
order for the items they define to be recognized by the scopesin which they are

imported.”

Incremental compilation is made possible by deferring these bindings, and as a result some
errors cannot be detected during compilation. Commonly, these errors include: modules that
were referenced but not compiled, incorrect port connections, and incorrect hierarchical

references.

Example 6-1. Incremental Compilation Example

Contents of testbench.sv

module testbench;

timeunit 1ns;
timeprecision 10ps;
bit d=1, clk = 0;
wire q;
initial
for (int cycles=0; cycles < 100; cycles++)
#100 clk = !clk;

design dut(qg, d, clk);

endmodule

Contents of design.v:

module design(output bit g, input bit 4, clk);

timeunit 1ns;

timeprecision 10ps;

always @ (posedge clk)
q=4d;

endmodule

Compile the design incrementally as follows:

ModelSim> vlog testbench.sv

Top level modules:

testbench

ModelSim> vlog -sv testl.v

Top level modules:
#

dut

Note that the compiler lists each module as a top-level module, athough, ultimately, only
testbench is atop-level module. If amoduleis not referenced by another module compiled in
the same invocation of the compiler, then it islisted as atop-level module. Thisisjust an
informative message that you can ignore during incremental compilation.

166

ModelSim User's Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

The message is more useful when you compile an entire design in one invocation of the
compiler and need to know the top-level module names for the simulator. For example,

% vlog top.v and2.v or2.v
-- Compiling module top
-- Compiling module and2
-- Compiling module or2

Top level modules:
top

Automatic Incremental Compilation with -incr

The most efficient method of incremental compilation isto manually compile only the modules
that have changed. However, thisis not always convenient, especialy if your source files have
compiler directive interdependencies (such as macros). In this case, you may prefer to compile
your entire design along with the -incr argument. This causes the compiler to automatically
determine which modules have changed and generate code only for those modules.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v
-- Compiling module top

-- Compiling module and2

-- Compiling module or2

Top level modules:
top

Now, suppose that you modify the functionality of the or2 module:

% vlog -incr top.v and2.v or2.v
-- Skipping module top

-- Skipping module and2

-- Compiling module or2

Top level modules:
top

The compiler informs you that it skipped the modules top and and2, and compiled or2.

Automatic incremental compilation is intelligent about when to compile a module. For
example, changing a comment in your source code does not result in arecompile; however,
changing the compiler command line arguments results in a recompile of all modules.

Note
D Changes to your source code that do not change functionality but that do affect source

code line numbers (such as adding a comment line) will cause all affected modules to be

recompiled. This happens because debug information must be kept current so that

Model Sim can trace back to the correct areas of the source code.

ModelSim User’s Manual, v10.4c 167

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Library Usage

All modules and UDPsin a Verilog design must be compiled into one or more libraries. One
library isusually sufficient for asimple design, but you may want to organize your modulesinto
various libraries for acomplex design. If your design uses different modules having the same
name, then you need to put those modulesin different libraries because design unit names must
be unique within alibrary.

Thefollowing is an example of how to organize your ASIC cellsinto onelibrary and the rest of
your design into another:

% vlib work

% vlib asiclib

% vlog -work asiclib and2.v or2.v
-- Compiling module and2

-- Compiling module or2

Top level modules:
and2
or2

% vlog top.v

-- Compiling module top

Top level modules:
top

Note that the first compilation uses the -work asiclib argument to instruct the compiler to place
theresultsin the asiclib library rather than the default work library.

Library Search Rules for the viog Command

Because instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top-level modules are loaded
from the library named wor k unless you prefix the modules with the <library>. option.

All other Verilog instantiations are resolved in the following order:

® Search libraries specified with -Lf arguments in the order they appear on the command
line.

® Search thelibrary specified in the Verilog-XL uselib Compiler Directive section.

® Search libraries specified with -L arguments in the order they appear on the command
line.

® Searchthework library.
® Search thelibrary explicitly named in the specia escaped identifier instance name.

168 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Handling Sub-Modules with Common Names

Sometimes in one design you need to reference two different modules that have the same name.
This situation can occur if you have hierarchical modules organized into separate libraries, and
you have commonly-named sub-modules in the libraries that have different definitions. This
may happen if you are using vendor-supplied libraries.

For example, say you have the following design configuration:

Example 6-2. Sub-Modules with Common Names

top
modA| |modB

lib1: lib2:
modA modB

The normal library search rulesfail in this situation. For example, if you load the design as
follows:

vsim -L lib1 -L lib2 top

both instantiations of cellX resolve to the libl version of cellX. On the other hand, if you specify
-L lib2 -L lib1, both instantiations of cellX resolve to the lib2 version of cellX.

To handle this situation, Model Sim implements a specia interpretation of the expression -L
work. When you specify -L work first in the search library arguments you are directing vsim to
search for the instantiated module or UDP in the library that contains the module that does the
instantiation.

In the exampl e above you would invoke vsim as follows:

vsim -L work -L lib1 -L lib2 top

SystemVerilog Multi-File Compilation

Model Sim allows you to compile multiple SystemVerilog files at atime.

Declarations in Compilation Unit Scope

SystemVerilog allows the declaration of types, variables, functions, tasks, and other constructs
in compilation unit scope ($unit). The visibility of declarationsin $unit scope does not extend

ModelSim User’s Manual, v10.4c 169

Verilog and SystemVerilog Simulation
Basic Verilog Usage

outside the current compilation unit. Thus, it is important to understand how compilation units
are defined by the simulator during compilation.

By default, vliog operates in Single File Compilation Unit mode (SFCU). This means the
visibility of declarationsin $unit scope terminates at the end of each sourcefile. Visibility does
not carry forward from one file to another, except when a module, interface, or package
declaration beginsin one file and ends in another file. In that case, the compilation unit spans
from the file containing the beginning of the declaration to the file containing the end of the
declaration.

The vlog command also supports a non-default mode called Multi File Compilation Unit
(MFCU). In MFCU mode, vlog compiles al files on the command line into one compilation
unit. You can invoke viog in MFCU mode as follows:

® For aspecific, one-time compilation: vliog -mfcu.

® For al compilations:. set the variable M ultiFileCompilationUnit = 1 in the
modelsim.ini file.

By using either of these methods, you allow declarations in $unit scope to remain in effect
throughout the compilation of all files.

If you have made MFCU the default behavior by setting M ultiFileCompilationUnit = 1in
your modelsim.ini file, you can override this default behavior on a specific compilation by
using vlog -sfcu.

Macro Definitions and Compiler Directives in Compilation
Unit Scope

According to the |IEEE Std 1800-2005, the visibility of macro definitions and compiler
directives span the lifetime of asingle compilation unit. By default, this means the definitions of
macros and settings of compiler directives terminate at the end of each sourcefile. They do not
carry forward from one file to another, except when amodule, interface, or package declaration
beginsin one file and ends in another file. In that case, the compilation unit spans from the file
containing the beginning of the definition to the file containing the end of the definition.

See Declarations in Compilation Unit Scope for instructions on how to control vliog's handling
of compilation units.

Note
D Compiler directivesrevert to their default values at the end of a compilation unit.

If acompiler directive is specified as an option to the compiler, this setting is used for all
compilation units present in the current compilation.

170 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Verilog-XL Compatible Compiler Arguments

The compiler arguments listed below are equivalent to Verilog-XL arguments and may ease the
porting of adesign to ModelSim.

See the viog command for a description of each argument.

+define+<macro_name>[=<macro_text>]
+delay_mode_distributed
+delay_mode_path
+delay_mode_unit
+delay_mode_zero

-f <filename>
+incdir+<directory>
+mindelays

+maxdelays
+nowarn<mnemonic>
+typdelays

-u

Arguments Supporting Source Libraries

The compiler arguments listed below support source libraries in the same manner as Verilog-
XL.

Note that these source libraries are very different from the libraries that the Model Sim compiler
uses to store compilation results. Y ou may find it convenient to use these argumentsif you are
porting adesign to ModelSim or if you are familiar with these arguments and prefer to use
them.

Source libraries are searched after the source files on the command line are compiled. If there
are any unresolved references to modules or UDPs, then the compiler searches the source
libraries to satisfy them. The modules compiled from source libraries may in turn have
additional unresolved references that cause the source libraries to be searched again. This
process is repeated until all references are resolved or until no new unresolved references are
found. Source libraries are searched in the order they appear on the command line.

-v <filename>

-y <directory>
+libext+<suffix>
+librescan
+nolibcell

-R [<simargs>]

Related Topics

See the vliog command for a description of each argument.

ModelSim User’s Manual, v10.4c 171

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Verilog-XL uselib Compiler Directive

The "uselib compiler directive is an alternative source library management scheme to the -v, -y,
and +libext compiler arguments. It has the advantage that a design may reference different
modules having the same name.

Y ou compile designs that contain "uselib directive statements using the -compile_uselibs
argument (described below) with the viog command.

The syntax for the "uselib directiveis:

‘uselib <library_reference>...

where <library_reference> can be one or more of the following:

e dir=<library_directory>, which is equivalent to the command line argument:
-y <library_directory>

* file=<library_file>, whichisequivalent to the command line argument:
-v <library_file>

* libext=<file_extension>, which is equivalent to the command line argument:

+libext+<file_extension>

® lib=<library_name>, which references alibrary for instantiated objects, specifically
modules, interfaces and program blocks, but not packages. Y ou must ensure the correct
mappings are set up if the library does not exist in the current working directory. The
-compile_uselibs argument does not affect this usage of "uselib.

For example, the following directive
“uselib dir=/h/vendorA libext=.v
is equivalent to the following command line arguments:

-y /h/vendorA +libext+.v

Sincethe "uselib directives are embedded in the Verilog source code, there is more flexibility in
defining the source libraries for the instantiations in the design. The appearance of a "uselib
directive in the source code explicitly defines how instantiations that follow it are resolved,
completely overriding any previous "uselib directives.

An important feature of ‘uselib isto allow a design to reference multiple modules having the
same name, therefore independent compilation of the source libraries referenced by the “uselib
directivesisrequired.

172 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Each source library should be compiled into its own object library. The compilation of the code
containing the "uselib directives only records which object libraries to search for each module
instantiation when the design is loaded by the simulator.

Because the "uselib directive isintended to reference source libraries, the simulator must infer
the object libraries from the library references. The rule isto assume an object library named
work in the directory defined in the library reference:

dir=<library_directory>
or the directory containing the filein the library reference

file=<library file>

The simulator will ignore alibrary reference libext=<file_extension>. For example, the
following "uselib directivesinfer the same object library:

‘uselib dir=/h/vendorA
‘uselib file=/h/vendorA/libcells.v

In both cases the smulator assumes that the library source is compiled into the object library:

/h/vendorA/work

The simulator also extends the "uselib directive to explicitly specify the object library with the
library reference lib=<library_name>. For example:

‘uselib lib=/h/vendorA/work

The library name can be a complete path to alibrary, or it can be alogical library name defined
with the vmap command.

-compile_uselibs Argument

Use the -compile_uselibs argument to vlog to reference "uselib directives. The argument finds
the source files referenced in the directive, compiles them into automatically created object
libraries, and updates the modelsim.ini file with the logical mappings to the libraries.

When using -compile_uselibs, Model Sim determinesinto which directory to compile the object
libraries by choosing, in order, from the following three values.

® Thedirectory name specified by the -compile_uselibs argument. For example,
-compile_uselibs=./mydir

® Thedirectory specified by the MTI_USELIB_DIR environment variable (see
Environment Variables)

® A directory named mti_uselibsthat is created in the current working directory

ModelSim User’s Manual, v10.4c 173

Verilog and SystemVerilog Simulation
Basic Verilog Usage

The following code fragment and compiler invocation show how two different modul es that
have the same name can be instantiated within the same design:

module top;
‘uselib dir=/h/vendorA libext=.v
NAND2 ul(nl, n2, n3);
“uselib dir=/h/vendorB libext=.v
NAND2 u2(n4, n5, né6);

endmodule

vlog -compile_uselibs top

This allows the NAND2 module to have different definitions in the vendorA and vendorB
libraries.

uselib is Persistent

As mentioned above, the appearance of a "uselib directive in the source code explicitly defines
how instantiations that follow it are resolved. This may result in unexpected consequences. For
example, consider the following compile command:

vlog -compile_uselibs dut.v srtr.v

Assume that dut.v contains a "uselib directive. Since srtr.v is compiled after dut.v, the "uselib
directiveisstill in effect. When srtr isloaded it is using the "uselib directive from dut.v to
decide where to locate modules. If thisis not what you intend, then you need to put an empty
“uselib at the end of dut.vto “close” the previous "uselib statement.

Verilog Configurations

The Verilog 2001 specification added configurations. Configurations specify how adesignis
“assembled” during the elaboration phase of simulation. Configurations actually consist of two
pieces:. the library mapping and the configuration itself. The library mapping is used at compile
time to determine into which libraries the source files are to be compiled.

Here is an example of asimple library map file:

library work ../top.v;
library rtlLib 1lrm_ex_top.v;
library gateLib lrm_ex_adder.vg;
library aLib lrm_ex_adder.v;

Hereis an example of alibrary map file that uses the -incdir argument:
library 1libl src_dir/*.v -incdir ../include_dir2, ../, my_incdir;

The name of the library map fileis arbitrary. Y ou specify the library map file using the -libmap
argument to the viog command. Alternatively, you can specify the file name as the first item on
the vlog command line, and the compiler readsit as alibrary map file.

174 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Basic Verilog Usage

ﬂ Tip: You can use vlog -mfcu to compile macros for al filesin a given testbench.
Any macros aready defined before the -libmap argument appears are still defined for use
by the -libmap files. That is, -mfcu macros are applied to the other librariesin library
mapping files.

The library map file must be compiled along with the Verilog source files. Multiple map files
are allowed but each must be preceded by the -libmap argument.

The library map file and the configuration can exist in the same or different files. If they are
separate, only the map file needs the -libmap argument. The configuration is treated as any
other Verilog sourcefile.

Configurations and the Library Named work

Model Sim trreats the library named “work” in a special way for Verilog configurations.
Consider the following code example:

config cfg;

design top;

instance top.ul use work.ul;
endconfig

In this case, work.ul indicates to load ul from the current library.

To create a configuration that loads an instance from alibrary other than the default work
library, do the following:

1. Make surethe library has been created using the vlib command. For example:
vlib mylib
2. Definethislibrary (mylib) asthe new current (working) library:
vlog -work mylib
3. Load instance ul from the current library, which is now mylib:
config cfg;
design top;

instance top.ul use mylib.ul;
endconfig

Related Topics
See The Library Named "work" for details.

ModelSim User’s Manual, v10.4c 175

Verilog and SystemVerilog Simulation
Basic Verilog Usage

Verilog Generate Statements

Model Sim implements the rules adopted for Verilog 2005, because the Verilog 2001 rules for
generate statements had numerous inconsistencies and ambiguities. Most of the 2005 rules are
backwards compatible, but there is one key difference related to name visibility.

Name Visibility in Generate Statements

Consider the following code example.

module m;
parameter p = 1;

generate
if (p)

integer x = 1;
else

real x = 2.0;
endgenerate

initial $display(Xx);
endmodule

Thisexampleislega under 2001 rules. However, it isillegal under the 2005 rules and causes an
error in Model Sim. Under the new rules, you cannot hierarchically reference anamein an
anonymous scope from outside that scope. In the example above, x does not propagate its
visibility upwards, and each condition alternative is considered to be an anonymous scope.

For this example to simulate properly in Model Sim, change it to the following:

module m;
parameter p = 1;

if (p) begin:s
integer x = 1;

end

else begin:s
real x = 2.0;

end

initial $display(s.x);
endmodule

Because the scope is named in this example (begin:s), normal hierarchical resolution rules
apply and the code runs without error.

In addition, note that the keyword pair generate - endgenerate iSoptiona under the 2005
rules and are excluded in the second example.

176 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Verilog Simulation

Verilog Simulation

A Verilog design is ready for ssmulation after it has been compiled with vliog. The simulator
may then be invoked with the names of the top-level modules. (Many designs contain only one
top-level module).

.. For example, if your top-level modules are “testbench” and “globals’, then invoke the
simulator as follows:

vsim testbench globals

After the smulator |oads the top-level modules, it iteratively loads the instantiated modules and
UDPsin the design hierarchy, linking the design together by connecting the ports and resolving
hierarchical references. By default all modules and UDPs are |oaded from the library named
wor k. Modules and UDPs from other libraries can be specified using the-L or -Lf argumentsto
vsim (see Library Usage for details).

On successful loading of the design, the ssmulation timeis set to zero, and you must enter arun
command to begin simulation. Commonly, you enter run -all to run until there are no more
simulation events or until $finish is executed in the Verilog code. Y ou can also run for specific
time periods (for example, run 100 ns). Enter the quit command to exit the simulator.

Simulator Resolution Limit (Verilog)

The simulator internally represents time as a 64-bit integer in units equivalent to the smallest
unit of simulation time (also known as the simulator resolution limit). The resolution limit
defaults to the smallest time units that you specify among all of the “timescale compiler
directivesin the design.

Hereis an example of a "timescale directive:
“timescale 1 ns / 100 ps

The first number (1 ns) is the time units; the second number (100 ps) is the time precision,
which isthe rounding factor for the specified time units. The directive above causes time values
to be read as nanoseconds and rounded to the nearest 100 picoseconds.

Time units and precision can also be specified with SystemV erilog keywords as follows:

timeunit 1 ns
timeprecision 100 ps

Modules Without Timescale Directives

Unexpected behavior may occur if your design contains some modules with timescale directives
and others without. An elaboration error isissued in this situation and it is highly recommended

ModelSim User’s Manual, v10.4c 177

Verilog and SystemVerilog Simulation
Verilog Simulation

that all modules having delays aso have timescal e directives to make sure that the timing of the
design operates as intended.

Timescale elaboration errors may be suppressed or reduced to warnings however, thereisarisk
of improper design behavior and reduced performance. The vsim +nowarnTSCALE or
-suppress options may be used to ignore the error, while the -warning option may be used to
reduce the severity to awarning.

-timescale Option

The -timescal e option can be used with the viog command to specify the default timescalein
effect during compilation for modules that do not have an explicit “timescale directive. The
format of the -timescale argument is the same as that of the “timescale directive:

-timescale <time_units>/<time_precision>

where <time_units> is<n> <units>. The value of <n> must be 1, 10, or 100. The vaue of
<units> must befs, ps, ns, us, ms, or s. In addition, the <time_units> must be greater than or
equal to the <time_precision>.

For example:

-timescale "lns / 1lps"

The argument above needs quotes because it contains white space.

Design units that do not have atimescale set in the HDL source, or with vliog -timescale will
generate an error similar to the following:

** Error (suppressible): (vsim-3009) [TSCALE] - Module 'top2' does not
have a timeunit/timeprecision specification in effect, but other modules
do.

Time: 0 ps Iteration: 0 Instance: /top2 File: t2.sv

Loading work.dut2 (fast)

but the error can be suppressed causing vsim to use the simulator time resolution.

Multiple Timescale Directives

As previously noted, a design can have multiple timescal e directives. Separately compiled
modules can also have different timescales. The simulator determines the smallest timescale of
all the modules in adesign and uses that as the simulator resolution.

The timescale directive takes effect where it appearsin a source file and appliesto all Verilog
source files (.v files) that follow in the same vlog command.

178 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Verilog Simulation

Note
For SystemVerilog source files (.sv files), this requires that you use either the -mfcu

argument or the -mfcu=macro argument with the vlog command.

timescale, -t, and Rounding

The optional vsim argument -t sets the simulator resolution limit for the overall simulation. If
the resolution set by -t islarger than the precision set in amodule, the time values in that
module are rounded up. If the resolution set by -t issmaller than the precision of the module, the
precision of that module remains whatever is specified by the “timescale directive.

Consider the following code:

“timescale 1 ns / 100 ps
module foo;

initial
#12.536 Sdisplay

The list below shows three possibilities for -t and how the delays in the module are handled in
each case:

® -tnot set
The delay is rounded to 12.5 as directed by the modul€e’s *timescale directive.
® -tissettolfs

The delay isrounded to 12.5. Again, the modul€' s precision is determined by the
‘timescale directive. Model Sim does not override the modul€' s precision.

® -tissettolns

The delay will be rounded to 13. The modul€’s precision is determined by the -t setting.
Model Sim can only round the modul €' s time values because the entire smulation is
operating a 1 ns.

Choosing the Resolution for Verilog

Y ou should choose the coarsest ssmulator resolution limit possible that does not result in
undesired rounding of your delays. For example, values smaller than the current Time Scale
will be truncated to zero (0) and awarning issued. However, the time precision should also not
be set unnecessarily small, because in some cases performance will be degraded.

ModelSim User’s Manual, v10.4c 179

Verilog and SystemVerilog Simulation
Verilog Simulation

Event Ordering in Verilog Designs

Event-based simulators such as Model Sim may process multiple events at a given simulation
time. The Verilog language is defined such that you cannot explicitly control the order in which
simultaneous events are processed. Unfortunately, some designs rely on a particular event
order, and these designs may behave differently than you expect.

Event Queues

Section 11 of IEEE Std 1364-2005 defines several event queues that determine the order in
which events are eval uated.

At the current simulation time, the ssmulator has the following pending events:

active events

inactive events

non-blocking assignment update events
monitor events

future events

o inactive events

o non-blocking assignment update events

The Standard (LRM) dictates that events are processed as follows:

o > W D

All active events are processed.

Inactive events are moved to the active event queue and then processed.
Non-blocking events are moved to the active event queue and then processed.
Monitor events are moved to the active queue and then processed.

Simulation advances to the next time where there is an inactive event or a non-blocking
assignment update event.

Within the active event queue, the events can be processed in any order, and new active events
can be added to the queue in any order. In other words, you cannot control event order within
the active queue. The example below illustrates potential ramifications of this situation.

Assume that you have these four statements:

aways@(q) p = q;
aways @(q) p2=not q;
aways @(p or p2) clk = p and p2;

180

ModelSim User's Manual, v10.4c

Verilog and SystemVerilog Simulation
Verilog Simulation

* aways @(posedge clk)

with current variable values: q=0, p=0, p2=1
The tables bel ow show two of the many valid evaluations of these statements. Evaluation events
are denoted by a number where the number is the statement to be evaluated. Update events are

denoted <name>(old->new) where <name> indicates the reg being updated and new is the
updated value.\

Table 6-1. Evaluation 1 of always Statements

Event being processed Active event queue
q(0->1)

g(0->1) 1,2

1 p(0->1),2

p(0->1) 3,2

3 clk(0->1),2

clk(0->1) 4,2

4 2

2 p2(1->0)

p2(1 -> 0) 3

3 clk(1->0)

clk(1->0) <empty>

Table 6-2. Evaluation 2 of always Statement

Event being processed Active event queue
g(0->1)
g(0->1) 1,2
1 p(0->1),2
2 p2(1->0), p(0->1)
p(0->1) 3, p2(1->0)
p2(1—>0) 3
3 <empty> (clk does not change)

Again, both evaluations are valid. However, in Evaluation 1, clk hasaglitch onit; in Evaluation

2, clk does not. Thisindicates that the design has a zero-delay race condition on clk.

ModelSim User’'s Manual, v10.4c

181

Verilog and SystemVerilog Simulation
Verilog Simulation

Controlling Event Queues with Blocking or Non-Blocking
Assignments

The only control you have over event order isto assign an event to a particular queue. Y ou do
this by using blocking or non-blocking assignments.

Blocking Assignments

Blocking assignments place an event in the active, inactive, or future queues depending on what
type of delay they have:

® ablocking assignment without a delay goesin the active queue
® ablocking assignment with an explicit delay of O goesin the inactive queue

® ablocking assignment with a nonzero delay goes in the future queue

Non-Blocking Assignments

A non-blocking assignment goes into either the non-blocking assignment update event queue or
the future non-blocking assignment update event queue. (Non-blocking assignments with no
delays and those with explicit zero delays are treated the same.)

Non-blocking assignments should be used only for outputs of flip-flops. This ensures that all
outputs of flip-flops do not change until after all flip-flops have been evaluated. Attempting to
use non-blocking assignments in combinational logic paths to remove race conditions may only
cause more problems. (In the preceding example, changing all statements to non-blocking
assignments would not remove the race condition.) This includes using non-blocking
assignments in the generation of gated clocks.

The following is an example of how to properly use non-blocking assignments.

genl: always @ (master)
clkl = master;

gen2: always @(clkl)
clk2 = clkl;

f1 : always @Q(posedge clkl)
begin
gl <= di;
end

f2: always @ (posedge clk2)
begin
g2 <= ql;
end

182 ModelSim User’'s Manual, v10.4c

Verilog and SystemVerilog Simulation
Verilog Simulation

If written thisway, avalue on d1 always takes two clock cyclesto get from d1 to g2.
If you change clkl = master and clk2 = clkl to non-blocking assignments or g2 <= gl and g1
<= d1 to blocking assignments, then d1 may get to g2 isless than two clock cycles.

Debugging Event Order Issues

Since many models have been developed on Verilog-XL, Model Sim tries to duplicate Verilog-
XL event ordering to ease the porting of those modelsto Model Sim. However, Model Sim does
not match Verilog-XL event ordering in al cases, and if amodel ported to Model Sim does not

behave as expected, then you should suspect that there are event order dependencies.

Model Sim helps you track down event order dependencies with the following compiler
arguments: -compat, -hazards, and -keep_delta.

See the viog command for descriptions of -compat and -hazards.

Hazard Detection

The -hazards argument for the vsim command detects event order hazards involving
simultaneous reading and writing of the same register in concurrently executing processes.

Model Sim detects the following kinds of hazards:

* WRITE/WRITE — Two processes writing to the same variable at the same time.

* READ/WRITE — One process reading a variable at the sametime it is being written to
by another process. Model Sim calls thisa READ/WRITE hazard if it executed the read
first.

* WRITE/READ — Same asa READ/WRITE hazard except that Model Sim executed the
write first.

vsim issues an error message when it detects a hazard. The message pinpoints the variable and
the two processes involved. Y ou can have the ssimulator break on the statement where the
hazard is detected by setting the break on assertion level to Error.

To enable hazard detection you must invoke vlog with the -hazards argument when you compile
your source code and you must aso invoke vsim with the -hazards argument when you
simulate.

Note
D Enabling -hazards implicitly enables the -compat argument. As aresult, using this
argument may affect your ssmulation results.

ModelSim User’s Manual, v10.4c 183

Verilog and SystemVerilog Simulation
Verilog Simulation

Hazard Detection and Optimization Levels

In certain cases hazard detection results are affected by the optimization level used in the
simulation. Some optimizations change the read/write operations performed on avariable if the
transformation is determined to yield equivalent results. Because the hazard detection algorithm
cannot determine whether the read/write operations can affect the simulation results, the
optimizations can result in different hazard detection results. Generally, the optimizations
reduce the number of false hazards by eliminating unnecessary reads and writes, but there are
also optimizations that can produce additional false hazards.

Limitations of Hazard Detection

® Reads and writesinvolving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selectsistoo
high.

e A WRITE/WRITE hazard isflagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard is flagged even if the write does not modify
the variable's value.

® Glitches on nets caused by non-guaranteed event ordering are not detected.

® A non-blocking assignment is not treated as a WRITE for hazard detection purposes.
Thisis because non-blocking assignments are not normally involved in hazards. (In fact,
they should be used to avoid hazards.)

® Hazards caused by simultaneous forces are not detected.

Signal Segmentation Violations

If you attempt to access a SystemV erilog object that has not been constructed with the new
operator, you will receive afatal error called asignal segmentation violation (SIGSEGV).

For example, the following code produces a SIGSEGYV fatal error:

class C;
int x;
endclass

C obj;
initial obj.x = 5;

This attemptsto initialize a property of obj,