
CoreABC Handbook

v3.0

Actel Corporation, Mountain View, CA 94043

© 2006 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200085-2

Release: April 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
CoreABC Overview . 5

Core Version . 5

Supported Interfaces . 5

Supported Tool Flows . 5

Utilization and Performance . 6

1 Internal Architecture . 9
Advanced Peripheral Bus . 10

Soft Configuration—RAM-Based Operation . 11

2 Tool Flows . 13
Licenses . 13

CoreConsole . 13

Importing into Libero IDE . 15

Simulation Flows . 15

Synthesis in Libero IDE . 15

Place-and-Route in Libero IDE . 15

3 Interface Descriptions . 17
Interface Descriptions . 17

Parameters . 17

Ports . 21

4 CoreABC Programmer’s Model . 23
Address Spaces . 23

Flags Register—Inputs and Condition Codes . 24

Instruction Set . 24

5 CoreABC Operation . 29
Instruction Encoding . 29

ACM Lookup for Use with CoreAI . 32

Stack . 33

Interrupt Operation . 33

User Instructions . 34

Simulation Logging . 34

6 CoreABC Configuration . 35
Cross-Validation of Configuration Fields . 38

7 CoreABC Programming . 39
Analysis . 39

Modifying the RTL Code Directly . 40
CoreABC Handbook v3.0 3

Table of Contents
Soft Operation—Creating the Programming File . 42

8 Testbench Operation . 45
Basic Testbench . 45

Verification Tests . 46

A Example Instruction Sequence . 47

B Adding User Instructions . 51

C Instruction Summary . 53
Condition Codes . 67

D List of Document Changes . 69

E Product Support . 71
Customer Service . 71

Actel Customer Technical Support Center . 71

Actel Technical Support . 71

Website . 71

Contacting the Customer Technical Support Center . 71

Index . 73
4 CoreABC Handbook v3.0

Introduction

CoreABC Overview
CoreABC provides a simple, low-gate-count controller for the Advanced Peripheral Bus (APB) devices used within the
CoreConsole IP Deployment Platform (IDP). In particular, it is targeted at controlling CoreAI and CorePWM in a
Fusion application. Figure 1 shows a CoreABC-based system that can monitor analog inputs, adjust output levels, and
report status via an RS-232 link using CoreUART.

CoreABC provides a controller for the APB that is easily configured to read and write from the APB and do basic
processing. CoreABC can be configured as either “hard” or “soft.”

The instructions executed are either held in a small internal ROM constructed from logic tiles (“hard” configuration) or
stored in RAM blocks internal to CoreABC (“soft” configuration). The RAM blocks can initialized using the embedded
flash memory within the Fusion family or another external source (for example, CoreMP7).

Figure 1 · Typical CoreABC System

Core Version
This handbook supports CoreABC v2.3.

Supported Interfaces
CoreABC is available with the APB interface, which is described in “Interface Descriptions” on page 17.

Supported Tool Flows
CoreABC requires CoreConsole v1.2.1 and Actel Libero® Integrated Design Environment (IDE) v7.3 or later.
Additionally, Verilog users MUST use Synplicity® v8.6.1 or later, which is downloadable from www.synplicity.com.

CoreABC

Parallel
I/O Out

Parallel
I/O In

APB Bus

CoreAI

CorePWM

CoreUART
CoreABC Handbook v3.0 5

www.synplicity.com

Introduction
Utilization and Performance
CoreABC utilization varies depending on how it is configured. Table 1 below and Table 2 on page 7 provide typical
utilization data for a range of configurations; these configurations are listed in Table 3-1 on page 17. CoreABC can be
implemented in several Actel FPGA devices.

Table 1 · CoreABC Utilization Data (Hard Mode—instructions held in tiles)

Family
Data

Width
Config. Comb. Seq. RAM Total Device Utilization

Frequency
MHz

Fusion
ProASIC®3/E
IGLOO™/e

 8 Small 175 43 0 230
AFS600
A3P600
AGL600

1.7% 94

ProASIC 8 Small 190 47 0 237 APA450 1.9% 84

Axcelerator®
RTAX-S

 8 Small 93 43 0 136
AX250
RTAX250

3.2% 125

Fusion
ProASIC3/E
IGLOO/e

16 Small 233 55 0 308
AFS600
A3P600
AGL600

2.2% 82

ProASIC 16 Small 263 61 0 324 APA450 2.6% 81

Axcelerator
RTAX-S

16 Small 123 55 0 178
AX250
RTAX250

4.2% 103

Fusion
ProASIC3/E
IGLOO/e

32 Small 311 71 0 418
AFS600
A3P600
AGL600

3.0% 60

ProASIC 32 Small 375 80 0 455 APA450 3.7% 62

Axcelerator
RTAX-S

32 Small 187 75 0 262
AX250
RTAX250

6.2% 100

Fusion
ProASIC3/E
IGLOO/e

 8 Medium 356 71 1 427
AFS600
A3P600
AGL600

3.1% 57

ProASIC 8 Medium 431 82 1 513 APA450 4.2% 42

Axcelerator
RTAX-S

 8 Medium 224 72 1 296
AX250
RTAX250

7.0% 88

Fusion
ProASIC3/E
IGLOO/e

16 Medium 549 83 1 632
AFS600
A3P600
AGL600

4.6% 42

ProASIC 16 Medium 622 91 2 713 APA450 5.8% 32

Axcelerator
RTAX-S

16 Medium 299 87 1 386
AX250
RTAX250

9.1% 74

Fusion
ProASIC3/E
IGLOO/e

32 Medium 889 99 2 988
AFS600
A3P600
AGL600

7.2% 38

ProASIC 32 Medium 940 108 4 1,048 APA450 8.5% 28

Axcelerator
RTAX-S

32 Medium 435 104 2 539
AX250
RTAX250

12.8% 65
6 CoreABC Handbook v3.0

Utilization and Performance
Fusion
ProASIC3/E
IGLOO/e

 8 Large 468 78 1 546
AFS600
A3P600
AGL600

4.0% 42

ProASIC 8 Large 559 90 1 649 APA450 5.3% 38

Axcelerator
RTAX-S

 8 Large 285 82 1 367
AX250
RTAX250

8.7% 73

Fusion
ProASIC3/E
IGLOO/e

16 Large 640 90 1 730
AFS600
A3P600
AGL600

5.3% 27

ProASIC 16 Large 752 99 2 851 APA450 6.9% 24

Axcelerator
RTAX-S

16 Large 394 94 1 488
AX250
RTAX250

11.6% 70

Fusion
ProASIC3/E
IGLOO/e

32 Large 1,003 106 2 1,109
AFS600
A3P600
AGL600

8.0% 34

ProASIC 32 Large 1,070 121 4 1,191 APA450 9.7% 18

Axcelerator
RTAX-S

32 Large 578 114 2 692
AX250
RTAX250

16.4% 54

Table 2 · CoreABC Utilization Data (Soft Mode—instructions held in RAM)

Family
Data

Width
Config. Comb. Seq. RAM Total Device Utilization

Frequency
MHz

Fusion
ProASIC3/E
IGLOO/e

 8 Small 122 25 3 159
AFS600
A3P600
AGL600

1.2% 70

ProASIC 8 Small 133 28 6 161 APA450 1.3% 54

Axcelerator
RTAX-S

 8 Small 59 25 3 84
AX250
RTAX250

2.0% 97

Fusion
ProASIC3/E
IGLOO/e

16 Small 174 33 4 227
AFS600
A3P600
AGL600

1.6% 69

ProASIC 16 Small 208 37 8 245 APA450 2.0% 51

Axcelerator
RTAX-S

16 Small 90 33 4 123
AX250
RTAX250

2.9% 85

Fusion
ProASIC3/E
IGLOO/e

32 Small 347 49 5 396
AFS600
A3P600
AGL600

2.9% 47

ProASIC 32 Small 352 55 10 407 APA450 3.3% 42

Axcelerator
RTAX-S

32 Small 151 49 5 200
AX250
RTAX250

4.7% 65

Table 1 · CoreABC Utilization Data (Hard Mode—instructions held in tiles) (continued)

Family
Data

Width
Config. Comb. Seq. RAM Total Device Utilization

Frequency
MHz
CoreABC Handbook v3.0 7

Introduction
Fusion
ProASIC3/E
IGLOO/e

 8 Medium 320 52 4 372
AFS600
A3P600
AGL600

2.7% 48

ProASIC 8 Medium 401 55 7 456 APA450 3.7% 34

Axcelerator
RTAX-S

 8 Medium 205 52 4 257
AX250
RTAX250

6.1% 59

Fusion
ProASIC3/E
IGLOO/e

16 Medium 541 60 5 601
AFS600
A3P600
AGL600

4.4% 40

ProASIC 16 Medium 652 68 10 720 APA450 5.9% 28

Axcelerator
RTAX-S

16 Medium 265 60 5 325
AX250
RTAX250

7.7% 58

Fusion
ProASIC3/E
IGLOO/e

32 Medium 845 76 8 921
AFS600
A3P600
AGL600

6.7% 32

ProASIC 32 Medium 881 90 16 971 APA450 7.9% 26

Axcelerator
RTAX-S

32 Medium 392 76 8 468
AX250
RTAX250

11.1% 51

Fusion
ProASIC3/E
IGLOO/e

 8 Large 456 58 5 514
AFS600
A3P600
AGL600

3.7% 41

ProASIC 8 Large 529 64 9 593 APA450 4.8% 31

Axcelerator
RTAX-S

 8 Large 279 58 5 337
AX250
RTAX250

8.0% 63

Fusion
ProASIC3/E
IGLOO/e

16 Large 618 66 6 684
AFS600
A3P600
AGL600

5.0% 25

ProASIC 16 Large 725 79 12 804 APA450 6.5% 21

Axcelerator
RTAX-S

16 Large 373 66 6 439
AX250
RTAX250

10.4% 57

Fusion
ProASIC3/E
IGLOO/e

32 Large 1.048 82 8 1,130
AFS600
A3P600
AGL600

8.2% 35

ProASIC 32 Large 1,219 99 16 1,318 APA450 10.7% 27

Axcelerator
RTAX-S

32 Large 574 82 8 656
AX250
RTAX250

15.5% 46

Table 2 · CoreABC Utilization Data (Soft Mode—instructions held in RAM) (continued)

Family
Data

Width
Config. Comb. Seq. RAM Total Device Utilization

Frequency
MHz
8 CoreABC Handbook v3.0

1
Internal Architecture

CoreABC internal architecture is shown in Figure 1-1. The core consists of six main blocks:

• Instruction Block

• Sequencer

• ALU and Flags

• Storage

• ACM (Analog Configuration MUX)

• APB Controller

Figure 1-1 · CoreABC Block Diagram

The Instruction Block contains the instruction counter and the instruction table that contains the instructions to be
executed. In the soft configuration, these instructions are fetched from RAM internal to CoreABC. See “Soft
Configuration—RAM-Based Operation” on page 11.

The ALU and Flags block implements the main ALU block. Each of the supported operations can be disabled to obtain
a minimal-gate-count solution. The storage block provides local storage for data values and implements the stack
required by the call instruction.

The ACM block implements a small lookup table that can be initialized with the configuration data required by CoreAI.
This allows the analog functions within a Fusion FPGA to be easily configured.

Next
Address

INSTRUCTION
Address
Register

INSTRUCTION
Table

INSTRUCTION
Register

+1

Instruction Block

Z Register

Interrupt
General I/O

In/Out

Sequencer

Data

Data

Command

ALU and Flags

Operation

Control State Machine

Address

Address

A
cc

u
m

u
la

to
r

R
eg

is
te

r

 ALU

MULT

AND

OR

XOR

ADD

SHL

SHR

 LOAD

APB
Data

APB Interface
State Machine

Data
Out

Control

APB Controller

Data
In

Address

Slot

ACM

ACM
Lookup

RAM
Register

Bank and
Stack

Storage

APB

Address

Data

Data

Address
CoreABC Handbook v3.0 9

Internal Architecture
The APB controller implements the APB protocol and the data input MUX, which selects data from one of the sixteen
APB devices. Finally, the sequencer controls the operation of the core, decoding the instructions and enabling the other
blocks.

To keep tile counts low, all unused functions within CoreABC may be removed at synthesis by setting top-level
parameters.

Advanced Peripheral Bus
CoreABC is designed to act as an APB bus master. It is recommended that the bus interface core, CoreAPB, be used
with CoreABC. CoreAPB provides the read data bus multiplexer required when more that one APB slave is connected.
When creating a system in CoreConsole, CoreAPB must be included if the system is to be auto-stitched. Figure 1-2
shows a complete system containing CoreABC, CoreAI, and CoreUART. This system can be used to implement a
temperature/voltage monitoring system and log information via an RS-232 connection.

Figure 1-2 · Complete System Containing CoreABC, CoreAI, and CoreUART
10 CoreABC Handbook v3.0

Soft Configuration—RAM-Based Operation
Soft Configuration—RAM-Based Operation
Soft configuration is enabled by selecting Soft (RAM) as the choice for Instruction Store on the CoreABC
configuration screen in CoreConsole. The choice of APB bus width and other options also affects the generated core.
The details of what happens within CoreABC are given in the following paragraphs.

Selecting Soft for Instruction Store sets the INSMODE parameter to 1 in CoreABC. The core implements a set of
RAM blocks used to store the instructions. The number of RAM blocks is a function of the APB_AWIDTH,
APB_DWIDTH, APB_SWIDTH, and ICWIDTH parameters, as well as the FPGA family being used. EQ 1
through EQ 4 show calculations involving the number of RAM blocks.

Fusion, ProASIC3/E, Axcelerator, and RTAX-S Families

SWIDTH = log2(APB_SDEPTH)

EQ 1

Nrams = (APB_AWIDTH + APB_DWIDTH + SWIDTH + 15) / 9 × 2ICWIDTH / 512

EQ 2

ProASIC Family

SWIDTH = log2(APB_SDEPTH)

EQ 3

Nrams = 2 × (APB_AWIDTH + APB_DWIDTH + APB_SWIDTH + 15) / 9 × 2ICWIDTH / 256

EQ 4

In soft configuration, the core should be programmed using the CoreConsole Configuration GUI, which will generate
the correct memory image files. These are used during simulation to directly initialize the memory blocks, and also to
initialize the RAM contents in the actual FPGA through the SmartGen memory installation system. For non-Fusion
devices, an alternative scheme is required to initialize the RAM blocks though the initialization interface (using
CoreMP7, for example).

The width of the INITADDR bus set by the INITWIDTH generic is given by EQ 5.

SWIDTH = log2(APB_SDEPTH)

Depth = 512 × (APB_AWIDTH + APB_DWIDTH + SWIDTH + 15) / 9 × (1 + 2ICWIDTH / 512)

INITWIDTH = rounded_up(log2(Depth))

EQ 5
CoreABC Handbook v3.0 11

2
Tool Flows

Licenses
CoreABC is licensed in two ways. Tool flow functionality may be limited, depending on your license.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed within Libero IDE. The RTL code for the core is obfuscated, meaning the
RTL source files have had formatting and comments removed and all instance and net names have been replaced with
random character sequences. Some of the testbench source files are not provided. They are pre-compiled into the
compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreABC is pre-installed in the CoreConsole IDP. To use the core, instantiate it in the design by double-clicking (or
using the Add button) from the IP core list. The CoreConsole project can be exported to Libero IDE at this point,
providing access to CoreABC. Other IP blocks can be connected, allowing a complete system to be exported from
CoreConsole to Libero IDE.

After configuring the core, Actel recommends that you use the top-level Auto Stitch function to connect all the core
interface signals to the top level of the CoreConsole project. Once the core is configured, invoke the Generate function
in CoreConsole. This will export all the required files to the project directory in the LiberoExport directory. This is in the
CoreConsole installation directory by default.
CoreABC Handbook v3.0 13

Tool Flows
The core can be configured using the configuration GUI within CoreConsole, as shown in Figure 2-1.

Figure 2-1 · CoreABC Configuration Screen

The Configurator has five tabs, two on the left and three on the right. Each tab is explained below.

Parameters
This is the main configuration area where the size, selected instructions, etc. are selected. This is described in detail in
“CoreABC Configuration” on page 35.
14 CoreABC Handbook v3.0

Importing into Libero IDE
Program
This is where the CoreABC program is created and analyzed.

Help
This is the connection and instruction set help for CoreABC.

Samples
These are sample programs that can be copied and pasted into the Program window and used for reference, or as a
starting point for your own programs.

Analysis
This provides advanced and in-depth analysis of your program to assist in debug.

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches into its project, along with constraints and documentation.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, select the required testbench flow within CoreConsole through the core configuration GUI. Run
Save & Generate from the Generate pane.

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files.

To run the testbenches:

1. If using Libero IDE v8.0, switch the Libero IDE Design Explorer Hierarchy view to show Modules.

2. Set the design root to the CoreABC instantiation in the Libero IDE file manager and click the Simulation icon in
Libero IDE. This will invoke ModelSim® and automatically run the simulation.

Synthesis in Libero IDE
To run Synthesis on the core with parameters set in CoreConsole, set the design root to the top of the project imported
from CoreConsole. This is a wrapper around the core that sets all the generics appropriately. Click the Synthesis icon in
Libero IDE. The Synthesis window appears, displaying the Synplicity project. To run Synthesis, click the Run icon.

Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
CoreABC requires no special place-and-route settings.
CoreABC Handbook v3.0 15

3
Interface Descriptions

Interface Descriptions
CoreABC is available with the APB interface.

Parameters
Note: The parameters described are those directly in the RTL. The recommended configuration flow is to use the

configuration screens in CoreConsole, which will then instantiate these parameters correctly.

Table 3-1 · CoreABC Parameters

Parameter Values Description
Value

Small Medium Large

APB_AWIDTH 8 to 16 Sets the width of the APB address bus. 8 8 8

APB_DWIDTH 8 to 32 Sets the width of the APB data bus. 8, 16, 32 8, 16, 32 8, 16, 32

APB_SDEPTH 1 to 16 Sets the number of supported APB devices. 1 4 16

ICWIDTH 1 to 12

Sets the maximum number of supported instructions.
Number of allowed instructions is 2ICWIDTH.

ICWIDTH must be ≤ APB_AWIDTH.

5 8 8

ZRWIDTH 0 to 16
Sets the width of the Z register. A setting of 8 would allow
for a maximum value of 28 (i.e., 256). Zero will disable and
remove the Z register.

0 8 8

IIWIDTH 1 to 32
Sets the width of the IO_IN input. IIWIDTH must be
≤ APB_DWIDTH.

1 4 4

IFWIDTH 1 to 28
Sets how many of the IO_IN bits can be used with the
conditional instructions. IFWIDTH must be
≤ APB_DWIDTH – 4.

IOWIDTH 1 to 32
Sets the width of the IO_OUT output. IOWIDTH must be
≤ APB_DWIDTH.

1 8 8

STWIDTH 1 to 8
Sets the size of the internal stack counter used to support the
call instruction and interrupt function. The depth of the
stack is 2STWIDTH.

1 4 4

EN_RAM 0 or 1
When 1, a RAM block is used in the core to provide 256
storage locations. This RAM is also used to store return
addresses for the call and interrupt functions.

0 1 1

EN_AND 0 or 1 When 1, the ALU supports the AND function. 1 1 1

EN_XOR 0 or 1 When 1, the ALU supports the XOR function. 1 1 1

EN_OR 0 or 1 When 1, the ALU supports the OR function. 0 1 1

EN_ADD 0 or 1 When 1, the ALU supports the ADD function. 0 1 1

EN_INC 0 or 1 When 1, the ALU supports the INC function. 0 1 1
CoreABC Handbook v3.0 17

Interface Descriptions
EN_SHL 0 or 1 When 1, the ALU supports the SHL/ROL function. 0 1 1

EN_SHR 0 or 1 When 1, the ALU supports the SHR/ROR function. 0 1 1

EN_CALL 0 or 1 When 1, the core supports the call and return operations. 0 1 1

EN_PUSH 0 or 1 When 1, the core supports the push and pop operations. 0 1 1

EN_ACM 0 or 1 When 1, enables the ACM initialization table. 0 1 1

EN_DATAM 0 to 3
Controls internal multiplexing; see “EN_DATAM Generic”
on page 19.

1 1 1

EN_INT 0 to 2
Enables the external interrupt function. When 0, interrupts
are disabled. When 1, INTREQ is active high. When 2,
INTREQ is active low.

0 1 1

EN_MULT 0 to 3

Enables the hardware multiplier; four options exist (example
for 16-bit core):

0: No hardware multiplier

1: Half multiplier, P(15:0) <= A(7:0) * B(7:0)

2: Full multiplier returning lower half, P(15:0) <= A(15:0) *
B(15:0)

3: Full multiplier returning upper half, P(31:16) <= A(15:0) *
B(15:0)

0 0 0

EN_IOREAD 0 or 1 When 1, the IOREAD instruction is enabled. 0 1 1

EN_IOWRT 0 or 1 When 1, the IOWRT instruction is enabled. 1 1 1

EN_ALURAM 0 or 1
When 1, the Boolean and Arithmetic instructions can
operate on memory contents.

0 1 1

EN_INDIRECT 0 or 1
When 1, the Z register can be used to generate the APB
address, and the APBWRTZ and APBREADZ
instructions are enabled.

0 0 1

ISRADDR
0 to

4,095
The address CoreABC should jump to when responding to
an interrupt request.

0 220 220

INSMODE 0 to 1
When 0, the instructions are contained in internal logic
gates, implementing a ROM function. When 1, internal
RAM blocks are used to hold the instruction sequence.

0 0 1

INITWIDTH 1 to 16

Specifies the width of the INITADDR input used to
initialize the instruction RAM blocks when
INSMODE = 1. The actual width depends on several
generic values. Utilities used to support soft operation
calculate this value.

0 0 16

DEBUG 0 or 1
When 1 during simulation, a detailed log will be generated
of the internal operation.

N/A N/A N/A

Table 3-1 · CoreABC Parameters (continued)

Parameter Values Description
Value

Small Medium Large
18 CoreABC Handbook v3.0

Parameters
EN_DATAM Generic
This allows various internal multiplexers to be optimized out of the core, lowering tile counts. The settings supported are
given in Table 3-1 through Table 3-5 on page 20, and the tables show which instructions are allowed with each
setting.

TESTMODE 0 to 16
Selects a predefined set of instructions used for core
verification. This should be set to 0 unless the verification
test sequences are being used.

N/A N/A N/A

ID 0 to 9
Used to specify the CoreABC instance number when more
than one CoreABC core is used within a single design.

0 0 0

Table 3-1 · CoreABC Parameters (continued)

Parameter Values Description
Value

Small Medium Large

Table 3-2 · Accumulator Only (EN_DATAM = 0)

Immediate Data Accumulator

APBWRT No Yes + ACM

RAMWRT No Yes

PUSH No Yes

LOADZ No Yes

IOWRT No Yes

Table 3-3 · Immediate Only (EN_DATAM = 1)

Immediate Data Accumulator

APBWRT Yes No

RAMWRT Yes No

PUSH Yes No

LOADZ Yes No

IOWRT Yes No
CoreABC Handbook v3.0 19

Interface Descriptions
Table 3-4 · Accumulator and Immediate (EN_DATAM = 2)

Immediate Data Accumulator

APBWRT Yes Yes + ACM

RAMWRT Yes Yes

LOADZ Yes Yes

PUSH Yes Yes

IOWRT Yes Yes

Table 3-5 · Instruction-Dependent (EN_DATAM = 3)

Immediate Data Accumulator

APBWRT No Yes + ACM

RAMWRT No Yes

PUSH No Yes

LOADZ Yes No

IOWRT Yes No
20 CoreABC Handbook v3.0

Ports
Ports
All CoreABC inputs are sampled, and outputs clocked, on the rising edge of PCLK.

Table 3-6 · CoreABC Port Descriptions

Name Type Description

PCLK In Master Clock input

NSYSRESET In Master Reset input (asynchronous active low)

PRESETN Out Reset output; synchronized version of NSYSRESET

PENABLE Out APB enable signal

PWRITE Out APB write signal

PSEL[x:0] Out
One-hot-encoded APB select signals. One select is provided for each of the enabled slots. These outputs are
intended for connection to the PSEL input on each of the connected APB devices. The width is controlled
by APB_SDEPTH.

PADDR[x:0] Out APB address bus. The width is controlled by APB_AWIDTH.

PWDATA[x:0] Out APB write data bus. The width is controlled by APB_DWIDTH.

PRDATA[x:0] In APB read data bus. The width is controlled by APB_DWIDTH.

PREADY In

Optional READY input. When deasserted (LOW), extends the second APB cycle until it is asserted. This
input is not required if the APB devices are fully APB-compliant, in which case this input should be tied
HIGH. PREADY is not part of the APB specification but is provided to simplify the design of peripherals
that are connected to CoreABC.

IO_IN[x:0] In General-purpose inputs. The width is controlled by IIWIDTH.

IO_OUT[x:0] Out General-purpose outputs. The width is controlled by IOWIDTH.

INTREQ In
Interrupt request input. When this input is asserted, the instruction sequence will jump to the address set by
the ISRADDR parameter.

INTACT Out Indicates that the core has entered the interrupt service routine.

INITDATAVAL In
Enable signal (active high) indicating that the INITADDR and INITDATA inputs are valid. When using a
SmartGen initialization client, this signal connects to the client select signal.

INITDONE In Indicates that initialization has been completed (active high) and the core should start operating.

INITADDR[x:0] In
Connects to the INITADDR output of the INITCFG block used to configure the RAM blocks when
INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0. The width of this input is
controlled by the INITWIDTH generic.

INITDATA[8:0] In
Connects to the INITDATA output of the INITCFG block, used to configure the RAM blocks when
INSMODE = 1. When INSMODE = 0, these inputs should be tied to logic 0.
CoreABC Handbook v3.0 21

4
CoreABC Programmer’s Model

CoreABC is an accumulator-based load/store architecture with multiple independent memory spaces. It is effectively a
Harvard architecture (independent instruction and data address spaces). Most instructions act only on the accumulator,
but there are specific instructions to access the memory spaces described below.

Address Spaces
The instruction address is a linear address space that is physically either a hard-coded instruction table (hard version) or
an internal instruction RAM (soft version). This is implicitly accessed by control transfer instructions such as JUMP and
CALL, but it cannot be directly read or written otherwise.

The data address spaces are shown in Figure 4-1. There are three separate, independent addressable areas. These are
accessed by using instructions or instruction modes unique to each one.

Figure 4-1 · CoreAPB Data Address Spaces

Internal Data RAM Address Space
This is an internal 256-location RAM storage area. It can be accessed directly using the RAMREAD and RAMWRT
instructions, and implicitly using the PUSH and POP instructions (the stack, if one is present, is located at the top of
RAM). The ALU instructions can also source the secondary operand from the RAM storage area.

I/O Address Space
This is a general-purpose input/output area that is accessed by IOREAD (to load the accumulator from the input) or
IOWRT (to write the accumulator to the output) and the INPUTn test instructions (to read the inputs—for example,
JUMP IF INPUT3).

APB Address Space
The APB has up to eight slots (individual connected peripherals), each of which can have an internal memory space of
up to 64 k locations that is specific to each peripheral. These are accessed by APBWRT (to write to an APB peripheral)
and APBREAD (to read from an APB peripheral). Both the slot number and the address within the slot must be
specified in these instructions.

I/O – OUT

RAM I/O APB

0xFF

0x00

I/O – IN

Slot n

Slot 0
CoreABC Handbook v3.0 23

CoreABC Programmer’s Model
Flags Register—Inputs and Condition Codes
CoreABC maintains a control register that is used in the conditional instructions; e.g., JUMP and CALL. This register
cannot be read or used directly; instead, each named field can be used to control particular instructions. The Flags
register has two sections, as shown in Figure 4-2.

Figure 4-2 · Flags and Inputs Register

There are three condition code type flags:

ZERO Accumulator zero

NEGATIVE Accumulator negative

ZZERO Z Register zero

And there are n INPUTS (n ≤ 28), INPUT0 … INPUTn, which are directly mapped to the general-purpose inputs
connected to CoreABC. The number of these is configurable up to the lower of 28 or APB_DWIDTH – 4, where
APB_DWIDTH is the width specified for the external APB data bus.

From these basic fields, other conditions are constructed and made available in the instruction set.

Instruction Set
Table 4-1 through Table 4-7 on page 28 list the supported instructions. More detail is given in “Adding User
Instructions” on page 51.

INPUTn INPUT0
Z Register

Zero
Acc
Neg

Acc
Zero

Table 4-1 · The Boolean and Arithmetic Instruction Group

Instruction1, 2 Description

LOAD DAT Data Load accumulator with value.

LOAD RAM Address Load accumulator with value.

AND DAT Data Bitwise AND accumulator with immediate data.

AND RAM Address Bitwise AND accumulator with RAM location.

OR DAT Data Bitwise OR accumulator with immediate data.

OR RAM Address Bitwise OR accumulator with RAM location.

XOR DAT Data Bitwise XOR accumulator with immediate data.

XOR RAM Address Bitwise XOR accumulator with RAM location.

ADD DAT Data Add immediate data to accumulator.

ADD RAM Address Add RAM location to accumulator.

Notes:

1. For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using DAT8/DAT16 will reduce tile counts
when instructions are held in logic tiles.
24 CoreABC Handbook v3.0

Instruction Set
SUB DAT Data
Subtract immediate data from accumulator.

Note: SUB RAM is not supported.

MULT DAT Data
Multiply accumulator by immediate data.

Note: Core parameters determine multiplier return value.

MULT RAM Address
Multiply accumulator by RAM location.

Note: Core parameters determine multiplier return value.

CMP DAT Data
Compare accumulator to immediate data.

ZERO set if equal; NEGATIVE set if MSBs differ.

CMP RAM Address
Compare accumulator to RAM location.

ZERO set if equal; NEGATIVE set if MSBs differ.

CMPLEQ DAT Data

Compare accumulator to immediate data.

ZERO set if equal; NEGATIVE set if ACC < Data.

Note: CMPLEQ RAM is not supported.

SHL0 Shift accumulator left and infill with 0.

SHR0 Shift accumulator right and infill with 0.

SHL1 Shift accumulator left and infill with 1.

SHR1 Shift accumulator right and infill with 1.

SHLE Shift accumulator left and infill with LSB.

SHRE Shift accumulator right and infill with MSB.

ROL Rotate accumulator left.

ROR Rotate accumulator right.

BITCLR Data Clear one bit in accumulator specified by argument (AND). In this case, the data value specifies the bit position.

BITSET Data Set one bit in accumulator specified by argument (OR). In this case, the data value specifies the bit position.

BITTST Data
Test one bit in accumulator. ZERO set if all requested bits are clear. In this case, the data value specifies the bit
position.

Table 4-1 · The Boolean and Arithmetic Instruction Group (continued)

Instruction1, 2 Description

Notes:

1. For most instructions, when using the configuration GUI, the DAT keyword can be omitted.

2. DAT may be replaced with DAT8 or DAT16 when only lower 8 or 16 data bits contain valid data. Using DAT8/DAT16 will reduce tile counts

when instructions are held in logic tiles.
CoreABC Handbook v3.0 25

CoreABC Programmer’s Model
Table 4-2 · The Memory Instruction Group

Instruction Description

PUSH Push the accumulator onto the stack.

PUSH ACC Push the accumulator onto the stack.

PUSH DAT Data Push immediate data onto stack.

POP Pop data from the stack to the accumulator and update the flags.

RAMWRT Address ACC Write accumulator to RAM address.

RAMWRT Address DAT Data Write immediate data to RAM address.

RAMREAD Address Read data from RAM address to the accumulator and update the flags.

Table 4-3 · The Z Register* Instruction Group

Instruction Description

LOADZ ACC Load Z with accumulator.

LOADZ DAT Data Load Z with immediate value.

ADDZ ACC
Add accumulator to Z and store in Z.

Only ZZERO flag is affected.

ADDZ DAT Data
Add immediate data to Z and store in Z.

Only ZZERO flag is affected.

SUBZ DAT Data

Subtract immediate data from Z and store in Z.

Only ZZERO flag is affected

Note: SUBZ ACC is not supported.

INCZ Increment Z. Only ZZERO flag is affected.

DECZ Decrement Z. Only ZZERO flag is affected.

Note: *The Z register is intended to be used as loop counter or APB address register.
26 CoreABC Handbook v3.0

Instruction Set
Table 4-4 · The APB Instruction Group

Instruction Description

APBREAD Slot Address Read from APB.

APBWRT ACC Slot Address Write accumulator to APB at chosen address.

APBWRT ACM Slot Address Write value of ACM table, at location given by accumulator, to APB at chosen address.

APBWRT DAT Slot Address Data Write data to chosen address.

APBREADZ Slot Read from APB. The Z register specifies the APB address.

APBWRTZ ACC Slot Write accumulator to APB. The Z register specifies the APB address.

APBWRTZ ACM Slot
Write value of ACM table, at location given by accumulator. The Z register specifies the APB
address.

APBWRTZ DAT Slot Data Write data; the Z register specifies the APB address.

Table 4-5 · The I/O Instruction Group

Instruction Description

IOWRT ACC Write accumulator to I/O register.

IOWRT DAT Data Write data value to I/O register.

IOREAD Load the accumulator with the I/O input value.

Table 4-6 · The Flow Control Instruction Group

Instruction Description

JUMP Condition $Label Jump to label.

JUMP IF/IFNOT Condition $Label Jump on condition to label.

WAIT UNTIL/WHILE Condition Stop at this instruction until condition is TRUE.

CALL $Label As JUMP, but puts return address on stack.

CALL IF/IFNOT Condition $Label As JUMP, but puts return address on stack.

RETURN Return from a CALL.

RETURN IF/IFNOT Condition Return from a CALL on condition.

RETISR Condition Return from an interrupt.

RETISR IF/IFNOT Condition Return from an interrupt on condition.

HALT
Stop at this instruction. Interrupts will still be processed. HALT is a synonym for WAIT, and
generally used without a condition.
CoreABC Handbook v3.0 27

CoreABC Programmer’s Model
Table 4-7 · Conditions for Flow Control Instruction Group

Condition Description

ALWAYS Always. You can get the same effect as this by not specifying any condition.

ZERO Accumulator zero

NEGATIVE Accumulator negative

ZZERO Z register zero

INPUT0 Input0 set

INPUT1 Input1 set and similarly for higher Inputs, if available.

POSITIVE Equivalent to NOT NEGATIVE

LTE_ZERO Less than or equal to zero; the combination NEGATIVE OR ZERO

GT_ZERO Greater than zero; the combination NOT (NEGATIVE OR ZERO)

Table 4-8 · Other Instructions

Instruction Description

NOP No operation

USER scmd slot addr data
User's extension instruction(s). To make use of this you will need to modify the RTL directly; the user
instruction can make use of the subcommand, slot, address, and data fields.
28 CoreABC Handbook v3.0

5
CoreABC Operation

Instruction Encoding
The CoreABC instruction set is encoded as shown in Table 5-1.

These encodings are primarily of use to engineers programming CoreABC by modifying the RTL directly. It is strongly
recommended that programming be done using the CoreABC configuration and programming interface in CoreConsole.

Table 5-1 · CoreABC Instruction Encoding

Instruction Description
Flags Encoding

Zero Neg Cmd Scmd Slot Addr Data Cycles

NOP No operation – – 111 xx1 xxx xxx xxx 3

LOAD Load accumulator. Yes Yes 000 111 xxx xxx DATA 3

INC Increment accumulator. Yes Yes 000 000 xxs xxx xxx 3

AND AND accumulator with data. Yes Yes 000 001 xxs xxx DATA 3

OR OR accumulator with data. Yes Yes 000 010 xxs xxx DATA 3

XOR XOR accumulator with data. Yes Yes 000 011 xxs xxx DATA 3

ADD Add data to accumulator. Yes Yes 000 100 xxs xxx DATA 3

MULT Multiply accumulator by data. Yes Yes 000 000 xxs xxx DATA 3

SUB Subtract data from accumulator. Yes Yes 000 100 xxs xxx DATATC 3

SHL0 Shift accumulator left; infill with 0. Yes Yes 000 101 xxx xxx xx00 3

SHL1 Shift accumulator left; infill with 1. Yes Yes 000 101 xxx xxx xx01 3

SHLE Shift accumulator left; infill with LSB. Yes Yes 000 101 xxx xxx xx10 3

ROL Rotate accumulator left. Yes Yes 000 101 xxx xxx xx11 3

SHR0 Shift accumulator right; infill with 0. Yes Yes 000 110 xxx xxx xx00 3

SHR1 Shift accumulator right; infill with 1. Yes Yes 000 110 xxx xxx xx01 3

SHRE
Shift accumulator right; infill with
MSB.

Yes Yes 000 110 xxx xxx xx10 3

ROR Rotate accumulator right. Yes Yes 000 110 xxx xxx xx11 3

Notes:

1. BITNS values will set BIT N in the data value with all other bits cleared; e.g., if BIT = 4, then DATA = 0x10.

2. BITNC values will clear BIT N in the data value with all other bits set; e.g., if BIT = 4, then DATA = 0xEF.

3. DATATC indicates that the data value contains the two’s complement value of the required data value.

4. For the jump, call, and return instructions, the “s” in the Scmd field is 0 for NOTIF and 1 for IF.

5. For the wait instructions, the “s” in the Scmd field is 0 for UNTIL and 1 for WHILE.

6. The “s” in the Slot field is 0 for immediate data and 1 for either RAM or accumulator source data.

7. The USER instruction may be passed up to four parameters. These are expected to set the Scmd, Slot, Address, and Data instruction fields. Bit 0 of
the Scmd field must be set to 1 to differentiate it from the NOP instruction.
CoreABC Handbook v3.0 29

CoreABC Operation
CMP

Compare accumulator. ZERO flag set if
the values are equal. NEG flag set if
MSB of data is different from MSB of
accumulator (XOR instruction must be
enabled).

Yes Yes 001 011 xxs xxx DATA 3

CMPLEQ

Compare accumulator. ZERO flag set if
the values are equal. NEG flag set if the
accumulator is less than the data value
(ADD instruction must be enabled).

Yes Yes 001 100 xxs xxx DATATC 3

BITCLR BIT
Clear a bit in the accumulator (AND
instruction must be enabled).

Yes Yes 000 001 xxx xxx BITNC 3

BITSET BIT
Seat a bit in the accumulator (OR
instruction must be enabled).

Yes Yes 000 001 xxx xxx BITNC 3

BITTST BIT
Test a bit in the accumulator. Sets
ZERO flag if bit is zero (AND
instruction must be enabled).

Yes Yes 001 001 xxx xxx BITNS 3

APBREAD
Read from the APB and store value in
the accumulator. Flags will not be
altered by this instruction.

– – 010 011 SLOT ADDR xxx 5

APBREADZ
Read from the APB and store value in
the accumulator. Flags will not be
altered by this instruction.

– – 010 111 SLOT xxx xxx 5

APBWRT

Write to the APB. The second field
specifies the data source.

ACC: Accumulator

ACM: ACM lookup

DAT: Immediate data

DAT8: Immediate data, 8 bits only

DAT16: Immediate data, 16 bits only

– – 010

000

010

001

001

001

SLOT ADDR DATA 5

Table 5-1 · CoreABC Instruction Encoding (continued)

Instruction Description
Flags Encoding

Zero Neg Cmd Scmd Slot Addr Data Cycles

Notes:

1. BITNS values will set BIT N in the data value with all other bits cleared; e.g., if BIT = 4, then DATA = 0x10.

2. BITNC values will clear BIT N in the data value with all other bits set; e.g., if BIT = 4, then DATA = 0xEF.

3. DATATC indicates that the data value contains the two’s complement value of the required data value.

4. For the jump, call, and return instructions, the “s” in the Scmd field is 0 for NOTIF and 1 for IF.

5. For the wait instructions, the “s” in the Scmd field is 0 for UNTIL and 1 for WHILE.

6. The “s” in the Slot field is 0 for immediate data and 1 for either RAM or accumulator source data.

7. The USER instruction may be passed up to four parameters. These are expected to set the Scmd, Slot, Address, and Data instruction fields. Bit 0 of

the Scmd field must be set to 1 to differentiate it from the NOP instruction.
30 CoreABC Handbook v3.0

Instruction Encoding
APBWRTX

Write to the APB. The second field
specifies the data source.

ACC: Accumulator

ACM: ACM lookup

DAT: Immediate data

DAT8: Immediate data, 8 bits only

DAT16: Immediate data, 16 bits only

– – 010

100

110

101

101

101

SLOT xxx DATA 5

LOADZ Load the Z register. – – 011 000 xxs xxx DATA 3

DECZ
Decrement the Z register; will set the Z
register zero flag when decrementing
from 1 to 0.

– – 011 001 xxx xxx –1 3

INCZ
Increment the Z register; will set the Z
register zero flag when incrementing to 0.

– – 011 001 xxx xxx 1 3

ADDZ
Add to the Z register; will set the Z
register zero flag when result is 0.

– – 011 001 xxx xxx DATA 3

SUBZ
Subtract from the Z register; will set the
Z register zero flag when result is 0.

– – 011 001 xxx xxx –DATA 3

IOWRT Write data to I/O register. – – 011 111 xxs xxx DATA 3

IOREAD Read data from I/O register. – – 011 110 xxs xxx xxx 3

RAMWRT
Write the accumulator to the storage
RAM.

Yes Yes 011 011 xxs ADDR xxx 3

RAMREAD
Read the storage RAM into the
accumulator. Flags reflect the value read.

– – 011 010 xxs xxx ADDR 3

PUSH Push the accumulator onto the stack. – – 011 100 xxs xxx xxx 3

POP
Pop the accumulator from the stack.
Flags reflect the value read.

Yes Yes 011 101 xxs xxx xxx 3

JUMP Jump – – 100 x01 xxx ADDR xxx1 3

JUMP Jump on flag condition. – – 100 x0s xxx ADDR FLAGS 3

CALL Call – – 101 xx1 xxx ADDR xxx1 3

Table 5-1 · CoreABC Instruction Encoding (continued)

Instruction Description
Flags Encoding

Zero Neg Cmd Scmd Slot Addr Data Cycles

Notes:

1. BITNS values will set BIT N in the data value with all other bits cleared; e.g., if BIT = 4, then DATA = 0x10.

2. BITNC values will clear BIT N in the data value with all other bits set; e.g., if BIT = 4, then DATA = 0xEF.

3. DATATC indicates that the data value contains the two’s complement value of the required data value.

4. For the jump, call, and return instructions, the “s” in the Scmd field is 0 for NOTIF and 1 for IF.

5. For the wait instructions, the “s” in the Scmd field is 0 for UNTIL and 1 for WHILE.

6. The “s” in the Slot field is 0 for immediate data and 1 for either RAM or accumulator source data.

7. The USER instruction may be passed up to four parameters. These are expected to set the Scmd, Slot, Address, and Data instruction fields. Bit 0 of
the Scmd field must be set to 1 to differentiate it from the NOP instruction.
CoreABC Handbook v3.0 31

CoreABC Operation
The JUMP, WAIT, CALL, and RETURN instructions check the contents of the flag condition register. This is shown
in Table 5-2. The FLAGS value provided in the instruction is ANDed with the flag condition register. If the FLAGS
value is 0x02, the ZERO flag is tested. When the FLAGS value is 0x01, the jump condition will always be true.

ACM Lookup for Use with CoreAI
A separate RTL source file is provided to allow the ACM initialization values for CoreAI to be easily loaded by
CoreABC using the APBWRT ACM instruction. This instruction uses the accumulator value to index into the ACM
lookup table to generate the actual data value written. Instructions 6–12 in the “Example Instruction Sequence” on page
47 show the ACM registers in the Fusion device being initialized.

The ACM lookup table is a simple RTL file that provides a lookup for ACM data, as shown below:

process(ACMADDR)

variable ADDRINT : integer range 0 to 255;

constant ADCCFG : integer := 16#80#;

 -- PRE_SCALER_ON, POS_VOLTAGE, PRE_SCALER, RANGE_16V

CALL Call on flag condition. – – 101 xxs xxx ADDR FLAGS 3

RETURN Return – – 110 x01 xxx ADDR xxx1 3

RETURN Return on flag condition. – – 110 x0s xxx ADDR FLAGS 3

RETISR Return from interrupt. -– – 110 x11 xxx ADDR xxx1 3

RETISR Return from interrupt on flag condition. – – 110 x1s xxx ADDR FLAGS 3

HALT Halt operation. – – 100 x11 xxx ADDR xxx1 8

WAIT Wait until flag condition. – – 100 x1s xxx ADDR FLAGS
3

8

USER P1 P2 P3 P4 User-defined instruction ? ? 111 P1 P2 P3 P4 3

Table 5-1 · CoreABC Instruction Encoding (continued)

Instruction Description
Flags Encoding

Zero Neg Cmd Scmd Slot Addr Data Cycles

Notes:

1. BITNS values will set BIT N in the data value with all other bits cleared; e.g., if BIT = 4, then DATA = 0x10.

2. BITNC values will clear BIT N in the data value with all other bits set; e.g., if BIT = 4, then DATA = 0xEF.

3. DATATC indicates that the data value contains the two’s complement value of the required data value.

4. For the jump, call, and return instructions, the “s” in the Scmd field is 0 for NOTIF and 1 for IF.

5. For the wait instructions, the “s” in the Scmd field is 0 for UNTIL and 1 for WHILE.

6. The “s” in the Slot field is 0 for immediate data and 1 for either RAM or accumulator source data.

7. The USER instruction may be passed up to four parameters. These are expected to set the Scmd, Slot, Address, and Data instruction fields. Bit 0 of

the Scmd field must be set to 1 to differentiate it from the NOP instruction.

Table 5-2 · FLAGS Value

(IIWIDTH + 4 – 1):0 3 2 1 0

IO_IN inputs Z register zero Accumulator negative (MSB set) Accumulator zero ALWAYS
32 CoreABC Handbook v3.0

Stack
 begin

 ADDRINT := conv_integer(ACMADDR);

 ACMDO <= '1';

 case ADDRINT is

 when 1 to 20 => ACMDATA <= conv_std_logic_vector(ADCCFG, 8);

 when others => ACMDATA <= (others =>'-'); ACMDO <= '0';

 end case;

end process;

In the above example, only ACM locations 1 to 20 are written, and set to 16#80#.

When both CoreABC and CoreAI are used in a single CoreConsole project, CoreConsole automatically creates the
correct ACM table lookup values to reflect those specified in the CoreAI configuration GUI. CoreConsole creates a
custom acmtable.vhd or acmtable.v file when the project is exported to Libero IDE.

Stack
The upper 2STWIDTH memory locations in the 256-location internal storage are used for storing the stack contents. If
STWIDTH = 4 (stack is 16 locations deep), the stack will occupy locations 0F0 to 0FF hex. There is no underflow or
overflow detection on the stack pointer, so it will simply wrap around from 0F0 to 0FF hex on push operations and 0FF
to 0F0 hex on pop operations (assuming STWIDTH = 4).

The RAMREAD and RAMWRT instructions can be used to read and modify the values pushed onto the stack. An
indirect jump instruction can be implemented by pushing the required jump address on the stack and executing a return
instruction.

Interrupt Operation
When INTREQ is asserted, the core will jump to the interrupt service routine (ISR) on completion of the current
instruction. As it does so, it will assert the INTACT output. When the ISR completes, the software should execute the
RETISR instruction. When the RETISR instruction is executed, the INTACT output is cleared. INTACT acts as the
interrupt acknowledge, and INTREQ should be deactivated when INTACT becomes active. The core will ignore
additional interrupt requests while INTACT is active.

The core will respond to an interrupt request within six clock cycles—five clock cycles for the current instruction to
complete,1 plus one additional clock cycle in the core.

The contents of the ZERO and NEGATIVE flags are saved on entry to the interrupt service routine and restored on the
RETISR instruction. On entry to an ISR, the ZERO and NEGATIVE flags will contain the flag values present when
the previous ISR was executed. The accumulator register is not saved on entry to the ISR. The ISR should push and pop
the accumulator to preserve its contents.

The INTREQ polarity can be active low or active high. This is set by the EN_INT parameter.

An interrupt will occur when the HALT or WAIT instructions are being executed. After completion, the ISR will
return to the HALT or WAIT instruction, unless the ISR does something to remove the reason for the WAIT or
modifies the stack contents; e.g., it could POP the return address, modify it, and PUSH it back on the stack.

1. Assumes PREADY is held HIGH.
CoreABC Handbook v3.0 33

CoreABC Operation
User Instructions
The RTL code can be modified to add additional instructions to CoreABC (a full RTL license is required for this).
These instructions could initiate APB cycles or add additional ALU functions, such as a multiply. “Adding User
Instructions” on page 51 details how these instructions can be added.

Simulation Logging
CoreABC includes debug code that logs the operations being performed during simulation, along with the current
accumulator values. A typical log is shown below.

INS:141: XOR 00 <= 0A XOR 0A Flags:ZERO

INS:142: JUMP (Not Taken) NOT ZERO

INS:143: NOP

INS:144: LOAD 00 <= 00 Flags:ZERO

INS:145: LOADZ <= 5h

This log starts at instruction 141 and shows the accumulator being XORed with 0x0A, a jump testing the ZERO flag, a
NOP instruction, and the accumulator being loaded with 00. Finally, the internal Z register is loaded.

This feature is only available when pre-synthesis simulation is carried out. During synthesis, the debug code is removed
from the core. To enable this feature, set the Verbose Simulation Log option on the CoreABC configuration screen in
CoreConsole.
34 CoreABC Handbook v3.0

6
CoreABC Configuration

Configure CoreABC using the configuration screens in CoreConsole. Access these by instantiating CoreABC in your
CoreConsole designs and then invoking the configurator as normal (see the CoreConsole User’s Guide for more details).
Because of the sophisticated nature of CoreABC, an external configurator is invoked, and you may see a slight delay in
the screens opening.

When you invoke the CoreABC configurator, you are presented with a screen that has two tabs on the left side—
Parameters and Program—and three on the right side, Help, Samples, and Analysis. The right side can be collapsed
down entirely when not in use.

Configuration of CoreABC is done in the screen presented by selecting the Parameters tab on the left side. When you
do this, you will see the screen shown in Figure 6-1.

Figure 6-1 · Configuration Parameters

Each of the parameters is explained in the following sections.
CoreABC Handbook v3.0 35

http://www.actel.com/documents/CoreConsole_ug.pdf

CoreABC Configuration
APB Address Bus Width
Selects the width of the APB address bus. This is independent of the number of APB slots. You should determine the
appropriate width by reference to the number of addressable locations on the “largest” peripheral you anticipate
connecting to this bus.

APB Data Bus Width
Selects which size data bus to use on the APB mastered by CoreABC: 8, 16, or 32. Normally, you set this to the size of
“widest” peripheral you anticipate connecting to this bus. However, you may occasionally decide to connect different-
sized peripherals. This is stitched correctly in CoreConsole, but you should be aware of it when writing your CoreABC
program.

Number of APB Slots
This sets the maximum number of APB slots CoreABC can address. Each slot is a location for connecting an APB
peripheral, so ensure that you allocate enough slots for your design. It is easy to set this at a later stage in your design if
you wish, when you have a clear understanding of the peripherals you are connecting.

Maximum Number of Instructions
This allocates the instruction space for your program (in a range from 2 to 4,096 instructions). You should not make this
larger than necessary, as it is used for configuring MUXes and will directly impact the size of the core.

Z Register Size
This sets the maximum Z register size you intend to use in your program. This is used to set the size on the Z register
and associated logic, so the smaller you make it, the smaller your core. There is also a disable setting to remove this
feature.

Number of I/O Inputs
This sets the number of inputs configured on CoreABC. These can be read using the IOREAD instruction. The range
is 1–32.

Number of I/O Flag Inputs
This sets the number of inputs connected into the conditional logic. These are accessible for controlling JUMP and
similar instructions as INPUT0 – INPUT27 (note that the first input is INPUT0!). The range is 1–28.

Number of I/O Outputs
This sets the maximum number of output lines from CoreABC. The range is 1–32. These can be written to using the
IOWRT instruction, which allows the accumulator to be written to the output register.

Stack Size
CALL and RETURN instructions use a stack to store the return address when subroutines are used. The stack size can
be set in this drop-down list. Note that this list will be grayed out (disabled) if Internal Data/Stack Memory is not
enabled, because the stack is allocated from that memory.

Instruction Store
This is a very important setting that determines whether CoreABC is in hard or soft mode. The options are as follows:
36 CoreABC Handbook v3.0

Hard (FPGA tiles) – The program instructions are translated into RTL.

Soft (FPGA Ram) – The program instructions are generated as RAM files, and RAM is instantiated inside
CoreABC, from which these instructions are executed.

Initialization Width
When the soft version has been configured, this sets the size of the Init & Config interface for initializing the instruction
RAM inside CoreABC.

Internal Data/Stack Memory
Set this option ON if you are going to use the internal scratchpad RAM (with RAMREAD and RAMWRT
instructions) or the stack (for CALL and RETURN instructions).

ALU Operation from Memory
This allows the ALU data input to accept both immediate data and data from the RAM. It enables ADD RAM and
similar instructions.

APB Indirect Addressing
This allows the Z register to be used as the APB address for the instructions that access the APB.

Supported Data Sources
This controls the EN_DATAM parameter; refer to “EN_DATAM Generic” on page 19. Setting this to “Accumulator
and Immediate” will increase tile counts.

Interrupt Support
This allows you to enable or disable interrupt support. If you specify active high or active low interrupt, the interrupt
logic is automatically included. When you enable the interrupt logic, you should also set the ISR Address.

ISR Address
The ISR address should be set when you have enabled the interrupt logic. It is the instruction address from which
CoreABC will fetch the next instruction to be executed after an interrupt is detected. At the end of the ISR, you will
have a return from interrupt (RETISR) instruction. The default value is 1.

Optional Instructions
There is a range of instructions that can be omitted or included in CoreABC to control the size. This empowers you to
make size/performance tradeoffs. If you have used omitted instructions in your program, you will receive a validation
warning.

Instance ID
Set this value to allocate a unique instance ID to each CoreABC in your design. If you have only one CoreABC, you can
leave this at its default value of 0.

Testbench
Select this if you want a user testbench generated with your core.
CoreABC Handbook v3.0 37

CoreABC Configuration
Verbose Simulation Log
This enables the feature that allows CoreABC to log the operations being performed during simulation along with the
current accumulator values. See “Simulation Logging” on page 34 for more details.

FPGA Family
Select the target FPGA family from the drop-down list.

Cross-Validation of Configuration Fields
There is extensive cross-validation of settings in the CoreABC configuration screen to ensure that the overall
configuration is consistent. This also extends to validation between the program and the configuration. Most possible
inconsistencies are covered.

Figure 6-3 shows the symbols that are displayed to indicate a possible error. When you click the symbol (Figure 6-2),
information is given as to the precise nature of the problem.

Figure 6-2 · Error Symbol

In the example shown in Figure 6-3, the Maximum Z Register has been set to Disabled, but there is an instruction in the
program (on the other tab—LOADZ) which requires that the Z register features are available.

Figure 6-3 · CoreABC Configuration Validation

In general, the validation is more extensive on the Parameters tab than on the Program tab, so it is a good idea to take a
look at the Parameters tab when you have completed writing your program.

Some cross-validation actually grays out fields that are inappropriate when other settings have not been made.

38 CoreABC Handbook v3.0

7
CoreABC Programming

CoreABC programs are written and assembled under the CoreABC programming tab in the CoreConsole configurator,
as shown in Figure 7-1. The programs are written in the left pane, and you can view an analysis of your code in the right
pane.

Figure 7-1 · CoreABC Programming Screen

Analysis
The program you are writing is continuously analyzed as you write it, to detect any syntax or other errors. These are
immediately flagged, and information about them is provided. At a certain point, the length of the program can slow
down the analysis, which impacts usability. Therefore Auto Analyze Program will clear automatically. When Auto
Analyze is off, you are required to click the Analyze button before you can complete and submit your program (the OK
button will remain grayed out).

The Analysis window provides useful information and statistics on your program, most of which is self-explanatory. The
key elements are covered below.

Instructions Used
This lists the instructions used in your program. You can use this information to optimize your CoreABC by omitting
any unused instructions in the Configuration screen if you want to minimize size.
CoreABC Handbook v3.0 39

CoreABC Programming
VHDL and Verilog Analysis
The CoreABC Assembler translates the program you write into RTL. The generated RTL can be seen if you scroll
down the Analysis window (Figure 7-2).

Figure 7-2 · VHDL Analysis

Other Analysis information
Also presented in the Analysis window is the list of labels used in the program—the memory files that will be generated
to support soft mode configuration and any symbols you have defined (using DEF).

Modifying the RTL Code Directly
CoreABC can also be programmed by directly modifying the RTL code. When using the CoreConsole environment,
the instructions can be implemented in logic gates or stored in RAM within the core, being initialized externally. For
Fusion devices, the memory blocks can be initialized easily from the flash memory using the SmartGen memory
initialization functions.

The instruction sequence is held in a simple lookup table that encodes the instruction sequence. Each instruction
consists of command, subcommand, data, address, and slot fields. These five fields are collectively called the instruction.
40 CoreABC Handbook v3.0

Modifying the RTL Code Directly
Figure 7-3 · The Instruction Encoder

The command and subcommand fields tell CoreABC what action to perform. These six bits are encoded as shown in
Table 5-1 on page 29.

This structure is described by a VHDL or Verilog case statement, as shown below. To help in creating the instruction
sequence, VHDL and Verilog function calls are provided to encode the instruction word correctly. These functions
encode the parameters to create the instruction word. An example set of instructions follows. The parameters for the
doins function call are as per Table 5-1 on page 29, but prefixed with an i.

process(ADDRESS)

variable ADDRINT : integer range 0 to ICDEPTH;

begin

ADDRINT := conv_integer(ADDRESS);

case ADDRINT is

when 0 => INS <= doins(iJUMP,1);

when 1 => INS <= doins(iLOAD,16#55#);

when 2 => INS <= doins(iAND,16#0F#);

when 3 => INS <= doins(iCMP,16#05#);

when 4 => INS <= doins(iJUMP,iNOTIF,ZERO,30);

…….

when others => INS <= doins(iNOP); end case;

end process;

always @(ADDRESS)

begin

case (ADDRINT)

0 : INS <= doins2(iJUMP, 1) ;

1 : INS <= doins2(iLOAD, 8'h55)

2 : INS <= doins2(iAND, 8'h0F) ;

: INS <= doins2(iCMP, 8'h05) ;

4 : INS <= doins4(iJUMP, iNOTIF, ZERO, 30) ;

……..

default : INS <= doins1(iNOP) ;

endcase

end

During implementation, this will be synthesized to logic tiles. To ensure minimal logic tile requirements, the above
procedural calls make sure all unused instruction bits are set to “don’t care.”

Instruction
Address

Command (3 bits)

Subcommand (3 bits)

Data (8–32 bits)

Address (8–16 bits)

Slot (0–3 bits)

Instruction
Table
CoreABC Handbook v3.0 41

CoreABC Programming
Soft Operation—Creating the Programming File
When using CoreABC in soft mode, the memory image must be created and loaded into the core. The program can be
stored in the flash memory of a Fusion FPGA and automatically transferred to CoreABC at power-up. Alternatively, the
memory image can be loaded by an external processor.

The automatic transfer from flash memory to CoreABC uses a SmartGen flash memory system initialization client. To
use this flow, first create the CoreABC project in CoreConsole and connect the initialization ports to the top level of the
design. Second, create the SmartGen core and connect it to CoreABC. Then complete the FPGA design. At this point,
memory image files can be programmed into the flash memory.

Creating a Memory Image File
There are two ways to create a memory image file: auto-generate one with the assembler tool or create one from the
instructions.vhd or instructions.v RTL source file by the simulator. Both methods will tell you the size of the initialization
memory and the value of the INITWIDTH parameter that sets the width of the initialization address port.

Automatically Created Memory Image Files
The CoreConsole configuration GUI automatically creates the memory image files as per Table 7-1. These files are
exported in the CoreConsole project to Libero IDE and automatically copied into the Simulation directory when
ModelSim is invoked in Libero IDE.

CoreConsole will also place the RAMABC_i.mem file in its software export directory. This file can be directly imported
by the SmartGen initialization client without reimporting the complete CoreConsole project.

To manually create the memory image files from the RTL code:

1. Make sure the required set of instructions is fully coded in the instruction.vhd/instruction.v file, and that the
TESTMODE value was set to 0 when the core was configured in CoreConsole. If not, update the value by editing
the coreparameters.vhd or coreparamters.v file found in the CoreConsole project in the Libero IDE file manager.

2. In Libero IDE, set the design root to the CoreABC instance within your design.

3. Invoke Simulation. After simulation completes, type do makehex.do at the ModelSim prompt. This will run a
VHDL or Verilog simulation that will create the memory image files and report the size and width of the
initialization port required.

Table 7-1 shows the memory image files created by the automatic system and the manual system.

All memory image files are encoded using Actel binary format, containing ASCII 0 and 1 characters for each data bit in
the memories.

Table 7-1 · Memory Image Files

Memory Image Description

RAMABC_i.mem File for SmartGen or a processor to load through the initialization interface

RAMABC_irc.mem

Files that will be automatically loaded by the simulator when RTL simulation is
performed. When these are located in the Libero IDE simulation directory, the
instruction memories are automatically loaded at time 0 (not used for ProASIC
device simulation).

RAMABC_ircL.mem

RAMABC_ircU.mem

These are generated only for ProASIC device designs and are used to initialize
simulation memories as above.

Note: The irc values indicate the ID, row, and column numbers for the RAM. The ID value should be the same as the ID

parameter. These values are automatically calculated and should not be changed. All three values are integers between 0
and 9.
42 CoreABC Handbook v3.0

Soft Operation—Creating the Programming File
Creating and Using the SmartGen Initialization Client
To create the initialization client and use it within your design:

Before creating the initialization client, you must create a memory image file and know the size of the initialization
memory. You must create your CoreConsole system and import it into Libero IDE.

1. Create a new HDL file in Libero IDE and instantiate the entity/module from the wrapper file created by
CoreConsole; this will become the new top level. You can also use this wrapper to connect other inputs and outputs
of your system to glue logic, etc.

2. Choose the SmartGen tool within Libero IDE and create a “Flash Memory Builder Core”; select an Initialization
Client.

3. Set the following parameters in the configuration GUI:

• Set the Client name to CoreABC (or CoreABCID if using multiple cores in a single design).

• Set the Start address to 0 and Word size to 9.

• Set the Number of words to the size of the initialization memory reported when the memory image files were
created.

• Browse and locate the memory image file. This should be found in the CoreConsole Software Export directory.
Set the file type to Actel-Binary Files.

• Do not enable on-demand save to flash memory.

• Set the Client Select Port Name to INITDATAVAL.

• Click OK.

4. Back in the main Flash Memory System GUI, click Generate and set the core name to INITBLK. This will
generate the required RTL files.

5. Using the Libero IDE HDL editor, add INITBLK in your top-level design and connect the INITxxxx ports on
INITBLK to the INITxxxx ports on CoreABC. Once this is done, you should see INITBLK displayed as part of
your design hierarchy in Libero IDE.

Programming the Flash Memory
To program the memory image file to the correct flash memory and locations:

1. Under the Libero IDE File Manager tab, double-click INITBLK SmartGen Core. The SmartGen flash memory
system will pop up.

2. Double-click the initialization client and verify that the correct memory image file is listed. Click OK and Generate
in the first window. Click as appropriate on other windows that pop up.

3. Invoke Designer from Libero IDE. If the design has not already been through place-and-route, run it at this time.

4. Click the Programming File button in Designer. In the FlashPoint pop-up window, locate a small pane below the
FlashROM button with Program and Instance Name fields. Click the Program button. Double-click the
Configuration File field, and then locate and select the embedded memory configuration file located in the
SmartGen/INITBLK directory in your CoreConsole project.

5. Click the Finish button. This will generate the STAPL file for programming. You can also program the main FPGA
array at the same time and change the STAPL file name if required.

6. Using FlashPro, program the STAPL file into the FPGA.

Updating the Program and Flash Memory Contents
To update the complete design and program contained in the Flash memory:

1. In the CoreConsole project, open the CoreABC configurator and update your program. When complete, click OK.
Click Generate in the main CoreConsole GUI.
CoreABC Handbook v3.0 43

CoreABC Programming
2. In Libero IDE, reimport the complete Libero IDE project.

3. Under the Libero IDE File Manager tab, double-click the INITBLK SmartGen core. The SmartGen flash memory
system will pop up. Check that the memory image file, RAMABC_i.mem, in the CoreConsole software export
directory, is set in the GUI. Click Generate in the SmartGen GUI.

4. Re-run Synthesis and Layout.

5. Create the programming file in Designer, making sure that the INITBLK.efc file is correctly set.

To update only the program contained in the flash memory:

1. In the CoreConsole project, open the CoreABC configurator and update your program. When complete, click OK.
Click Generate in the main CoreConsole GUI.

2. Under the Libero IDE File Manager tab, double-click the INITBLK SmartGen core. The SmartGen flash memory
system will pop up. Check that the memory image file, RAMABC_i.mem, in the CoreConsole software export
directory, is set in the GUI. Click Generate in the SmartGen GUI. This will invalidate Synthesis in the Libero IDE
flow manager.

3. Do not re-run Synthesis.

4. Re-create the programming file in Designer, making sure that the INITBLK.efc file is correctly set.
44 CoreABC Handbook v3.0

8
Testbench Operation

Basic Testbench
Included with the releases of CoreABC is a testbench that verifies operation of the CoreABC macro. A block diagram of
the testbench is shown in Figure 8-1. Identical testbenches are supplied for both the VHDL and Verilog versions of the
core.

Figure 8-1 · CoreAI Verification Testbench

The testbench contains the blocks detailed in the following sections, in addition to CoreABC.

APB Slave Models
These implement APB slaves containing memory, allowing basic APB read and write cycles to be verified.

Initialization Generator
This block, when enabled, will control the initialization interface of CoreABC and will program the instruction RAM
blocks within the core from the hex memory image files.

Hex File Generator
This block, when enabled, will automatically create the hex memory image files from a hard version of the core.

Simulation Options
The testbench automatically configures itself from the parameters set in the CoreConsole GUI, and uses the instruction
sequences from the programming software.

When a hard core is used, the simulation simulates the instruction file that contains the program. When a soft core is
being simulated, the simulation will automatically initialize the RAM contents with the required program. This is
performed by the simulator and not through the initialization interface.

The operating mode of the simulation can be modified by typing the following at the ModelSim prompt after the initial
compilation stage:

do runall.do +switch

The switch values are as follows:

+hard Core runs in hard mode (INSMODE = 0).

+gen Core runs in hard mode (INSMODE = 0); also, generate the hex image files required for soft operation.

+soft Core runs in soft mode (INSMODE = 1) with the instruction memories initialized by the simulator.

+init Core runs in soft mode (INSMODE = 1) with the instruction memories initialized through the initialization
interface.

APB Bus Including the Read Multiplexer

CoreABC APBSlave
Model

Initialization
Generator

Hex File
Generator

APBSlave
Model
CoreABC Handbook v3.0 45

Testbench Operation
Verification Tests
The basic testbench can be used to run the verification testbench for the core. To run the verification testbenches after
ModelSim has been invoked and the core compiled, type the following at the ModelSim prompt:

do runall.do +all

This will, through top-level generics on the core, run a pre-programmed set of instruction sequences that verify the
complete instruction set of the core and the external interfaces. This script will invoke the simulation multiple times.
These tests are as follows:

1. 8-bit operation with a limited instruction set

2. 16-bit operation with a limited instruction set

3. 32-bit operation with a limited instruction set

4. 8-bit operation with a medium instruction set

5. 16-bit operation with a medium instruction set

6. 32-bit operation with a medium instruction set

7. 8-bit operation with a complete instruction set

8. 16-bit operation with a complete instruction set

9. 32-bit operation with a complete instruction set

10. 8-bit operation with a partial instruction set

11. 8-bit operation with a partial instruction set

12. 8-bit operation with a partial instruction set; generate hex files

13. 8-bit operation with a partial instruction set; soft mode

14. 8-bit operation with a partial instruction set; soft mode using the initialization interface

15. 8-bit operation with single APB slot

16. 8-bit operation with four APB slots

20–31. Various configurations with corner-case parameter settings; these tests do not execute any instructions.

Each test will display pass or fail status.
46 CoreABC Handbook v3.0

A
Example Instruction Sequence

The following shows an example instruction sequence that uses CoreABC to control CoreAI, to detect whether a
voltage source is within a range.

// Sample code that reads an analog input and sets an output depending on a threshold

DEF ACM_SIZE 90

DEF ADC_STAT_HI_ADDR 0x11

DEF ACM_CTRLSTAT 0x0

DEF ACM_DATA_ADDR 0x04

DEF ACM_ADDR_ADDR 0x02

DEF ADC_CTRL2_HI_ADDR 0x09

// Set up UART and put out welcome 115200 baud assuming 50 MHz clock

$RESET

 APBWRT DAT8 1 8 27

 APBWRT DAT8 1 12 1

$WelcomeMessage

 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 'O'

 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 'K'

 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 10

 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 13

// Set up core AI

// Reset ACM

 WAIT WHILE INPUT1

 APBWRT DAT8 0 ACM_CTRLSTAT 1

 WAIT WHILE INPUT1

// Wait until calibrated

$WaitCalibrate

 APBREAD 0 ADC_STAT_HI_ADDR

 AND 0x8000

 JUMP IFNOT ZERO $WaitCalibrate

// Program AV, AC, AT, AG registers

 LOAD 0

$WaitRegProg

 WAIT WHILE INPUT1
CoreABC Handbook v3.0 47

Example Instruction Sequence
 APBWRT ACC 0 ACM_ADDR_ADDR

 APBWRT ACM 0 ACM_DATA_ADDR

 ADD 1

 CMP ACM_SIZE

 JUMP IFNOT ZERO $WaitRegProg

// Wait for ADC calibrated

 WAIT WHILE INPUT1

 IOWRT 1

// Now get the POT value, which is on AC5 = Ch17 0x11

// Also mask bits

$mainloop

 APBWRT DAT16 0 ADC_CTRL2_HI_ADDR 0x1100

 WAIT WHILE INPUT0

 APBREAD 0 ADC_STAT_HI_ADDR

 AND 0x0FFF

// Got the value in the accumalator, store in RAM in 1 mV value

 SHL0

 SHL0

 RAMWRT 0

// Now generate BCD value

 LOAD 0

 RAMWRT 11

 RAMWRT 12

 RAMWRT 13

// 0 = Value; 11-14 is BCD value

$BCD1

 SUB 1000

 JUMP IF NEGATIVE $BCD2

 PUSH

 RAMREAD 11

 INC

 RAMWRT 11

 POP

 JUMP $BCD1

$BCD2

 ADD 1000

$BCD3

 SUB 100

 JUMP IF NEGATIVE $BCD4
48 CoreABC Handbook v3.0

 PUSH

 RAMREAD 12

 INC

 RAMWRT 12

 POP

 JUMP $BCD3

$BCD4

 ADD 100

$BCD5

 SUB 10

 JUMP IF NEGATIVE $BCD6

 PUSH

 RAMREAD 13

 INC

 RAMWRT 13

 POP

 JUMP $BCD5

$BCD6

 ADD 10

 RAMWRT 14

// BCD value is now in memory; send to UART

$valueToUart

 WAIT UNTIL INPUT0

 RAMREAD 14

 ADD 0x30

 APBWRT ACC 1 0

 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 '.'

 WAIT UNTIL INPUT0

 RAMREAD 13

 ADD 0x30

 APBWRT ACC 1 0

 WAIT UNTIL INPUT0

 RAMREAD 12

 ADD 0x30

 APBWRT ACC 1 0

 WAIT UNTIL INPUT0

 RAMREAD 11

 ADD 0x30

 APBWRT ACC 1 0
CoreABC Handbook v3.0 49

Example Instruction Sequence
 WAIT UNTIL INPUT0

 APBWRT DAT8 1 0 'V'

 WAIT UNTIL INPUT0

 APBWRT DAT8 0 0 10

 WAIT UNTIL INPUT0

 APBWRT DAT8 0 0 13

 JUMP $mainloop

This sequence allows CoreABC to initialize CoreAI and then sample an ADC channel, converting the value to BCD
(binary coded decimal) and transmitting the value using CoreUART. In this case, the BUSY output from CoreAI is
connected to the IO_IN(0) input of CoreABC.
50 CoreABC Handbook v3.0

CoreABC Handbook v3.0 51

B
Adding User Instructions

When the RTL version of the core is being user-defined, additional instructions can be added to the core. Internally, the
core encodes instructions using five fields:

INSTR_CMD[2:0] Command

INSTR_SCMD[2:0] Subcommand

INSTR_SLOT[APB_SWIDTH–1:0] APB slot

INSTR_ADDR[APB_AWIDTH–1:0] APB address

INSTR_DATA[APB_DWIDTH–1:0] APB data

INSTR_CMD = 7, INSTR_SCMD = X in the base core is used as a NOP instruction. By a small change to the RTL
source code, the NOP instruction is changed to use INSTR_CMD = 7, INSTR_SCMD = 0 encoding. This leaves
INSTR_SCMD values 1–7 available for additional instructions, allowing seven additional instructions to be added.

To add user instructions:

1. Change the EN_USER constant/parameter in support.vhd or support.v to 1. This remaps the NOP instruction to
the following:

INSTR_CMD = 111 INSTR_SCMD = xx0

2. In your program file, enter the following instruction:

USER scmd, data, address, slot

3. The scmd, data, address, and slot values are optional values that will be encoded and passed to the core.

4. Add RTL code to the core source code (CoreABC.vhd or CoreABC.v) to implement your instructions. A comment
indicates where the main code should be inserted. When the instruction is executed, INSTR_CMD will be 7. The
INSTR_SCMD, INSTR_DATA, INSTR_ADDR, and INSTR_SLOT values will be set to the values used in the
user-created program.

C
Instruction Summary

This section details all the CoreABC instructions. The encoding can be found in Table C-1 on page 67.

NOP
Operation

No operation

Flags

Unchanged

Clock Cycles

3

LOAD DAT Data
Operation

Load accumulator with immediate data value.

Flags

ZERO: Set if value is zero.

NEGATIVE: Set if value is negative.

Clock Cycles

3

LOAD RAM Address
Operation

Load accumulator with RAM location.

Flags

ZERO: Set if value is zero.

NEGATIVE: Set if value is negative.

Clock Cycles

3

INC
Operation

Increment the accumulator.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

CoreABC Handbook v3.0 53

Instruction Summary
AND DAT Data
Operation

AND the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

AND RAM Address
Operation

AND the accumulator with the RAM location.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

OR DAT Data
Operation

OR the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

OR RAM Address
Operation

OR the accumulator with the RAM location.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

XOR DAT Data
Operation

XOR the accumulator with the immediate data value.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

54 CoreABC Handbook v3.0

XOR RAM Address
Operation

XOR the accumulator with the RAM location.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

ADD DAT Data
Operation

ADD the immediate data value to the accumulator.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

ADD RAM Address
Operation

ADD the RAM location to the accumulator.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

SUB DAT Data
Operation

Subtract the immediate data value from the accumulator.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

CoreABC Handbook v3.0 55

Instruction Summary
SUB RAM Address
Operation

Subtract the RAM location from the accumulator.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

SHL0
Operation

Shift the accumulator left; LSB <= 0.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

SHR0
Operation

Shift the accumulator right; MSB <= 0.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative (not set).

Clock Cycles

3

SHL1
Operation

Shift the accumulator left; LSB <= 1.

Flags

ZERO: Set if resultant value is zero (not set).

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

SHR1
Operation

Shift the accumulator right; MSB <= 1.

Flags

ZERO: Set if resultant value is zero (not set).

NEGATIVE: Set if resultant value is negative (set).

Clock Cycles

3

56 CoreABC Handbook v3.0

SHLE
Operation

Shift the accumulator left; LSB <= LSB.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

SHRE
Operation

Shift the accumulator right; MSB <= MSB.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

ROL
Operation

Rotate the accumulator left; LSB <= MSB.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

ROR
Operation

Rotate the accumulator right; MSB <= LSB.

Flags

ZERO: Set if resultant value is zero.

NEGATIVE: Set if resultant value is negative.

Clock Cycles

3

CoreABC Handbook v3.0 57

Instruction Summary
CMP DAT Data
Operation

Compare the accumulator with the immediate data value. Uses Boolean AND.

Flags

ZERO: Set if values are equal.

NEGATIVE: Set if both MSBs are set.

Clock Cycles

3

CMP RAM Address
Operation

Compare the accumulator with the RAM location. Uses Boolean AND.

Flags

ZERO: Set if values are equal.

NEGATIVE: Set if both MSBs are set.

Clock Cycles

3

CMPLEQ DAT Data
Operation

Compare the accumulator with the immediate data value. Uses subtract operation.

Flags

ZERO: Set if values are equal.

NEGATIVE: Set if accumulator is less than the data value.

Clock Cycles

3

CMPLEQ RAM Address
Operation

Compare the accumulator with the RAM location. Uses subtract operation.

Flags

ZERO: Set if values are equal.

NEGATIVE: Set if accumulator is less than the data value.

Clock Cycles

3

58 CoreABC Handbook v3.0

BITCLR N
Operation

Clear accumulator bit N. Uses Boolean AND.

Flags

ZERO: Set if resultant accumulator value is zero.

NEGATIVE: Set if resultant accumulator value is negative.

Clock Cycles

3

BITSET N
Operation

Set accumulator bit N. Uses Boolean OR.

Flags

ZERO: Set if resultant accumulator value is zero (not set).

NEGATIVE: Set if resultant accumulator value is negative.

Clock Cycles

3

BITTST N
Operation

Tests accumulator bit N. Uses Boolean AND.

Flags

ZERO: Set if the bit is zero.

NEGATIVE: Undefined

Clock Cycles

3

APBREAD Slot Address
Operation

 Reads the APB from the specified slot and address, and stores the value in the accumulator.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT ACC Slot Address
Operation

 Writes the accumulator to the APB at the specified slot and address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY
CoreABC Handbook v3.0 59

Instruction Summary
APBWRT ACM Slot Address
Operation

 Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DAT Slot Address Data
Operation

 Writes the data value to the APB at the specified slot and address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DAT8 Slot Address Data
Operation

Writes only the lowest eight bits of the data value to the APB at the specified slot and address. Specifying DAT8 rather
than DAT may reduce tile count when AHB_DWIDTH ≥ 16.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRT DAT16 Slot Address Data
Operation

Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying DAT16 rather
than DAT may reduce tile count when AHB_DWIDTH = 32.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBREADZ Slot
Operation

 Reads the APB from the specified slot and address, and stores the value in the accumulator. The Z register is used as the
APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY
60 CoreABC Handbook v3.0

APBWRTZ ACC Slot
Operation

 Writes the accumulator to the APB at the specified slot and address. The Z register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ ACM Slot
Operation

 Writes the value in the ACM table indexed by the accumulator to the APB at the specified slot and address. The Z
register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ DAT Slot Data
Operation

 Writes the data value to the APB at the specified slot and address. The Z register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ DAT8 Slot Data
Operation

Writes only the lowest eight bits of the data value to the APB at the slot and address pointed to by the Z register.
Specifying DAT8 rather than DAT may reduce tile count when AHB_DWIDTH ≥ 16. The Z register is used as the
APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY

APBWRTZ DAT16 Slot Data
Operation

Writes only the lowest 16 bits of the data value to the APB at the specified slot and address. Specifying DAT16 rather
than DAT may reduce tile count when AHB_DWIDTH = 32. The Z register is used as the APB address.

Flags

Unchanged

Clock Cycles

5 plus any additional cycles caused by PREADY
CoreABC Handbook v3.0 61

Instruction Summary
LOADZ DAT Data
Operation

 Loads the Z register with immediate data value.

Flags

ZZERO: Set if value is zero.

Clock Cycles

3

LOADZ RAM Address
Operation

 Loads the Z Register with RAM location.

Flags

ZZERO: Set if value is zero.

Clock Cycles

3

DECZ
Operation

 Decrements the Z register.

Flags

ZZERO: Set if the Z register decrements to zero.

Clock Cycles

3

INCZ
Operation

Increments the Z register.

Flags

ZZERO: Set if the Z register Increments to zero.

Clock Cycles

3

ADDZ Data
Operation

Adds Data to the Z register.

Flags

ZZERO: Set if the resultant Z register value is zero.

Clock Cycles

3

62 CoreABC Handbook v3.0

IOREAD
Operation

Load the IO_IN port value into the accumulator.

Flags

Updated

Clock Cycles

3

IOWRT DAT Data
Operation

Writes the data value to the I/O register that drives the IO_OUT top-level port.

Flags

Unchanged

Clock Cycles

3

IOWRT ACC
Operation

Writes the accumulator to the I/O register that drives the IO_OUT top-level port.

Flags

Unchanged

Clock Cycles

3

RAMREAD Address
Operation

 Loads the accumulator with the value stored at the specified address in the internal memory.

Flags

ZERO: Set if read value is zero.

NEGATIVE: Set if read value is negative.

Clock Cycles

3

RAMWRT ACC Address
Operation

 Writes the accumulator to the specified address in the internal memory.

Flags

Unchanged

Clock Cycles

3

CoreABC Handbook v3.0 63

Instruction Summary
RAMWRT DAT Address Data
Operation

Writes the data value to the specified address in the internal memory.

Flags

Unchanged

Clock Cycles

3

POP
Operation

Decrements the stack pointer and then loads the accumulator with the internal memory location addressed by the stack
pointer.

Flags

ZERO: Set if read value is zero.

NEGATIVE: Set if read value is negative.

Clock Cycles

3

PUSH DAT Data
Operation

Writes the immediate data to the internal memory location addressed by the stack pointer and then decrements the
stack pointer.

Flags

Unchanged

Clock Cycles

3

PUSH ACC
Operation

Writes the accumulator to the internal memory location addressed by the stack pointer and then decrements the stack
pointer.

Flags

Unchanged

Clock Cycles

3

JUMP Address
Operation

Jumps always to specified instruction address.

Flags

Unchanged

Clock Cycles

3

64 CoreABC Handbook v3.0

JUMP IF|IFNOT Condition Address
Operation

Jumps on or not on condition to specified instruction address. Conditions are specified in Table C-1 on page 67.

Flags

Unchanged

Clock Cycles

3

CALL Address
Operation

Jumps always to specified instruction address. The following instruction address is pushed onto the stack and the stack
pointer decremented.

Flags

Unchanged

Clock Cycles

3

CALL IF|IFNOT Condition Address
Operation

Jumps on or not on condition to specified instruction address. The following instruction address is pushed onto the
stack and the stack pointer decremented. Conditions are specified in Table C-1 on page 67.

Flags

Unchanged

Clock Cycles

3

RETURN
Operation

Jumps to the instruction address read from the stack. The stack pointer is incremented.

Flags

Unchanged

Clock Cycles

3

RETURN IF|IFNOT Condition
Operation

Jumps on or not on condition to the instruction address read from the stack. The stack pointer is incremented.
Conditions are specified in Table C-1 on page 67.

Flags

Unchanged

Clock Cycles

3

CoreABC Handbook v3.0 65

Instruction Summary
RETISR
Operation

Jumps to the instruction address read from the stack. The stack pointer is incremented. The INTACT output is
deactivated.

Flags

Restored to the values preceding the interrupt.

Clock Cycles

3

RETURN IF|IFNOT Condition
Operation

Jumps on or not on condition to the instruction address read from the stack. The stack pointer is incremented. The
internal INTACT output is deactivated. Conditions are specified below.

Flags

Restored to the values preceding the interrupt.

Clock Cycles

3

WAIT UNTIL|WHILE Condition
Operation

Wait at the current instruction until or while a condition is true. Conditions are specified below.

Flags

Unchanged

Clock Cycles

3 to ∞

HALT
Operation

Halt

Flags

Unchanged

Clock Cycles

∞

66 CoreABC Handbook v3.0

Condition Codes
Condition Codes
The conditions codes are shown in Table C-1.

Table C-1 · Condition Codes

Condition Description

ALWAYS Always

ZERO Accumulator zero

NEGATIVE Accumulator negative

ZZERO Z register zero

INPUT0 Input0 set

INPUT1 Input1 set and similarly for higher inputs, if available

POSITIVE Equivalent to NOT NEGATIVE

LTE_ZERO Less than or equal to zero; the combination NEGATIVE OR ZERO

GT_ZERO Greater than zero; the combination NOT (NEGATIVE OR ZERO)
CoreABC Handbook v3.0 67

CoreABC Handbook v3.0 69

D
List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version

Changes in Current Version (v3.0) Page

v2.1

Supported core version updated in “Core Version” section. 5

Supported version of Libero IDE updated in “Supported Tool Flows” section. 5

The LOADLOOP register was renamed Z Register. The LOADZ condition flag was renamed ZZERO. N/A

Table 1 replaced and Table 2 created. 6

“Utilization and Performance” section updated. 6

Figure 1-1 updated. 9

EQ 2 and EQ 4 updated. 11

Figure 2-1 updated. 14

The “Simulation Flows” section was updated. 15

Table 3-1 updated, with numerous parameter changes, additions, and deletions. 17

“EN_DATAM Generic” section added. 19

“Internal Data RAM Address Space” and “I/O Address Space” sections updated. 23

“Instruction Set” section replaced. 24

Table 5-1 updated variously. 29

“Simulation Logging” section updated. 34

Figure 6-1 and Figure 6-3 were updated. 35, 38

“Number of I/O Inputs” section added and “Number of I/O Flag Inputs” section modified. 36

“ALU Operation from Memory”, “APB Indirect Addressing”, and “Supported Data Sources” sections added. 37

Figure 7-1 and Figure 7-2 were updated. 39, 40

“Verification Tests” section updated. 46

“Example Instruction Sequence” appendix modified. 47

Many instructions added or changed in “Instruction Summary” appendix. 53

v2.0

The “Core Version” and “Supported Interfaces” sections are new. 5

Values in the Configuration column were updated in Table 1 · CoreABC Utilization Data (Hard Mode—
instructions held in tiles).

6

The last paragraph was changed in the “ACM Lookup for Use with CoreAI” section. 32

The “Automatically Created Memory Image Files” section is new. 42

The “Updating the Program and Flash Memory Contents” section is new. 43

The “Instruction Summary” section (Appendix D) is new. 69

E
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
CoreABC Handbook v3.0 71

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
72 CoreABC Handbook v3.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
ACM lookup 32
Actel

electronic mail 71
telephone 72
web-based technical support 71
website 71

address spaces 23
ALU 9
APB

bus master 10
interface 5

B
block diagram 9

C
complete system 10
configuration 35

parameters 35
contacting Actel

customer service 71
electronic mail 71
telephone 72
web-based technical support 71

CoreABC
block diagram 9
complete system 10
configuration screen 14
inputs 21
overview 5
programmer’s model 23
typical system 5

CoreAI 5, 10
CoreConsole IP Deployment Platform (IDP) 13
CorePWM 5
CoreUART 10
cross validation of configuration fields 38
customer service 71

E
example instruction sequence 47

F
flags 9

I
importing into Libero IDE 15
instruction encoder 41
instruction encoding 29
instruction set 24
interface descriptions 17
internal architecture 9
interrupt operation 33

L
Libero IDE

importing into 15
place-and-route in 15
synthesis in 15

O
Obfuscated 13

P
ports 21
product support 71–72

customer service 71
electronic mail 71
technical support 71
telephone 72
website 71

programmer’s model 23
programming 39

R
RTL 13

S
simulation logging 34
SmartGen Initialization Client 43
soft configuration 11
stack 33

T
technical support 71
testbench operation 45
tool flows 13

U
user instructions 34, 51
CoreABC Handbook v3.0 73

Index
utilization data 6, 7

V
verification tests 46
Verilog analysis 40

VHDL analysis 40

W
web-based technical support 71
74 CoreABC Handbook v3.0

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley, Surrey GU17 9AB • United Kingdom

Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200085-2 /4.07

	Introduction
	CoreABC Overview
	Figure 1 · Typical CoreABC System

	Core Version
	Supported Interfaces
	Supported Tool Flows
	Utilization and Performance
	Table 1 · CoreABC Utilization Data (Hard Mode-instructions held in tiles)
	Table 2 · CoreABC Utilization Data (Soft Mode-instructions held in RAM)

	Internal Architecture
	Figure 1-1 · CoreABC Block Diagram
	Advanced Peripheral Bus
	Figure 1-2 · Complete System Containing CoreABC, CoreAI, and CoreUART

	Soft Configuration-RAM-Based Operation

	Tool Flows
	Licenses
	CoreConsole
	Figure 2-1 · CoreABC Configuration Screen
	Parameters
	Program
	Help
	Samples
	Analysis

	Importing into Libero IDE
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Interface Descriptions
	Interface Descriptions
	Parameters
	Table 3-1 · CoreABC Parameters
	EN_DATAM Generic
	Table 3-2 · Accumulator Only (EN_DATAM = 0)
	Table 3-3 · Immediate Only (EN_DATAM = 1)
	Table 3-4 · Accumulator and Immediate (EN_DATAM = 2)
	Table 3-5 · Instruction-Dependent (EN_DATAM = 3)

	Ports
	Table 3-6 · CoreABC Port Descriptions

	CoreABC Programmer’s Model
	Address Spaces
	Figure 4-1 · CoreAPB Data Address Spaces
	Internal Data RAM Address Space
	I/O Address Space
	APB Address Space

	Flags Register-Inputs and Condition Codes
	Figure 4-2 · Flags and Inputs Register

	Instruction Set
	Table 4-1 · The Boolean and Arithmetic Instruction Group
	Table 4-2 · The Memory Instruction Group
	Table 4-3 · The Z Register* Instruction Group
	Table 4-4 · The APB Instruction Group
	Table 4-5 · The I/O Instruction Group
	Table 4-6 · The Flow Control Instruction Group
	Table 4-7 · Conditions for Flow Control Instruction Group
	Table 4-8 · Other Instructions

	CoreABC Operation
	Instruction Encoding
	Table 5-1 · CoreABC Instruction Encoding
	Table 5-2 · FLAGS Value

	ACM Lookup for Use with CoreAI
	Stack
	Interrupt Operation
	User Instructions
	Simulation Logging

	CoreABC Configuration
	Figure 6-1 · Configuration Parameters
	APB Address Bus Width
	APB Data Bus Width
	Number of APB Slots
	Maximum Number of Instructions
	Z Register Size
	Number of I/O Inputs
	Number of I/O Flag Inputs
	Number of I/O Outputs
	Stack Size
	Instruction Store
	Initialization Width
	Internal Data/Stack Memory
	ALU Operation from Memory
	APB Indirect Addressing
	Supported Data Sources
	Interrupt Support
	ISR Address
	Optional Instructions
	Instance ID
	Testbench
	Verbose Simulation Log
	FPGA Family
	Cross-Validation of Configuration Fields
	Figure 6-2 · Error Symbol
	Figure 6-3 · CoreABC Configuration Validation

	CoreABC Programming
	Figure 7-1 · CoreABC Programming Screen
	Analysis
	Instructions Used
	VHDL and Verilog Analysis
	Figure 7-2 · VHDL Analysis

	Other Analysis information

	Modifying the RTL Code Directly
	Figure 7-3 · The Instruction Encoder

	Soft Operation-Creating the Programming File
	Creating a Memory Image File
	Table 7-1 · Memory Image Files

	Creating and Using the SmartGen Initialization Client
	Programming the Flash Memory
	Updating the Program and Flash Memory Contents

	Testbench Operation
	Basic Testbench
	Figure 8-1 · CoreAI Verification Testbench

	Verification Tests

	Example Instruction Sequence
	Adding User Instructions
	Instruction Summary
	Condition Codes
	Table C-1 · Condition Codes

	List of Document Changes
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

