
Core16550 v3.0

Handbook

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200110-0

Release: September 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

v2.0 3

Table of Contents

Introduction . 5
Core Version . 6

Device Utilization and Performance . 6

1 Functional Block Description . 7
Software Interface . 8

2 Tool Flows . 17
Licenses . 17

CoreConsole . 17

Importing into Libero IDE . 18

3 Core16550 . 19
Parameters . 19

4 Core Interfaces . 21
I/O Signal Description . 21

5 Timing Diagrams . 23
Receiver Synchronization . 24

6 Testbench Operation . 25
Verification Testbench . 25

User Testbench . 26

A Product Support . 29
Customer Service . 29

Actel Customer Technical Support Center . 29

Actel Technical Support . 29

Website . 29

Contacting the Customer Technical Support Center . 29

Index . 31

Introduction

Core16550 is a standard UART providing software compatibility with the popular 16550 device. It performs serial-
to-parallel conversion on data originating from modems or other serial devices, and performs parallel-to-serial
conversion on data from a CPU to these devices. When transmitting, the data is written in parallel into the transmit
FIFO of the UART. The data is then transmitted in serial form. When receiving data, the UART transforms the
serial input data into a parallel form to facilitate reading by the processor. A typical 16550 application is shown in
Figure 1.

Figure 1 · Typical 16550 Application
v2.0 5

Introduction Core16550 v3.0
Core Version
This handbook applies to Core16550 v3.0. The release notes provided with the core list known discrepancies between
this handbook and the core release associated with the release notes.

Device Utilization and Performance
Core16550 utilization and performance data are summarized in Table 1.

Table 1 · Core16550 Utilization and Performance

Family
Cell or Tiles

RAM
Blocks

Utilization

Sequential Combinatorial Total Device Total

IGLOO™/IGLOOE 237 1,010 1,247 2 AGL600-STD 9%

Fusion 237 1,010 1247 2 AFS600-STD 9%

ProASIC®3/E 237 1,010 1,247 2 A3P600-STD 9%

ProASICPLUS® 233 1,209 1,442 2 APA075-STD 47%

RTAX-S 229 608 837 2 RTAX250S-STD 20%

Axcelerator® 229 608 837 2 AX125-STD 42%

Note: The above data were obtained by typical synthesis and place-and-route flow.
6 v2.0

1
Functional Block Description

This section provides a short description for each element of the internal block diagram in Figure 1-1.

Figure 1-1 · Core16550 Block Diagram

RWControl
The RWControl block is responsible for handling the communications with the processor (parallel) side of the
system. All writing and reading of internal registers is accomplished through this block.

UART_Reg
The UART_Reg block holds all of the device internal registers.

RXBlock
This is the Receiver block. RXBlock receives the incoming serial word. It is programmable to recognize data widths,
such as 5, 6, 7, or 8 bits; various parity settings, such as even, odd, or no-parity; and different stop bits, such as 1, 1½,
and 2 bits. RXBlock checks for errors in the input data stream, such as overrun errors, frame errors, parity errors, and
break errors. If the incoming word has no problems, it is placed in the Receiver FIFO.

Interrupt Control
The Interrupt Control block sends an interrupt signal back to the processor, depending on the state of the FIFO and
its received and transmitted data. The Interrupt Identification Register provides the level of the interrupt. Interrupts
are sent for empty transmission/receipt buffers (or FIFOs), an error in receiving a character, or other conditions
requiring the attention of the processor.

Core16550

RXBLOCK

RWCONTROL

UART_REG

RX_FIFO

TX_FIFO

Interrupt
Control

Baud Rate
Generator

TXBLOCK

PCLK
PRESETN
PENABLE

PSEL
PADDR

PWDATA
PWRITE
PRDATA

CTSN
DSRN
DCDN

SIN
RIN

SOUT
RTSN
DTRN

OUT1N
OUT2N

INTR
BAUDOUTN

RXRDYN
TXRDYN

RXFIFO_EMPTY
RXFIFO_FULL
v2.0 7

Functional Block Description Core16550 v3.0
Baud Rate Generator
This block takes the input PCLK and divides it by a programmed value (from 1 to 216 – 1). The result is divided by 16
to create the transmission clock (BAUDOUT).

TXBlock
The Transmit block handles the transmission of data written to the Transmit FIFO. It adds the required start, parity,
and stop bits to the data being transmitted so the receiving device can do the proper error handling and receiving.

Software Interface
The Core16550 register definitions and address mappings are described in this section. The Core16550 register
summary is shown in Table 1-1.

Receiver Buffer Register
The Receiver Buffer Register is defined in Table 1-2.

Table 1-1 · Core16550 Register Summary

PADDR[4:0]
(Address)

Divisor Latch
Access Bit*

(DLAB)
Name Symbol

Default (reset)
Value

No. of
Bits

Read/Write

00 0 Receiver Buffer Register RBR XX 8 R

00 0 Transmitter Holding Register THR XX 8 W

00 1 Divisor Latch (LSB) DLR 01h 8 R/W

04 1 Divisor Latch (MSB) DMR 00h 8 R/W

04 0 Interrupt Enable Register IER 00h 8 R/W

08 X Interrupt Identification Register IIR 01h 8 R

08 X FIFO Control Register FCR 00h 8 W

0C X Line Control Register LCR 00h 8 R/W

10 X Modem Control Register MCR 00h 8 R/W

14 X Line Status Register LSR 60h 8 R

18 X Modem Status Register MSR 00h 8 R

1C X Scratch Register SR 00h 8 R/W

Note: *DLAB is the MSB of the Line Control Register (LCR bit 7).

Table 1-2 · Receiver Buffer Register (read only) – Address 0 DLAB 0

Bits Name Default State Valid States Function

7..0 RBR XX 0..FFh Received data bits. Bit 0 is the LSB, and is the first received bit.
8 v2.0

Core16550 v3.0 Software Interface
Transmitter Holding Register
The Transmitter Holding Register is defined in Table 1-3.

FIFO Control Register
The FIFO Control Register is defined in Table 1-4.

Table 1-3 · Transmitter Holding Register (write only)

Bits Name Default State Valid States Function

7..0 THR XX 0..FFh Data bits to be transmitted. Bit 0 is the LSB, and is transmitted first.

Table 1-4 · FIFO Control Register (write only)

Bits (7:0) Default State Valid States Function

0 0 0, 1

Enables both the TX and RX FIFOs. This bit must be set to 1 when other
FCR bits are written to or they will not be programmed.

0 – Disabled

1 – Enabled

1 0 0, 1

Clears all bytes in the RX FIFO and resets its counter logic. The shift
register is not cleared.

0 – Disabled

1 – Enabled

2 0 0, 1

Clears all bytes in the TX FIFO and resets its counter logic. The shift
register is not cleared.

0 – Disabled

1 – Enabled

3 0 0, 1
Enables RXRDYN and TXRDYN pins when set to 1. Otherwise, they are
disabled.

4, 5 0 0, 1 Reserved for future use.

6, 7 0 0, 1

These bits are used to set the trigger level for the RX FIFO interrupt.

7 6 RX FIFO Trigger Level (bytes)

0 0 01

0 1 04

1 0 08

1 1 14
v2.0 9

Functional Block Description Core16550 v3.0
The Divisor Control Registers
The baud rate (BR) clock is generated by dividing the input reference clock (PCLK) by 16 and the Divisor value. The
exact formula is shown in EQ 1:

EQ 1

Table 1-5 gives an example of divisor values for desired baud rates when using an 18.432 MHz reference clock.

BR PCLK
16 DivisorValue⋅
--=

Table 1-5 · Divisor Latch (LS), (MS)

Bits Name Default State Valid States Function

7..0 DLR 01h 01..FFh The LSB of Divisor value

7..0 DMR 00h 00..FFh The MSB of Divisor value

Table 1-6 · Baud Rates and Divisor Values for 18.432 MHz Reference Clock

Baud Rate Decimal Divisor (Divisor Value) Percent Error

50 23,040 0.0000%

75 15,360 0.0000%

110 10,473 –0.2865%

134.5 8,565 0.0876%

150 7,680 0.0000%

300 3,840 0.0000%

600 1,920 0.0000%

1,200 920 4.3478%

1,800 640 0.0000%

2,000 576 0.0000%

2,400 480 0.0000%

3,600 320 0.0000%

4,800 240 0.0000%

7,200 160 0.0000%

9,600 120 0.0000%

19,200 60 0.0000%

38,400 30 0.0000%

56,000 21 –2.0408%
10 v2.0

Core16550 v3.0 Software Interface
Interrupt Enable Register
The Interrupt Enable Register is defined in Table 1-7.

Interrupt Identification Register
The Interrupt Identification Register is defined in Table 1-8.

The Interrupt Identification Register field is defined in Table 1-9.

Table 1-7 · Interrupt Enable Register

Bits Name Default State Valid State Function

0 ERBFI 0 0, 1

Enables Received Data Available Interrupt

0 – Disabled
1 – Enabled

1 ETBEI 0 0, 1

Enables the Transmitter Holding Register Empty Interrupt

0 – Disabled
1 – Enabled

2 ELSI 0 0, 1

Enables the Receiver Line Status Interrupt

0 – Disabled
1 – Enabled

3 EDSSI 0 0, 1

Enables the Modem Status Interrupt

0 – Disabled
1 – Enabled

7..4 Reserved 0 0 Always 0

Table 1-8 · Interrupt Identification Register

Bits Name Default State Valid States Function

3..0 IIR 1h 0..Ch Interrupt Identification bits. Described in Table 1-9.

5..4 Reserved 00 00 Always 00

7..6 Mode 11 11 11 – FIFO mode

Table 1-9 · Interrupt Identification Register Field (IIR)

IIR
Value[3:0)]

Priority
Level

Interrupt Type Interrupt Source Interrupt Reset Control

0110 Highest Receiver Line Status
Overrun error, parity error, framing error, or
break interrupt

Reading the Line Status Register

0100 Second
Received Data
Available

Receiver Data Available
Reading the Receiver Buffer
Register or the FIFO drops below
the trigger level

1100 Second
Character Timeout
Indication

No characters have been read from the RX FIFO
during the last four character times and there was
at least one character in it during this time.

Reading the Receiver Buffer
Register

0010 Third
Transmitter Holding
Register Empty

Transmitter Holding Register Empty
Reading the IIR or writing into
the Transmitter Holding Register

0000 Fourth Modem Status
Clear to Send, Data Set Ready, Ring Indicator, or
Data Carrier Detect

Reading the modern Status
Register
v2.0 11

Functional Block Description Core16550 v3.0
Line Control Register
The Line Control Register is defined in Table 1-10.

Table 1-10 · Line Control Register

Bits Name
Default

State
Valid States Function

1..0 WLS 0 0..3h

Word Length Select

00 – 5 bits

01 - 6 bits

10 – 7 bits

11 – 8 bits

2 STB 0 0, 1

Number of Stop Bits

0 – 1 stop bit

1 – 1½ stop bits when WLS = 00

2 stop bits in other cases

3 PEN 0 0, 1

Parity Enable

0 – Disabled

1 – Enabled. Parity is added in transmission and checked in receiving.

4 EPS 0 0, 1

Even Parity Select

0 – Odd parity

1 – Even parity

5 SP 0 0, 1

Stick Parity

0 – Disabled

1 – Enabled

When stick parity is enabled, it works as follows:

Bits 4..3

11 – 0 will be sent as a parity bit, and checked in receiving.

01 – 1 will be sent as a parity bit, and checked in receiving.

6 SB 0 0, 1

Set Break

0 – Disabled

1 – Set break. SOUT is forced to 0. This does not have any effect on transmitter
logic. The break is disabled by setting the bit to 0.

7 DLAB 0 0, 1

Divisor Latch Access Bit

0 – Disabled. Normal addressing mode in use

1 – Enabled. Enables access to the Divisor Latch registers during read or write
operation to addresses 0 and 1.
12 v2.0

Core16550 v3.0 Software Interface
Modem Control Register
The Modem Control Register is defined in Table 1-11.

Table 1-11 · Modem Control Register

Bits Name
Default

State
Valid
States

Function

0 DTR 0 0, 1

Controls the Data Terminal Ready (DTRn) output.

0 – DTRn <= 1

1 – DTRn <= 0

1 RTS 0 0, 1

Controls the Request to Send (RTSn) output.

0 – RTSn <= 1

1 – RTSn <= 0

2 Out1 0 0, 1

Controls the Output1 (OUT1n) signal.

0 – OUT1n <= 1

1 – OUT1n <= 0

3 Out2 0 0, 1

Controls the Output2 (OUT2n) signal.

0 – OUT2n <=1

1 – OUT2n <=0

4 Loop 0 0, 1

Loop enable bit

0 – Disabled

1 – Enabled. The following happens in loop mode:

SOUT is set to 1. The SIN, DSRn, CTSn, RIn, and DCDn inputs are disconnected.
The output of the Transmitter Shift Register is looped back into the Receiver Shift
Register. The modem control outputs (DTRn, RTSn, OUT1n, and OUT2n) are
connected internally to the modem control inputs, and the modem control output pins
are set at 1. In loopback mode, the transmitted data is immediately received, allowing the
CPU to check the operation of the UART. The interrupts are operating in loop mode.

7..4 Reserved 0h 0 Reserved
v2.0 13

Functional Block Description Core16550 v3.0
Line Status Register
The Line Status Register is defined in Table 1-12.

Table 1-12 · Line Status Register (read only)

Bits Name Default State Valid States Function

0 DR 0 0, 1

Data Ready indicator

1 when a data byte has been received and stored in the receive buffer or the
FIFO. DR is cleared to 0 when the CPU reads the data from the receive buffer
or the FIFO.

1 OE 0 0, 1

Overrun Error indicator

Indicates that the new byte was received before the CPU read the byte from the
receive buffer, and that the earlier data byte was destroyed. OE is cleared when
the CPU reads the Line Status Register. If the data continues to fill the FIFO
beyond the trigger level, an overrun error will occur once the FIFO is full and the
next character has been completely received in the shift register. The character in
the shift register is overwritten, but it is not transferred to the FIFO.

2 PE 0 0, 1

Parity Error indicator

Indicates that the received byte had a parity error. PE is cleared when the CPU
reads the Line Status Register. This error is revealed to the CPU when its
associated character is at the top of the FIFO.

3 FE 0 0, 1

Framing Error indicator

Indicates that the received byte did not have a valid Stop bit. FE is cleared when
the CPU reads the Line Status Register. The UART will try to resynchronize
after a framing error. To do this, it assumes that the framing error was due to the
next start bit, so it samples this start bit twice, and then starts receiving the data.
This error is revealed to the CPU when its associated character is at the top of
the FIFO.

4 BI 0 0, 1

Break Interrupt indicator

Indicates that the received data is at 0 longer than a full word transmission time
(start bit + data bits + parity + stop bits). BI is cleared when the CPU reads the
Line Status Register. This error is revealed to the CPU when its associated
character is at the top of the FIFO. When break occurs, only one zero character
is loaded into the FIFO.

5 THRE 1 0, 1

Transmitter Holding Register Empty indicator

Indicates that the UART is ready to transmit a new data byte. THRE causes an
interrupt to the CPU when bit 1 (ETBEI) in the Interrupt Enable Register is 1.
This bit is set when the TX FIFO is empty. It is cleared when at least one byte is
written to the TX FIFO.

6 TEMT 1 0, 1
Transmitter Empty indicator

This bit is set to 1 when both the transmitter FIFO and shift registers are empty.

7 FIER 0 1
This bit is set when there is at least one parity error, framing error, or break
indication in the FIFO. FIER is cleared when the CPU reads the LSR if there
are no subsequent errors in the FIFO.
14 v2.0

Core16550 v3.0 Software Interface
Modem Status Register
The Modem Status Register is defined in Table 1-13.

Scratch Register
The Scratch Register is defined in Table 1-14.

Table 1-13 · Modem Status Register (read only)

Bits Name Default State Valid States Function

0 DCTS 0 0, 1

Delta Clear to Send indicator.

Indicates that the CTSn input has changed state since the last time it was read by
the CPU.

1 DDSR 0 0, 1

Delta Data Set Ready indicator

Indicates that the DSRn input has changed state since the last time it was read by
the CPU.

2 TERI 0 0, 1
Trailing Edge of Ring Indicator detector.

Indicates that RI input has changed from 0 to 1.

3 DDCD 0 0, 1

Delta Data Carrier Detect indicator

Indicates that DCD input has changed state.

NOTE: Whenever bit 0, 1, 2, or 3 is set to 1, a Modem Status Interrupt is
generated.

4 CTS 0 0, 1

Clear to Send

The complement of the CTSn input. When bit 4 of the Modem Control
Register (MCR) is set to 1 (loop), this bit is equivalent to DTR in the MCR.

5 DSR 0 0, 1

Data Set Ready

The complement of the DSR input. When bit 4 of the MCR is set to 1 (loop),
this bit is equivalent to RTSn in the MCR.

6 RI 0 0, 1

Ring Indicator

The complement of the RIn input. When bit 4 of the MCR is set to 1 (loop),
this bit is equivalent to OUT1 in the MCR.

7 DCD 0 0, 1

Data Carrier Detect

The complement of DCDn input. When bit 4 of the MCR is set to 1 (loop), this
bit is equivalent to OUT2 in the MCR.

Table 1-14 · Scratch Register

Bits Name Default State Function

7..0 SCR 00h Read/write register for CPU. No effects on UART operation.
v2.0 15

2
Tool Flows

Licenses
Core16550 is licensed in three ways. Depending on your license, tool flow functionality may be limited.

Evaluation
Pre-compiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated
within Actel Libero® Integrated Design Environment (IDE), as described in the “CoreConsole” section. Using the
Evaluation version of the core, it is possible to create and simulate the complete design in which the core is being
included. The design cannot be synthesized, as source code is not provided.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed with Actel Libero IDE. The RTL code for the core is obfuscated, and some
of the testbench source files are not provided. They are pre-compiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
Core16550 is preinstalled in the CoreConsole IP Deployment Platform (IDP). To use the core, click and drag it from
the IP core list into the main window. The CoreConsole project can be exported to Actel Libero IDE at this point,
providing access to the core only. Alternatively, IP blocks can be interconnected, allowing the complete system to be
exported from CoreConsole to Libero IDE. The core can be configured using the configuration GUI within
CoreConsole, as shown in Figure 2-1.

Figure 2-1 · Core16550 Configuration within CoreConsole

After configuring the core, Actel recommends that you use the top-level Auto Stitch function to connect all the core
interface signals to the top level of the CoreConsole project.

Once the core is configured, invoke the Generate function in CoreConsole. This will export all the required files to
the project directory in the LiberoExport directory. This is in the CoreConsole installation directory by default.
v2.0 17

Tool Flows Core16550 v3.0
Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Actel Libero IDE. Create a
new project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will
then install the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and
imported into Libero IDE at the same time.

Simulation Flows
To run simulations, select the required testbench flow within CoreConsole and run Save & Generate from the
Generate pane. Select the required testbench through the core configuration GUI in CoreConsole. The following
simulation environments are supported:

• Full Core16550 verification environment (Verilog only)

• Simple testbench (VHDL and Verilog)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run the
testbenches, simply set the design root to the Core16550 instantiation in the Actel Libero IDE file manager and click
the Simulation icon in Libero IDE. This will invoke ModelSim® and automatically run the simulation.

Synthesis in Libero IDE
To run Synthesis on the core with parameters set in CoreConsole, set the design root to the top of the project
imported from CoreConsole. This is a wrapper around the core that sets all the generics appropriately. Make sure the
required timing constraints files are associated with the synthesis tool.

Click the Synthesis icon in Libero IDE. The synthesis window appears, displaying the Synplicity® project. To run
Synthesis, click the Run icon.

Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
Core16550 requires no special place-and-route settings.
18 v2.0

3
Core16550

Parameters
Core16550 has a top-level parameter/generic that is used to select the device family (Table 3-1).

Table 3-1 · Core Parameters

Parameter
Name

Description
Allowed
Values

Default

FAMILY

Must be set to match the supported FPGA family.

11 – Axcelerator

12 – RTAX-S

14 – ProASICPLUS

15 – ProASIC3

16 – ProASIC3E

17 – Fusion

20 – IGLOO

21 – IGLOOe

11 to 21 15
v2.0 19

4
Core Interfaces

I/O Signal Description
Core16550 I/O definitions are given in Table 4-1.

Table 4-1 · I/O Signal Summary

Name Type Polarity Description

PRESETN In LOW Master reset

PCLK In –

Master clock

PCLK is divided by the value of the Divisor Registers. The result is then divided
again by 16 to produce the baud rate. The resultant signal is the BAUDOUT
signal. The rising edge of this pin is used to strobe all input and output signals.

PWRITE In HIGH

APB write/read enable, active high

When HIGH, data is written to the specified address location. When LOW, data
is read from the specified address location.

PADDR[4:0] In

APB Address

This bus provides the link for the CPU to the address of the register of Core16550
to be read from or written to.

PSEL In HIGH

APB select

When this is HIGH along with PENABLE, reading and writing to Core16550 is
enabled.

PWDATA[7:0] In –
Data input bus

Data on this bus will be written into the addressed register during a write cycle.

PENABLE In HIGH

APB enable

When this is HIGH along with PSEL, reading and writing to Core16550 is
enabled.

PRDATA[7:0] Out –
Data output bus

This bus will hold the value of the addressed register during a read cycle.

CTSn In LOW

Clear to Send

This active low signal is an input showing when the attached device (modem) is
ready to accept data. Core16550 passes this information to the CPU via the
Modem Status register. This register also indicates if the CTSn signal has
changed since the last time the register was read.

DSRn In LOW

Data Set Ready

This active low signal is an input indicating when the attached device (modem) is
ready to set up a link with Core16550. Core16550 passes this information to the
CPU via the Modem Status Register. This register also indicates if the DSRn
signal has changed since the last time the register was read.

DCDn In LOW

Data Carrier Detect

This active low signal is an input indicating when the attached device (modem)
has detected a carrier. Core16550 passes this information to the CPU via the
Modem Status Register. This register also indicates if the DCDn signal has
changed since the last time the register was read.

SIN In –

Serial Input Data

This is the data that will be transmitted into Core16550. It is synchronized with
the PCLK input pin.
v2.0 21

Core Interfaces Core16550 v3.0
RIn In LOW

Ring Indicator

This active low signal is an input showing when the attached device (modem) has
sensed a ring signal on the telephone line. Core16550 passes this information to
the CPU via the Modem Status Register. This register also indicates when the
RIn trailing edge was sensed.

SOUT Out –

Serial output data

This is the data that will be transmitted from Core16550. It is synchronized with
the BAUDOUT output pin.

RTSn Out LOW

Request to Send

This active low output signal is used to inform the attached device (modem) that
Core16550 is ready to send data. It is programmed by the CPU via the Modem
Control Register.

DTRn Out LOW

Data Terminal Ready

This active low output signal informs the attached device (modem) that
Core16550 is ready to establish a communications link. It is programmed by the
CPU via the Modem Control Register.

OUT1n Out LOW

Output 1

This active low output is a user-defined signal. It is programmed by the CPU via
the Modem Control Register and is set to the opposite value. programmed.

OUT2n Out LOW

Output 2

This active low output signal is a user-defined signal. It is programmed by the
CPU via the Modem Control Register and is set to the opposite value.
programmed.

INTR Out HIGH

Interrupt Pending

This active high output signal is the interrupt output signal from Core16550. It
can be programmed to become active on certain events, informing the CPU that
such an event has occurred (see “Interrupt Identification Register” on page 11 for
details). The CPU can then take appropriate action.

BAUDOUTn Out LOW

Baud out

This is an output clock signal derived from the input clock (see PCLK
description) for synchronizing the data output stream from SOUT.

RXRDYN Out LOW

Receiver ready to receive transmissions

This active low output signal indicates to the CPU that the receiver section of
Core16550 is available for data to be read.

TXRDYN Out LOW

Transmitter ready to transmit data

This active low signal indicates to the CPU that the transmitter section of
Core16550 has space to write data for transmission.

rxfifo_empty Out High
Receive FIFO empty

This signal goes HIGH when the receive FIFO is empty.

rxfifo_full Out High
Receive FIFO full

This signal goes HIGH when the receive FIFO is full.

Table 4-1 · I/O Signal Summary (continued)

Name Type Polarity Description
22 v2.0

5
Timing Diagrams

Figure 5-1 and Figure 5-2 depict write cycle and read cycle timing relationships relative to the APB system clock,
PCLK.

Register Write
As shown in Figure 5-1, the Address, Select, and Enable signals are latched and must be valid prior to the rising edge
of PCLK. Writing occurs at the rising edge of the PCLK signal.

Figure 5-1 · Data Write Cycle

Register Read
As shown in Figure 5-2, the Address, Select, and Enable signals are latched and must be valid prior to the rising edge
of PCLK. Reading occurs at the rising edge of the PCLK signal.

Figure 5-2 · Data Read Cycle

More detailed descriptions and timing waveforms can be found in the AMBA specification: http://www.amba.com/
products/solutions/AMBA_Spec.html.

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PWDATA[7:0]

Write Address

Write Data

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PRDATA[7:0]

Read Address

Read Data
v2.0 23

http://www.amba.com/products/solutions/AMBA_Spec.html
http://www.amba.com/products/solutions/AMBA_Spec.html

Timing Diagrams Core16550 v3.0
Receiver Synchronization
When the Receiver detects a LOW state in the incoming data stream, it will synchronize to it. After the start edge,
the UART will wait 1.5 × (the normal bit length). This causes each subsequent bit to be read at the middle of its
width. Figure 5-3 depicts this synchronization process.

Figure 5-3 · Receiver Synchronization

Start Bit
Detected

Message
Bit Read

Message
Bit Read

First
Message Bit

Second
Message Bit

1.5 Bits
24 v2.0

6
Testbench Operation

Three testbenches are provided with Core16550:

• Verilog verification testbench: Complex testbench that verifies core operation. This testbench exercises all the
features of the core. Actel recommends not modifying this testbench. This Verilog testbench can be used to simulate
the VHDL version of the core if a mixed-mode simulator is available.

• VHDL user testbench: Simple-to-use testbench written in VHDL. This testbench is intended for customer
modification.

• Verilog user testbench: Simple-to-use testbench written in Verilog. This testbench is intended for customer
modification.

Verification Testbench
Included with the releases of Core16550 is a verification testbench that verifies operation of the Core16550 macro. A
simplified block diagram of the verification testbench is shown in Figure 6-1.

Verification Testbench Overview
A procedural testbench controls the behavioral microcontroller and simulated connection to apply the sequential
stimuli to Core16550 in the testbench shown in Figure 6-1. The behavioral microcontroller emulates host CPU access
to Core16550 via a set of Verilog tasks. The simulated connection loops the output SOUT (serial output) to the input
SIN (serial input) of Core16550 to simulate normal operation, and may alter the loopback values to simulate
abnormal conditions, such as error conditions.

Figure 6-1 · Core16550 Verification Testbench

Behavioral
Microcontroller

Core16550

Simulated
Connection

SOUT

SIN
v2.0 25

Testbench Operation Core16550 v3.0
Verification Testbench Tests
The verification test suite for Core16550 consists of the tests listed in Table 6-1.

User Testbench
A block diagram of the example user design and testbench is shown in Figure 6-2.

Figure 6-2 · Core16550 User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to implement their
own designs.

Table 6-1 · Core16550 Verification Tests

Test Name Description

Core16550tb1

Registers' reset values, writing, and reading

Transmit FIFO and Receive FIFO

THRE and TEMT bits of the LSR register

Core16550tb2

Line Status Register (LSR) bits DR, OE, PE, FE, BI, and LSR7

FIFO Control Register (FCR) bit FCR1

Interrupt Identification Register (IIR): Receiver Line Status Receiver

Data Available and THR Empty (THRE)

Interrupt Enable Register (IER): Receiver Line Status interrupt enable

Receiver Data Available interrupt enable, THR Empty (THRE) and interrupt enable

Core16550tb3
Interrupt Identification Register (IIR)

Interrupt Enable Register (IER)

Core16550tb4

General Transmission and Receiving

Primary outputs DTRn, RTSn, OUT1n, and OUT2n

Primary inputs and their effects on the Modem Status Register (MSR)

Bits CTSn, DSRn, DCDn, SIN and Interrupts

Core16550tb5 Baud Rate Test

Core16550tb6

Line Status Register (LSR) bits OE, PE, FE, and BI

Interrupt Identification Register (IIR)

Interrupt Enable Register (IER)

Core16550tb7 Miscellaneous Tests

Behavioral
Microcontroller

Core16550

Simulated
Connection

SOUT

SIN
26 v2.0

Core16550 v3.0 User Testbench
The testbench for the example user design implements a subset of the functionality tested in the verification
testbench, described in “Verification Testbench” on page 25. Conceptually, as shown in Figure 6-2 on page 26,
instantiation of Core16550 is simulated using a behavioral microcontroller and a simulated loopback connection.
Example transmit and receive by the same Core16550 unit are demonstrated by the user testbench so you can gain a
basic understanding of how to use this core.

The user testbench demonstrates the basic setup, transmit, and receive operations of Core16550. The user testbench
exercises the following:

1. Write to the control registers.

2. Read the control registers.

3. Turn on transmit and receive.

4. Transmit and receive one byte.

5. Check received data.
v2.0 27

A
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating
application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we
have already answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday
through Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v2.0 29

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support Core16550 v3.0
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
30 v2.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 29
telephone 30
web-based technical support 29
website 29

B
baud rate generator 8
blocks

Baudrate Generator 8
Interrupt Control 7
RWControl 7
RXBlock 7
Transmit 8
UART_Reg 7

C
contacting Actel

customer service 29
electronic mail 29
telephone 30
web-based technical support 29

core
interfaces 21
version 6

Core16550
typical application 5
version 6

CoreConsole 17
customer service 29

D
description 5
device utilization and performance 6
Divisor Control Registers 10

F
FIFO Control Register 9
functional block description 7

G
generics 19

I
I/O signal descriptions 21
importing into Libero IDE 18

place-and-route 18
simulation flows 18
synthesis 18

interrupt control 7
Interrupt Enable Register 11
Interrupt Identification Register 11

L
Libero Integrated Design Environment (IDE)

importing into 18
place-and-route 18
simulation 18
synthesis 18

licenses 17
evaluation 17
Obfuscated 17
RTL 17

Line Control Register 12
Line Status Register 14

M
Modem Control Register 13
Modem Status Register 15

P
parameters 19

top-level 19
performance 6
product support 29–30

customer service 29
electronic mail 29
technical support 29
telephone 30
website 29

R
Receiver Buffer Register 8
receiver synchronization 24
register

read 23
write 23

RWControl 7
RXBlock 7
v2.0 31

Index Core16550 v3.0
S
Scratch Register 15
simulation flows 18
software interface 8

T
technical support 29
timing diagrams 23
tool flows 17
transmitter holding register 9
TXBlock 8

U
UART_Reg 7
user testbench 26
utilization 6

V
verification testbench 25
verification tests 26

W
web-based technical support 29
32 v2.0

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley, Surrey GU17 9AB• United Kingdom

Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200110-0 /9.07

	Introduction
	Figure 1 · Typical 16550 Application
	Core Version
	Device Utilization and Performance
	Table 1 · Core16550 Utilization and Performance

	Functional Block Description
	Figure 1-1 · Core16550 Block Diagram
	RWControl
	UART_Reg
	RXBlock
	Interrupt Control
	Baud Rate Generator
	TXBlock
	Software Interface
	Table 1-1 · Core16550 Register Summary
	Receiver Buffer Register
	Table 1-2 · Receiver Buffer Register (read only) - Address 0 DLAB 0

	Transmitter Holding Register
	Table 1-3 · Transmitter Holding Register (write only)

	FIFO Control Register
	Table 1-4 · FIFO Control Register (write only)

	The Divisor Control Registers
	Table 1-5 · Divisor Latch (LS), (MS)
	Table 1-6 · Baud Rates and Divisor Values for 18.432 MHz Reference Clock

	Interrupt Enable Register
	Table 1-7 · Interrupt Enable Register

	Interrupt Identification Register
	Table 1-8 · Interrupt Identification Register
	Table 1-9 · Interrupt Identification Register Field (IIR)

	Line Control Register
	Table 1-10 · Line Control Register

	Modem Control Register
	Table 1-11 · Modem Control Register

	Line Status Register
	Table 1-12 · Line Status Register (read only)

	Modem Status Register
	Table 1-13 · Modem Status Register (read only)

	Scratch Register
	Table 1-14 · Scratch Register

	Tool Flows
	Licenses
	Evaluation
	Obfuscated
	RTL

	CoreConsole
	Figure 2-1 · Core16550 Configuration within CoreConsole

	Importing into Libero IDE
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Core16550
	Parameters
	Table 3-1 · Core Parameters

	Core Interfaces
	I/O Signal Description
	Table 4-1 · I/O Signal Summary

	Timing Diagrams
	Register Write
	Figure 5-1 · Data Write Cycle

	Register Read
	Figure 5-2 · Data Read Cycle

	Receiver Synchronization
	Figure 5-3 · Receiver Synchronization

	Testbench Operation
	Verification Testbench
	Verification Testbench Overview
	Figure 6-1 · Core16550 Verification Testbench

	Verification Testbench Tests
	Table 6-1 · Core16550 Verification Tests

	User Testbench
	Figure 6-2 · Core16550 User Testbench

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

