
Core10/100 v3.2

Handbook

http://www.actel.com/survey/rating/?f=Core10100_HB.pdf

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200077-2

Release: November 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Versions . 6

Supported Interfaces . 6

Device Utilization and Performance . 7

Memory Requirements . 9

1 Functional Block Descriptions . 11

2 Tool Flows . 15
Licensing . 15

CoreConsole . 15

Importing into Libero IDE . 17

Simulation Flows . 17

Place-and-Route in Libero IDE . 18

3 Interface Descriptions . 19
Parameters on Core10/100 . 19

Parameters on Core10/100_AHBAPB . 20

AHB/APB Interface Signals . 22

Legacy Interface Signals . 23

Common Interface Signals . 24

4 Software Interface . 27
Register Maps . 27

Frame Data and Descriptors . 41

Internal Operation . 51

5 Interface Timing . 65
Core10/100—CSR Interface . 65

Core10/100—Data Interface . 65

Core10/100_AHBAPB—APB Interface . 67

Core10/100_AHBAPB—AHB Interface . 67

Clock and Reset Control . 67

Timing Constraints . 68

6 Testbench Operation and Modification . 69
Verification Testbench . 69

Verification Testbench Simulation . 73

User Testbench (Core10/100) . 74

AHBAPB User Testbench (Core10/100_AHBAPB) . 75

7 System Operation . 77
v2.2 3

Table of Contents Core10/100 v3.2
Usage with CoreMP7 . 77

8 Software Drivers . 79

A User Testbench Support Routines . 81
VHDL Support . 81

Verilog Support . 86

B Verification Testbench Tests Description . 93
Backoff/Deferring Tests . 93

Transmit FIFO Tests . 94

Transmit Linked List State Machine Tests . 95

Transmit Interrupt Mitigation Control Tests . 97

Receive Operation Tests . 98

Receive Address Filtering Tests . 98

Receive FIFO Tests . 99

Receive Linked List State Machine Tests . 100

Receive Interrupt Mitigation Control Tests . 101

Interrupt Tests . 101

General-Purpose Timer Tests . 102

DMA Tests . 103

Miscellaneous Tests . 104

C Transmit and Receive Functional Timing Examples 105
Transmit Examples . 105

Receive Examples . 111

D List of Document Changes . 115

E Product Support . 117
Customer Service . 117

Actel Customer Technical Support Center . 117

Actel Technical Support . 117

Website . 117

Contacting the Customer Technical Support Center . 117

Index . 119
4 v2.2

Introduction

Core10/100 is a high-speed media access control (MAC) Ethernet controller (Figure 1). It implements Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) algorithms defined by IEEE 802.3 for MAC over an Ethernet
connection. Communication with an external host is implemented via a set of Control and Status registers and the
DMA controller for external shared RAM. For data transfers, Core10/100 operates as a DMA master. It automatically
fetches from transmit data buffers and stores receive data buffers into external RAM with minimum CPU intervention.
Linked list management enables the use of various memory allocation schemes. Internal RAMs are used as configurable
FIFO memory blocks, and there are separate memory blocks for transmit and receive processes. The core has a generic
host-side interface that connects with external CPUs. This host interface can be configured to work with 8-, 16-, or
32-bit data bus widths with big- or little-endian byte ordering.

Figure 1 · Core10/100 Block Diagram

Figure 2 shows a typical application using Core10/100. Typical applications include LAN controllers, AFDX
controllers, and embedded systems. Figure 1-1 on page 11 shows the primary blocks of Core10/100.

Figure 2 · Typical Core10/100 Application

Transmit Data
RAM

Data
Interface

Control
Interface

Transmit
Control

Receive Data
RAM

Transmit
MII

Receive
MII

Control and Status
Registers and
Control Logic Address

RAM

Data
Controller

Receive
Control

Shared
RAM

CPU
(8-, 16-, or 32-bit)

Data Interface Bus

Control Interface Bus
MII Interface

PHYCore10/100
v2.2 5

Introduction Core10/100 v3.2
Figure 3 shows an ARM®-based system using Core10/100_AHBAPB. This system can be automatically created in
CoreConsole.

Figure 3 · ARM-Based System Using Core10/100_AHBAPB

Core Versions
This handbook applies to Core10/100 and Core10/100-AHB v3.2. The release notes provided with the core list known
discrepancies between this handbook and the core release associated with the release notes.

Supported Interfaces
Core10/100 is available with the following interfaces:

• Core10/100—synchronous CPU and memory interfaces (legacy interface)

• Core10/100_AHBAPB—APB slave CPU interface and AHB master memory interface

Actel recommends that new designs using the CoreConsole environment use the Core10/100_AHBAPB version of the
core. Core10/100 is provided for backwards compliance to previous versions of Core10/100.

The above interfaces are described in “Interface Descriptions” on page 19.
6 v2.2

Core10/100 v3.2 Device Utilization and Performance
Device Utilization and Performance
Core10/100 can be implemented in the following Actel FPGA devices. Table 1 through Table 6 on page 8 provide the
typical utilization and performance data for the core implemented in these devices.

Table 1 · Core10/100 Device Utilization and Performance for an 8-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 3,623 1,734 5,357 6 AFS600 39% 41

IGLOOTM/e 3,644 1,734 5,378 6 AGLE600 39% 30

ProASIC®3/E 3,644 1,734 5,378 6 A3PE600 39% 41

ProASICPLUS® 4,662 1,672 6,334 13 APA450 52% 23

Axcelerator® 2,809 1,738 4,547 5 AX1000 25% 53

RTAX-S 2,802 1,738 4,547 5 RTAX1000S 25% 52

Table 2 · Core10/100 Device Utilization and Performance for a 16-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 3,937 1,835 5,772 6 AFS600 42% 34

IGLOO/e 3,921 1,835 5,756 6 AGLE600 23% 30

ProASIC3/E 3,921 1,835 5,756 6 A3P1000 23% 34

ProASICPLUS 5,204 1.792 6,996 13 APA450 57% 24

Axcelerator 3,002 1,833 4,835 5 AX1000 27% 53

RTAX-S 3,002 1,833 4,835 5 RTAX1000S 27% 53

Table 3 · Core10/100 Device Utilization and Performance for a 32-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 4,336 1,982 6,3‘8 10 AFS600 46% 36

IGLOO/e 4,319 1,982 6,301 10 AGLE600 26% 30

ProASIC3/E 4,319 1,982 6,301 10 A3P1000 26% 36

ProASICPLUS 5,599 1,915 7,514 13 APA450 61% 24

Axcelerator 3,280 1,982 5,262 5 AX1000 29% 55

RTAX-S 3,280 1,982 5,262 5 RTAX1000S 29% 51
v2.2 7

Introduction Core10/100 v3.2
Note: Data in the above tables was achieved using Actel Libero® Integrated Design Environment (IDE) with Palace,
using the parameter settings given in Table 7 on page 9. Performance is for Std. speed grade parts, was achieved
using the Core10/100 macro alone, and represents the system clock (clkdma/hclk) frequency. The clkr and clkt
clock domains are capable of operating at 25 MHz or 2.5 MHz, depending on the link speed. The clkcsr/pclk
clock domain is capable of operating in excess of clkdma/hclk.

Table 4 · Core10/100 AHB/APB Device Utilization and Performance for an 8-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 3,692 1,723 5,415 4 AFS600 39% 32

IGLOO/e 3,688 1,717 5,405 4 AGLE600 39% 30

ProASIC3/E 3,688 1,717 5,405 4 A3P600 39% 32

ProASICPLUS 4,697 1,659 6,356 9 APA450 51% 23

Axcelerator 2,790 1,724 4,514 3 AX1000 24% 54

RTAX-S 2,790 1,724 4,514 3 RTAX1000S 24% 50

Table 5 · Core10/100 AHB/APB Device Utilization and Performance for a 16-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 3,866 1,851 5,717 6 AFS600 41% 33

IGLOO/e 3,856 1,851 5,707 6 AGLE600 23% 30

ProASIC3/E 3,856 1,851 5,707 6 A3P1000 23% 33

ProASICPLUS 5,161 1,808 6,969 13 APA450 56% 22

Axcelerator 3,202 2,028 5,230 9 AX1000 28% 50

RTAX-S 2,954 1,849 4,803 5 RTAX1000S 26% 54

Table 6 · Core10/100 AHB/APB Device Utilization and Performance for a 32-Bit Datapath

Family
Cells or Tiles

RAM
Utilization Performance

(MHz)Combinatorial Sequential Total Device Total

Fusion 4,339 2,025 6,364 10 AFS600 45% 35

IGLOO/e 4,330 2,025 6,355 10 AGLE600 25% 30

ProASIC3/E 4,330 2,025 6,355 10 A3P1000 25% 35

ProASICPLUS 5,656 1,960 7,616 21 APA450 62% 22

Axcelerator 3,202 2,028 5,230 9 AX1000 28% 50

RTAX-S 3,202 2,028 5,230 9 RTAX1000S 28% 47
8 v2.2

Core10/100 v3.2 Memory Requirements
Memory Requirements
Core10/100 uses FPGA memory blocks. The actual number of memory blocks varies based on the parameter settings.
The approximate number of RAM blocks is given by EQ 1 and EQ 2.

IGLOO/e, ProASIC3/E, Fusion, Axcelerator, and RTAX-S

NRAMS = (DW / 8 × (2TFIFODEPTH / 512 + 2RFIFODEPTH / 512) + ADDRFILTER

EQ 1

where DW is DATAWIDTH or AHB_DWIDTH.

APA

NRAMS = (DW / 8 × (2TFIFODEPTH / 256 + 2RFIFODEPTH / 256) + 2 × ADDRFILTER

EQ 2

where DW is DATAWIDTH or AHB_DWIDTH.

The number of RAM blocks may vary slightly from the above equations due to the Synthesis tool selecting different
aspect ratios and inferring memories for internal logic.

Table 7 · Parameter Settings

Parameter
Core10/100 Core10/100 AHB/APB

8-Bit 16-Bit 32-Bit 8-Bit 16-Bit 32-Bit

ENDIANESS 0 0 0 1 1 1

ADDRFILTER 1 1 1 0 0 0

FULLDUPLEX 0 0 0 0 0 0

CSRWIDTH
APB_DWIDTH

8 16 32 8 16 32

DATAWIDTH
AHB_DWIDTH

8 16 32 8 16 32

DATADEPTH
AHB_AWIDTH

16 24 32 16 24 32

TFIFODEPTH 10 9 8 9 9 9

RFIFODEPTH 10 9 8 9 9 9

TCDEPTH 1 1 1 1 1 1

RCDEPTH 2 2 2 2 2 2
v2.2 9

1
Functional Block Descriptions

Core10/100 architecture, shown in Figure 1-1, consists of the functional blocks described in this section.

Figure 1-1 · Core 10/100 Architecture

Transmit Data
RAM

RLSM

DMA

TCclkdma

Data
Interface

CSR
Interface

BD

RC

TLSM TFIFO

RFIFO

Receive Data
RAM

clkr

clkt

Transmit
MII

Receive
MII

CSR
(control and status registers

and control logic)

int

RSTCrst

clkcsr

tps

rps

Address
RAM

MII Managment
Interface

Serial ROM
Interface

External Address
Filtering Interface
v2.2 11

Functional Block Descriptions Core10/100 v3.2
Figure 1-2 · Core10/100_AHBAPB Architecture

AHB – AHB Interface
The AHB block implements an AHB master function, allowing the DMA controller to access memory on the AHB
bus.

APB – APB Interface
This APB block implements an APB slave interface, allowing the CPU to access the CSR registers set.

AHB
Interface

APB
Interface

Transmit Data
RAM

RLSM

 DMA

TC

BD

RC

TLSM TFIFO

RFIFO

Receive Data
RAM

clkr

clkt

Transmit
MII

Receive
MII

CSR
(control and status registers

and control logic)

RSTC

tps

rps

Address
RAM

MII Managment
Interface

Serial ROM
Interface

External Address
Filtering Interface

APB

AHB
12 v2.2

Core10/100 v3.2
CSR – Control/Status Register Logic
The CSR component is used to control Core10/100 operation by the host. It implements the CSR register set, the
interrupt controller, and the power management functionality of Core10/100. It also provides a generic host interface
supporting 8-, 16-, and 32-bit transfer. The CSR component operates synchronously with the clkcsr clock from the host
CSR interface. The CSR also provides a Serial ROM interface and MII Management interface. The host can access
these two interfaces via read/write CSR registers.

DMA – Direct Memory Access Controller
The direct memory access controller implements the host data interface. It services both the receive and transmit
channels. The TLSM and TFIFO have access to one DMA channel. The RLSM and RFIFO have access to the other
DMA channel. The direct memory access controller operates synchronously with the clkdma clock from the host data
interface.

TLSM – Transmit Linked List State Machine
The transmit linked list state machine implements the descriptor/buffer architecture of Core10/100. It manages the
transmit descriptor list and fetches the data prepared for transmission from the data buffers into the transmit FIFO. The
transmit linked list state machine controller operates synchronously with the clkdma clock from the host data interface.

TFIFO – Transmit FIFO
The transmit FIFO is used for buffering data prepared for transmission by Core10/100. It provides an interface for the
external transmit data RAM working as FIFO memory. It fetches the transmit data from the host via the DMA
interface. The FIFO size can be configured via the core parameters. The transmit FIFO controller operates
synchronously with the clkdma clock from the host data interface.

TC – Transmit Controller
The transmit controller implements the 802.3 transmit operation. From the network side, it uses the standard 802.3 MII
interface for an external PHY device. The TC unit reads transmit data from the external transmit data RAM, formats
the frame, and transmits the framed data via the MII. The transmit controller operates synchronously with the clkt
clock from the MII interface.

BD – Backoff/Deferring
The backoff/deferring controller implements the 802.3 half-duplex operation. It monitors the status of the Ethernet bus
and decides whether to perform a transmit or backoff/deferring of the data via the MII. It operates synchronously with
the clkt clock from the MII interface.

RLSM – Receive Linked List State Machine
The receive linked list state machine implements the descriptor/buffer architecture of Core10/100. It manages the
receive descriptor list and moves the data from the receive FIFO into the data buffers. The receive linked list state
machine controller operates synchronously with the clkdma clock from the host data interface.

RFIFO – Receive FIFO
The receive FIFO is used for buffering data received by Core10/100. It provides an interface for the external RAM
working as FIFO memory. The FIFO size can be configured by the generic parameters of the core. The receive FIFO
controller operates synchronously with the clkdma clock from the host data interface.
v2.2 13

Functional Block Descriptions Core10/100 v3.2
RC – Receive Controller
The receive controller implements the 802.3 receive operation. From the network side it uses the standard 802.3 MII
interface for an external PHY device. The RC block transfers data received from the MII to the receive data RAM. It
supports internal address filtering. It also supports an external address filtering interface. The receive controller operates
synchronously with the clkr clock from the MII interface.

RSTC – Reset Controller
The reset controller is used to reset all components of Core10/100. It generates a reset signal asynchronous to all clock
domains in the design from the external reset line and software reset.

Memory Blocks
There are three internal memory blocks required for the proper operation of Core10/100:

• Receive data RAM – Synchronous RAM working as receive FIFO

• Transmit data RAM – Synchronous RAM working as transmit FIFO

• Address RAM – Synchronous RAM working as MAC address memory
14 v2.2

2
Tool Flows

Licensing
Core10/100 is licensed in three ways: Evaluation, Obfuscated, and RTL. Depending on your license, tool flow
functionality may be limited.

Evaluation
Precompiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated within
Actel Libero IDE, as described in the “CoreConsole” section. The design may not be synthesized, as source code is not
provided.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed with Libero IDE. The RTL code for the core is obfuscated,1 and the some of
the testbench source files are not provided. They are precompiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
Core10/100 is preinstalled in the CoreConsole Intellectual Property Deployment Platform (IDP). To use the core, click
and drag it from the IP core list into the main window. The CoreConsole project may be exported to Libero IDE at this
point, providing access just to the core, or other IP blocks can be interconnected, allowing the complete system to be
exported from CoreConsole to Libero IDE.

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names have been replaced
with random character sequences.
v2.2 15

Tool Flows Core10/100 v3.2
The core can be configured using the configuration GUI within CoreConsole, as shown in Figure 2-1 and Figure 2-2 on
page 17.

Figure 2-1 · Core10/100 Configuration within CoreConsole
16 v2.2

Core10/100 v3.2 Importing into Libero IDE
Figure 2-2 · Core10/100_AHBAPB Configuration within CoreConsole

After configuring the core, Actel recommends you use the top-level Auto Stitch function to connect all the core interface
signals to the top level of the CoreConsole project.

Once the core is configured, invoke the Generate function in CoreConsole. This will export all the required files to the
project directory in the LiberoExport directory. This is in the CoreConsole installation directory by default.

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, the required testbench flow must be selected within CoreConsole and Save & Generate must be run
from the Generate pane. The required testbench is selected through the core configuration GUI in CoreConsole. The
following simulation environments are supported:
v2.2 17

Tool Flows Core10/100 v3.2
Core10/100
• Full 10/100 verification environment (VHDL only)

• Simple testbench (VHDL and Verilog)

Core10/100_AHBAPB
• AHB/APB Interface tests (VHDL and Verilog)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run the
testbenches, simply set the design root to the Core10/100 instantiation in the Libero IDE file manager and click the
Simulation icon in Libero IDE. This will invoke ModelSim® and automatically run the simulation.

1. Synthesis in Libero IDE

To run Synthesis on the core with parameters set in CoreConsole, set the design root to the top of the project imported
from CoreConsole. This is a wrapper around the core that sets all the generics appropriately. Click the Synthesis icon in
Libero IDE. The synthesis window appears, displaying the Synplicity® project. To run Synthesis, click the Run icon.

“Timing Constraints” on page 68 details the recommended timing constraints that should be used during Synthesis.

Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
Core10/100 requires no special place-and-route settings.

“Timing Constraints” on page 68 details the recommended timing constraints that should be used during Layout.
18 v2.2

3
Interface Descriptions

Core10/100 is available with the following interfaces:

• Legacy

• AHB and APB

Both Core10/100 and Core10/100_AHBAPB share a common set of set signals to the backend physical layer (PHY)
and address filtering interface.

Parameters on Core10/100
Table 3-1 details the parameters on Core10/100.

Table 3-1 · Core 10/100 Parameters

Parameter Values Description

FAMILY 0 to 99

Must be set to match the supported FPGA family:

11 – Axcelerator

12 – RTAX-S

14 – ProASICPLUS

15 – ProASIC3

16 – ProASIC3E

17 – Fusion

20 – IGLOO

21 – IGLOOe

FULLDUPLEX 0 to 1

This controls the core’s support of half-duplex operation.

0 – Half- and full-duplex operation supported

1 – Full-duplex only

When set to '1', the collision and backoff logic required to support half-
duplex operation is omitted, reducing the size of the core.

ENDIANESS 0 to 2

Sets the endianess of the core:

0 – Programmable by software

1 – Little

2 – Big

When set to a nonzero value, the size of the core is reduced.

ADDRFILTER 0 to 1

Enables the internal address filter RAM.

0 – Internal address filter RAM disabled

1 – Internal address filter RAM enabled

DATADEPTH 8 to 32 Sets the width of the address bus used to interface to the system memory.

DATAWIDTH 8, 16, 32 Sets the width of the data bus used to interface to the system memory.

CSRWIDTH 8, 16, 32 Sets the width of the data bus used to access the registers within the core.

TCDEPTH 1 to 8
Defines the maximum number of frames that can reside in the transmit
FIFO at one time.

RCDEPTH 1 to 8
Defines the maximum number of frames that can reside in the receive
FIFO at one time.
v2.2 19

Interface Descriptions Core10/100 v3.2
Parameters on Core10/100_AHBAPB
Table 3-2 details the parameters on Core10/100_AHBAPB.

TFIFODEPTH 6 to 16

Sets the size of the internal FIFO used to buffer transmit data. The size is
2TFIFODEPTH × AHB_DWIDTH / 8 bytes.

The transmit FIFO size should be greater than TCDEPTH times the
maximum permitted frame size.

RFIFODEPTH 6 to 16

Sets the size of the internal FIFO used to buffer receive data. The size is
2RFIFODEPTH × AHB_DWIDTH / 8 bytes.

The receive FIFO size should be greater than RCDEPTH times the
maximum permitted frame size.

Table 3-1 · Core 10/100 Parameters (continued)

Parameter Values Description

Table 3-2 · Core10/100_AHBAPB Parameters

Parameter Values Description

FAMILY 0 to 99

Must be set to match the supported FPGA family.

11 – Axcelerator

12 – RTAX-S

14 – ProASICPLUS

15 – ProASIC3

16 – ProASIC3E

17 – Fusion

20 – IGLOO

21 – IGLOOe

FULLDUPLEX 0 to 1

This controls the core’s support of half-duplex operation.

0 – Half- and full-duplex operation supported

1 – Full-duplex only

When set to '1', the collision and backoff logic required to support half-duplex
operation is omitted, reducing the size of the core.

ENDIANESS 0 to 2

Sets the endianess of the core.

0 – Programmable by software

1 – Little

2 – Big

When set to nonzero, the size of the core is reduced.

ADDRFILTER 0 to 1

Enables the internal address filter RAM.

0 – Internal address filter RAM disabled

1 – Internal address filter RAM enabled

AHB_AWIDTH 8 to 32 Sets the width of the AHB address bus used to interface to the system memory.

AHB_DWIDTH 8, 16, 32 Sets the width of the AHB data bus used to interface to the system memory.
20 v2.2

Core10/100 v3.2 Parameters on Core10/100_AHBAPB
APB_DWIDTH 8, 16, 32 Sets the width of the APB data bus used to access the registers within the core.

TCDEPTH 1 to 8
Defines the maximum number of frames that can reside in the transmit FIFO
at one time.

RCDEPTH 1 to 8
Defines the maximum number of frames that can reside in the receive FIFO at
one time.

TFIFODEPTH 6 to 16

Sets the size of the internal FIFO used to buffer transmit data. The size is
2TFIFODEPTH × AHB_DWIDTH / 8 bytes.

The transmit FIFO size should be greater than TCDEPTH times the
maximum permitted frame size.

RFIFODEPTH 6 to 16

Sets the size of the internal FIFO used to buffer receive data. The size is
2RFIFODEPTH × AHB_DWIDTH / 8 bytes.

The receive FIFO size should be greater than RCDEPTH times the maximum
permitted frame size.

Table 3-2 · Core10/100_AHBAPB Parameters (continued)

Parameter Values Description
v2.2 21

Interface Descriptions Core10/100 v3.2
AHB/APB Interface Signals
Table 3-3 lists the signals included in the Core10/100_AHBAPB core.

All signals listed in Table 3-3 conform to the AMBA specification rev. 2.0.

Table 3-3 · Core10/100_AHBAPB Signals

Name Type Description

APB Interface (CPU register access)

PCLK In APB clock

PRESETN In APB reset (active low and asynchronous)

PSEL In APB select

PENABLE In APB enable

PWRITE In APB write

PADDR In [7:0] APB address

PWDATA In [APB_DWIDTH–1:0] APB write data

PRDATA Out [APB_DWIDTH–1:0] APB read data

AHB Interface (memory access)

HCLK In AHB clock

HRESETN In AHB reset (active low and asynchronous)

HBUSREQ Out AHB bus request

HGRANT In AHB bus grant

HWRITE Out AHB write

HADDR Out [AHB_AWIDTH–1:0] AHB address

HREADY In AHB ready

HTRANS Out [1:0] AHB transfer type

HSIZE Out [2:0] AHB transfer size

HBURST Out [2:0] AHB burst size

HPROT Out [3:0] AHB protection; set to '0000'

HRESP In [1:0] AHB response

HWDATA Out [AHB_DWIDTH–1:0] AHB data out

HRDATA In [AHB_DWIDTH–1:0] AHB data in
22 v2.2

Core10/100 v3.2 Legacy Interface Signals
Legacy Interface Signals
Table 3-4 lists the signals included on the Core10/100 core.

Table 3-4 · Core10/100 Signals

Name Type Polarity Description

Control and Status Register Interface

clkcsr In Rise CSR clock

csrreq In HIGH
This signal is set by a host to request a data transfer on the CSR interface. It
can be a read or a write request, depending on the value of the csrrw signal.

csrrw In HIGH
This signal indicates the type of request on the CSR interface. Setting csrwr
indicates a read operation, and clearing it indicates a write operation.

csrbe In CSRWIDTH/8

This signal is the data byte enable to indicate which byte lanes of csrdatai or
csrdatao are the valid data bytes. Each bit of the csrbe controls a single byte
lane.

All csrbe signal combinations are allowed.

csrdatai In CSRWIDTH
The write data is provided by the system on the csrdatai inputs during the
write request.

csraddr In 8

The csraddr receives the address of an individual CSR data transaction.

The meaning of csraddr depends on the CSRWIDTH parameter.

For CSRWIDTH = 32 (32-bit interface), only the csraddr bits from 6 down
to 2 are significant. The addresses are longword-aligned (32-bit) in this
mode.

For CSRWIDTH = 16 (16-bit interface), the csraddr bits from 6 down to 1
are significant. The addresses are word-aligned (16-bit) in this mode.

For CSRWIDTH = 8 (8-bit interface), all bits of csraddr are significant. The
addresses are byte-aligned (8-bit) in this mode.

csrack Out HIGH

The csrack signal indicates either that valid data is present on the csrdatao
outputs during a read request or that the csrdatai inputs have been sampled
during a write request. The current version of Core10/100 has the csrack
signal statically tied to logic 1—Core10/100 responds to reads and writes
immediately.

csrdatao Out CSRWIDTH The csrdatao signal provides the read data in response to a read request.

Data Interface

clkdma In Rise Data clock

dataack In HIGH

The dataack input is an acknowledge signal supplied by the host in response
to the MAC’s request. In the case of a read operation, dataack indicates valid
data is on the datai input. The datai input should be stable while dataack is
set. In the case of a write operation, setting dataack indicates that the host is
ready to fetch the data supplied by Core10/100 on the datao output.
Regardless of the current transaction type (write or read), a data transfer
occurs on every rising edge of clkdma on which both datareq and dataack are
set. The dataack signal can be asserted or deasserted at any clock cycle, even
in the middle of a burst transfer.
v2.2 23

Interface Descriptions Core10/100 v3.2
Common Interface Signals
The following signals are included on both the Core10/100 and Core10/100_AHBAPB cores.

datai In DATAWIDTH
The read data should be provided on the datai input by the system in response
to a read request.

datareq Out HIGH
This signal is set by Core10/100 to put a request for the data transfer on the
interface. While datareq remains active, the datarw signal is stable—there is
no transition on datarw.

datarw Out HIGH
The datarw output indicates the type of request on the data interface. When
set, it indicates a read operation; when cleared, it indicates a write operation.

dataeob Out HIGH

The dataeob output is an “end-of-burst” signal used for burst transactions.

When set, it indicates the last data transfer for a current burst; when cleared,
it indicates that there will be more data transfers.

datao Out DATAWIDTH
Data to be written is provided by Core10/100 on datao during a write
request.

dataaddr Out DATADEPTH

This signal addresses the external memory space for a data transaction. The
meaning of the dataaddr bits depends on the DATAWIDTH parameter.

For DATAWIDTH = 32 (32-bit interface), only dataaddr bits
DATADEPTH–1 down to 2 are significant. The addresses are longword-
aligned (32-bit) in this mode.

For DATAWIDTH = 16 (16-bit interface), the dataaddr bits from
DATADEPTH–1 down to 1 are significant. The addresses are word-aligned
(16-bit) in this mode.

For DATAWIDTH = 8 (8-bit interface), all bits of dataaddr are significant.
The addresses are byte-aligned (8-bit) in this mode.

Table 3-4 · Core10/100 Signals (continued)

Name Type Polarity Description

Table 3-5 · Signals Included in Core10/100 and Core10/100_AHBAPB

Name Type Polarity / Bus Size Description

General Host Interface Signal

rstcsr In HIGH Host-side reset

int Out HIGH Interrupt

rsttco Out HIGH Transmit side reset

rstrco Out HIGH Receive side reset

tps Out HIGH Transmit process stopped

rps Out HIGH Receive process stopped
24 v2.2

Core10/100 v3.2 Common Interface Signals
Serial ROM Interface

sdi In 1 Serial data

scs Out 1 Serial chip select

sclk Out 1 Serial clock output

sdo Out 1 Serial data output

External Address Filtering Interface

match In HIGH

External address match

When HIGH, indicates that the destination address on the matchdata
port is recognized by the external address-checking logic and that the
current frame should be received by Core10/100.

When LOW, indicates that the destination address on the matchdata
port is not recognized and that the current frame should be discarded.

Note that the match signal should be valid only when the matchval
signal is HIGH.

matchval In HIGH
External address match valid

When HIGH, indicates that the match signal is valid.

matchen Out HIGH

External match enable

When HIGH, indicates that the matchdata signal is valid. The
matchen output should be used as an enable signal for the external
address-checking logic. It is HIGH for at least four clkr clock periods
to allow for the latency of external address-checking logic.

matchdata Out 48

External address match data

The matchdata signal represents the 48-bit destination address of the
received frame.

Note that the matchdata signal is valid only when the matchen signal is
HIGH.

MII PHY Interface

clkt In Rise

Clock for transmit operation

This should be a 25 MHz clock for a 100 Mbps operation or a
2.5 MHz clock for a 10 Mbps operation.

clkr In Rise

Clock for receive operation

This should be a 25 MHz clock for a 100 Mbps operation or a
2.5 MHz clock for a 10 Mbps operation.

rxer In HIGH

Receive error

Core10/100 ends a reception when this bit is asserted during a receive
operation.

The rxer signal must be synchronous to the clkr receive clock.

Table 3-5 · Signals Included in Core10/100 and Core10/100_AHBAPB (continued)

Name Type Polarity / Bus Size Description
v2.2 25

Interface Descriptions Core10/100 v3.2
rxdv In HIGH

Receive data valid signal

The PHY device should assert rxdv when a valid data nibble is
provided on the rxd signal.

The rxdv signal must be synchronous to the clkr receive clock.

col In HIGH

Collision detected

This signal should be asserted by the PHY when a collision is detected
on the medium. It is valid only when operating in a half-duplex mode.
When operating in a full-duplex mode, this signal is ignored by
Core10/100.

The col signal is not required to be synchronous to either clkr or clkt.

The col signal is sampled internally by the clkt clock.

crs In HIGH

Carrier sense

This signal should be asserted by the PHY when either a receive or
transmit medium is non-idle.

The crs signal is not required to be synchronous with either clkr or clkt.

mdi In 1
MII management data input

The state of this signal can be checked by reading the CSR9.19 bit.

rxd In 4

Receive data recovered and decoded by PHY

The rxd[0] signal is the least significant bit.

The rxd bus must be synchronous to the clkr receive clock.

txen Out HIGH

Transmit enable

When asserted, indicates valid data for the PHY on the txd port.

The txen signal is synchronous to the clkt transmit clock.

txer Out HIGH

Transmit error

The current version of Core10/100 has the txer signal statically tied to
logic 0 (no transmit errors).

mdc Out Rise
MII management clock

This signal is driven by the CSR9.16 bit.

mdo Out 1
MII management data output

This signal is driven by the CSR9.18 bit.

mden Out HIGH MII management buffer control

txd Out 4

Transmit data

The txd[0] signal is the least significant bit.

The txd bus is synchronous to the clkt transmit clock.

Table 3-5 · Signals Included in Core10/100 and Core10/100_AHBAPB (continued)

Name Type Polarity / Bus Size Description
26 v2.2

4
Software Interface

Register Maps

Control and Status Register Addressing
The Control and Status registers are located physically inside Core10/100 and can be accessed directly by a host via an
8-, 16- or 32-bit interface. All the CSRs are 32 bits long and quadword-aligned. The address bus of the CSR interface is
8 bits wide, and only bits 6–0 of the location code shown in Table 4-1 are used to decode the CSR register address.

CSR Definitions

Table 4-1 · CSR Locations

Register Address Reset Value Description

CSR0 00H FE000000H Bus mode

CSR1 08H 00000000H Transmit poll demand

CSR2 10H 00000000H Receive poll demand

CSR3 18H FFFFFFFFH Receive list base address

CSR4 20H FFFFFFFFH Transmit list base address

CSR5 28H F0000000H Status

CSR6 30H 32000040H Operation mode

CSR7 38H F3FE0000H Interrupt enable

CSR8 40H E0000000H Missed frames and overflow counters

CSR9 48H FFF483FBH MII management

CSR10 50H 00000000H Reserved

CSR11 58H FFFE0000H Timer and interrupt mitigation control

Note: CSR9 bits 19 and 2 reset values are dependent on the MDI and SDI inputs. The above assumes MDI
is high and SDI is low.

Table 4-2 · Bus Mode Register (CSR0)

Bits 31:24

Bits 23:16 DBO TAP

Bits 15:8 PBL

Bits 7:0 BLE DSL BAR SWR

Note: The CSR0 register has unimplemented bits (shaded). If these bits are read, they will return a predefined
value. Writing to these bits has no effect.
v2.2 27

Software Interface Core10/100 v3.2
Table 4-3 · Bus Mode Register Bit Functions

Bit Symbol Function

CSR0.20 DBO

Descriptor byte ordering mode:

1 – Big-endian mode used for data descriptors

0 – Little-endian mode used for data descriptors

CSR0.(19..17) TAP

Transmit automatic polling

If TAP is written with a nonzero value, Core10/100 performs an automatic transmit descriptor polling when
operating in suspended state. When the descriptor is available, the transmit process goes into running state.
When the descriptor is marked as owned by the host, the transmit process remains suspended.

The poll is always performed at the current transmit descriptor list position. The time interval between two
consecutive polls is shown in Table 4-4 on page 29.

CSR0.(13..8) PBL

Programmable burst length

Specifies the maximum number of words that can be transferred within one DMA transaction. Values
permissible are 0, 1, 2, 4, 8, 16, and 32. When the value 0 is written, the bursts are limited only by the internal
FIFO’s threshold levels.

The width of the single word is equal to the CSRWIDTH generic parameter; i.e., all data transfers always use
the maximum data bus width.

Note that PBL is valid only for the data buffers. The data descriptor burst length depends on the
DATAWIDTH parameter. The rule is that every descriptor field (32-bit) is accessed with a single burst cycle.
For DATAWIDTH = 32, the descriptors are accessed with a single 32-bit word transaction; for
DATAWIDTH = 16, a burst of two 16-bit words; and for DATAWIDTH = 8, a burst of four 8-bit words.

CSR0.7 BLE

Big/little endian

Selects the byte-ordering mode used by the data buffers.

1 – Big-endian mode used for the data buffers

0 – Little-endian mode used for the data buffers

CSR0.(6..2) DSL
Descriptor skip length

Specifies the number of longwords between two consecutive descriptors in a ring structure.

CSR0.1 BAR

Bus arbitration scheme

1 – Transmit and receive processes have equal priority to access the bus.

0 – Intelligent arbitration, where the receive process has priority over the transmit process

CSR0.0 SWR

Software reset

Setting this bit resets all internal flip-flops.

The processor should write a '1' to this bit and then wait until a read returns a '0', indicating that the reset has
completed. This bit will remain set for several clock cycles.
28 v2.2

Core10/100 v3.2 Register Maps
Table 4-4 · Transmit Automatic Polling Intervals

CSR0.(19..17) 10 Mbps 100 Mbps

000 TAP disabled TAP disabled

001 819 μs 81.9 μs

010 2,450 μs 245 μs

011 5,730 μs 573 μs

100 51.2 μs 5.12 μs

101 102.4 μs 10.24 μs

110 153.6 μs 15.36 μs

111 358.4 μs 35.84 μs

Table 4-5 · Transmit Poll Demand Register (CSR1)

Bits 31:24 TPD(31..24)

Bits 23:16 TPD(23..16)

Bits 15:8 TPD(15..8)

Bits 7:0 TPD(7..0)

Table 4-6 · Transmit Poll Demand Bit Functions

Bit Symbol Function

CSR1.(31..0) TPD

Writing this field with any value instructs Core10/100 to check for frames to be transmitted. This operation is
valid only when the transmit process is suspended.

If no descriptor is available, the transmit process remains suspended.

When the descriptor is available, the transmit process goes into the running state.

Table 4-7 · Receive Poll Demand Register (CSR2)

Bits 31:24 RPD(31..24)

Bits 23:16 RPD(23..16)

Bits 15:8 RPD(15..8)

Bits 7:0 RPD(7..0)

Table 4-8 · Receive Poll Demand Bit Functions

Bit Symbol Function

CSR2.(31..0) RPD

Writing this field with any value instructs Core10/100 to check for receive descriptors to be acquired. This
operation is valid only when the receive process is suspended.

If no descriptor is available, the receive process remains suspended.

When the descriptor is available, the receive process goes into the running state.
v2.2 29

Software Interface Core10/100 v3.2
Table 4-9 · Receive Descriptor List Base Address Register (CSR3)

Bits 31:24 RLA(31..24)

Bits 23:16 RLA(23..16)

Bits 15:8 RLA(15..8)

Bits 7:0 RLA(7..0)

Table 4-10 · Receive Descriptor List Base Address Register Bit Functions

Bit Symbol Function

CSR3.(31..0) RLA

Start of the receive list address

Contains the address of the first descriptor in a receive descriptor list. This address should be longword-
aligned (RLA(1..0) = 00).

Table 4-11 · Transmit Descriptor List Base Address Register (CSR4)

Bits 31:24 TLA(31..24)

Bits 23:16 TLA(23..16)

Bits 15:8 TLA(15..8)

Bits 7:0 TLA(7..0)

Table 4-12 · Transmit Descriptor List Base Address Register Bit Functions

Bit Symbol Function

CSR4.(31..0) TLA

Start of the transmit list address

Contains the address of the first descriptor in a transmit descriptor list. This address should be longword-
aligned (TLA(1..0) = 00).

Table 4-13 · Status Register (CSR5)

Bits 31:24

Bits 23:16 TS RS NIS

Bits 15:8 AIS ERI GTE ETI RPS

Bits 7:0 RU RI UNF TU TPS TI

Note: The CSR5 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value.
Writing to these bits has no effect.
30 v2.2

Core10/100 v3.2 Register Maps
Table 4-14 · Status Register Bit Functions

Bit Symbol Function

CSR5.(22..20) TS

Transmit process state (read-only)

Indicates the current state of a transmit process:

000 – Stopped; RESET or STOP TRANSMIT command issued

001 – Running, fetching the transmit descriptor

010 – Running, waiting for end of transmission

011 – Running, transferring data buffer from host memory to FIFO

100 – Reserved

101 – Running, setup packet

110 – Suspended; FIFO underflow or unavailable descriptor

111 – Running, closing transmit descriptor

CSR5.(19..17) RS

Receive process state (read-only)

Indicates the current state of a receive process:

000 – Stopped; RESET or STOP RECEIVE command issued

001 – Running, fetching the receive descriptor

010 – Running, waiting for the end-of-receive packet before prefetch of the next descriptor

011 – Running, waiting for the receive packet

100 – Suspended, unavailable receive buffer

101 – Running, closing the receive descriptor

110 – Reserved

111 – Running, transferring data from FIFO to host memory

CSR5.16 NIS

Normal interrupt summary

This bit is a logical OR of the following bits:

CSR5.0 – Transmit interrupt

CSR5.2 – Transmit buffer unavailable

CSR5.6 – Receive interrupt

CSR5.11 – General-purpose timer overflow

CSR5.14 – Early receive interrupt

Only the unmasked bits affect the normal interrupt summary bit.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.15 AIS

Abnormal interrupt summary

This bit is a logical OR of the following bits:

CSR5.1 – Transmit process stopped

CSR5.5 – Transmit underflow

CSR5.7 – Receive buffer unavailable

CSR5.8 – Receive process stopped

CSR5.10 – Early transmit interrupt

Only the unmasked bits affect the abnormal interrupt summary bit. The user can clear this bit by
writing a 1. Writing a 0 has no effect.
v2.2 31

Software Interface Core10/100 v3.2
CSR5.14 ERI

Early receive interrupt

Set when Core10/100 fills the data buffers of the first descriptor.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.11 GTE

General-purpose timer expiration

Gets set when the general-purpose timer reaches zero value.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.10 ETI

Early transmit interrupt

Indicates that the packet to be transmitted was fully transferred into the FIFO.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.8 RPS

Receive process stopped

RPS is set when a receive process enters a stopped state.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.7 RU

Receive buffer unavailable

When set, indicates that the next receive descriptor is owned by the host and is unavailable for
Core10/100. When RU is set, Core10/100 enters a suspended state and returns to receive
descriptor processing when the host changes ownership of the descriptor. Either a receive-poll-
demand command is issued or a new frame is recognized by Core10/100.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.6 RI

Receive interrupt

Indicates the end of a frame receive. The complete frame has been transferred into the receive
buffers. Assertion of the RI bit can be delayed using the receive interrupt mitigation counter/timer
(CSR11.NRP/CSR11.RT).

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.5 UNF

Transmit underflow

Indicates that the transmit FIFO was empty during a transmission. The transmit process goes
into a suspended state.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.2 TU

Transmit buffer unavailable

When set, TU indicates that the host owns the next descriptor on the transmit descriptor list;
therefore, it cannot be used by Core10/100. When TU is set, the transmit process goes into a
suspended state and can resume normal descriptor processing when the host changes ownership of
the descriptor. Either a transmit-poll-demand command is issued or transmit automatic polling is
enabled.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

Table 4-14 · Status Register Bit Functions (continued)

Bit Symbol Function
32 v2.2

Core10/100 v3.2 Register Maps
CSR5.1 TPS

Transmit process stopped

TPS is set when the transmit process goes into a stopped state.

The user can clear this bit by writing a 1. Writing a 0 has no effect.

CSR5.0 TI

Transmit interrupt

Indicates the end of a frame transmission process. Assertion of the TI bit can be delayed using the
transmit interrupt mitigation counter/timer (CSR11.NTP/CSR11.TT).

The user can clear this bit by writing a 1. Writing a 0 has no effect.

Table 4-14 · Status Register Bit Functions (continued)

Bit Symbol Function

Table 4-15 · Operation Mode Register (CSR6)

Bits 31:24 RA

Bits 23:16 TTM SF

Bits 15:8 TR ST FD

Bits 7:0 PM PR IF PB HO SR HP

Note: The CSR6 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value.
Writing to these bits has no effect.

Table 4-16 · Operation Mode Register Bit Functions

Bit Symbol Function

CSR6.30 RA

Receive all

When set, all incoming frames are received, regardless of their destination address.
An address check is performed, and the result of the check is written into the receive
descriptor (RDES0.30).

CSR6.22 TTM

Transmit threshold mode

1 – Transmit FIFO threshold set for 100 Mbps mode

0 – Transmit FIFO threshold set for 10 Mbps mode

This bit can be changed only when a transmit process is in a stopped state.

CSR6.21 SF

Store and forward

When set, the transmission starts after a full packet is written into the transmit
FIFO, regardless of the current FIFO threshold level.

This bit can be changed only when the transmit process is in the stopped state.

CSR6.(15..14) TR

Threshold control bits

These bits, together with TTM, SF, and PS, control the threshold level for the
transmit FIFO.
v2.2 33

Software Interface Core10/100 v3.2
CSR6.13 ST

Start/stop transmit command

Setting this bit when the transmit process is in a stopped state causes a transition into
a running state. In the running state, Core10/100 checks the transmit descriptor at a
current descriptor list position. If Core10/100 owns the descriptor, then the data
starts to transfer from memory into the internal transmit FIFO. If the host owns the
descriptor, Core10/100 enters a suspended state.

Clearing this bit when the transmit process is in a running or suspended state
instructs Core10/100 to enter the stopped state.

Core10/100 does not go into the stopped state immediately after clearing the ST bit;
it will finish all pending transmit operations before going into the stopped state. The
status bits of the CSR5 register should be read to check the actual transmit operation
state.

CSR6.9 FD

Full-duplex mode:

0 – Half-duplex mode

1 – Forcing full-duplex mode

Changing of this bit is allowed only when both the transmitter and receiver processes
are in the stopped state.

CSR6.7 PM

Pass all multicast

When set, all frames with multicast destination addresses will be received, regardless
of the address check result.

CSR6.6 PR

Promiscuous mode

When set, all frames will be received regardless of the address check result. An
address check is not performed.

CSR6.4 IF

Inverse filtering (read-only)

If this bit is set when working in a perfect filtering mode, the receiver performs an
inverse filtering during the address check process.

The “filtering type” bits of the setup frame determine the state of this bit.

CSR6.3 PB

Pass bad frames

When set, Core10/100 transfers all frames into the data buffers, regardless of the
receive errors. This allows the runt frames, collided fragments, and truncated frames
to be received.

CSR6.2 HO

Hash-only filtering mode (read-only)

When set, Core10/100 performs an imperfect filtering over both the multicast and
physical addresses.

The “filtering type” bits of the setup frame determine the state of this bit.

Table 4-16 · Operation Mode Register Bit Functions (continued)

Bit Symbol Function
34 v2.2

Core10/100 v3.2 Register Maps
Table 4-17 lists all possible combinations of the address filtering bits. The actual values of the IF, HO, and HP bits are
determined by the filtering type (FT1–FT0) bits in the setup frame, as shown in Table 4-37 on page 49. The IF, HO,
and HP bits are read-only.

CSR6.1 SR

Start/stop receive command

Setting this bit when the receive process is in a stopped state causes a transition into a
running state. In the running state, Core10/100 checks the receive descriptor at the
current descriptor list position. If Core10/100 owns the descriptor, it can process an
incoming frame. When the host owns the descriptor, the receiver enters a suspended
state and also sets the CSR5.7 (receive buffer unavailable) bit.

Clearing this bit when the receive process is in a running or suspended state instructs
Core10/100 to enter a stopped state after receiving the current frame.

Core10/100 does not go into the stopped state immediately after clearing the SR bit.
Core10/100 will finish all pending receive operations before going into the stopped
state. The status bits of the CSR5 register should be read to check the actual receive
operation state.

CSR6.0 HP

Hash/perfect receive filtering mode (read-only)

0 – Perfect filtering of the incoming frames is performed according to the physical
addresses specified in a setup frame.

1 – Imperfect filtering over the frames with the multicast addresses is performed
according to the hash table specified in a setup frame.

A physical address check is performed according to the CSR6.2 (HO, hash-only) bit.

When both the HO and HP bits are set, an imperfect filtering is performed on all of
the addresses.

The “filtering type” bits of the setup frame determine the state of this bit.

Table 4-16 · Operation Mode Register Bit Functions (continued)

Bit Symbol Function

Table 4-17 · Receive Address Filtering Modes Summary

PM
CSR6.7

PR
CSR6.6

IF
CSR6.4

HO
CSR6.2

HP
CSR6.0

Current Filtering Mode

0 0 0 0 0 16 physical addresses – perfect filtering mode

0 0 0 0 1
One physical address for physical addresses and 512-bit hash table for multicast
addresses

0 0 0 1 1 512-bit hash table for both physical and multicast addresses

0 0 1 0 0 Inverse filtering

x 1 0 0 x Promiscuous mode

0 1 0 1 1 Promiscuous mode

1 0 0 0 x Pass all multicast frames

1 0 0 1 1 Pass all multicast frames
v2.2 35

Software Interface Core10/100 v3.2
Table 4-18 lists the transmit FIFO threshold levels. These levels are specified in bytes.

Table 4-18 · Transmit FIFO Threshold Levels (bytes)

CSR6.21 CSR6.15..14 CSR6.22 = 1 CSR6.22 = 0

0 00 64 128

0 01 128 256

0 10 128 512

0 11 256 1024

1 xx Store and forward Store and forward

Table 4-19 · Interrupt Enable Register (CSR7)

Bits 31:24

Bits 23:16 NIE

Bits 15:8 AIE ERE GTE ETE RSE

Bits 7:0 RUE RIE UNE TUE TSE TIE

Note: The CSR7 register has unimplemented bits (shaded). If these bits are read, they will return a predefined value. Writing

to these bits has no effect.

Table 4-20 · Interrupt Enable Register Bit Function

Bit Symbol Function

CSR7.16 NIE

Normal interrupt summary enable

When set, normal interrupts are enabled. Normal interrupts are listed below:

CSR5.0 – Transmit interrupt

CSR5.2 – Transmit buffer unavailable

CSR5.6 – Receive interrupt

CSR5.11 – General-purpose timer expired

CSR5.14 – Early receive interrupt

CSR7.15 AIE

Abnormal interrupt summary enable

When set, abnormal interrupts are enabled. Abnormal interrupts are listed below:

CSR5.1 – Transmit process stopped

CSR5.5 – Transmit underflow

CSR5.7 – Receive buffer unavailable

CSR5.8 – Receive process stopped

CSR5.10 – Early transmit interrupt

CSR7.14 ERE
Early receive interrupt enable

When both the ERE and NIE bits are set, early receive interrupt is enabled.

CSR7.11 GTE
General-purpose timer overflow enable

When both the GTE and NIE bits are set, the general-purpose timer overflow interrupt is enabled.
36 v2.2

Core10/100 v3.2 Register Maps
CSR7.10 ETE
Early transmit interrupt enable

When both the ETE and AIE bits are set, the early transmit interrupt is enabled.

CSR7.8 RSE
Receive stopped enable

When both the RSE and AIE bits are set, the receive stopped interrupt is enabled.

CSR7.7 RUE
Receive buffer unavailable enable

When both the RUE and AIE bits are set, the receive buffer unavailable is enabled.

CSR7.6 RIE
Receive interrupt enable

When both the RIE and NIE bits are set, the receive interrupt is enabled.

CSR7.5 UNE
Underflow interrupt enable

When both the UNE and AIE bits are set, the transmit underflow interrupt is enabled.

CSR7.2 TUE
Transmit buffer unavailable enable

When both the TUE and NIE bits are set, the transmit buffer unavailable interrupt is enabled.

CSR7.1 TSE
Transmit stopped enable

When both the TSE and AIE bits are set, the transmit process stopped interrupt is enabled.

CSR7.0 TIE
Transmit interrupt enable

When both the TIE and NIE bits are set, the transmit interrupt is enabled.

Table 4-20 · Interrupt Enable Register Bit Function (continued)

Bit Symbol Function

Table 4-21 · Missed Frames and Overflow Counter Register (CSR8)

Bits 31:24 OCO FOC(10..7)

Bits 23:16 FOC(6..0) MFO

Bits 15:8 MFC(15..8)

Bits 7:0 MFC(7..0)

Note: The CSR8 register has unimplemented bits (shaded). If these bits are read they will return a predefined value.
Writing to these bits has no effect.

Table 4-22 · Missed Frames and Overflow Counter Bit Functions

Bit Symbol Function

CSR8.28 OCO

Overflow counter overflow (read-only)

Gets set when the FIFO overflow counter overflows.

Resets when the high byte (bits 31:24) is read.

CSR8.(27..17) FOC

FIFO overflow counter (read-only)

Counts the number of frames not accepted due to the receive FIFO overflow.

The counter resets when the high byte (bits 31:24) is read.
v2.2 37

Software Interface Core10/100 v3.2
CSR8.16 MFO

Missed frame overflow

Set when a missed frame counter overflows.

The counter resets when the high byte (bits 31:24) is read.

CSR8.(15..0) MFC

Missed frame counter (read-only)

Counts the number of frames not accepted due to the unavailability of the receive descriptor.

The counter resets when the high byte (bits 31:24) is read.

Table 4-23 · MII Management and Serial ROM Interface Register (CSR9)

Bits 31:24

Bits 23:16 MDI MII MDO MDC

Bits 15:8

Bits 7:0 SDO SDI SCLK SCS

Note: The CSR9 register has unimplemented bits (shaded). If these bits are read they will return a predefined value. Writing to
these bits has no effect.

Table 4-24 · MII Management and Serial ROM Register Bit Functions

Bit Symbol Function

CSR9.19 MDI
MII management data in signal (read-only)

This bit reflects the sample on the mdi port during the read operation on the MII management interface.

CSR9.18 MDEN

MII management operation mode

1 – Indicates that Core10/100 reads the MII PHY registers

0 – Indicates that Core10/100 writes to the MII PHY registers

This register bit directly drives the top-level MDEN pin. It is intended to be the active low tristate
enable for the MDIO data output.

CSR9.17 MDO
MII management write data

The value of this bit drives the mdo port when a write operation is performed.

CSR9.16 MDC
MII management clock

The value of this bit drives the mdc port.

CSR9.3 SDO
Serial ROM data output

The value of this bit drives the sdo port of Core10/100.

CSR9.2 SDI
Serial ROM data input

This bit reflects the sdi port of Core10/100.

CSR9.1 SCLK
Serial ROM clock

The value of this bit drives the sclk port of Core10/100.

CSR9.0 SCS
Serial ROM chip select

The value of this bit drives the scs port of Core10/100.

Table 4-22 · Missed Frames and Overflow Counter Bit Functions (continued)

Bit Symbol Function
38 v2.2

Core10/100 v3.2 Register Maps
The MII management interface can be used to control the external PHY device from the host side. It allows access to all
of the internal PHY registers via a simple two-wire interface. There are two signals on the MII management interface:
the MDC (Management Data Clock) and the MDIO (Management Data I/O). The IEEE 802.3 indirection tristate
signal defines the MDIO. Core10/100 uses four unidirectional external signals to control the management interface. For
proper operation of the interface, the user must connect a tristate buffer with an active low enable (inside or outside the
FPGA), as shown in Figure 4-1. The Serial ROM interface can be used to access an external Serial ROM device via
CSR9. The user can supply an external Serial ROM device, as shown in Figure 4-2 on page 39. The Serial ROM can be
used to store user data, such as Ethernet addresses. Note that all access sequences and timing of the Serial ROM
interface are handled by the software.

If the Serial ROM interface is not used, the sdi input port should be connected to logic 0 and the output ports (scs, sclk,
and sdo) should be left unconnected.

Figure 4-1 · External Tristate Buffer Connections

Figure 4-2 · External Serial ROM Connections

MDIO

mden

mdo

mdc

mdi

Core10/100

MDC

MII Management

Data Input

scs

sclk

sdo

Core10/100

Data Output

Serial ROM

sdi

Chip Select

Clock
v2.2 39

Software Interface Core10/100 v3.2
Table 4-25 · General-Purpose Timer and Interrupt Mitigation Control Register (CSR11)

Bits 31:24 CS TT NTP

Bits 23:16 RT NRP CON

Bits 15:8 TIM(15..8)

Bits 7:0 TIM(7..0)

Table 4-26 · General-Purpose Timer and Interrupt Mitigation Control Bit Functions

Bit Symbol Function

CSR11.31 CS

Cycle size

Controls the time units for the transmit and receive timers according to the following:

1 –

MII 100 Mbps mode – 5.12 μs

MII 10 Mbps mode – 51.2 μs

0 –

MII 100 Mbps mode – 81.92 μs

MII 10 Mbps mode – 819.2 μs

CSR11.(30..27) TT

Transmit timer

Controls the maximum time that must elapse between the end of a transmit operation and the setting of the
CSR5.TI (transmit interrupt) bit.

This time is equal to TT × (16 × CS).

The transmit timer is enabled when written with a nonzero value. After each frame transmission, the timer
starts to count down if it has not already started. It is reloaded after every transmitted frame.

Writing 0 to this field disables the timer effect on the transmit interrupt mitigation mechanism.

Reading this field gives the actual count value of the timer.

CSR11.(26..24) NTP

Number of transmit packets

Controls the maximum number of frames transmitted before setting the CSR5.TI (transmit interrupt) bit.

The transmit counter is enabled when written with a nonzero value. It is decremented after every
transmitted frame. It is reloaded after setting the CSR5.TI bit.

Writing 0 to this field disables the counter effect on the transmit interrupt mitigation mechanism.

Reading this field gives the actual count value of the counter.

CSR11.(23..20) RT

Receive timer

Controls the maximum time that must elapse between the end of a receive operation and the setting of the
CSR5.RI (receive interrupt) bit.

This time is equal to RT × CS.

The receive timer is enabled when written with a nonzero value. After each frame reception, the timer starts
to count down if it has not already started. It is reloaded after every received frame.

Writing 0 to this field disables the timer effect on the receive interrupt mitigation mechanism.

Reading this field gives the actual count value of the timer.
40 v2.2

Core10/100 v3.2 Frame Data and Descriptors
Frame Data and Descriptors

Descriptor / Data Buffer Architecture Overview
A data exchange between the host and Core10/100 is performed via the descriptor lists and data buffers, which reside in
the system shared RAM. The buffers hold the host data to be transmitted or received by Core10/100. The descriptors
act as pointers to these buffers. Each descriptor list should be constructed by the host in a shared memory area and can
be of an arbitrary size. There is a separate list of descriptors for both the transmit and receive processes.

The position of the first descriptor in the descriptor list is described by CSR3 for the receive list and by CSR4 for the
transmit list. The descriptors can be arranged in either a chained or a ring structure. In a chained structure, every
descriptor contains a pointer to the next descriptor in the list. In a ring structure, the address of the next descriptor is
determined by CSR0.(6..2) (DSL—descriptor skip length). Every descriptor can point to up to two data buffers. When
using descriptor chaining, the address of the second buffer is used as a pointer to the next descriptor; thus, only one
buffer is available. A frame can occupy one or more data descriptors and buffers, but one descriptor cannot exceed a
single frame. In a ring structure, the descriptor operation may be corrupted if only one descriptor is used. Additionally,
in the ring structure, at least two descriptors should be set up by the host. In a transmit process, the host can give the
ownership of the first descriptor to Core10/100 and causes the data specified by the first descriptor to be transmitted. At
the same time, the host holds the ownership of the second or last descriptor to itself. This is done to prevent Core10/100
from fetching the next frame until the host is ready to transmit the data specified in the second descriptor. In a receive
process, the ownership of all available descriptors, unless it is pending processing by the host, should be given to Core10/
100.

Core10/100 can store a maximum of two frames in the Transmit Data FIFO, including the frame waiting inside the
Transmit Data FIFO, the frame being transferred from the data interface into the Transmit Data FIFO, and the frame
being transmitted out via the MII interface from the Transmit Data FIFO.

CSR11.(19..17) NRP

Number of receive packets

Controls the maximum number of received frames before setting the CSR5.RI (receive interrupt) bit.

The receive counter is enabled when written with a nonzero value. It is decremented after every received
frame. It is reloaded after setting the CSR5.RI bit.

Writing 0 to this field disables the timer effect on the receive interrupt mitigation mechanism.

Reading this field gives the actual count value of the counter.

CSR11.16 CON

Continuous mode

1 – General-purpose timer works in continuous mode

0 – General-purpose timer works in one-shot mode

CSR11.(15..0) TIM

Timer value

Contains the number of iterations of the general-purpose timer. Each iteration duration is as follows:

MII 100 Mbps mode – 81.92 μs

MII 10 Mbps mode – 819.2 μs

Table 4-26 · General-Purpose Timer and Interrupt Mitigation Control Bit Functions (continued)

Bit Symbol Function
v2.2 41

Software Interface Core10/100 v3.2
Core10/100 can store a maximum of four frames in the Receive Data FIFO, including the frame waiting inside the
Receive Data FIFO, the frame being transferred to the data interface from the Receive Data FIFO, and the frame being
received via the MII interface into the Receive Data FIFO.

Figure 4-3 · Descriptors in Ring Structure

OWN

CSR3/CSR4 – Descriptor List Base

DSL – Descriptor Skip

CSR
Shared

CSR
Buffer 1
Buffer 2

RIN

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
RIN

OWN

Buffer 2

Data

Data

Data
42 v2.2

Core10/100 v3.2 Frame Data and Descriptors
Figure 4-4 · Descriptors in Chained Structure

CSR3/CSR4 – Descriptor List Base

CSR

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
Buffer 2

RIN
OWN

Buffer 1
Buffer 2

RIN
OWN

Data

Data

Data

Shared

Table 4-27 · Receive Descriptors

RDES0 OWN STATUS

RDES1 CONTROL RBS2 RBS1

RDES2 RBA1

RDES3 RBA2
v2.2 43

Software Interface Core10/100 v3.2
Table 4-28 · STATUS (RDES0) Bit Functions

Bit Symbol Function

RDES0.31 OWN

Ownership bit

1 – Core10/100 owns the descriptor.

0 – The host owns the descriptor.

Core10/100 will clear this bit when it completes a current frame reception or when the data buffers
associated with a given descriptor are already full.

RDES0.30 FF

Filtering fail

When set, indicates that a received frame did not pass the address recognition process.

This bit is valid only for the last descriptor of the frame (RDES0.8 set), when the CSR6.30 (receive all) bit
is set and the frame is at least 64 bytes long.

RDES0.(29..16) FL

Frame length

Indicates the length, in bytes, of the data transferred into a host memory for a given frame

This bit is valid only when RDES0.8 (last descriptor) is set and RDES0.14 (descriptor error) is cleared.

RDES0.15 ES

Error summary

This bit is a logical OR of the following bits:

RDES0.1 – CRC error

RDES0.6 – Collision seen

RDES0.7 – Frame too long

RDES0.11 – Runt frame

RDES0.14 – Descriptor error

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.14 DE

Descriptor error

Set by Core10/100 when no receive buffer was available when trying to store the received data.

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.11 RF

Runt frame

When set, indicates that the frame is damaged by a collision or by a premature termination before the end
of a collision window.

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.10 MF

Multicast frame

When set, indicates that the frame has a multicast address.

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.9 FS
First descriptor

When set, indicates that this is the first descriptor of a frame.

RDES0.8 LS
Last descriptor

When set, indicates that this is the last descriptor of a frame.
44 v2.2

Core10/100 v3.2 Frame Data and Descriptors
RDES0.7 TL

Frame too long

When set, indicates that a current frame is longer than maximum size of 1,518 bytes, as specified by 802.3.

TL (frame too long) in the receive descriptor has been set when the received frame is longer than
1,518 bytes. This flag is valid in all receive descriptors when multiple descriptors are used for one frame.

RDES0.6 CS

Collision seen

When set, indicates that a late collision was seen (collision after 64 bytes following SFD).

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.5 FT

Frame type

When set, indicates that the frame has a length field larger than 1,500 (Ethernet-type frame). When
cleared, indicates an 802.3-type frame.

This bit is valid only when RDES0.8 (last descriptor) is set.

Additionally, FT is invalid for runt frames shorter than 14 bytes.

RDES0.3 RE

Report on MII error

When set, indicates that an error has been detected by a physical layer chip connected through the MII
interface.

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.2 DB

Dribbling bit

When set, indicates that the frame was not byte-aligned.

This bit is valid only when RDES0.8 (last descriptor) is set.

RDES0.1 CE

CRC error

When set, indicates that a CRC error has occurred in the received frame.

This bit is valid only when RDES0.8 (last descriptor) is set.

Additionally, CE is not valid when the received frame is a runt frame.

RDES0.0 ZERO This bit is reset for frames with a legal length.

Table 4-28 · STATUS (RDES0) Bit Functions (continued)

Bit Symbol Function
v2.2 45

Software Interface Core10/100 v3.2
Table 4-29 · CONTROL and COUNT (RDES1) Bit

Bit Symbol Function

RDES1.25 RER

Receive end of ring

When set, indicates that this is the last descriptor in the receive descriptor ring. Core10/100 returns to the
first descriptor in the ring, as specified by CSR3 (start of receive list address).

RDES1.24 RCH

Second address chained

When set, indicates that the second buffer's address points to the next descriptor and not to the data buffer.

Note that RER takes precedence over RCH.

RDES1.(21..11) RBS2

Buffer 2 size

Indicates the size, in bytes, of memory space used by the second data buffer. This number must be a
multiple of four. If it is 0, Core10/100 ignores the second data buffer and fetches the next data descriptor.

This number is valid only when RDES1.24 (second address chained) is cleared.

RDES1.(10..0) RBS1

Buffer 1 size

Indicates the size, in bytes, of memory space used by the first data buffer. This number must be a multiple of
four. If it is 0, Core10/100 ignores the first data buffer and uses the second data buffer.

Table 4-30 · RBA1 (RDES2) Bit Functions

Bit Symbol Function

RDES2.(31..0) RBA1

Receive buffer 1 address

Indicates the length, in bytes, of memory allocated for the first receive buffer. This number must be
longword-aligned (RDES2.(1..0) = '00').

Table 4-31 · RBA2 (RDES3) Bit Functions

Bit Symbol Function

RDES3.(31..0) RBA2

Receive buffer 2 address

Indicates the length, in bytes, of memory allocated for the second receive buffer. This number must be
longword-aligned (RDES3.(1..0) = '00').

Table 4-32 · Transmit Descriptors

TDES0 OWN STATUS

TDES1 CONTROL TBS2 TBS1

TDES2 TBA1

TDES3 TBA2
46 v2.2

Core10/100 v3.2 Frame Data and Descriptors
Table 4-33 · STATUS (TDES0) Bit Functions

Bit Symbol Function

TDES0.31 OWN

Ownership bit

1 – Core10/100 owns the descriptor.

0 – The host owns the descriptor.

Core10/100 will clear this bit when it completes a current frame transmission or when the data buffers
associated with a given descriptor are empty.

TDES0.15 ES

Error summary

This bit is a logical OR of the following bits:

TDES0.1 – Underflow error

TDES0.8 – Excessive collision error

TDES0.9 – Late collision

TDES0.10 – No carrier

TDES0.11 – Loss of carrier

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.11 LO

Loss of carrier

When set, indicates a loss of the carrier during a transmission.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.10 NC

No carrier

When set, indicates that the carrier was not asserted by an external transceiver during the transmission.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.9 LC

Late collision

When set, indicates that a collision was detected after transmitting 64 bytes.

This bit is not valid when TDES0.1 (underflow error) is set.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.8 EC

Excessive collisions

When set, indicates that the transmission was aborted after 16 retries.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.(6..3) CC

Collision count

This field indicates the number of collisions that occurred before the end of a frame transmission.

This value is not valid when TDES0.8 (excessive collisions bit) is set.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.1 UF

Underflow error

When set, indicates that the FIFO was empty during the frame transmission.

This bit is valid only when TDES1.30 (last descriptor) is set.

TDES0.0 DE

Deferred

When set, indicates that the frame was deferred before transmission. Deferring occurs if the carrier is detected
when the transmission is ready to start.

This bit is valid only when TDES1.30 (last descriptor) is set.
v2.2 47

Software Interface Core10/100 v3.2
Table 4-34 · CONTROL (TDES1) Bit Functions

Bit Symbol Function

TDES1.31 IC

Interrupt on completion

Setting this flag instructs Core10/100 to set CSR5.0 (transmit interrupt) immediately after processing a
current frame.

This bit is valid when TDES1.30 (last descriptor) is set or for a setup packet.

TDES1.30 LS
Last descriptor

When set, indicates the last descriptor of the frame.

TDES1.29 FS
First descriptor

When set, indicates the first descriptor of the frame.

TDES1.28 FT1

Filtering type

This bit, together with TDES0.22 (FT0), controls a current filtering mode.

This bit is valid only for the setup frames.

TDES1.27 SET
Setup packet

When set, indicates that this is a setup frame descriptor.

TDES1.26 AC

Add CRC disable

When set, Core10/100 does not append the CRC value at the end of the frame. The exception is when the
frame is shorter than 64 bytes and automatic byte padding is enabled. In that case, the CRC field is added,
despite the state of the AC flag.

TDES1.25 TER
Transmit end of ring

When set, indicates the last descriptor in the descriptor ring.

TDES1.24 TCH

Second address chained

When set, indicates that the second descriptor's address points to the next descriptor and not to the data
buffer.

This bit is valid only when TDES1.25 (transmit end of ring) is reset.

TDES1.23 DPD

Disabled padding

When set, automatic byte padding is disabled. Core10/100 normally appends the PAD field after the INFO
field when the size of an actual frame is less than 64 bytes. After padding bytes, the CRC field is also
inserted, despite the state of the AC flag. When DPD is set, no padding bytes are appended.

TDES1.22 FT0

Filtering type

This bit, together with TDES0.28 (FT1), controls the current filtering mode.

This bit is valid only when the TDES1.27 (SET) bit is set.

TDES1.(21..11) TBS2

Buffer 2 size

Indicates the size, in bytes, of memory space used by the second data buffer. If it is zero, Core10/100 ignores
the second data buffer and fetches the next data descriptor.

This bit is valid only when TDES1.24 (second address chained) is cleared.

TDES1.(10..0) TBS1

Buffer 1 size

Indicates the size, in bytes, of memory space used by the first data buffer. If it is 0, Core10/100 ignores the
first data buffer and uses the second data buffer.
48 v2.2

Core10/100 v3.2 Frame Data and Descriptors
MAC Address and Setup Frames
The setup frames define addresses that are used for the receive address filtering process. These frames are never
transmitted on the Ethernet connection. They are used to fill the address filtering RAM. A valid setup frame must be
exactly 192 bytes long and must be allocated in a single buffer that is longword-aligned. TDESI.27 (setup frame
indicator) must be set. Both TDES1.29 (first descriptor) and TDES1.30 (last descriptor) must be cleared for the setup
frame. The FT1 and FT0 bits of the setup frame define the current filtering mode.

Table 4-37 lists all possible combinations. Table 4-38 on page 50 shows the setup frame buffer format for perfect
filtering modes. Table 4-39 on page 50 shows the setup frame buffer for imperfect filtering modes. The setup should be
sent to Core10/100 when Core 10/100 is in stop mode. When a RAM with more than 192 bytes is used for the address
filtering RAM, a setup frame with more than 192 bytes can be written into this memory to initialize its contents, but
only the first 192 bytes constitute the address filtering operation.

Table 4-35 · TBA1 (TDES2) Bit Functions

Bit Symbol Function

TDES2.(31..0) TBA1

Transmit buffer 1 address

Contains the address of the first data buffer. For the setup frame, this address must be longword-aligned
(TDES3.(1..0) = '00'). In all other cases, there are no restrictions on buffer alignment.

Table 4-36 · TBA2 (TDES3) Bit Functions

Bit Symbol Function

TDES3(31..0) TBA2
Transmit buffer 2 address

Contains the address of the second data buffer. There are no restrictions on buffer alignment.

Table 4-37 · Filtering Type Selection

FT1 FT0 Description

0 0
Perfect filtering mode

Setup frame buffer is interpreted as a set of sixteen 48-bit physical addresses.

0 1
Hash filtering mode

Setup frame buffer contains a 512-bit hash table plus a single 48-bit physical address.

1 0
Inverse filtering mode

Setup frame buffer is interpreted as a set of sixteen 48-bit physical addresses.

1 1
Hash only filtering mode

Setup frame buffer is interpreted as a 512-bit hash table.
v2.2 49

Software Interface Core10/100 v3.2
Table 4-38 · Perfect Filtering Setup Frame Buffer

Byte Number Data Bits 31:16 Data Bits 15:0

3:0 xxxxxxxxxxxxxxxx Physical Address 0 (15:00)

7:4 xxxxxxxxxxxxxxxx Physical Address 0 (31:16)

11:8 xxxxxxxxxxxxxxxx Physical Address 0 (47:32)

15:12 xxxxxxxxxxxxxxxx Physical Address 1 (15:00)

19:16 xxxxxxxxxxxxxxxx Physical Address 1 (31:16)

23:20 xxxxxxxxxxxxxxxx Physical Address 1 (47:32)

.

.

.

.

.

.

.

.

.

171:168 xxxxxxxxxxxxxxxx Physical Address 14 (15:00)

175:172 xxxxxxxxxxxxxxxx Physical Address 14 (31:16)

179:176 xxxxxxxxxxxxxxxx Physical Address 14 (47:32)

183:180 xxxxxxxxxxxxxxxx Physical Address 15 (15:00)

187:184 xxxxxxxxxxxxxxxx Physical Address 15 (31:16)

191:188 xxxxxxxxxxxxxxxx Physical Address 15 (47:32)

Table 4-39 · Hash Table Setup Frame Buffer Format

Byte Number Data Bits 31:16 Data Bits 15:0

3:0 xxxxxxxxxxxxxxxx Hash filter (015:000)

7:4 xxxxxxxxxxxxxxxx Hash filter (031:016)

11:8 xxxxxxxxxxxxxxxx Hash filter (047:032)

.

.

.

.

.

.

.

.

.

123:121 xxxxxxxxxxxxxxxx Hash filter (495:480)

127:124 xxxxxxxxxxxxxxxx Hash filter (511:496)

131:128 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

135:132 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

.

.

.

.

.

.

159:156 xxxxxxxxxxxxxxxx Physical Address (15:00)

163:160 xxxxxxxxxxxxxxxx Physical Address (31:16)

167:164 xxxxxxxxxxxxxxxx Physical Address (47:32)

171:168 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

175:172 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

.

.

.

.

.

.

183:180 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

187:184 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx

191:188 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx
50 v2.2

Core10/100 v3.2 Internal Operation
Internal Operation
The address bus width of the Receive/Transmit Data RAMs can be customized via the core parameters RFIFODEPTH
and TFIFODEPTH (Table 3-1 on page 19). Those memory blocks should be at least as big as the longest frame used
on a given network. Core10/100 stops to request new frame data when there are two frames already in the Transmit
Data RAM. It resumes the request for new frame data when there is either one or no frame in the Transmit Data RAM.

At any given time, the Receive Data RAM can hold no more than four frames, including frames currently under
transfer.

DMA Controller
The DMA is used to control a data flow between the host and Core10/100.

The DMA services the following types of requests from the Core10/100 transmit and receive processes:

• Transmit request:

Descriptor fetch

Descriptor closing

Setup packet processing

Data transfer from host buffer to transmit FIFO

• Receive request:

Descriptor fetch

Descriptor closing

Data transfer from receive FIFO to host buffer

The key task for the DMA is to perform an arbitration between the receive and transmit processes. Two arbitration
schemes are possible according to the CSR0.1 bit:

• 1 – Round-robin arbitration scheme in which receive and transmit processes have equal priorities

• 0 – The receive process has priority over the transmit process unless transmission is in progress. In this case, the
following rules apply:

The transmit process request should be serviced by the DMA between two consecutive receive transfers.

The receive process request should be serviced by the DMA between two consecutive transmit transfers.

Transfers between the host and Core10/100 performed by the DMA component are either single data transfers or burst
transfers. For the data descriptors, the data transfer size depends on the core parameter DATAWIDTH. The rule is that
every descriptor field (32-bit) is accessed with a single burst. For DATAWIDTH = 32, the descriptors are accessed with
a single transaction; for DATAWIDTH = 16, the descriptors are accessed with a burst of two 16-bit words, and for
DATAWIDTH = 8, the descriptors are accessed with a burst of four 8-bit words.

In the case of data buffers, the burst length is defined by CSR0.(13..8) (programmable burst length) and can be set to 0,
1, 2, 4, 8, 16, or 32. When set to 0, no maximum burst size is defined, and the transfer ends when the transmit FIFOs
are full or the receive FIFOs are empty.

Transmit Process
The transmit process can operate in one of three modes: running, stopped, or suspended. After a software or hardware
reset, or after a stop transmit command, the transmit process is in a stopped state. The transmit process can leave a
stopped state only after the start transmit command.

When in a running state, the transmit process performs descriptor/buffer processing. When operating in a suspended or
stopped state, the transmit process retains the position of the next descriptor, i.e., the address of the descriptor following
the last descriptor being closed. After entering a running state, that position is used for the next descriptor fetch. The
only exception is when the host writes the transmit descriptor base address register (CSR4). In that case, the descriptor
address is reset and the fetch is directed to the first position in the list.
v2.2 51

Software Interface Core10/100 v3.2
When operating in a stopped state, the transmit process stopped (tps) output is HIGH. This output can be used to
disable the clkt clock signal external to Core10/100. When both the tps and receive process stopped (rps) outputs are
HIGH, all clock signals except clkcsr can be disabled external to Core10/100.

The transmit process remains running until one of the following events occurs:

• The hardware or software reset is issued. Setting the CSR0.0 (SWR) bit can perform the software reset. After the reset,
all the internal registers return to their default states. The current descriptor's position in the transmit descriptor list is
lost.

• A stop transmit command is issued by the host. This can be performed by writing 0 to the CSR6.13 (ST) bit. The
current descriptor's position is retained.

• The descriptor owned by the host is found. The current descriptor's position is retained.

• The transmit FIFO underflow error is detected. An underflow error is generated when the transmit FIFO is empty
during the transmission of the frame. When it occurs, the transmit process enters a suspended state. Transmit
automatic polling is internally disabled, even if it is enabled by the host by writing the TAP bits. The current
descriptor's position is retained.

Leaving a suspended state is possible in one of the following situations:

• A transmit poll demand command is issued. This can be performed by writing CSR1 with a nonzero value. The
transmit poll demand command can also be generated automatically when transmit automatic polling is enabled.
Transmit automatic polling is enabled only if the CSR0(19..17) (TAP) bits are written with a nonzero value and when
there was no underflow error prior to entering the suspended state.

• A stop transmit command is issued by the host. This can be performed by writing 0 to the CSR6.13 (ST) bit. The
current descriptor's position is retained.

A typical data flow for the transmit process is illustrated in Figure 4-6 on page 53. The events for the transmit process
typically happen in the following order:

1. The host sets up CSR registers for the operational mode, interrupts, etc.

2. The host sets up transmit descriptors/data in the shared RAM.

3. The host sends the transmit start command.

4. Core10/100 starts to fetch the transmit descriptors.

5. Core10/100 transfers the transmit data to Transmit Data RAM from the shared RAM.

6. Core10/100 starts to transmit data on MII.
52 v2.2

Core10/100 v3.2 Internal Operation
Figure 4-5 · Transmit Process Transitions

Figure 4-6 · Transmit Data Flow

Note: Refer to the Core10/100 User’s Guide for an example of transmit data timing.

Transmit
Stopped

Transmit
Suspended

Transmit
Running

Start Transmit
Command

Stop
Transmit

Command

Descriptor
Unavailable

Pull Demand
Command

Underflow
Error

Reset
Command

Stop Transmit
Command

Reset
Command

Host-SharedRAM
CSR_Interface

Data_Interface-SharedRAM
Data_Interface-TxFIFO_RAM

Transmit_Controller-MII
TxFIFO_RAM-Transmit_Controller

CSRs
Des+Data

CSR6
Tx Des Tx Data

Tx Data
Preamble Tx Data

Tx Data
CRC
v2.2 53

Software Interface Core10/100 v3.2
Receive Process
The receive process can operate in one of three modes: running, stopped, or suspended. After a software or hardware
reset, or after a stop receive command, the receive process is in the stopped state. The receive process can leave a stopped
state only after a start receive command.

In the running state, the receiver performs descriptor/buffer processing. In the running state, the receiver fetches from
the receive descriptor list. It performs this fetch regardless of whether there is any frame on the link. When there is no
frame pending, the receive process reads the descriptor and simply waits for the frames. When a valid frame is
recognized, the receive process starts to fill the memory buffers pointed to by the current descriptor. When the frame
ends, or when the memory buffers are completely filled, the current frame descriptor is closed (ownership bit cleared).
Immediately, the next descriptor on the list is fetched in the same manner, and so on.

When operating in a suspended or stopped state, the receive process retains the position of the next descriptor (the
address of the descriptor following the last descriptor that was closed). After entering a running state, the retained
position is used for the next descriptor fetch. The only exception is when the host writes the receive descriptor base
address register (CSR3). In that case, the descriptor address is reset and the fetch is pointed to the first position in the
list.

When operating in a stopped state, the rps output is HIGH. This output allows for switching the receive clock clkr off
externally. When both the rps and tps outputs are HIGH, all clocks except clkcsr can be externally switched off.

The receive process runs until one of the following events occurs:

• A hardware or software reset is issued by the host. A software reset can be performed by setting the CSR0.0 (SWR)
bit. After reset, all internal registers return to their default states. The current descriptor's position in the receive
descriptor list is lost.

• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6.1 (SR) bit. The current
descriptor's position is retained.

• The descriptor owned by the host is found by Core10/100 during the descriptor fetch. The current descriptor's position
is retained.

Leaving a suspended state is possible in one of the following situations:

• A receive poll command is issued by the host. This can be performed by writing CSR2 with a nonzero value.

• A new frame is detected by Core10/100 on a receive link.

• A stop receive command is issued by the host. This can be performed by writing 0 to the CSR6.1 (SR) bit. The current
descriptor's position is retained.
54 v2.2

Core10/100 v3.2 Internal Operation
Figure 4-7 · Receive Process Transitions

Note: Refer to the Core10/100 User’s Guide for an example of receive timing.

A typical data flow in a receive process is illustrated in Figure 4-8 on page 55. The events for the receive process typically
happen in the following order:

1. The host sets up CSR registers for the operational mode, interrupts, etc.

2. The host sets up receive descriptors in the shared RAM.

3. The host sends the receive start command.

4. Core10/100 starts to fetch the transmit descriptors.

5. Core10/100 waits for receive data on MII.

6. Core10/100 transfers received data to the Receive Data RAM.

7. Core10/100 transfers received data to shared RAM from Receive Data RAM.

Figure 4-8 · Receive Data Flow

Interrupt Controller
The interrupt controller uses three internal Control and Status registers: CSR5, CSR7, and CSR11. CSR5 contains the
Core10/100 status information. It has 10 bits that can trigger an interrupt. These bits are collected in two groups:
normal interrupts and abnormal interrupts. Each group has its own summary bit, NIS and AIS, respectively. The NIS
and AIS bits directly control the int output port of Core10/100. Every status bit in CSR5 that can source an interrupt
can be individually masked by writing an appropriate value to CSR7 (Interrupt Enable register).

Additionally, an interrupt mitigation mechanism is provided for reducing CPU usage in servicing interrupts. Interrupt
mitigation is controlled via CSR11. There are separate interrupt mitigation control blocks for the transmit and receive
interrupts. Both of these blocks consist of a 4-bit frame counter and a 4-bit timer. The operation of these blocks is
similar for the receive and transmit processes. After the end of a successful receive or transmission operation, an

Start Receive
Command

Stop Receive
Command

Reset
Command

Receive
Stopped

Receive
Running

Descriptor
Unavailable

Stop Receive
Command

Frame
Recognized

Pull Demand
Command

Reset
Command

Receive
Suspended

Host-SharedRAM
CSR_Interface

Data_Interface-SharedRAM
Data_Interface-RxFIFO_RAM

RxFIFO_RAM-Receive_Controller
Receive_Controller-MII

CSRs CSR6

Rx Des
Rx Data

Preamble

Rx Data CRC

Rx Data

Rx Des

Rx Data CRC
v2.2 55

Software Interface Core10/100 v3.2
appropriate counter is decremented and the timer starts to count down if it has not already started. An interrupt is
triggered when either the counter or the timer reaches a zero value. This allows Core10/100 to generate a single
interrupt for a few received/transmitted frames or after a specified time since the last successful receive/transmit
operation.

It is possible to omit transmit interrupt mitigation for one particular frame by setting the Interrupt on Completion (IC)
bit in the last descriptor of the frame. If the IC bit is set, Core10/100 sets the transmit interrupt immediately after the
frame has been transmitted.

The int port remains LOW for a single clock cycle on every write to CSR5. This enables the use of both level- and edge-
triggered external interrupt controllers.

Figure 4-9 · Interrupt Scheme

Int

CSR11
Mitigation Control

CSR5
Status

CSR7
Interrupt Enable

TT = 0

NTP = 0

NRP = 0

RT = 0

TI

RI

TU

TU

ETI

ERI

GTE

NIS

AIS

TPS

RPS

UNF

TIE

RIE

TUE

RUE

ETE

ERE

GTE

NIE

AIE

TSE

RSE

UNE
56 v2.2

Core10/100 v3.2 Internal Operation
General-Purpose Timer
Core10/100 includes a 16-bit general-purpose timer to simplify time interval calculation by an external host. The timer
operates synchronously with the transmit clock clkt generated by the PHY device. This gives the host the possibility of
measuring time intervals based on actual Ethernet bit time.

The timer can operate in one-shot mode or continuous mode. In one-shot mode, the timer stops after reaching a zero
value; in continuous mode, it is automatically reloaded and continues counting down after reaching a zero value.

The actual count value can be tested with an accuracy of ±1 bit by reading CSR11.(15..0). When writing CSR11.(15..0),
the data is stored in the internal reload register. The timer is immediately reloaded and starts to count down.

Data Link Layer Operation

MII Interface
Core10/100 uses a standard MII interface as defined in the 802.3 standard.

This interface can be used for connecting Core10/100 to an external Ethernet 10/100 PHY device.

MII Interface Signals

Table 4-40 · External PHY Interface Signals

IEEE 802.3
Signal Name

Core10/100
Signal Name

Description

RX_CLK clkr
Clock for receive operation

This should be a 25 MHz clock for 100 Mbps operation or a 2.5 MHz clock for 10 Mbps operation.

RX_DV rxdv

Receive data valid signal

The PHY device should assert rxdv when a valid data nibble is provided on the rxd signal.

The rxdv signal must be synchronous to the clkr receive clock.

RX_ER rxer

Receive error

Core10/100 ends a reception when this bit is asserted during a receive operation.

The rxer signal must be synchronous to the clkr receive clock.

RXD rxd

Receive data recovered and decoded by PHY

The rxd[0] signal is the least significant bit.

The rxd bus must be synchronous to the clkr receive clock.

TX_CLK clkt
Clock for transmit operation

This should be a 25 MHz clock for 100 Mbps operation or a 2.5 MHz clock for 10 Mbps operation.

TX_EN txen

Transmit enable

When asserted, indicates valid data for the PHY on txd.

The txen signal is synchronous to the clkt transmit clock.

TXD txd

Transmit data

The txd[0] signal is the least significant bit.

The txd bus is synchronous to the clkt transmit clock.
v2.2 57

Software Interface Core10/100 v3.2
MII Receive Operation

Figure 4-10 · MII Receive Operation

COL col

Collision detected

This signal should be asserted by the PHY when a collision is detected on the medium. It is valid only
when operating in a half-duplex mode. When operating in a full-duplex mode, this signal is ignored by
Core10/100.

The col signal is not required to be synchronous to either clkr or clkt.

The col signal is sampled internally by the clkt clock.

CRS crs

Carrier sense

This signal should be asserted by the PHY when either a receive or a transmit medium is non-idle.

The crs signal is not required to be synchronous to either clkr or clkt.

TX_ER txer
Transmit error

The current version of Core10/100 has the txer signal statically tied to logic 0 (no transmit errors).

MDC mdc
MII management clock

This signal is driven by the CSR9.16 bit.

MDIO

mdi
MII management data input

The state of this signal can be checked by reading the CSR9.19 bit.

mdo
MII management data output

This signal is driven by the CSR9.18 bit.

Table 4-40 · External PHY Interface Signals (continued)

IEEE 802.3
Signal Name

Core10/100
Signal Name

Description

clkr

rxdv

rxer

Read Points
Error Detected

rxd[3:0] data data data data
58 v2.2

Core10/100 v3.2 Internal Operation
MII Transmit Operation

Figure 4-11 · MII Transmit Operation

Frame Format
Core10/100 supports the Ethernet frame format shown in Figure 4-12 (“B” indicates bytes). The standard Ethernet
frames (DIX Ethernet), as well as IEEE 802.3 frames, are accepted.

Figure 4-12 · Frame Format

clkt

txen

col

txd[3:0]

Write Points
Collision Detected

data data data data

crs

Deferring

PREAMBLE SFD DA SA
LENGTH /

TYPE
DATA PAD FCS

7B 1B 6B 6B 2B

46B – 1500B

4B

Table 4-41 · Frame Field Usage

Field
Width
(bytes)

Transmit Operation Receive Operation

PREAMBLE 7 Generated by Core10/100
Stripped from received data

Not required for proper operation

SFD 1 Generated by Core10/100 Stripped from received data

DA 6 Supplied by host
Checked by Core10/100 according to current address
filtering mode and passed to host

SA 6 Supplied by host Passed to host

LENGTH/ TYPE 6 Supplied by host Passed to host

DATA 0-1500 Supplied by host Passed to host

PAD 0-46
Generated by Core10/100 when CSR.23
(DPD) bit is cleared and data supplied by host is
less than 64 bytes

Passed to host

FCS 4
Generated by Core10/100 when CSR.26 bit is
cleared

Checked by Core10/100 and passed to host
v2.2 59

Software Interface Core10/100 v3.2
Collision Handling
Collision detection is performed via the col input port. If a collision is detected before the end of the PREAMBLE/
SFD, Core10/100 completes the PREAMBLE/SFD, transmits the JAM sequence, and initiates a backoff computation.
If a collision is detected after the transmission of the PREAMBLE and SFD, but prior to 512 bits being transmitted,
Core10/100 immediately aborts the transmission, transmits the JAM sequence, and then initiates a backoff. If a collision
is detected after 512 bits have been transmitted, the collision is termed a late collision. Core10/100 aborts the
transmission and appends the JAM sequence. The transmit message is flushed from the FIFO. Core10/100 does not
initiate a backoff and does not attempt to retransmit the frame when a late collision is detected.

Core10/100 uses a “truncated binary exponential backoff ” algorithm for backoff computing, as defined in the IEEE
802.3 standard and outlined in Figure 4-13.

Backoff processing is performed only in half-duplex mode. In full-duplex mode, collision detection is disabled.

Figure 4-13 · Backoff Process Algorithms

Wait for End of
Transmission

Normal
Collision?

Increment Attempt

Attempt < 16

Attempt < 10

ran = random(0..2attempt – 1) ran = random(0..210 – 1)

Wait for ran * Slot Time

Transmission
Ready

Set TDES0.8 (EC)
Excessive Collision

Reset Attempt

Yes

No

Yes

No

Yes

No

Yes No

Late Collision?
Set TDES0.9 (LC)

Late Collision
Yes

No

Next Transmission
Attempt
60 v2.2

Core10/100 v3.2 Internal Operation
Deferring
The deferment algorithm is implemented per the 802.3 specification and outlined in Figure 4-14. The InterFrame Gap
(IFG) timer starts to count whenever the link is not idle. If activity on the link is detected during the first 60 bit times of
the IFG timer, the timer is reset and restarted once activity has stopped. During the final 36 bit times of the IFG timer,
the link activity is ignored.

Carrier sensing is performed only when operating in half-duplex mode. In full-duplex mode, the state of the crs input is
ignored.

Figure 4-14 · Deferment Process Algorithms

Reset IFG Timer

Transmit Ready and
Not in Backoff?

Transmit Frame

Yes

No

Yes

No

Yes

No

Yes

No

IFG Timer =
60 Bit Times ?

crs = 0 ?

crs = 0 ?

IFG Timer =
96 Bit Times ?

Yes

No
v2.2 61

Software Interface Core10/100 v3.2
Receive Address Filtering
There are three kinds of addresses on the LAN: the unicast addresses, the multicast addresses, and the broadcast
addresses. If the first bit of the address (IG bit) is 0, the frame is unicast, i.e., dedicated to a single station. If the first bit
is 1, the frame is multicast, i.e., destined for a group of stations. If the address field contains all ones, the frame is
broadcast and is received by all stations on the LAN.

When Core10/100 operates in perfect filtering mode, all frames are checked against the addresses in the address filtering
RAM. The unicast, multicast, and broadcast frames are treated in the same manner.

When Core10/100 operates in the imperfect filtering mode, the frames with the unicast addresses are checked against a
single physical address. The multicast frames are checked using the 512-bit hash table. Core10/100 applies the standard
Ethernet CRC function to the first six bytes of the frame that contains a destination address. The least significant nine
bits of the CRC value are used to index the table. If the indexed bit is set, the frame is accepted. If this bit is cleared, the
frame is rejected. The algorithm is shown in Figure 4-15.

Figure 4-15 · Filtering with One Physical Address and the Hash Table

It is important that one bit in the hash table corresponds to many Ethernet addresses. Therefore, it is possible that some
frames may be accepted by Core10/100, even if they are not intended to be received. This is because some frames that
should not have been received have addresses that hash to the same bit in the table as one of the proper addresses. The
software should perform additional address filtering to reject all such frames. The receive address filtering RAM must be
enabled using the ADDRFILTER core parameter to enable the above functionality.

External Address Filtering Interface
An external address filtering interface is provided to extend the internal filtering capabilities of Core10/100. The
interface allows connection of external user-supplied address checking logic. All signals from the interface are
synchronous to the clkr clock.

DAIG

802.3 Frame Destination Address

512-Bit Hash Table

One Physical Address

Multicast
Address?

Yes

No

47 0 47
CRC Generator

9

Hash Table
Index

08
62 v2.2

Core10/100 v3.2 Internal Operation
If the external address filtering is not used, all input ports of the interface should be grounded and all output ports should
be left floating.

Table 4-42 · External Address Interface Description

Core10/100
Signal Name

Type Description

match In

External address match

When HIGH, indicates that the destination address on the matchdata port is
recognized by the external address checking logic and that the current frame should
be received by Core10/100.

When LOW, indicates that the destination address on the matchdata port is not
recognized and that the current frame should be discarded.

Note that the match signal should be valid only when the matchval signal is HIGH.

matchval In
External address match valid

When HIGH, indicates that the match signal is valid.

matchen Out

External match enable

When HIGH, indicates that the matchdata signal is valid. The matchen output
should be used as an enable signal for the external address checking logic. It is
HIGH for at least four clkr clock periods to allow for latency of external address
checking logic.

matchdata Out

External address match data

The matchdata signal represents the 48-bit destination address of the received
frame.

Note that the matchdata signal is valid only when matchen signal is HIGH.
v2.2 63

5
Interface Timing

Core10/100—CSR Interface

CSR Read/Write Operation
The CSR read and write operations are synchronous to the positive edge of the clkcsr signal and are illustrated in
Figure 5-1. Read operations require that the data be read in the same clock cycle in which the csrreq signal is set to
logic 1.

Figure 5-1 · CSR Read/Write Operation

Core10/100—Data Interface
The data interface is used for data transfers between Core10/100 and external shared system memory. It is a master via
the DMA interface; i.e., Core10/100 operates as an initiator on this data interface. The interface operates synchronously
with the clkdma clock supplied by the system. The data width of the interface can be changed using the core parameter
DATAWIDTH. Possible DATAWIDTH values are 8, 16, and 32. There are two data exchange types that can be
initiated and performed by Core10/100 via the DMA interface. The first data exchange type is the transmit and receive
descriptors. These are set up by the host and fetched by the DMA interface to instruct Core10/100 to exchange the
Ethernet frame data in specified locations of shared RAM. The second data exchange type is the Ethernet data type.

Data Interface Write Operation
The data interface supports single or burst data transfer. The writes are operated on the positive edge of the clock
clkdma. The write operation starts when the data interface sets datareq to HIGH, and then the data interface waits until
dataack from the host interface is set to HIGH (which indicates that the host is ready to receive the writes). A byte
enable signal databe indicates the valid bytes on each write. The signal dataob indicates to the hosts that it is the end of
a burst transfer. The signal dataack can be asserted or deasserted at any clock cycle; even in the middle of a burst transfer.

clk

csrreq

csrrw

csrbe

csraddr

csrdatai

csrdatao

Read

data

addr

be

data

addr

bebe

addr

data

WriteRead
v2.2 65

Interface Timing Core10/100 v3.2
Figure 5-2 · Core10/100 Host Data Write Operation

Data Interface Read Operation
The data interface supports single or burst data transfer. The reads are operated on the positive edge of the clock clkdma.
The read operation starts when the data interface sets datareq to HIGH, and then the data interface waits until dataack
from the host interface is set to HIGH (which indicates that the data is ready to be received by the data interface). A
byte enable signal, databe, indicates the valid bytes on each read request. The signal dataob indicates to the hosts that it
is the end of a burst transfer. dataack can be asserted or deasserted at any clock cycle, even in the middle of a burst
transfer.

Figure 5-3 · Host Data Read Operation

clk

datareq

datarw

dataeob

databe

dataaddr

datai

datao

Write

End of

dataack

a+ a+a a

b b

Write

data[a+1] data[a+2]data[a] data[a]

clk

datareq

datarw

dataeob

databe

dataaddr

datai

datao

Read

End of

dataack

a+ a+a a

b b

data[a] data[a+1] data[a+2] data[a]

Read
66 v2.2

Core10/100 v3.2 Core10/100_AHBAPB—APB Interface
Core10/100_AHBAPB—APB Interface
Figure 5-4 and Figure 5-5 depict typical write cycle and read cycle timing relationships relative to the APB system clock,
PCLK.

Figure 5-4 · Data Write Cycle

Figure 5-5 · Data Read Cycle

More detailed descriptions and timing waveforms can be found in the AMBA specification:

http://www.amba.com/products/solutions/AMBA_Spec.html.

Core10/100_AHBAPB—AHB Interface
Core10/100 implements an AMBA AHB–compliant master function on the core data interface, allowing the core to
access memory for data storage. The AHB interface is compliant with the AMBA specification. Full timing diagrams
are available in the AMBA specification:

http://www.amba.com/products/solutions/AMBA_Spec.html.

Clock and Reset Control

Clock Controls
As shown in Figure 5-6 on page 68, there are four clock domains in the design:

• The TC and BD components operate synchronously with the clkt clock supplied by the MII PHY device. This is a 2.5
MHz clock for 10 Mbps operation or a 25 MHz clock for 100 Mbps operation.

• The RC operates synchronously with the clkr clock supplied by the MII PHY device. This is a 2.5 MHz clock for
10 Mbps operation or a 25 MHz clock for 100 Mbps operation.

• The TFIFO, RFIFO, TLSM, RLSM, and DMA components operate synchronously with the clkdma global clock
supplied by the system.

• The CSR operates synchronously with the clkcsr clock supplied by the system.

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PWDATA[7:0]

Register Address

Register Data

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PWDATA[7:0]

Register Address

Register Data
v2.2 67

http://www.amba.com/products/solutions/AMBA_Spec.html
http://www.amba.com/products/solutions/AMBA_Spec.html

Interface Timing Core10/100 v3.2
Figure 5-6 · Clock Domains and Reset

All clock signals are independent and can be asynchronous one to another. If needed, the clkcsr and clkdma clock
domains can be connected together with the same system clock signal in the user's system to consolidate global clock
resources, or they can be from independent clock sources.

A minimum frequency of clock clkcsr is required for proper operation of the transmit, receive, and general-purpose
timers. The minimum frequency for clkcsr must be at least the clkt frequency divided by 64. For proper operation of the
receive timer, the clkcsr frequency should be at least the clkr frequency divided by 64. If the clock frequency conditions
described above are not met, do not use transmit interrupt mitigation control, receive interrupt mitigation control, or the
general-purpose timer. Appropriate clocks should be also supplied when the hardware reset operation is performed.

Reset Control

Hardware Reset
Core10/100 contains a single input rstcsr signal. This signal is sampled in the RSTC component by clock clkcsr. The RSTC
component generates an internal asynchronous reset for every clock domain in Core10/100. The internal reset is generated by
the input rstcsr and software reset. The internal reset remains active until the circuitry of all clock domains is reset.

The external reset signal must be active (HIGH) for at least one period of clock clkcsr in the user’s design. The minimum
recovery time for a software reset is two clkcsr periods plus one maximum clock period among clkdma, clkt, and clkr.

Software Reset
Software reset can be performed by setting the CSR0.0 (SWR) bit. The software reset will reset all internal flip-flops.

Timing Constraints
Actel recommends that correct timing constraints be used for the Synthesis and Layout stages of the design process. In
particular, the cross-clock-domain paths should be constrained as follows:

• FROM "clkdma" TO "clkt" uses clock period of clkdma

• FROM "clkt" TO "clkdma" uses clock period of clkt

• FROM "clkdma" TO "clkr" uses clock period of clkdma

• FROM "clkr" TO "clkdma" uses clock period of clkr

• FROM "clkcsr" TO "clkt" uses clock period of clkcsr

• FROM "clkt" TO "clkcsr" uses clock period of clkt

• FROM "clkcsr" TO "clkr" uses clock period of clkcsr

• FROM "clkr" TO "clkcsr" uses clock period of clkr

Note: For Core10/100_AHBAPB, clkdma should be replaced by HCLK and clkscr by PCLK.

clkr

clkt

clkdma

TFIFO
RFIFO
TLSM
RLSM
DMA

TC
BD

RC

CSRclkcsr RSTC
68 v2.2

6
Testbench Operation and Modification

Verification Testbench
Included with the releases of Core10/100 is a verification testbench that verifies operation of the Core10/100 macro. A
simplified block diagram of the verification testbench is shown in Figure 6-1. The source code of the verification
testbench is only shipped with the RTL version of Core10/100. The compiled ModelSim models of the verification
testbench are shipped with the Evaluation, Obfuscated, and RTL versions of Core10/100. The verification testbench is
used to verify the RTL source code of Core10/100 and the netlists provided in the Obfuscated version of Core10/100.
Actel recommends that the user testbench (see “User Testbench (Core10/100)” on page 74), rather than the verification
testbench, be used as a guide for system integration.

Verification Testbench Overview
The verification testbench instantiates one Core10/100 macro with associated RAMs, as well as the test vector modules
that provide stimuli source, and performs comparisons for expected values throughout the simulation process. A
procedural testbench controls each module and applies the sequential stimuli to the sub-blocks in the testbench.

Figure 6-1 · Core10/100 Verification Testbench

Core10/100

MAC_TB

U_CAM: CAM U_LINKMON: LINKMON U_INKTON: INTMONU_CLKR:
CLKGEN

U_CLKT:
CLKGEN

U_CLKCSR:
CLKGEN

U_CLKDMA:
CLKGEN

TRIS

int

rstcsr

MII Interface

CSR Interface Data Interface

U
_R

ST
G

EN
:R

ST
G

EN

lin
kc

o
m

p
.t

xt

lin
ks

ti
m

.t
xt

lin
kd

if
f.

tx
t

lin
kc

o
m

p
.t

xt

lin
kd

if
f.

tx
t

cs
rc

o
m

p
.t

xt

cs
rd

if
f.

tx
t

d
at

ac
o

m
p

.t
xt

d
at

ad
if

f.
tx

t

cs
rs

t/
m

.t
xt

d
at

as
t/

m
.t

xt

U_CSRCMD: CSRCMD U_DATACMD: DATACMD
v2.2 69

Testbench Operation and Modification Core10/100 v3.2
Verification Testbench Environment Description
The verification testbench's top-level module is TB_VERIF (Figure 6-1 on page 69), which instantiates the core and the
following drivers and monitors:

DATACMD – Data Interface Monitor

DATACMD is a bus monitor for the data interface. It monitors and drives all bus transactions that occur on the Core10/
100 data interface. DATACMD reads the expected results from the datacomp.txt file and compares them with the actual
bus transactions observed on the Core10/100 data interface. The results of the comparison are written into the file with
the simulation differences (datadiff.txt). The stimulator file (datastim.txt) is used as a set of stimulation vectors applied to
the Core10/100 data interface during the simulation process.

The files with the expected results and the files with the stimulus vectors use a common file format. The bus transactions
are described as commands in those files. The set of available commands consists of the following:

• 0 <cycles>

– command Wait – waits for a specified number of clock cycles. No bus transactions are completed when the cmdWait
command is executed.

• 1 <address> <eob> <rdata>

– command Read – represents a read request on the bus

• 2 <address> <eob> <wdata>

– command Write – represents a write request on the bus

CSRCMD – CSR Interface Monitor

CSRCMD is a bus monitor for the CSR interface. It monitors and drives all bus transactions that occur on the CSR
interface. CSRCMD reads the expected results from the csrcomp.txt file and compares them with the actual bus
transactions observed on the CSR interface. Results of the comparison are written into the file with the simulation
differences (csrdiff.txt). The stimulator file (csrstim.txt) is used as a set of stimulation vectors. These vectors are applied to
the CSR interface during the simulation process.

Table 6-1 · The Verification Testbench Environment Components

Instance Module Design File Description

U_CSRCMD CSRCMD csrcmd.vhd CSR interface monitor

U_DATACMD CMD cmd.vhd Data interface monitor

U_LINKMON LINKMON linkmon.vhd MII interface monitor

U_INTMON INTMON intmon.vhd Interrupt monitor

U_CLKCSR CLKGEN clkgen.vhd CSR clock generator

U_CLKDMA CLKGEN clkgen.vhd Data clock generator

U_CLKT CLKGEN clkgen.vhd MII transmit clock

U_CLKR CLKGEN clkgen.vhd MII receive clock

U_RSTGEN RSTGEN rstgen.vhd Reset generator

U_CAM CAM cam.vhd CAM memory model
70 v2.2

Core10/100 v3.2 Verification Testbench
The files with the expected results and the files with the stimulators use a common file format. The bus transactions are
described as commands in those files. The set of available commands consists of the following:

• 0 <cycles>

– command Wait – waits for a specified number of clock cycles. No bus transactions are completed when the cmdWait
command is executed.

• 1 <address> <eob> <rdata>

– command Read – represents a read request on the bus

• 2 <address> <eob> <wdata>

– command Write – represents a write request on the bus

LINKMON – MII Interface Monitor

LINKMON is the MII interface monitor. It monitors and drives the transmit MII pins. LINKMON reads the expected
results from the linkcomp.txt file and compares them with the actual transmissions observed on the MII interface. The
results of the comparison are written into the file with the simulation differences (linkdiff.txt). The stimulator file
(linkstim.txt) is used as a set of stimulation vectors for the MII. These vectors are applied to Core10/100 during the
simulation process.

The format of the linkstim.txt and linkcomp.txt files is shown below:

<time> <txd/rxd> <txen/rxen> <txer/rxer> <col> <crs>

<time> - The absolute simulation time

<txd/rxd> - In the case of the linkcomp.txt file, this reflects the value on the txd

pins. In the case of the linkstim.txt file, this is applied to the rxd

pins.

<txer/rxer> - In the case of the linkstim.txt file, this value is applied to the rxer

pin. In the case of the linkcomp.txt file, it reflects value on the txer

pin.

<col> - Actual value on the col input

<crs> - Actual value on the crs input

INTMON – Interrupt Monitor

All event times on pin int are compared with the actual events on the Core10/100 int pin. The results of the comparison
are written into the file with the simulation differences (intdiff.txt).

Each row of the intcomp.txt file contains the total simulation time of an event on the int pin.

CLKGEN – Clock Generation Unit

The CLKGEN component is a clock generator used for controlling the clkdma, clkcsr, clkr, and clkt signals. The period
of this clock can be configured (default PERIOD = 40 ns).

The period of the clkdma clock can be changed using the CLKDMA_PERIOD generic parameter.

The period of the clkcsr clock can be changed using the CLKCSR_PERIOD generic parameter.

The period of the clkt and clkr clocks can be changed using the CLKMII_PERIOD generic parameter.

RSTGEN – Reset Generation Unit

The RSTGEN component is a reset generator used for controlling the rstcsr reset signal. The reset is generated at the
beginning of each test. The length of the reset can be configured (default length = 32 × CLKCSR_PERIOD).

The length of the rstcsr reset can be changed using the RSTCSR_CYCLES generic parameter.
v2.2 71

Testbench Operation and Modification Core10/100 v3.2
CAM – Content Addressable Memory Model

The CAM model is a simple component used to test operation of an address filtering interface for Core10/100. It is
connected directly to the Core10/100 interface.

Verification Testbench Tests
Three verification test suites are provided to support three different configurations of Core10/100, with core parameter
DATAWIDTH set to 8, 16, or 32 (refer to the Core10/100 datasheet). The verification test suite for Core10/100 consists of
the tests listed in Table 6-2. These tests are located in the directory sim/runtime/tests.

Note that a prefix (“m4d8_”, “m4d16_”, “m4d32_”) is added to the name under column “Test Name” in Table 6-2 to
distinguish tests for 8-, 16-, and 32-bit data bus configurations for Core10/100.

During each of the 177 verification tests listed in Table 6-2 on page 72, the testbench reads from and writes to 12
ASCII files. These 12 ASCII files are located in the runtime/tests/m4d8(or 16 or 32)/testname (Table 6-2 on page 72)
directory and are described in Table 6-3.

Table 6-2 · Core10/100 Verification Tests

Test Name Number of Tests Description

bd1–bd11 11 Backoff/deferring tests

tfifo1–tfifo12 12 Transmit FIFO tests

tlsm1–tlsm40 40 Transmit link list state machine tests

tim1–tim14 14 Transmit interrupt mitigation control tests

rc1–rc10 10 Receive operation tests

raf1–raf9 9 Receive address filtering tests

rfifo1–rfifo6 6 Receive FIFO tests

rlsm1–rlsm10 10 Receive link list state machine tests

rim1–rim12 12 Receive interrupt mitigation control tests

int1–int8 8 Interrupt tests

gpt1–gpt14 14 General-purpose timer tests

dma1–dma19 19 DMA tests

misc1–misc12 12 Miscellaneous tests

Table 6-3 · Verification Test ASCII Runtime Files

Test File Name Description

csrstim.txt Stimulus file for CSR interface

datastim.txt Stimulus file for data interface

linkstim.txt Stimulus file for MII interface
72 v2.2

http://www.actel.com/ipdocs/Core10100DS.pdf

Core10/100 v3.2 Verification Testbench Simulation
Note that none of the files listed in Table 6-3 should be modified.

Verification Testbench Simulation
The simulation of each test in the verification testbench first reads a test configuration file that tells the simulator to
invoke the simulation with different top-level parameters, such as host interface bus width, clock frequencies, etc. The
test configuration file specifies the parameters for each test in the three test suites described in “Verification Testbench
Tests” on page 72.

csrcomp.txt Expected testbench results from CSR interface

datacomp.txt Expected testbench results from data interface

linkcomp.txt Expected testbench results from MII interface

intcomp.txt Expected testbench results from interrupt line

csrdiff.txt CSR interface difference file

datadiff.txt Data interface difference file

linkdiff.txt MII interface difference file

intdiff.txt Interrupt line difference file

time.txt Simulation time

Table 6-3 · Verification Test ASCII Runtime Files (continued)

Test File Name Description
v2.2 73

Testbench Operation and Modification Core10/100 v3.2
User Testbench (Core10/100)
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of Core10/100. The user
testbench is provided in a precompiled ModelSim model for the Evaluation release. The Obfuscated and RTL releases
provide the precompiled ModelSim model, as well as the source code for the user testbench, to ease the process of
integrating the Core10/100 macro into a design and verifying it. A block diagram of the example user design and
testbench is shown in Figure 6-2.

Figure 6-2 · Core10/100 User Testbench
The user testbench includes a simple example design that serves as a reference for users who want to implement their
own designs. RTL source code for the user testbench shown in Figure 6-2 is included in the source directory for the
Obfuscated and RTL releases of Core10/100.

The testbench for the example user design implements a subset of the functionality tested in the verification testbench,
described in the previous chapter. Conceptually, as shown in Figure 6-2, two instantiations of the Core10/100 core are
connected via simulated connections in the user testbench. Example transmit and receive between the two Core10/100
units is demonstrated by the user testbench so you can gain a basic understanding of how to use the core.

The source code for the user testbench contains the same example wrapper, CHIPMAC, used in the verification
testbench. The user testbench source code is listed in Table 6-2 on page 72. For details on the support routines (tasks for
Verilog testbenches; functions and procedures for VHDL testbenches), see Appendix A: “User Testbench Support
Routines” on page 81.

The user testbench consists of two cores: umac1 and umac2. In the example, umac1 transmits a 64-byte frame to umac2.
To do so, the user testbench exercises the following steps:

For umac1:

1. Write several CSR registers to set up the operation mode.

2. Write two transmit descriptors into shared RAM (uram1).

3. Write the 64-byte data into shared RAM (uram1). The data consists of a sequence: 0, 1, 2, …, 63.

4. Turn on transmission.

5. Wait for the transmit interrupt.

6. Read the status register CSR5.

7. Clear the interrupt flags.

Core10/100
User Testbench

Simulated
Connection

Behavioral
µController

Behavioral
µController

Shared RAM

CSR and DMA
Interface

CHIPMAC

Shared RAM

umac1:chipmac

MII

CSR and DMA
Interface

CHIPMACMII

umac2:chipmac
74 v2.2

Core10/100 v3.2 AHBAPB User Testbench (Core10/100_AHBAPB)
For umac2:

1. Write several CSR registers to set up the operation mode.

2. Write two receive descriptors into shared RAM (uram2).

3. Turn on receiving.

4. Wait for the receive interrupt.

5. Read the status register CSR5.

6. Check received data to match data sent by umac1.

7. Clear the interrupt flags.

The operations of umac1 and umac2 are concurrent.

AHBAPB User Testbench (Core10/100_AHBAPB)
An example AHBAPB user testbench to exercise the AHB and APB interfaces on Core10/100_AHBAPB is included
with the Evaluation, Obfuscated, and RTL releases of Core10/100.

The AHBAPB user testbench is provided in a precompiled ModelSim model for the Evaluation release. The
Obfuscated and RTL releases provide the precompiled ModelSim model, as well as the source code for the user
testbench, to ease the process of integrating the Core10/100 macro into a design and verifying it.

A block diagram of the example user design and testbench is shown in Figure 6-3.

Figure 6-3 · Core10/100_AHBAPB User Testbench

The testbench for the example user design implements the same test sequence as performed by the user testbench for
Core10/100. The difference is that the behavioral processor accesses memory via the AHB and accesses the core via the
APB.

Core10/100
AHBAPB

Simulated
Connection

AHB Bus

Behavioural
µController

Memory

APB Bus

Core10/100
AHBAPB
v2.2 75

v2.2 77

7
System Operation

This chapter provides various hints to ease the process of implementation and integration of Core10/100 into your own
design.

Usage with CoreMP7
Core10/100 can also be used with CoreMP7, the Actel soft IP version of the popular ARM7TDMI-S microprocessor
that has been optimized for Actel FPGA devices. To create a design using CoreMP7 and Core10/100 (Figure 7-1), you
should use the CoreConsole IDP software. Refer to the CoreConsole documentation for how to create your CoreMP7-
based design.

Figure 7-1 · Example System Using CoreMP7 and Core10/100

http://www.actel.com/custsup/updates/coreconsole/

v2.2 79

8
Software Drivers

Example software drivers are available from Actel for Core10/100. Contact Actel Technical Support for information
(tech@actel.com).

mailto:tech@actel.com

A
User Testbench Support Routines

The verification and user testbenches for the Core10/100 macro make use of various support routines, both in VHDL
and Verilog. The various support routines are described in this appendix for the VHDL and Verilog testbenches.

VHDL Support
The VHDL support routines (procedures and functions) are provided within a package. The support routines are
referenced from within the user testbenches, via library and use clauses.

Procedure Definitions

Procedure print(arguments)
Several print procedures are defined by overloading different argument types from string, integer, std_logic, and
std_logic_vector.

Procedure print_wt(arguments)
Several print_wt procedures display information as the print procedure, but simulation time is added at the beginning of
each display.

Procedure print_tx_descriptor
The procedure print_tx_descriptor displays detailed information about a transmit descriptor. It is defined below:

procedure print_tx_descriptor (

marks : in STRING;

des0 : in integer;

des1 : in integer;

des2 : in integer;

des3 : in integer

) ;

The string marks is displayed at beginning of the information, and des0, des1,des2, and des3 are the four 32-bit words of
the transmit descriptor.

Procedure print_rx_descriptor
The procedure print_rx_descriptor displays detailed information about a receive descriptor. It is defined below:

procedure print_rx_descriptor (

marks : in STRING;

des0 : in integer;

des1 : in integer;

des2 : in integer;

des3 : in integer

) ;

The string marks is displayed at beginning of the information, and des0, des1,des2, and des3 are the four 32-bit words of
the receive descriptor.
v2.2 81

User Testbench Support Routines Core10/100 v3.2
Procedure print_csr5
The procedure print_csr5 displays detailed information on the CSR status register. It is defined below:

procedure print_csr5 (

marks : in STRING;

csr : in integer

);

The string marks is displayed at beginning of the information, and csr is the value of CSR register CSR5.

Procedure write_csr
The procedure write_csr writes a CSR register. It is defined below:

procedure write_csr (

signal clk : in std_logic;

signal csrreq : out std_logic;

signal csrrw : out std_logic;

signal csrbe : out std_logic_vector(CSRWIDTH/8-1 downto 0);

signal csraddr : out std_logic_vector(CSRDEPTH-1 downto 0);

signal csrdatai: out std_logic_vector(CSRWIDTH-1 downto 0);

signal csrack : in std_logic;

wa : in integer;

wd : in integer

)

The clkcsr is clk. Refer to the Core10/100 datasheet for csrreq, csrrw, csrbe, csraddr, csrdatai, and csrack. The value of the
CSR register address is wa, and the value of the CSR register is wd.

Procedure read_csr
The procedure read_csr reads a CSR register. It is defined below:

procedure read_csr (

signal clk : in std_logic;

signal csrreq : out std_logic;

signal csrrw : out std_logic;

signal csrbe : out std_logic_vector(CSRWIDTH/8-1 downto 0);

signal csraddr : out std_logic_vector(CSRDEPTH-1 downto 0);

signal csrdatai: out std_logic_vector(CSRWIDTH-1 downto 0);

signal csrack : in std_logic;

ra : in integer;

rd : out integer

)

The clkcsr is clk. Refer to the Core10/100 datasheet for csrreq, csrrw, csrbe, csraddr, csrdatai, and csrack. The value of the
CSR register address is ra, and the value of the CSR register is rd.
82 v2.2

http://www.actel.com/ipdocs/Core10100_DS.pdf
http://www.actel.com/ipdocs/Core10100_DS.pdf

Core10/100 v3.2 VHDL Support
Procedure tb_write_data
The procedure tb_write_data writes data into shared RAM, issued from the testbench. It is defined below:

procedure tb_write_data (

count : in integer;

signal clk : in std_logic;

signal we : out std_logic;

signal waddr : out std_logic_vector(DATADEPTH-1 downto 0);

signal wdata : out std_logic_vector(DATAWIDTH-1 downto 0);

wa : in integer;

wd : in int_array

)

The clkdma is clk, count is number of the byte, wa is the beginning address of the sequence data, wd is an array storing
the written data, we is the write enable issued from testbench, waddr is the write address to shared RAM issued from the
testbench, and wdata is the write data bus issued from the testbench.

Procedure tb_read_data
The procedure tb_read_data reads data from shared RAM, issued from the testbench. It is defined below:

procedure tb_read_data (

count : in integer;

signal clk : in std_logic;

signal re : out std_logic;

signal raddr : out std_logic_vector(DATADEPTH-1 downto 0);

signal rdata : out std_logic_vector(DATAWIDTH-1 downto 0);

ra : in integer;

rd : out int_array

)

The clkdma is clk, count is the number of bytes, ra is the beginning address of the sequence data, rd is an array storing the
written data, re is the read enable issued from testbench, raddr is the read address to shared RAM issued from the
testbench, and rdata is the read data to the testbench.
v2.2 83

User Testbench Support Routines Core10/100 v3.2
Procedure tb_write_tx_descriptor
The procedure tb_write_tx_descriptor writes a transmit descriptor into shared RAM, issued from the testbench. It is
defined below:

procedure tb_write_tx_descriptor (

marks : in STRING;

signal clk : in std_logic;

signal we : out std_logic;

signal waddr : out std_logic_vector(DATADEPTH-1 downto 0);

signal wdata : out std_logic_vector(DATAWIDTH-1 downto 0);

desaddr : in integer;

des0 : in integer;

des1 : in integer;

des2 : in integer;

des3 : in integer

)

The string marks is displayed at beginning of the information, clk is the clkdma, desaddr is the beginning address of the
descriptor, we is the write enable issued from the testbench, waddr is the write address to shared RAM issued from the
testbench, wdata is the write data bus issued from the testbench, and des0, des1,des2, and des3 are the four 32-bit words
of the descriptor.

Procedure tb_write_rx_descriptor
The procedure tb_write_rx_descriptor writes a receive descriptor into shared RAM, issued from the testbench. It is
defined below:

procedure tb_write_rx_descriptor (

marks : in STRING;

signal clk : in std_logic;

signal we : out std_logic;

signal waddr : out std_logic_vector(DATADEPTH-1 downto 0);

signal wdata : out std_logic_vector(DATAWIDTH-1 downto 0);

desaddr : in integer;

des0 : in integer;

des1 : in integer;

des2 : in integer;

des3 : in integer

)

The string marks is displayed at beginning of the information, clk is the clkdma, desaddr is the beginning address of the
descriptor, we is the write enable issued from the testbench, waddr is the write address to shared RAM issued from the
testbench, wdata is the write data bus issued from the testbench, and des0, des1,des2, and des3 are the four 32-bit words
of the descriptor.
84 v2.2

Core10/100 v3.2 VHDL Support
Procedure tb_read_descriptor
The procedure tb_read_descriptor reads a receive descriptor into shared RAM, issued from the testbench. It is defined
below:

procedure tb__descriptor (

signal clk : in std_logic;

signal re : out std_logic;

signal raddr : out std_logic_vector(DATADEPTH-1 downto 0);

signal rdata : out std_logic_vector(DATAWIDTH-1 downto 0);

desaddr : in integer;

des0 : out integer;

des1 : out integer;

des2 : out integer;

des3 : out integer

)

The string marks is displayed at beginning of the information, clk is the clkdma, desaddr is the beginning address of the
descriptor, re is the read enable issued from the testbench, raddr is the read address to shared RAM issued from the
testbench, rdata is the read data to the testbench, and des0, des1, des2, and des3 are the four 32-bit words of the
descriptor.

Procedure tb_read_check_descriptor
The procedure tb_read_check_descriptor reads a receive descriptor from shared RAM, issued from the testbench and
checked it against sequential data starting from 0 and incrementing with a step size of 1. It is defined below:

procedure tb_read_check_rx_data (

count : in integer;

signal clk : in std_logic;

signal re : out std_logic;

signal raddr : out std_logic_vector(SHRAMDEPTH-1 downto 0);

signal rdata : in std_logic_vector(SHRAMWIDTH-1 downto 0);

ra : in integer;

signal error : inout integer

)

The clkdma is clk, desaddr is the beginning address of descriptor, re is the read enable issued from the testbench, raddr is
the read address to shared RAM issued from the testbench, rdata is the read data to the testbench, count is the number of
bytes, ra is the read address, and error is the error counter, which is incremented by the total number of mismatches.
v2.2 85

User Testbench Support Routines Core10/100 v3.2
Verilog Support
The Verilog versions of the testbenches make use of the following tasks, which are included within the top-level module
of the user testbenches.

Verilog Tasks

Task Definitions

Task print_tx_descriptor

The task print_tx_descriptor displays detailed information on a transmit descriptor. It is defined below:

task print_tx_descriptor;

input[STRINGSIZE-1:0] marks;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at beginning of the information, and des0, des1, des2, and des3 are the four 32-bit words of
the transmit descriptor.

Task print_rx_descriptor

The task print_rx_descriptor displays detailed information on a receive descriptor. It is defined below:

task print_rx_descriptor;

input[STRINGSIZE-1:0] marks;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at beginning of the information, and des0, des1, des2, and des3 are the four 32-bit words of
the receive descriptor.
86 v2.2

Core10/100 v3.2 Verilog Support
Task print_csr5

The task print_csr5 displays detailed information on the CSR status register. It is defined below:

task print_csr5;

input [STRINGSIZE-1 : 0] marks;

input csr;

integer csr;

The string marks is displayed at beginning of the information, and csr is the value of CSR register CSR5.

Task u1_write_csr

The task u1_write_csr writes a CSR register of MAC unit 1. It is defined below:

task u1_write_csr;

input wa;

integer wa;

input wd;

integer wd;

The variable wa is the value of the CSR register address, and wd is the value of the CSR register.

Task u2_write_csr

The task u2_rite_csr writes a CSR register of MAC unit 2. It is defined below:

task u2_write_csr;

input wa;

integer wa;

input wd;

integer wd;

The variable wa is the value of the CSR register address, and wd is the value of the CSR register.

Task u1_read_csr

The task u1_read_csr reads a CSR register in MAC unit 1. It is defined below:

task u1_read_csr;

input ra;

integer ra;

output rd;

integer rd;

The variable ra is the value of the CSR register address, and rd is the value of the CSR register.

Task u2_read_csr

The task u2_read_csr reads a CSR register in MAC unit 2. It is defined below:

task u2_read_csr;

input ra;

integer ra;

output rd;

integer rd;

The variable ra is the value of the CSR register address, and rd is the value of the CSR register.

Task u1_write_data

The task u1_write_data writes data into shared RAM unit 1, issued from the testbench. It is defined below:
v2.2 87

User Testbench Support Routines Core10/100 v3.2
task u1_write_data;

input count;

integer count;

input wa;

integer wa;

input[MAX_DATA_ARRAY_SIZE-1:0] wd;

The variable count is number of bytes, wa is the beginning address of the sequence data, and wd is an array storing the
written data.

Task u2_write_data

The task u2_write_data writes data into shared RAM unit 2, issued from the testbench. It is defined below:

task u2_write_data;

input count;

integer count;

input wa;

integer wa;

input[MAX_DATA_ARRAY_SIZE-1:0] wd;

The variable count is number of bytes, wa is the beginning address of the sequence data, and wd is an array storing the
written data.

Task u1_read_data

The task u1_read_data reads data from shared RAM unit 1, issued from the testbench. It is defined below:

task u1_read_data;

input count;

integer count;

input ra;

integer ra;

input[MAX_DATA_ARRAY_SIZE-1:0] rd;

The variable ra is the beginning address of the sequence data, rd is an array storing the written data, and re is the read
enable issued from the testbench.

Task u2_read_data

The task u2_read_data reads data from shared RAM unit 2, issued from the testbench. It is defined below:

task u2_read_data;

input count;

integer count;

input ra;

integer ra;

input[MAX_DATA_ARRAY_SIZE-1:0] rd;

The variable ra is the beginning address of the sequence data, rd is an array storing the written data, and re is the read
enable issued from the testbench.

Task u1_write_tx_descriptor

The task u1_write_tx_descriptor writes a transmit descriptor into shared RAM unit 1, issued from the testbench. It is
defined below:

task u1_write_tx_descriptor;
88 v2.2

Core10/100 v3.2 Verilog Support
input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at the beginning of the information, and des0, des1, des2, and des3 are the four 32-bit words
of the transmit descriptor.

Task u2_write_tx_descriptor

The task u2_write_tx_descriptor writes a transmit descriptor into shared RAM unit 2, issued from the testbench. It is
defined below:

task u2_write_tx_descriptor;

input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at the beginning of the information, desaddr is the starting address of the descriptor, and
des0, des1, des2, and des3 are the four 32-bit words of the transmit descriptor.
v2.2 89

User Testbench Support Routines Core10/100 v3.2
Task u1_write_rx_descriptor

The task u1_write_rx_descriptor writes a receive descriptor into shared RAM unit 1, issued from the testbench. It is
defined below:

task u1_write_rx_descriptor;

input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at the beginning of the information, desaddr is the starting address of the descriptor, and
des0, des1, des2, and des3 are the four 32-bit words of the receive descriptor.

Task u2_write_rx_descriptor

The task u2_write_rx_descriptor writes a receive descriptor into shared RAM unit 2, issued from the testbench. It is
defined below:

task u2_write_rx_descriptor;

input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

input des0;

integer des0;

input des1;

integer des1;

input des2;

integer des2;

input des3;

integer des3;

The string marks is displayed at the beginning of the information, desaddr is the starting address of the descriptor, and
des0, des1, des2, and des3 are the four 32-bit words of the receive descriptor.
90 v2.2

Core10/100 v3.2 Verilog Support
Task u1_read_rx_descriptor

The task u1_read_rx_descriptor reads a receive descriptor from shared RAM unit 1, issued from the testbench. It is
defined below:

task u1_read_rx_descriptor;

input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

output des0;

integer des0;

output des1;

integer des1;

output des2;

integer des2;

output des3;

integer des3;

The string marks is displayed at the beginning of the information, desaddr is the starting address of the descriptor, and
des0, des1, des2, and des3 are the four 32-bit words of the descriptor.

Task u2_read_rx_descriptor

The task u2_read_rx_descriptor reads a receive descriptor from shared RAM unit 2, issued from the testbench. It is
defined below:

task u2_read_rx_descriptor;

input [STRINGSIZE-1 : 0] marks;

input desaddr;

integer desaddr;

output des0;

integer des0;

output des1;

integer des1;

output des2;

integer des2;

output des3;

integer des3;

The string marks is displayed at the beginning of the information, desaddr is the starting address of the descriptor, and
des0, des1, des2, and des3 are the four 32-bit words of the descriptor.
v2.2 91

User Testbench Support Routines Core10/100 v3.2
Task u1_read_check_descriptor

The task u1_read_check_descriptor reads a receive descriptor from shared RAM unit 1, issued from the testbench and
checked against a sequence of data starting from 0 and incrementing at a step size of 1. It is defined below:

task u1_read_check_rx_data;

input count;

integer count;

input ra;

integer ra;

The variable ra is the starting address, and count is the total number of bytes of the checked data.

Task u2_read_check_descriptor

The task u2_read_check_descriptor reads a receive descriptor from shared RAM unit 2, issued from the testbench and
checked against a sequence of data starting from 0 and incrementing at a step size of 1. It is defined below:

task u2_read_check_rx_data;

input count;

integer count;

input ra;

integer ra;

The variable ra is the starting address, and count is the total number of bytes of the checked data.
92 v2.2

B
Verification Testbench Tests Description

Backoff/Deferring Tests
Tests in this group are prepared to test compatibility with the IEEE 802.3 standard for CSMA/CD.

Table B-1 · Backoff/Deferring Tests Summary

No. Purpose/Conditions Test Name

1 1 collision bd1

2 2 collisions bd2

3 3 collisions bd3

4 15 collisions bd4

5 16 collisions bd5

6 Late collision bd6

7 Normal and late collisions bd7

8 Collision during preamble bd8

9 Collision during sfd bd9

10 Collision during crc bd10

11 Deferring bd11
v2.2 93

Verification Testbench Tests Description Core10/100 v3.2
Transmit FIFO Tests
Tests in this group are prepared to test transmit FIFO operation.

Table B-2 · Transmit FIFO Operation Tests Summary

No. Purpose/Conditions Test Name Limitations/Comments

1 Long frame transmission tfifo1
Frame 1 : size = 8,192
Frame 2 : size = 8,191
Frame 3 : size = 8,194

2 Long frame transmission tfifo2

Frame 1 : size = 2,047
Frame 2 : size = 2,047
Frame 3 : size = 2,047
Frame 4 : size = 2,047

3 Long frame transmission tfifo3

Frame 1 : size = 8,192
Frame 2 : size = 8,192
Frame 3 : size = 8,192
Frame 4 : size = 8,192
Frame 5 : size = 8,192

4 Threshold levels: TR = 1, TTM = 0 tfifo4

Frame 1 : size = 2,047
Frame 2 : size = 2,047
Frame 3 : size = 2,047
Frame 4 : size = 2,047

5 Threshold levels: TR = 2, TTM = 0 tfifo5 As above

6 Threshold levels: TR = 3, TTM = 0 tfifo6 As above

7 Threshold levels: TR = 0, TTM = 1 tfifo7 As above

8 Threshold levels: TR = 1, TTM = 1 tfifo8 As above

9 Threshold levels: TR = 2, TTM = 1 tfifo9 As above

10 Threshold levels: TR = 3, TTM = 1 tfifo10 As above

11 Threshold levels: TR = 0, TTM = 0, SF = 1 tfifo11 As above

12 Underflow condition tfifo12

Frame 1 : size = 2,047
Frame 2 : size = 2,047
Frame 3 : size = 2,047
Frame 4 : size = 2,047
Frame 5 : size = 2,047
94 v2.2

Core10/100 v3.2 Transmit Linked List State Machine Tests
Transmit Linked List State Machine Tests
Tests in this group are prepared to test the transmit linked list state machine, which is part of the MAC Descriptor/
Buffer architecture.

Table B-3 · Transmit Linked List State Machine Tests Summary

No. Purpose/Conditions Test Name

1 1 buffer, various frame sizes for address (2..0) = '000', for buf1 tlsm1

2 1 buffer, various address alignments for size (2..0) = '000', for buf1 tlsm2

3 1 buffer, various frame sizes for address (2..0) = '000', for buf2 tlsm3

4 1 buffer, various address alignments for size (2..0) = '000', for buf2 tlsm4

5 1 buffer, various frame sizes for address (2..0) = '001', for buf1 tlsm5

6 1 buffer, various frame sizes for address (2..0) = '010', for buf1 tlsm6

7 1 buffer, various frame sizes for address (2..0) = '011', for buf1 tlsm7

8 1 buffer, various frame sizes for address (2..0) = '100', for buf1 tlsm8

9 1 buffer, various frame sizes for address (2..0) = '101', for buf1 tlsm9

10 1 buffer, various frame sizes for address (2..0) = '110', for buf1 tlsm10

11 1 buffer, various frame sizes for address (2..0) = '111', for buf1 tlsm11

12 1 buffer, various frame sizes for address (2..0) = '001', for buf2 tlsm12

13 1 buffer, various frame sizes for address (2..0) = '010', for buf2 tlsm13

14 1 buffer, various frame sizes for address (2..0) = '011', for buf2 tlsm14

15 1 buffer, various frame sizes for address (2..0) = '100', for buf2 tlsm15

16 1 buffer, various frame sizes for address (2..0) = '101', for buf2 tlsm16

17 1 buffer, various frame sizes for address (2..0) = '110', for buf2 tlsm17

18 1 buffer, various frame sizes for address (2..0) = '111', for buf2 tlsm18

19 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '000' tlsm19

20 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '001' tlsm20

21 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '010' tlsm21

22 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '011' tlsm22

23 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '100' tlsm23

24 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '101' tlsm24

25 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '110' tlsm25

26 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '111' tlsm26

27 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '000' tlsm27

28 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '001' tlsm28

29 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '010' tlsm29
v2.2 95

Verification Testbench Tests Description Core10/100 v3.2
30 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '011' tlsm30

31 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '100' tlsm31

32 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '101' tlsm32

33 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '110' tlsm33

34 2 descriptors / 2 buffers, various buffer 1 sizes for buffer 2 address (2..0) = '111' tlsm34

35 2 descriptors / 3 buffers per frame tlsm35

36 2 descriptors / 4 buffers per frame tlsm36

37 3 descriptors per frame tlsm37

38 7 descriptors per frame tlsm38

39 7 descriptors per frame, chain mode tlsm39

40 Empty descriptors tlsm40

Table B-3 · Transmit Linked List State Machine Tests Summary (continued)

No. Purpose/Conditions Test Name
96 v2.2

Core10/100 v3.2 Transmit Interrupt Mitigation Control Tests
Transmit Interrupt Mitigation Control Tests
Tests in this group are prepared to test transmit interrupt mitigation control.

Table B-4 · Transmit Interrupt Mitigation Control Tests Summary

No. Purpose/Conditions Test Name

1 TT = 1, NRP = 0, CC = 1 tim1

2 TT = 1, NRP = 7, CC = 1 tim2

3 TT = 0, NRP = 7, CC = 1 tim3

4 TT = 1, NRP = 7, CC = 1, IC = 1 tim4

5 TT = 2, NRP = 0, CC = 1 tim5

6 TT = 3, NRP = 0, CC = 1 tim6

7 TT = 14, NRP = 0, CC = 1 tim7

8 TT = 15, NRP = 0, CC = 1 tim8

9 TT = 2, NRP = 0, CC = 0 tim9

10 TT = 3, NRP = 0, CC = 0 tim10

11 TT = 0, NRP = 1, CC = 1 tim11

12 TT = 0, NRP = 2, CC = 1 tim12

13 TT = 0, NRP = 3, CC = 1 tim13

14 TT = 0, NRP = 4, CC = 1 tim14
v2.2 97

Verification Testbench Tests Description Core10/100 v3.2
Receive Operation Tests
Tests in this group are prepared to test receive operation.

Receive Address Filtering Tests
Tests in this group are prepared to test receive address filtering.

Table B-5 · Receive Operation Tests Summary

No. Purpose/Conditions Test Name

1 Ethernet frame with 1,517 bytes rc1

2 Ethernet frame with 1,519 bytes rc2

3 802.3 frame with 1,517 bytes rc3

4 802.3 frame with 1,519 bytes rc4

5 Frame with 8,193 bytes rc5

6 Pass bad frame mode – frame with 63 bytes rc6

7 Frame with CRC error rc7

8 Frame with data alignment error rc8

9 Frame with MII error rc9

10 Receiving in the suspended/stopped state rc10

Table B-6 · Receive Address Filtering Tests Summary

No. Purpose/Conditions Test Name

1 Perfect filtering raf1

2 Perfect filtering – filtering fail raf2

3 Inverse perfect filtering raf3

4 Hash filtering raf4

5 Hash-only filtering raf5

6 Receive all mode raf6

7 Promiscuous mode raf7

8 Pass all multicast mode raf8

9 Address filtering raf9
98 v2.2

Core10/100 v3.2 Receive FIFO Tests
Receive FIFO Tests
Tests in this group are prepared to test receive FIFO operation.

Table B-7 · Receive FIFO Operation Tests Summary

No. Purpose/Conditions Test Name Limitations/Comments

1 Various frame sizes rfifo1

Frame 1 : size = 68
Frame 2 : size = 69
Frame 3 : size = 70
Frame 4 : size = 71
Frame 5 : size = 72
Frame 6 : size = 73
Frame 7 : size = 74
Frame 8 : size = 75

2 Various frame sizes rfifo2

Frame 1 : size = 1,516
Frame 2 : size = 1,517
Frame 3 : size = 1,518
Frame 4 : size = 1,519
Frame 5 : size = 1,520
Frame 6 : size = 1,521
Frame 7 : size = 1,522
Frame 8 : size = 1,523

3 Various frame sizes rfifo3

Frame 1 : size = 2,044
Frame 2 : size = 2,045
Frame 3 : size = 2,046
Frame 4 : size = 2,047
Frame 5 : size = 2,048
Frame 6 : size = 2,049
Frame 7 : size = 2,050
Frame 8 : size = 2,051

4 Various frame sizes rfifo4

Frame 1 : size = 8,190
Frame 2 : size = 8,191
Frame 3 : size = 8,192
Frame 4 : size = 8,193
Frame 5 : size = 8,194
Frame 6 : size = 8,195
Frame 7 : size = 8,196
Frame 8 : size = 8,197
v2.2 99

Verification Testbench Tests Description Core10/100 v3.2
Receive Linked List State Machine Tests
Tests in this group are prepared to test the receive linked list state machine, which is part of the MAC Descriptor/Buffer
architecture.

5 Various frame sizes rfifo5

Frame 1 : size = 2,048
Frame 2 : size = 2,048
Frame 3 : size = 2,048
Frame 4 : size = 2,048
Frame 5 : size = 2,048
Frame 6 : size = 2,048
Frame 7 : size = 2,048
Frame 8 : size = 2,048

6 Overflow condition rfifo6

Frame 1 : size = 8,190
Frame 2 : size = 8,190
Frame 3 : size = 8,190
Frame 4 : size = 8,190
Frame 5 : size = 8,190

Table B-7 · Receive FIFO Operation Tests Summary (continued)

No. Purpose/Conditions Test Name Limitations/Comments

Table B-8 · Receive Linked List State Machine Tests Summary

No. Purpose/Conditions Test Name

1 Single buffer, various frame sizes for address (2..0) = '111', for buf2 rlsm1

2 2 buffers per frame rlsm2

3 2 descriptors / 2 buffers per frame rlsm3

4 2 descriptors / 3 buffers per frame rlsm4

5 2 descriptors / 4 buffers per frame rlsm5

6 3 descriptors per frame rlsm6

7 7 descriptors per frame rlsm7

8 7 descriptors per frame, chain mode rlsm8

9 Empty descriptors rlsm 9

10 Descriptors unavailable rlsm10
100 v2.2

Core10/100 v3.2 Receive Interrupt Mitigation Control Tests
Receive Interrupt Mitigation Control Tests
Tests in this group are prepared to test receive interrupt mitigation control.

Interrupt Tests
Tests in this group are prepared to test interrupts.

Table B-9 · Receive Interrupt Mitigation Control Tests Summary

No. Purpose/Conditions Test Name

1 RT = 3, NRP = 0, CC = 1 rim1

2 RT = 4, NRP = 7, CC = 1 rim2

3 RT = 0, NRP = 7, CC = 1 rim3

4 RT = 4, NRP = 0, CC = 1 rim4

5 RT = 5, NRP = 0, CC = 1 rim5

6 RT = 14, NRP = 0, CC = 1 rim6

7 RT = 15, NRP = 0, CC = 1 rim7

8 RT = 2, NRP = 0, CC = 0 rim8

9 RT = 3, NRP = 0, CC = 0 rim9

10 RT = 0, NRP = 1, CC = 0 rim10

11 RT = 0, NRP = 2, CC = 0 rim11

12 RT = 0, NRP = 3, CC = 0 rim12

Table B-10 · Interrupt Tests Summary

No. Purpose/Conditions Test Name

1 Early receive interrupt int1

2 Receive interrupt int2

3 Receive buffer unavailable interrupt int3

4 Receive process stopped interrupt int4

5 Early transmit interrupt int5

6 Transmit interrupt int6

7 Transmit buffer unavailable interrupt int7

8 Transmit process stopped interrupt int8
v2.2 101

Verification Testbench Tests Description Core10/100 v3.2
General-Purpose Timer Tests
Tests in this group are prepared to test the general-purpose timer.

Table B-11 · General Purpose Timer Tests Summary

No. Purpose/Conditions Test Name

1 TIM = 65535, CON = 0 gpt1

2 TIM = 1024, CON = 0 gpt2

3 TIM = 1023, CON = 0 gpt3

4 TIM = 1022, CON = 0 gpt4

5 TIM = 3, CON = 0 gpt5

6 TIM = 2, CON = 0 gpt6

7 TIM = 1, CON = 0 gpt7

8 TIM = 65535, CON = 1 gpt8

9 TIM = 1024, CON = 1 gpt9

10 TIM = 1023, CON = 1 gpt10

11 TIM = 1022, CON = 1 gpt11

12 TIM = 3, CON = 1 gpt12

13 TIM = 2, CON = 1 gpt13

14 TIM = 1, CON = 1 gpt14
102 v2.2

Core10/100 v3.2 DMA Tests
DMA Tests
Tests in this group are prepared to test the DMA operation.

Table B-12 · DMA Tests Summary

No. Purpose/Conditions Test Name

1 Burst length = 0, arbitration mode 1 dma1

2 Burst length = 1, arbitration mode 1 dma2

3 Burst length = 2, arbitration mode 1 dma3

4 Burst length = 4, arbitration mode 1 dma4

5 Burst length = 8, arbitration mode 1 dma5

6 Burst length = 16, arbitration mode 1 dma6

7 Burst length = 32, arbitration mode 1 dma7

8 Burst length = 0, arbitration mode 2 dma8

9 Burst length = 1, arbitration mode 2 dma9

10 Burst length = 2, arbitration mode 2 dma10

11 Burst length = 4, arbitration mode 2 dma11

12 Burst length = 8, arbitration mode 2 dma12

13 Burst length = 16, arbitration mode 2 dma13

14 Burst length = 32, arbitration mode 2 dma14

15 Big-endian mode for descriptors dma15

16 Big-endian mode for buffers dma16

17 Big-endian mode for descriptors/buffers dma17

18 Wait cycles for burst length = 0 dma18

19 Wait cycles for burst length = 1 dma19
v2.2 103

Verification Testbench Tests Description Core10/100 v3.2
Miscellaneous Tests
Tests in this group are prepared to test functionality not covered by functional tests.

Table B-13 · Miscellaneous Tests Summary

No. Purpose/Conditions Test Name
Limitations/
Comments

1 Transmission with clkdma, clkcsr = clkmii / 10 misc1

2 Transmission with clkdma, clkcsr = 10 × clkmii misc2

3 Transmission with clkdma = clkmii = 10 × clkcsr misc3

4 Transmission with clkdma = clkmii = clkcsr / 10 misc4

5 Receiving with clkdma, clkcsr = clkmii / 10 misc5

6 Receiving with clkdma, clkcsr = 10 × clkmii misc6

7 Receiving with clkdma = clkmii = 10 × clkcsr misc7

8 Receiving with clkdma = clkmii = clkcsr / 10 misc8

9 Simultaneous transmission/receiving with clkdma, clkcsr = clkmii / 10 misc9

10 Simultaneous transmission/receiving with clkdma, clkcsr = 10 × clkmii misc10

11 Simultaneous transmission/receiving with clkdma = clkmii = 10 × clkcsr misc11

12 Simultaneous transmission/receiving with clkdma = clkmii = clkcsr / 10 misc12
104 v2.2

C
Transmit and Receive Functional Timing
Examples

Transmit Examples

Transmit Overview
A typical Core10/100 transmit is shown in Figure C-1.

1. Host sends the transmit command and Core10/100 enters the transmit process.

2. Core10/100 starts to request the descriptors.

3. Core10/100 starts to request frame data and write them into the transmit FIFO.

4. Core10/100 starts to transmit a frame on the MII interface.

A typical transmit undergoes these four processes.

In this chapter, more detailed dataflow diagrams are provided to illustrate the timing information for the above four
processes.

Figure C-1 · A Typical Transmit Dataflow

tps

datareq

datarw

dataaddr

twe

twaddr

twdata

traddr

trdata

txen

txd

FFFFFFFF

XXXXXXXX

F

(1) (2) (3) (4)
v2.2 105

Transmit and Receive Functional Timing Examples Core10/100 v3.2
Core10/100 Enters Transmit Process
The block CSR performs this operation.

1. Host sets the CSR register CSR6.13 ST to start transmit.

2. The tps signal goes LOW after one clkcsr cycle, which indicates that Core10/100 enters the transmit process.

Figure C-2 · Enters Transmit Process

Core10/100 Starts to Request Transmit Descriptors
Figure C-3 illustrates operations between tps going LOW and a transmit descriptor start.

1. Host sends the transmit start command.

2. Core10/100 starts to fetch the first descriptor.

Note: t0 = 4 × clkdma period + 3 × clkcsr period + z.

Where z is 2 × clkdma period if clkdma period is greater than clkcsr period, or z is 2 × clkcsr period if clkcsr
period is greater than clkdma period. Delay z is the result of handshaking between CSR clock domain and other
domains in the design.

Figure C-3 · Core10/100 Starts Transmit Descriptor Requests

csrack

csrbe[3:0]

csrdatai[31:0]

csraddr[7:0]

clkcsr

tps

csrreq

csrrw

clkcsr

tps

csrreq

csrrw

CSR6.13ST

30

(1) (2)(1) (2)

clkdma

clkcsr

tps

dataack

datareq

datarw

dataeob

datai[31:0]

dataaddr[31:0]

datao[31:0]

80000000 600007FF

FFFFFFFF 00003004

40000200

(1) (2)

t0
106 v2.2

Core10/100 v3.2 Transmit Examples
Transmit Descriptor and Data Fetches

Transmit Descriptor Fetch in 32-Bit Mode
1. Read the first 32-bit word of transmit descriptor.

2. Read the second 32-bit word of transmit descriptor.

3. Read the third 32-bit word of transmit descriptor.

4. Read the first 32-bit data fetch and write into transmit FIFO.

5. Read the second 32-bit data fetch and write into transmit FIFO.

Figure C-4 · Transmit Descriptor Fetch in 32-Bit Mode

Note: An extra cycle is inserted between any two descriptor fetches.

Transmit Descriptor and Data Fetch in 16-Bit Mode
1. Read the first 16-bit word of transmit descriptor.

2. Read the second 16-bit word of transmit descriptor.

3. Read the third 16-bit word of transmit descriptor.

4. Read the fourth 16-bit word of transmit descriptor.

5. Read the fifth 16-bit word of transmit descriptor.

6. Read the sixth 16-bit word of transmit descriptor.

7. Read the first 16-bit data fetch and write into transmit FIFO.

8. Read the second 16-bit data fetch and write into transmit FIFO.

9. Read the third 16-bit data fetch and write into transmit FIFO.

10. Read the fourth 16-bit data fetch and write into transmit FIFO.

clkdma

clkt

dataack

datareq

datarw

datai[31:0]

dataaddr[31:0]

twe

twaddr[8:0]

twdata[31:0]

traddr[8:0]

trdata[31:0]

txen

txd[3:0]

80000000 600007FF 00000000

FFFFFFFF 00003004 00003008

000

00000000

000

XXXXXXXX

F

(1) (2) (3) (4)

(5)
v2.2 107

Transmit and Receive Functional Timing Examples Core10/100 v3.2
Figure C-5 · Transmit Descriptor Fetch in 16-Bit Mode

Transmit Descriptor and Data Fetch in 8-Bit Mode
1. Four reads of the first to fourth 8-bit words of the transmit descriptor.

2. Four reads of the fifth to eighth 8-bit words of the transmit descriptor.

3. Four reads of the ninth to twelfth 8-bit words of the transmit descriptor.

4. Read the first 8-bit data fetch and write into the transmit FIFO.

5. Read the second 8-bit data fetch and write into the transmit FIFO.

6. Read the third 8-bit data fetch and write into the transmit FIFO.

7. Read the fourth 8-bit data fetch and write into the transmit FIFO.

Figure C-6 · Transmit Descriptor Fetch in 8-Bit Mode

clkdma

dataack

datareq

datarw

dataeob

datai[15:0]

dataaddr[31:0]

twe

twaddr[9:0]

twdata[15:0]

0000 07FF 0000

FFFFFFFF

000

0000

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

clkdma

dataack

datareq

datarw

dataeob

datai[7:0]

dataaddr[31:0]

twe

twaddr[10:0]

00 FF 00

000

(1) (2) (3) (4)

(5)

(6)

(7)
108 v2.2

Core10/100 v3.2 Transmit Examples
Core10/100 Starts to Transmit on MII
1. Core10/100 starts to write to the Transmit Data RAM.

2. Core10/100 reaches the transmit FIFO level (see the table entitled “Transmit Descriptor List Base Address Register
(CSR4)” in the Core10/100 datasheet). Figure C-7 on page 109 shows that the transmit FIFO threshold is set at
64 bytes, with sixteen 32-bit word writes.

3. Transmit starts on MII.

Note: t0 = clkdma period × FIFO threshold level / DATAWIDTH × 8 or
t0 = clkdma period × frame size / DATAWIDTH × 8 in store and forward mode, and
t1 = 3 × clkdma period + 5 × clkt period.

Figure C-7 · Transmit FIFO Threshold and Start of Transmit on MII

Transmit on MII
1. Core10/100 starts to transmit the preamble and SFD.

2. Core10/100 sends the read address to the External Transmit Data RAM.

3. Core10/100 reads the first 32 bits of data.

4. Core10/100 starts to transmit the data

Figure C-8 · Transmit on MII

clkdma

clkt

twe

twdata[31:0]

twaddr[8:0]

traddr[8:0]

trdata[31:0]

txen

txd[3:0]

00000000

000

000

00000000

F

1. 2. 3.
t0 t1

clkt

traddr[8:0]

trdata[31:0]

txen

txd[3:0]

000 001 002 003

00000000 00000004 00000008

5 0 0

(1) (4)

(3)

(2)

F

v2.2 109

http://www.actel.com/ipdocs/Core10100_DS.pdf

Transmit and Receive Functional Timing Examples Core10/100 v3.2
Transmit on MII with 32-Bit Transmit Data RAM
(1), (2) Core10/100 sends out requested read addresses. t0 is eight cycles.

(3), (4) t1 is the time between Core10/100 sending out a read address request and the appearance of the requested data
on MII.

Figure C-9 · Transmit on MII with 32-Bit Transmit Data RAM

Transmit on MII with 16-Bit Transmit Data RAM
(1), (2) Core10/100 sends out requested read addresses. t0 is four cycles.

(3), (4) t1 is the time between Core10/100 sending out a read address request and the appearance of the requested data
on MII.

Figure C-10 · Transmit on MII with 16-Bit Transmit Data RAM

Transmit on MII with 8-Bit Transmit Data RAM
(1), (2) Core10/100 sends out requested read addresses. t0 is two cycles.

(3), (4) t1 is the time between Core10/100 sending out a read address request and the appearance of the requested data
on MII.

Figure C-11 · Transmit on MII with 8-Bit Transmit Data RAM

(1) (2) (3) (4)

clkt
txen

traddr[8:0]
trdata[31:0]

txd[3:0]

001 002 003 004

5 0 4 0 8 0 C
00000004 00000008 0000000C 00000010

t0 t1

(1) (3) (4)(2)

clkt

txen

traddr[9:0]

trdata[15:0]

txd[3:0]

000 001 002 003 004

0000 0004 0000 0008

5 D 0 4 0

t0 t1

clkt

traddr[10:0]

trdata[7:0]

txen

txd[3:0]

001 002 003 004 005 006

00 04

5 D 0 4

(1) (2) (4)(3)

t0 t1
110 v2.2

Core10/100 v3.2 Receive Examples
Receive Examples

Receive Dataflow Overview
Core10/100 receives Ethernet data from the MII interface, and the Receive Controller writes the received data into the
Receive Data RAM. The RFIFO Controller for Core10/100 starts to transfer received data from the Receive Data
RAM to the shared memory via the DMA unit when the data in the Receive Data RAM exceeds 64 bytes. Figure C-12
on page 111 illustrates the received data travelling through different Core10/100 interfaces. A typical receive consists of
the following steps (as shown in Figure C-12 on page 111):

1. Core10/100 starts to receive the preamble and SFD.

2. Core10/100 starts to write the receive data to the Receive Data RAM.

3. Core10/100 writes the 64th byte of the received data to the receive FIFO.

4. Core10/100 starts to transfer received data from the Received Data RAM to the shared RAM.

Figure C-12 · A Typical Receive Example

rxdv

rxd[3:0]

rwe

rwaddr[8:0]

rraddr[8:0]

datareq

dataack

dataaddr[31:0]

0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(1) (2) (3)

(4)
v2.2 111

Transmit and Receive Functional Timing Examples Core10/100 v3.2
Core10/100 Receives and Writes Receive Data RAM

Core10/100 Receives and Writes 32-Bit Receive Data RAM
1. Core10/100 starts to receive the preamble.

2. Core10/100 starts to receive the packet.

3. Core10/100 starts to write the first 32-bit word into the receive FIFO.

4. Core10/100 starts to write the second 32-bit word into the receive FIFO.

Note: t0 = 16 × clkr period, t1 = 8 × clkr period.

Figure C-13 · Core10/100 Receives and Writes Receive Data RAM

Core10/100 Receives and Writes 16-Bit Receive Data RAM
1. Core10/100 starts to receive the preamble.

2. Core10/100 starts to receive the packet.

3. Core10/100 starts to write the first 16-bit word into the receive FIFO.

4. Core10/100 starts to write the second 16-bit word into the receive FIFO.

Note: t0 = 16 × clkr period, t1 = 4 × clkr period

Figure C-14 · Core10/100 Receives and Writes 16-Bit Receive Data RAM

clkr

rps

rxdv

rxd[3:0]

rwe

rwaddr[8:0]

0 5 1 2

000 001 002

(1) (3)(2) (4)

t0 t1

clkr

rxdv

rwe

rxd[3:0]

rwaddr[9:0]

rwdata[15:0]

0 5 0 1 2 3 4 5 6 7 8 9

000 001 002

FFF0 FFF5

(1) (2) (3) (4)

t0 t1
112 v2.2

Core10/100 v3.2 Receive Examples
Core10/100 Receives and Writes 8-Bit Receive Data RAM
1. Core10/100 starts to receive the preamble.

2. Core10/100 starts to receive the packet.

3. Core10/100 starts to write the first 8-bit word into the receive FIFO.

4. Core10/100 starts to write the second 8-bit word into the receive FIFO.

Note: t0 = 16 × clkr period, t1 = 2 × clkr period.

Figure C-15 · Core10/100 Receives and Writes 8-Bit Receive Data RAM

Transfer Receive Data to Shared Memory

32-Bit Word Transfer from Receive Data RAM to Shared Memory
1. Core10/100 writes the 64th byte of the frame into the Receive Data RAM.

2. Core10/100 starts to send the data request to transfer received data into the shared memory.

3. The first 32-bit word is written into the shared memory via the data interface.

4. The 64th byte of the frame is written into the shared memory.

Note: t0 = 6 × clkdma period.

Figure C-16 · 32-Bit Word Transfer From Receive Data RAM to Shared Memory

clkr

rxdv

rwe

rxd[3:0]

rwaddr[10:0]

rwdata[7:0]

(1) (2) (3)
(4)

t0 t1

0 5

000

F0 F5

0 1 2 3 4 5 6 7 8

(1) (2)
(3)

(4)
t0

clkdma
clkr
rwe

rwaddr[8:0]
rraddr[8:0]

rrdata[31:0]
dataack
datareq

dataaddr[31:0]
datao[31:0]

00E 00F 010
000
76543210

00001014
76543210

01
v2.2 113

Transmit and Receive Functional Timing Examples Core10/100 v3.2
16-Bit Word Transfer from Receive Data RAM to Shared Memory
1. Core10/100 writes the 64th byte of the frame into the Receive Data RAM.

2. Core10/100 starts to send the data request to transfer received data into the shared memory.

3. The first 32-bit word is written into the shared memory via the data interface.

4. The 64th byte of the frame is written into the shared memory.

Figure C-17 · 16-Bit Word Transfer from Receive Data RAM to Shared Memory

8-Bit Word Transfer from Receive Data RAM to Shared Memory

Figure C-18 · 8-Bit Word Transfer from Receive Data RAM to Shared Memory

Core10/100 Receive Descriptor Fetch
The receive descriptor fetch timing is essentially the same as the transmit descriptor fetch timing. In reality, transmit
descriptor fetches and receive descriptor fetches can happen mixed or alternately through the DMA interface. Refer to
Figure C-4 on page 107, Figure C-5 on page 108, and Figure C-6 on page 108.

clkdma

clkr

rwe

rraddr[9:0]

rwaddr[9:0]

rrdata[15:0]

dataack

datareq

datarw

dataaddr[31:0]

datao[15:0]

(1) (2)

(3)

000 00

03F 040 041 042

0000

00001014

0000

clkdma

clkr

rwe

rwaddr[10:0]

rraddr[10:0]

rrdata[7:0]

dataack

datareq

dataaddr[31:0]

datao[7:0]

(1) (2) (3)

03E 03F 040 041 042 043 044 0

000

00

00001014

00
114 v2.2

v2.2 115

D
List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version

Changes in Current Version (v2.2) Page

v2.1 Core version changed from v3.1 to v3.2. 6

The “RC – Receive Controller” section was updated to remove the words “using an external address RAM” from
the sentence about internal address filtering.

14

Table 3-1 · Core 10/100 Parameters and Table 3-2 · Core10/100_AHBAPB Parameters were updated for the
ADDRFILTER description.

19, 20

In Table 4-1 · CSR Locations, the reset value for CSR9 was updated. A table note was added. 27

A paragraph was added to the function description for the CSR0.0 bit in Table 4-3. 28

Table 4-23 · MII Management and Serial ROM Interface Register (CSR9) was updated to add one column. 38

Table 4-24 · MII Management and Serial ROM Register Bit Functions was updated to change the symbol for bit
CSR9.18 to MDEN. An explanatory sentence was added to the function.

38

Figure 4-1 · External Tristate Buffer Connections and the text preceding it were updated to indicate an active low
enable with the tristate buffer.

39

The “Receive Address Filtering” section was updated to add a sentence at the end describing how to enable the
functionality discussed.

62

v2.0

Added version number to cover page. Title

Added the “Core Versions” section. 6

Added the IGLOO/e family to Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6. 7–8

Added the IGLOO/e family to the “Memory Requirements” section. 9

Changed the Reset Value for CSR1 and CSR2 in Table 4-1. 27

Changed the left-hand column of Table 4-27 to RDES0–3. 43

Changed the left-hand column of Table 4-32 to TDES0–3. 46

Changed the datar signal to “datarw” in Figure 5-2 and Figure 5-3. 66

E
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v2.2 117

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support Core10/100 v3.2
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
118 v2.2

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 117
telephone 118
web-based technical support 117
website 117

addressing
control and status registers 27

architecture 11
ARM-based system 6
Auto Stitch 17

B
Bus Mode Register (CSR0) 27

C
clock controls 67
cock and reset control 67
collision detection 5
collision handling 60
contacting Actel

customer service 117
electronic mail 117
telephone 118
web-based technical support 117

Core10/100
block diagram 5
CSR interface 65
data interface 65

Core10/100_AHBAPB
AHB interface 67
APB interface 67

CoreConsole 6, 15
CSR 38

definitions 27
CSR0 27
CSR1 29
CSR11 40
CSR2 29
CSR3 30
CSR4 30
CSR5 30
CSR6 33
CSR7 36
CSR8 37
customer service 117

D
deferring 61
descriptors 41

chained structure 43
overview 41
ring structure 42
transmit 46

device utilization 7
DMA controller 51

F
frame data 41

G
General-Purpose Timer and Interrupt Mitigation

Control Register (CSR11) 40

I
interface signals

AHB/APB 22
common 24
legacy 23

interface types 19
internal operation 51
Interrupt Enable Register (CSR7) 36
interrupts

controller 55
scheme 56

L
Libero Integrated Design Environment (IDE) 18
licenses

Evaluation 15
Obfuscated 15
RTL 15
types 15

M
MAC address 49
MAC Ethernet controller 5
memory requirements 9
MII interface 57

signals 57
MII Management and Serial ROM Interface Register

(CSR9) 38
MII management interface 39
v2.2 119

Index Core10/100 v3.2
Missed Frames and Overflow Counter Register (CSR8)
37

O
Operation Mode Register (CSR6) 33

P
parameters

Core10/100 19
Core10/100_AHBAPB 20

performance data 7
place-and-route in Libero IDE 18
primary blocks 5
product support 117–118

customer service 117
electronic mail 117
technical support 117
telephone 118
website 117

R
receive address filtering 62
Receive Descriptor List Base Address Register (CSR3)

30
Receive Poll Demand Register (CSR2) 29
receive process 54

transitions 55
register maps 27
reset control 68

S
setup frames 49
Status Register (CSR5) 30
supported interfaces 6
synthesis in Libero IDE 18

T
technical support 117
timer, general-purpose 57
timing constraints 68
tool flows 15
Transmit Descriptor List Base Address Register (CSR4)

30
Transmit Poll Demand Register (CSR1) 29
transmit process 51

transitions 53
typical application using Core10/100 5

V
verification testbench 69

environment components 70
simulation 73
tests 72

W
web-based technical support 117
120 v2.2

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Phone 650.318.4200 • Fax 650.318.4600 • Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom
Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty • Hong Kong
Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200077-2/ /11.07

	Introduction
	Core Versions
	Supported Interfaces
	Device Utilization and Performance
	Memory Requirements

	Functional Block Descriptions
	AHB - AHB Interface
	APB - APB Interface
	CSR - Control/Status Register Logic
	DMA - Direct Memory Access Controller
	TLSM - Transmit Linked List State Machine
	TFIFO - Transmit FIFO
	TC - Transmit Controller
	BD - Backoff/Deferring
	RLSM - Receive Linked List State Machine
	RFIFO - Receive FIFO
	RC - Receive Controller
	RSTC - Reset Controller
	Memory Blocks

	Tool Flows
	Licensing
	Evaluation
	Obfuscated
	RTL

	CoreConsole
	Importing into Libero IDE
	Simulation Flows
	Core10/100
	Core10/100_AHBAPB

	Place-and-Route in Libero IDE

	Interface Descriptions
	Parameters on Core10/100
	Parameters on Core10/100_AHBAPB
	AHB/APB Interface Signals
	Legacy Interface Signals
	Common Interface Signals

	Software Interface
	Register Maps
	Control and Status Register Addressing
	CSR Definitions

	Frame Data and Descriptors
	Descriptor / Data Buffer Architecture Overview
	MAC Address and Setup Frames

	Internal Operation
	DMA Controller
	Transmit Process
	Receive Process
	Interrupt Controller
	General-Purpose Timer
	Data Link Layer Operation
	Frame Format
	Collision Handling
	Deferring
	Receive Address Filtering
	External Address Filtering Interface

	Interface Timing
	Core10/100-CSR Interface
	CSR Read/Write Operation

	Core10/100-Data Interface
	Data Interface Write Operation
	Data Interface Read Operation

	Core10/100_AHBAPB-APB Interface
	Core10/100_AHBAPB-AHB Interface
	Clock and Reset Control
	Clock Controls
	Reset Control

	Timing Constraints

	Testbench Operation and Modification
	Verification Testbench
	Verification Testbench Overview
	Verification Testbench Environment Description
	Verification Testbench Tests

	Verification Testbench Simulation
	User Testbench (Core10/100)
	AHBAPB User Testbench (Core10/100_AHBAPB)

	System Operation
	Usage with CoreMP7

	Software Drivers
	User Testbench Support Routines
	VHDL Support
	Procedure Definitions

	Verilog Support
	Verilog Tasks

	Verification Testbench Tests Description
	Backoff/Deferring Tests
	Transmit FIFO Tests
	Transmit Linked List State Machine Tests
	Transmit Interrupt Mitigation Control Tests
	Receive Operation Tests
	Receive Address Filtering Tests
	Receive FIFO Tests
	Receive Linked List State Machine Tests
	Receive Interrupt Mitigation Control Tests
	Interrupt Tests
	General-Purpose Timer Tests
	DMA Tests
	Miscellaneous Tests

	Transmit and Receive Functional Timing Examples
	Transmit Examples
	Transmit Overview
	Core10/100 Enters Transmit Process
	Core10/100 Starts to Request Transmit Descriptors
	Transmit Descriptor and Data Fetches
	Core10/100 Starts to Transmit on MII
	Transmit on MII

	Receive Examples
	Receive Dataflow Overview
	Core10/100 Receives and Writes Receive Data RAM
	Transfer Receive Data to Shared Memory
	Core10/100 Receive Descriptor Fetch

	List of Document Changes
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

