
Core429 Handbook

v2.0

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200088-0

Release: January 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
General Description . 5

ARINC 429 Overview . 5

Core Versions . 6

Core429 Device Requirements . 7

Memory Requirements . 8

1 Functional Block Description . 11
Core429 Overview . 11

Functional Description . 11

Legacy Mode . 12

Clock Requirements . 13

Line Drivers . 13

Line Receivers . 13

Development System . 14

2 Tool Flows . 15
CoreConsole . 15

Importing into Libero IDE . 18

3 Core Parameters . 19

4 Core Interfaces . 21
I/O Signal Descriptions . 21

5 Timing Diagrams . 25
CPU Interface Timing for Default Mode . 25

6 Configuration Registers . 27
Default Mode Operation . 27

Loopback Interface . 30

Legacy Operation . 30

7 Testbench Operation . 33
Core429 Verification . 33

Testbench . 33

Verification Testbench . 34

Verification Tests . 34

User Testbench . 35

A Testbench Support Routines . 37
VHDL Support . 37

Verilog Support . 37
Core429 Handbook v2.0 3

Table of Contents
B Product Support . 39
Customer Service . 39

Actel Customer Technical Support Center . 39

Actel Technical Support . 39

Website . 39

Contacting the Customer Technical Support Center . 39

Index . 41
4 Core429 Handbook v2.0

Introduction

General Description
Core429 provides a complete Transmitter (Tx) and Receiver (Rx). A typical system implementation using Core429 is
shown in Figure 1.

The core consists of three main blocks: Transmit, Receive, and CPU Interface (Figure 1). Core429 requires connection
to an external CPU. The CPU interface configures the transmit and receive control registers and initializes the label
memory. The core interfaces to the ARINC 429 bus through an external ARINC 429 line driver and line receiver. A
detailed description of the Rx and Tx interfaces is provided in “Functional Description” on page 11.

Figure 1. Typical Core429 System—One Tx and One Rx

External Components
There are two external components required for proper operation of Core429:

• Standard ARINC 429 line driver

• Standard ARINC 429 line receiver

ARINC 429 Overview
ARINC 429 is a two-wire, point-to-point data bus that is application-specific for commercial and transport aircraft. The
connection wires are twisted pairs. Words are 32 bits in length and most messages consist of a single data word. The
specification defines the electrical standard and data characteristics and protocols.

ARINC 429 uses a unidirectional data bus standard (Tx and Rx are on separate ports) known as the Mark 33 Digital
Information Transfer System (DITS). Messages are transmitted at 12.5, 50 (optional), or 100 kbps to other system
elements that are monitoring the bus messages. The transmitter is always transmitting either 32-bit data words or the
Null state.

Actel FPGA

CPU Glue
Logic

Core429

Rx I/F

Tx I/F

RxHi
RxLo

TxHi
TxLo

CPU
Interface
Core429 Handbook v2.0 5

Introduction
The ARINC standard supports High, Low, and Null states (Figure 2). A minimum of four Null bits should be
transmitted between ARINC words. No more than 20 receivers and no less than one receiver can be connected to a
single bus (wire pair), though there will normally be more.

Figure 2. ARINC Standard

Figure 3 shows the bit positions of ARINC data.

Figure 3. ARINC Data Bit Positions

Each ARINC word contains five fields:

• Parity

• Sign/Status Matrix

• Data

• Source/Destination Identifiers

• Label

The parity bit is bit 32 (the MSB). SSM is the Sign/Status Matrix and is included as bits 30 and 31. Bits 11 to 29
contain the data. Binary-coded decimal (BCD) and binary encoding (BNR) are common ARINC data formats. Data
formats can also be mixed. Bits 9 and 10 are Source/Destination Identifiers (SDI) and indicate for which receiver the
data is intended. Bits 1 to 8 contain a label (label words) identifying the data type.

Label words are quite specific in ARINC 429. Each aircraft may be equipped with different electronic equipment and
systems needing interconnection. A large amount of equipment may be involved, depending on the aircraft. The
ARINC specification identifies the equipment ID, a series of digital identification numbers. Examples of equipment are
flight management computers, inertial reference systems, fuel tanks, tire pressure monitoring systems, and GPS sensors.

Transmission Order
The least significant bit of each byte, except the label, is transmitted first, and the label is transmitted ahead of the data
in each case. The order of the bits transmitted on the ARINC bus is as follows:

8, 7, 6, 5, 4, 3, 2, 1, 9, 10, 11, 12, 13 … 32.

Core Versions
This handbook applies to Core429 v3.0. The release notes provided with the core list known discrepancies between this
handbook and the core release associated with the release notes.

1 2 3 4 5 6 7 8 9 10 32

111111 00 0 0 0

Bit
Number

"A" Leg

"B" Leg

Data

A

B
High
Null
Low

+5
0

–5

High
Null
Low

+5
0

–5

32 31 11 10 9

LABEL

30 29 18

LSB

DATA PAD DISCRETES SDIP SSM

MSB
6 Core429 Handbook v2.0

Core429 Device Requirements
Core429 Device Requirements
Core429 can be implemented in several Actel FPGA devices. Table 1 through Table 5 on page 8 provide typical
utilization figures using standard synthesis tools for different Core429 configurations. Table 1 assumes that the label size
is set to 64 and FIFO depth is set to 64.

Table 1. Device Utilization for One Tx Module (default mode)

Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

Fusion 363 147 510 1 AFS600 4%

ProASIC®3/E 363 147 510 1 A3PE600 4%

ProASICPLUS® 441 146 587 1 APA075 19%

Axcelerator® 212 145 357 1 AX125 18%

RTAX-S 258 171 429 1 RTAX250S 10%

Table 2. Device Utilization for One Rx Module (default mode)

Family
Cells or Tiles

Memory Blocks Devices Utilization
Combinatorial Sequential Total

Fusion 431 233 664 2 AFS600 5%

ProASIC3/E 431 233 664 2 A3PE600 5%

ProASICPLUS 588 236 824 2 APA075 27%

Axcelerator 307 234 541 2 AX125 27%

RTAX-S 350 259 609 2 RTAX250S 14%

Table 3. Device Utilization for One Rx and One Tx Module (default mode)

Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

Fusion 848 380 1.228 3 AFS600 10%

ProASIC3/E 848 380 1,228 3 A3PE600 10%

ProASICPLUS 1,084 382 1,466 3 APA075 48%

Axcelerator 518 378 896 3 AX125 44%

RTAX-S 604 429 1,033 3 RTAX250S 24%
Core429 Handbook v2.0 7

Introduction
The Core429 clock rate can be programmed to be 1, 10, 16, or 20 MHz. All the Actel families listed above easily meet
the required performance.

Core429 I/O requirements depend on the system requirements and external interfaces. If the core and memory blocks
are implemented within the FPGA and the CPU interface has a bidirectional data bus, approximately 74 I/O pins are
required to implement four Rx and four Tx modules. The core will require 62 pins to implement one Rx and one Tx
module.

The core has various FIFO flags available for debugging purposes. These flags may not be needed in the final design,
and this will reduce the I/O count.

Memory Requirements
The number of memory blocks required differs depending on whether each channel is configured identically or
differently.

Each Channel Configured Identically
Use EQ 1 to calculate the number of memory blocks required if each channel is configured identically.

Number of memory blocks = NRx * (INT(LABEL_SIZE / X) + INT(RX_FIFO_DEPTH / Y) +
NTx * INT(FIFO_DEPTH / Y),

EQ 1

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to round up
to the next integer, and X and Y are defined in Table 6 on page 9.

Table 4. Device Utilization for 16 Rx and 16 Tx Modules (default mode)

Family
Cells or Tiles

Memory Blocks Device Utilization
Combinatorial Sequential Total

Fusion 13,435 6,080 19,515 48 AFS1500 51%

ProASIC3/E 13,435 6,080 19,515 48 A3PE1500 51%

ProASICPLUS 16,835 6,112 22,947 48 APA750 69%

Axcelerator 8,044 5,944 13,988 48 AX2000 43%

RTAX-S 9,594 6,745 16,339 48 RTAX2000S 51%

Table 5. Device Utilization for Legacy Mode (two Rx and one Tx)

Family
Cells or Tiles

Memory Blocks Device Utilization
Combinational Sequential Total

Fusion 1,444 613 2,057 5 AFS600 15%

ProASIC3/E 1,444 613 2,057 5 A3PE600 15%

ProASICPLUS 1,840 674 2,514 5 APA150 41%

Axcelerator 955 653 1,608 5 RTAX250S 20%

RTAX-S 1,062 729 1,791 5 RTAX250S 42%
8 Core429 Handbook v2.0

Memory Requirements
Each Channel Configured Differently
Use EQ 2 to calculate the number of memory blocks required if each channel is configured differently.

Number of memory blocks =

 INT(FIFO_DEPTH[I] / Y + (INT(LABEL_SIZE[I] / X) + INT(FIFO_DEPTH[I] / Y)),

EQ 2

where NRx is the number of receive channels, NTx is the number of transmit channels, INT is the function to round up
to the next integer, and X and Y are defined in Table 6.

Examples for the ProASIC3/E Device Family
If the design has 2 receivers, 1 transmitter, 64 labels for each receiver, and a 32-word-deep FIFO for each receiver and
transmitter, then

Number of memory blocks = 2 * (INT(64 / 512) + INT(32 / 128)) + 1 * INT(32 / 128)
= 2 * (1 + 1) + 1 * (1) = 5.

If the design has 2 receivers, 1 transmitter, 32 labels for receiver #1, 64 labels for receiver #2, a 32-word-deep FIFO for
receiver #1, a 64-word-deep FIFO for receiver #2, and a 64-word-deep FIFO for the transmitter, then

Number of memory blocks = INT(64 / 128) + (INT(32 / 512) + INT(32 / 128)) + (INT(64 / 512) +
INT(64 / 128)) = 1 + (1 + 1) + (1 + 1) = 5.

Table 6. Memory Parameters

Device Family X Y

Fusion 512 128

ProASIC3/E 512 128

ProASICPLUS 256 64

Axcelerator/RTAX-S 512 128

I 0=

NTx 1–

∑
I 0=

NRx 1–

∑

Core429 Handbook v2.0 9

1
Functional Block Description

Core429 Overview
Core429 provides a complete and flexible interface to a microprocessor and an ARINC 429 data bus. Connection to an
ARINC 429 data bus requires additional line drivers and line receivers.

Core429 interfaces to a processor through the internal memory of the receiver. Core429 can be easily interfaced to an 8-,
16-, or 32-bit data bus. Lookup tables loaded into memory enable the Core429 receive circuitry to filter and sort
incoming data by label and destination bits. Core429 supports multiple (configurable) ARINC 429 receiver channels,
and each receives data independently. The receiver data rates (high- or low-speed) can be programmed independently.
Core429 can decode and sort data based on the ARINC 429 Label and SDI bits and stores it in a FIFO. Each receiver
uses a programmable FIFO to buffer received data. Core429 supports multiple (configurable) ARINC 429 transmit
channels, and each channel can transmit data independently.

Functional Description
The core has three main blocks: Transmit, Receive, and CPU Interface. The core can be configured to provide up to 16
transmit and receive channels.

Figure 1-1 gives a functional description of the Rx block.

Figure 1-1. Core429 Rx Block Diagram

The Rx block is responsible for recovering the clock from the input serial data and performs serial-to-parallel conversion
and gap/parity checking on the incoming data. It also interfaces with the CPU.

The Rx module contains two 8-bit registers. One is used for control and the other is used for status. Refer to Table 6-3
on page 28 and Table 6-4 on page 28 for detailed descriptions of the control and status register bits. The CPU interface
configures the internal RAM with the labels, which are used to compare against incoming labels from received ARINC
data.

If the label-compare bit in the receive control register is enabled, data whose labels match the stored labels will be stored
in the FIFO. If the label-compare bit in the receive control register is disabled, the incoming data will be stored in the
FIFO without comparing against the labels in RAM.

Data Sync
and Clock
Recovery

32-Bit Shift
Register

Label
Memory

Bit Counter

Word Gap
Timer

Parity
Check

Control
Logic

Control Reg

Status Reg

CPU I/F

Compare
Label

FIFO

RxLo

RxHi

clk

cpu_add

cpu_wen

cpu_ren

cpu_din

cpu_dout
cpu_wait
Core429 Handbook v2.0 11

Functional Block Description
The core supports reloading label memory using bit 7 of the Rx control register. Note that when you set bit 7 to initialize
the label memory, the old label content still exists, but the core keeps track only of the new label and does not use the old
label during label compare.

The FIFO asserts three status signals:

• rx_fifo_empty: FIFO is empty

• rx_fifo_half_full: FIFO is filled up to the programmed RX_FIFO_LEVEL

• rx_fifo_full: FIFO is full

Depending on the FIFO status signals, the CPU will either read the FIFO before it overflows or will not attempt to read
the FIFO if it is empty. The interrupt signal int_out_rx is generated when one of the FIFO status signals (rx_fifo_empty,
rx_fifo_half_full, or rx_fifo_full) is HIGH.

Figure 1-2 gives a functional description of the Tx block.

Figure 1-2. Core429 Tx Block Diagram

The Tx module converts the 32-bit parallel data from the Tx FIFO to serial data. It also inserts the parity bit into the
ARINC data when parity is enabled. The CPU interface is used to fill the FIFO with ARINC data. The Tx FIFO can
hold up to 512 ARINC words of data. The transmission starts as soon as one complete ARINC word has been stored in
the transmit FIFO.

The Tx module contains two 8-bit registers. One is used for a control function and the other is used for status. Refer to
Table 6-7 on page 29 and Table 6-8 on page 29 for detailed descriptions. The CPU interface allows the system CPU to
access the control and status registers within the core.

The Tx FIFO asserts three status signals:

• tx_fifo_empty: Tx FIFO is empty

• tx_fifo_half_full: Tx FIFO is filled up to the programmed TX_FIFO_LEVEL

• tx_fifo_full: Tx FIFO is full

Depending on the FIFO status signals, the CPU will either read the FIFO before it overflows or will not attempt to read
the FIFO if it is empty. The interrupt signal int_out_tx is generated when one of the FIFO status signals (tx_fifo_empty,
tx_fifo_half_full, or tx_fifo_full) is HIGH.

Legacy Mode
In this mode, there is a legacy interface block that communicates with the CPU interface. When legacy mode is enabled,
the core supports two receive (Rx) channels and one transmit (Tx) channel only. This is not configurable.

32-Bit
Parallel-to-Serial

Register

Control
Logic

Control Reg

Status Reg

CPU I/F

Parity
Generator

FIFO

clk

cpu_add

cpu_wen

cpu_ren

cpu_din
cpu_dout
cpu_wait

Waveform
Shaper RxLo

RxHi

Load Shift
12 Core429 Handbook v2.0

Clock Requirements
Clock Requirements
To meet the ARINC 429 transmission bit rate requirements, the Core429 clock input must be 1, 10, 16, or 20 MHz
with a tolerance of ±0.01%.

Line Drivers
Core429 needs ARINC 429 line drivers to drive the ARINC 429 data bus. Core429 is designed to interface directly to
common ARINC 429 line drivers, such as HOLT HI-8382/HI-8383, DDC DD-03182, or Device Engineering
DEI1070.

Figure 1-3 shows the connections required from Core429 to the line drivers.

Figure 1-3. Core429 Line Driver and Line Receiver Interface

Line Receivers
Core429 needs ARINC 429 line receivers to receive the ARINC 429 data bus. Core429 is designed to interface directly
to common ARINC 429 line receivers, such as HOLT HI-8588 or Device Engineering DEI3283. When using an
FPGA from the ProASICPLUS, RTAX-S, or Axcelerator families, level translators are required to connect the 5 V
output levels of the Core429 line receivers to the 3.3 V input levels of the FPGA.

Core429

Rx I/F

Tx I/F
RxHi
RxLo

TxHi
TxLo

Line Driver

Line Receiver

CPU
Interface
Core429 Handbook v2.0 13

Functional Block Description
Development System
A complete ARINC 429 development system is also available, Actel part number Core429-DEV-KIT. The
development system uses an external terminal (PC) with a serial UART link to control Core429 with four Rx and four
Tx channels implemented in a single ProASICPLUS APA600 FPGA. Figure 1-4 shows the development system.

Figure 1-4. Core429 Development System

The loopback interface logic allows the ARINC core to operate in loopback mode. The development kit includes
ARINC line drivers and line receivers. On power-up, Core8051 reads the message from the ADC, which could be the
aircraft fuel level or flap position, for example, and transmits it over the transmit channel. The message will be
transmitted to the receiver through the loopback interface. Then the message will be retrieved by Core8051 from the
receiver and displayed on the LCD.

Another method is to transmit the ADC message over the transmit channel through the line drivers to another system
similar to the one described above. The message will go through the receive channel of the second system and can be
displayed on the LCD.

APA600 FPGA

Core8051

Core429
4 Rx and 4 Tx

Loopback
I/F

UART
RS232

Keypad
and
LCD

Terminal ADC

Tx1H
Tx1L

Rx1H
Rx1L

Tx2H
Tx2L

Rx2H
Rx2L

Tx3H
Tx3L

Rx3H
Rx3L

Tx4H
Tx4L

Rx4H
Rx4L
14 Core429 Handbook v2.0

2
Tool Flows

Core429 is licensed in three ways. Tool flow functionality may be limited.

Evaluation
Precompiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated within
Actel Libero® Integrated Design Environment (IDE), as described in the “CoreConsole” section. Using the Evaluation
version of the core, it is possible to create and simulate the complete design in which the core is being included. The
design may not be synthesized, as source code is not provided.

Obfuscated
Complete RTL code is provided for the core, enabling the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed with Libero IDE. The RTL code for the core is obfuscated, and some of the
testbench source files are not provided; they are precompiled into the compiled simulation library instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
Core429 is preinstalled in the CoreConsole IP Deployment Design Environment. To use the core, click and drag it from
the IP core list into the main window. The CoreConsole project may be exported to Libero IDE at this point, providing
access to the core only. Alternately, IP blocks can be interconnected, allowing the complete system to be exported from
CoreConsole to Libero IDE.

The core can be configured using the configuration GUI within CoreConsole, as shown in Figure 2-1 on page 16
through Figure 2-2 on page 17.
Core429 Handbook v2.0 15

Tool Flows
Figure 2-1. Core429 Configuration within CoreConsole
16 Core429 Handbook v2.0

CoreConsole
Figure 2-2. Core429 Configuration within CoreConsole (continued)

After configuring the core, Actel recommends you use the top-level Auto Stitch function to connect all the core interface
signals to the top level of the CoreConsole project.
Core429 Handbook v2.0 17

Tool Flows
Once the core is configured, invoke the Generate function in CoreConsole. This will export all the required files to the
project directory in the LiberoExport directory. This is in the CoreConsole installation directory by default.

Importing into Libero IDE
After generating and exporting the core from CoreConsole, the core can be imported into Libero IDE. Create a new
project in Libero IDE and import the CoreConsole project from the LiberoExport directory. Libero IDE will then install
the core and the selected testbenches, along with constraints and documentation, into its project.

Note: If two or more DirectCores are required, they can both be included in the same CoreConsole project and imported
into Libero IDE at the same time.

Simulation Flows
To run simulations, the required testbench flow must be selected within CoreConsole, and Save & Generate must be run
from the Generate pane. Select the required testbench through the core configuration GUI in CoreConsole. The
following simulation environments are supported:

• Full Core429 verification environment (Verilog only)

• Simple testbench (VHDL and Verilog)

When CoreConsole generates the Libero IDE project, it will install the appropriate testbench files. To run the
testbenches, simply set the design root to Core429 instantiation in the Libero IDE file manager and click the Simulation
icon in Libero IDE. This will invoke ModelSim and automatically run the simulation.

Synthesis in Libero IDE
To run Synthesis on the core with parameters set in CoreConsole, set the design root to the top of the project imported
from CoreConsole. This is a wrapper around the core that sets all the generics appropriately. Make sure the required
timing constraints files are associated with the synthesis tool.

Click the Synthesis icon in Libero IDE. The synthesis window appears, displaying the Synplicity® project. To run
Synthesis, click the Run icon.

Place-and-Route in Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in Libero IDE to invoke Designer.
Core429 requires no special place-and-route settings.
18 Core429 Handbook v2.0

Core429 Handbook v2.0 19

3
Core Parameters

Core429 has several top-level Verilog parameters (VHDL generics) that are used to select the number of channels and
FIFO sizes of the implemented core. Using these parameters allows the size of the core to be reduced when all the
channels are not required.

For RTL versions, the parameters in Table 3-1 can be set directly. For netlist versions of the core, a netlist implementing
four Tx and four Rx channels is provided as per the defaults above. Actel will supply netlists with alternative parameter
settings on request.

Table 3-1. FIFO and Label Parameters

Parameter Name Description Allowed Values Default

FAMILY Must be set to the required FPGA family. 11 to 21 15

CLK_FREQ Clock frequency 1, 10, 16, 20 MHz 1 MHz

CPU_DATA_WIDTH CPU data bus width 8, 16, 32 bits 8

RXN Number of Rx channels 1 to 16 4

TXN Number of Tx channels 1 to 16 4

LEGACY_MODE 0 = Default mode; 1 = Legacy mode 0,1 0

LABEL_SIZE_i Number of labels for Rx channel i 1 to 256 64

RX_FIFO_DEPTH_j Depth of FIFO for Rx channel j ARINC word 32, 64, 128, 256, 512 32

RX_FIFO_LEVEL_k FIFO level for Rx channel k 1 to 64 16

TX_FIFO_DEPTH_l Depth of FIFO for Tx channel l ARINC word 32, 64, 128, 256, 512 32

TX_FIFO_LEVEL_m FIFO level for Tx channel m 1 to 64 16

TXRXSPEED_n

When this parameter is set to '1', a bit rate of 100/50 kbps is selected.
Otherwise, a bit rate of 100/12.5 kbps is selected. The bit rate can be
changed for the Rx/Tx channel pair. Refer to the Tx and Rx control register
bit descriptions in Table 6-3 on page 28 and Table 6-7 on page 29.

0, 1 0

Note: The parameters i, j, k, l, m, and n can have values from 0 to 15.

4
Core Interfaces

I/O Signal Descriptions

ARINC Interface

Default Mode Signals

Table 4-1. Clock and Reset

Name Type Description

clk In Master clock input (1, 10, 16, or 20 MHz)

reset_n In Active low asynchronous reset

txa[TXN–1:0] Out ARINC transmit output A

txb[TXN–1:0] Out ARINC transmit output B

rxa[RXN–1:0] In ARINC receiver input A

rxb[RXN–1:0] In ARINC receiver input B

Table 4-2. Core Interface Signals

Name Type Description

int_out_rx[RXN–1:0] Out

Interrupt from each receive channel. This interrupt is generated when one of the following
conditions occurs:

• FIFO empty

• FIFO full

• FIFO is full up to the programmed RX_FIFO_LEVEL

This is an active high signal.

int_out_tx[TXN–1:0] Out

Interrupt from each transmit channel. This interrupt is generated when one of the
following conditions occurs:

• FIFO empty

• FIFO full

• FIFO is full up to the programmed TX_FIFO_LEVEL

This is an active high signal.

rx_fifo_full[RXN–1:0] Out Rx FIFO full flag for each receive channel. This is an active high signal.

rx_fifo_half_full[RXN–1:0] Out
Rx FIFO programmed level flag for each receive channel. By default it is programmed to
half full. This is an active high signal.

rx_fifo_empty[RXN–1:0] Out Rx FIFO empty flag for each receive channel. This is an active high signal.

tx_fifo_full[TXN–1:0] Out Tx FIFO full flag for each transmit channel. This is an active high signal.
Core429 Handbook v2.0 21

Core Interfaces
CPU Interface
The CPU interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface is
synchronous to the clock.

Legacy Interface
The legacy interface allows access to the Core429 internal registers, FIFO, and internal memory. This interface is
synchronous to the clock. The Tx module contains two 8-bit registers. One is used for control function and the other is
used for status.

tx_fifo_half_full[TXN–1:0] Out
Tx FIFO programmed level flag for each transmit channel. By default it is programmed to
half full. This is an active high signal.

tx_fifo_empty[TXN–1:0] Out Tx FIFO empty flag for each transmit channel. This is an active high signal.

Table 4-2. Core Interface Signals (Continued)

Name Type Description

Table 4-3. CPU Interface Signals

Name Type Description

cpu_ren In CPU read enable, active low

cpu_wen In CPU write enable, active low

cpu_add[8:0] In CPU address

cpu_din[CPU_DATA_WIDTH–1:0] In CPU data input

cpu_dout[CPU_DATA_WIDTH–1:0] Out CPU data output

int_out Out
Interrupt to CPU, active high. int_out is the OR function of int_out_rx and
int_out_tx.

cpu_wait Out
Indicates that the CPU should hold cpu_ren or cpu_wen active while the core
completes the read or write operation.

Table 4-4. Legacy Interface Signals

Name Type Description

data_ready1 Out Receiver 1 data ready (FIFO not empty) flag

fifo_full1 Out Receiver 1 FIFO full

half_full1 Out Receiver 1 FIFO half full

data_ready2 Out Receiver 2 data ready (FIFO not empty) flag

fifo_full2 Out Receiver 2 FIFO full

half_full2 Out Receiver 2 FIFO half full

transmit_fifo_full Out Transmit FIFO full

transmit_half_full Out Transmit FIFO half full
22 Core429 Handbook v2.0

I/O Signal Descriptions
rsel In Receiver data half word selection

ctrl_n In Clock for control word register

str_n In Read status register if rsel = 0, read control register if rsel = 1

entx In Enable transmission

txr Out
Transmitter ready flag. Goes LOW when ARINC word loaded into FIFO. Goes HIGH after
transmission and FIFO empty.

pl1_n In Latch enable for word 1 entered from data bus to transmitter FIFO

pl2_n In Latch enable for word 2 entered from data bus to transmitter FIFO. Must follow pl1_n.

en1_n In Data bus control. Enables receiver 1 data to outputs.

en2_n In Data bus control. Enables receiver 2 data to outputs if en1_n is HIGH.

test In Disables transmitter output if HIGH.

dout In/Out Bidirectional data bus

data_valid Out Data is valid when data_valid = 1.

Table 4-4. Legacy Interface Signals (Continued)

Name Type Description
Core429 Handbook v2.0 23

5
Timing Diagrams

CPU Interface Timing for Default Mode
The CPU interface signals are synchronized to the Core429 master clock. Figure 5-1 through Figure 5-6 on page 26 show the waveforms for
the CPU interface.

Figure 5-1. CPU Interface Control/Status Register Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is available one cycle after cpu_ren is
sampled.

Figure 5-2. CPU Interface Control Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

Figure 5-3. CPU Interface Data Register Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is available six cycles after cpu_ren is
sampled.

clk

cpu_ren

cpu_add[8:0]

cpu_dout[31:0]

ADDR

Data

cpu_wait

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Write Done

Data

cpu_wait

clk

cpu_ren

cpu_add[8:0]

cpu_dout[31:0]

ADDR

Data
cpu_wait
Core429 Handbook v2.0 25

Timing Diagrams
Figure 5-4. CPU Interface Data Register Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

Figure 5-5. CPU Interface Label Memory Read Cycle

Note: cpu_ren should be deasserted on the next clock cycle after cpu_wait is deasserted. Read data is available six cycles after cpu_ren is
sampled.

Figure 5-6. CPU Interface Label Memory Write Cycle

Note: cpu_wen should be deasserted on the next clock cycle after cpu_wait is deasserted. The write is done two cycles after cpu_wen is
sampled.

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Data

Write

cpu_wait

clk

cpu_ren

cpu_add[8:0]

cpu_dout

cpu_wait

Data

ADDR

clk

cpu_wen

cpu_add[8:0]

cpu_din[31:0]

ADDR

Data

Write

cpu_wait
26 Core429 Handbook v2.0

6
Configuration Registers

Default Mode Operation
In the default mode, the core operates with the following register map:

CPU Address Map
Address bits 0 and 1 are used to create byte indexes.

• For an 8-bit CPU data bus:

00 – Byte 0

01 – Byte 1

10 – Byte 2

11 – Byte 3

• For a 16-bit CPU data bus:

00 – Lower half word

10 – Upper half word

• For a 32-bit CPU data bus:

00 – Word

Address bits 2 and 3 select the registers within each Rx or Tx block (see “Register Definitions” on page 28).

Address bit 4 is used to determine Rx/Tx as follows:

0 – Rx

1 – Tx

Address bits 5, 6, 7, and 8 are used for decoding the 16 channels as follows:

0000 – Channel0

0001 – Channel1

 . .

 . .

1110 – Channel14

1111 – Channel15

Table 6-1 shows the CPU address bit information.

Table 6-1. CPU Address Bit Positions

Channel Number Tx/Rx Register Index Byte Index

8 7 6 5 4 3 2 1 0

MSB 9-Bit CPU Address LSB
Core429 Handbook v2.0 27

Configuration Registers
Register Definitions

Rx Registers
Following is the detailed definition of cpu_add[3:2] decoding and the explanation of the Data Register, Control
Register, Status Register, and Label Memory Register (Table 6-2 through Table 6-5 on page 29).

Address map:

00 – Data Register

01 – Control Register

10 – Status Register

11 – Label Memory

Table 6-2. Rx Data Register

Bit Function Reset State Type Description

31:0 Data 0 R Read data

Table 6-3. Rx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50 kbps

1 Label recognition 0 R/W Label compare: 0 = disable; 1 = enable

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

4 Decoder 0 R/W

0: SDI bit comparison disabled

1: SDI bit comparison enabled; ARINC bits 9 and 10 must
match bits 5 and 6, respectively.

5 Match header bit 9 0 R/W
If bit 4 is set, this bit should match ARINC header bit 9
(SDI bit).

6 Match header bit 10 0 R/W
If bit 4 is set, this bit should match ARINC header bit 10
(SDI bit).

7 Reload label memory 0 R/W
When bit 7 is set to '1', label memory address pointers are
initialized to '000'. Set this bit to change the contents of the
label memory.

Table 6-4. Rx Status Register

Bit Function Reset State Type Description

0 FIFO empty 0 R 0 = not empty; 1 = empty

1
FIFO half full or
programmed level

0 R
0 = less than programmed level; 1 = FIFO is filled at least
up to programmed level

2 FIFO full 0 R 0 = not full; 1 = full
28 Core429 Handbook v2.0

Default Mode Operation
Tx Registers
Following is a detailed definition of cpu_add[3:2] decoding and an explanation of the Data Register, Pattern RAM,
Control Register, and Status Register.

Address map:

00 – Data Register

01 – Control Register

10 – Status Register

11 – Unused

Label Memory Operation
The label memory is implemented using an internal memory block. The read and write addresses are generated by
internal counters, which can be reset by setting bit 7 of the receive (Rx) control register to '1'. The write counter
increments each time the label memory register is written. The read counter increments every time the label memory
register is read.

Table 6-5. Rx Label Memory Register

Bit Function Reset State Type Description

7:0 Label 0 R/W Read/write labels

Table 6-6. Tx Data Register

Bit Function Reset State Type Description

31:0 Data 0 W Write Data

Table 6-7. Tx Control Register

Bit Function Reset State Type Description

0 Data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 or 50 kbps

1 Loopback 0 R/W 0 = disable loopback; 1 = enable loopback

2 Enable 32nd bit as parity 0 R/W 0 = 32nd bit is data; 1 = 32nd bit is parity

3 Parity 0 R/W Parity: 0 = odd; 1 = even

Table 6-8. Tx Status Register

Bit Function Reset State Type Description

0 FIFO empty 0 R 0 = not empty; 1 = empty

1
FIFO half full or
programmed level

0 R
0 = less than half full or programmed level; 1 = half full or
programmed level

2 FIFO full 0 R 0 = not full; 1 = full
Core429 Handbook v2.0 29

Configuration Registers
The label memory operation is shown in Figure 6-1.

Figure 6-1. Label Memory Diagram

To program labels, the CPU first resets the read and write counters by setting bit 7 of the receive (Rx) control register to
'1'. Then the labels are written to the label memory. The core will compare the incoming ARINC word label (bits 1–8 of
ARINC word) against the labels contained in the label memory. The contents of the label memory can be read by
reading the label memory register. While writing to or reading from label memory, bit 1 of the receive (Rx) control
register should be set to '0'.

To reload the label memory, set bit 7 of the receive (Rx) control register to '1'. The core will then ignore all previous
labels, and new labels can be written to the label memory.

Loopback Interface
If the loopback bit in the transmit control register is enabled, the transmit outputs will be connected to the receive
inputs. If there are equal numbers of transmit and receive channels, each transmit channel output is connected to the
corresponding receive channel input. As an example, the transmit channel 0 output is connected to the receive channel 0
input.

If there are more receive channels than transmit channels, the extra receive channels are connected to transmit channel 0.
As an example, if there are two transmit channels (0 and 1) and four receive channels (0, 1, 2, and 3), the connections are
made as follows:

• Connect transmit channel 0 output to receive channel 0 input

• Connect transmit channel 1 output to receive channel 1 input

• Connect transmit channel 0 output to receive channel 2 input

• Connect transmit channel 0 output to receive channel 3 input

Legacy Operation
In this mode, there is a legacy interface block that communicates with the CPU interface. When legacy mode is enabled,
the core supports two receive (Rx) channels and one transmit (Tx) channel only. Legacy mode is not configurable to
support multiple transmit and receive channels. The purpose of the legacy mode interface is to replace existing standard
products.

Read Address
Counter

Write Address
Counter

Label Memory Block

+1

+1

Rx Control Register Bit

Rx Control Register Bit

Write Data
(Rx Label Memory Register)

Read Data
(Rx Label Memory Register)

Number of Active Labels

WDATA

RDATA

RADDR

WADDR

Reset

Reset
Write Enable

Read Enable

Label Enable
30 Core429 Handbook v2.0

Legacy Operation
Control Register
Core429 contains a 16-bit control register, which is used to configure the Rx and Tx channels. Control register bits 0–15
are loaded from the data bus when CTRL_n is LOW. The control register contents are put out on the data bus when
RSEL is HIGH and STR_n is LOW. Each bit of the control register is explained in Table 6-9.

Table 6-9. Legacy Control Register

Bit Function Reset State Type Description

0 Receiver 1 data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.

1 Label compare 0 R/W
0 = disable; 1 = enable
Load 16 labels using pl1_n/pl2_n.
Read 16 labels using en1_n/en2_n.

2
Enable label recognition
(Receiver 1)

0 R/W
0: Disable label recognition
1: Enable label recognition

3
Enable label recognition
(Receiver 2)

0 R/W
0: Disable label recognition
1: Enable label recognition

4 Enable bit 32 as parity 0 R/W 0 = bit 32 is data; 1 = bit 32 is parity

5 Self test 1 R/W
0: The transmitter’s digital outputs are internally connected to the
receiver’s logic inputs.
1: Default operation

6 Receiver 1 decoder 0 R/W
0: Receiver 1 decoder disabled
1: ARINC bits 9 and 10 must match bits 7 and 8 of the control register.

7 Match ARINC bit 9 (Receiver 1) 0 R/W If Receiver 1 decoder is enabled, ARINC bit 9 should match this bit.

8 Match ARINC bit 10 (Receiver 1) 0 R/W If Receiver 1 decoder is enabled, ARINC bit 10 should match this bit.

9 Receiver 2 decoder 0 R/W
0: Receiver 2 decoder disabled
1: ARINC bits 9 and 10 must match bits 10 and 11 of the control
register.

10 Match ARINC bit 9 (Receiver 2) 0 R/W If Receiver 2 decoder is enabled, ARINC bit 9 should match this bit.

11 Match ARINC bit 10 (Receiver 2) 0 R/W If Receiver 2 decoder is enabled, ARINC bit 10 should match this bit.

12 Transmitter parity 0 R/W Parity: 0 = odd; 1 = even

13 Transmitter data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.

14 Receiver 2 data rate 0 R/W Data rate: 0 = 100 kbps; 1 = 12.5 kbps. Note: Does not support 50 kbps.
Core429 Handbook v2.0 31

Configuration Registers
Status Register
Core429 contains a 16-bit status register which can be read to determine the status of the ARINC receivers, data FIFOs,
and transmitter. The contents of the status register are put out on the data bus when RSEL is LOW and STR is LOW.
Each bit of the status register is explained in Table 6-10.

Table 6-10. Legacy Status Register

Bit Function Reset State Type Description

0 Receiver 1 FIFO empty 0 R
0 = Receiver 1 FIFO not empty

1 = Receiver 1 FIFO empty

1 Receiver 1 FIFO half full 0 R
0 = Receiver 1 FIFO not half full

1 = Receiver 1 FIFO half full

2 Receiver 1 FIFO full 0 R
0 = Receiver 1 FIFO not full

1 = Receiver 1 FIFO full

3 Receiver 2 FIFO empty 0 R
0 = Receiver 2 FIFO not empty

1 = Receiver 2 FIFO empty

4 Receiver 2 FIFO half full 0 R
0 = Receiver 2 FIFO not half full

1 = Receiver 2 FIFO half full

5 Receiver 2 FIFO full 0 R
0 = Receiver 2 FIFO not full

1 = Receiver 2 FIFO full

6 Transmitter FIFO empty 0 R
0 = Transmitter FIFO not empty

1 = Transmitter FIFO empty

7 Transmitter FIFO full 0 R
0 = Transmitter FIFO not full

1 = Transmitter FIFO full

8 Transmitter FIFO half full 0 R
0 = Transmitter FIFO not half full

1 = Transmitter FIFO half full
32 Core429 Handbook v2.0

7
Testbench Operation

Three testbenches are provided with Core429:

• Verilog verification testbench: Complex testbench that verifies core operation. This testbench exercises all the features
of the core. Actel recommends not modifying this testbench. This Verilog testbench may be used to simulate the
VHDL version of the core if a mixed-mode simulator is available.

• VHDL user testbench: Simple-to-use testbench written in VHDL. This testbench is intended for customer
modification.

• Verilog user testbench: Simple-to-use testbench written in Verilog. This testbench is intended for customer
modification.

Core429 Verification
The comprehensive verification simulation testbench (included with the Obfuscated and RTL versions of the core)
verifies correct operation of the Core429 macro. The verification testbench applies several tests to the Core429 macro,
including the following:

• Receive interface tests

• Transmit interface tests

• CPU interface tests

• Legacy interface tests

• Loopback tests

Using the supplied user testbench as a guide, the user can easily customize the verification of the core by adding or
removing tests.

Testbench
The CPU model sets up Core429 via the CPU interface and loads the transmit data. The transmit data will be sent to
the receiver. The CPU model can retrieve the receive data through the CPU interface and compare it against the
transmitted data.

The user testbenches are intended to simplify core integration into the target system (Figure 7-1). This consists of the
core connections to a CPU model and loopback logic that connects the Tx output to the Rx input.

Figure 7-1. Testbench Diagram

CPU
Model Loopback

I/F

CPU I/F

Rx I/F0

Tx I/F0

Rx I/F3

Tx I/F3

RxH0
RxL0
TxH0
TxL0

RxH3
RxL3
TxH3
TxL3

Core429
Core429 Handbook v2.0 33

Testbench Operation
Verification Testbench
Included with the Obfuscated and RTL releases of Core429 is a verification testbench that verifies operation of the
Core429 macro. A simplified block diagram of the verification testbench is shown in Figure 7-2.

The verification testbench instantiates the Design Under Test (DUT), which is the Core429 macro, as well as the test
vector modules that provide stimuli source for the DUT and perform comparisons for expected values throughout the
simulation process. A procedural testbench controls each module and applies the sequential stimuli to the DUT.

Figure 7-2. Core429 Verification Testbench

The source code for the verification testbench is only available with the Core429 RTL release. A compiled ModelSim
simulation is available with the Obfuscated and RTL releases.

Verification Tests
Core429 is verified through various tests, listed below:

• Basic receive and transmit data words

• Parity errors

• Incorrectly formatted data words

• Label match

• FIFO flags, including FIFO level

• Control register settings

• Status register settings

• CPU interface data width tests

• Tx FIFO overflow and underrun

• Rx FIFO overflow and underrun

• Interrupts

• Loopback

Core429

Test
Vector
Stimuli

Procedural
Testbench

Test
Vector

Compare
34 Core429 Handbook v2.0

User Testbench
User Testbench
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of Core429. The user
testbench is provided in precompiled ModelSim format and in RTL source code for all releases (Evaluation, Obfuscated,
and RTL) for you to examine and modify to suit your needs. The source code for the user testbench is provided to ease
the process of integrating the Core429 macro into your design and verifying according to your own custom needs. A
block diagram of the user testbench is shown in Figure 7-3.

Figure 7-3. User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to implement their
own designs. RTL source code for the user testbench shown in Figure 7-3 is included in the source directory for the
Obfuscated and RTL releases of Core429. The example user testbench files are $CORE429/source/user_tbench.vhd and
$CORE429/source/user_tbench.v.

The testbench for the example user design implements a subset of the functionality tested in the verification testbench,
described in “Configuration Registers” on page 27. As shown in Figure 7-3, Core429 is instantiated in the user
testbench, and the CPU interface drives the data into the transmitter. The user testbench causes exchanges of data to
take place between the transmitter and receiver. The user testbench verifies the sent data by receiving it from the receiver.

User Testbench

Core429
(transmit and receive)

CPU I/F
Core429 Handbook v2.0 35

Core429 Handbook v2.0 37

A
Testbench Support Routines

The verification and user testbenches for the Core429 macro make use of support routines, both in VHDL and Verilog.
The support routines are described in this appendix for the VHDL and Verilog testbenches.

VHDL Support
The VHDL versions of the testbenches make use of the following procedures, which are included within the top-level
module of the verification and user testbenches.

The following procedure does a simple read from the Core429 registers or memory:

PROCEDURE cpu_read (

address :IN std_logic_vector(8 DOWNTO 0);
SIGNAL data :OUT std_logic_vector(CPU_DATA_WIDTH - 1 DOWNTO 0))

The following procedure does a simple write to the Core429 registers or memory:

PROCEDURE cpu_write (

address :IN std_logic_vector(8 DOWNTO 0);
data :IN std_logic_vector(CPU_DATA_WIDTH - 1 DOWNTO 0))

Verilog Support
The Verilog versions of the testbenches make use of the following tasks, which are included within the top-level module
of the verification and user testbenches.

The following procedure does a simple read from the Core429 registers or memory:

task cpu_read;

input [8:0] address;

output [CPU_DATA_WIDTH-1:0] data;

reg [CPU_DATA_WIDTH-1:0] data;

The following procedure does a simple write to the Core429 registers or memory:

task cpu_write;

input [8:0] address;

input [CPU_DATA_WIDTH-1:0] data;

B
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
Core429 Handbook v2.0 39

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
40 Core429 Handbook v2.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Core429 Handbook v2.0 41

A
Actel

electronic mail 39
telephone 40
web-based technical support 39
website 39

ARINC 5

C
clock requirements 13
components

external 5
contacting Actel

customer service 39
electronic mail 39
telephone 40
web-based technical support 39

core parameters 19
core version 6
CoreConsole 15
CPU address map 27
customer service 39

D
development system 14
device requirements 7

E
external components 5

F
functional description 11

I
I/O signals 21

L
label memory 29
legacy mode 12, 30

control register 31
status register 32

Libero IDE 18

licenses
Evaluation 15
Obfuscated 15
RTL 15

line drivers 13
line receivers 13
loopback interface 30

M
memory requirements 8

P
parameters

core 19
product support 39–40

customer service 39
electronic mail 39
technical support 39
telephone 40
website 39

R
register definitions 28
requirements

clock 13
device 7
memory 8

S
signals 21

T
technical support 39
testbench support routines 37
testbenches 33
timing diagrams 25

V
verification 33

W
web-based technical support 39

Index

For more information about Actel’s products, visit our website at http://www.actel.com
Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

Actel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom

Phone +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
Phone +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

Actel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

Phone +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200088-0 /1.07

	Introduction
	General Description
	Figure 1. Typical Core429 System-One Tx and One Rx
	External Components

	ARINC 429 Overview
	Figure 2. ARINC Standard
	Figure 3. ARINC Data Bit Positions
	Transmission Order

	Core Versions
	Core429 Device Requirements
	Table 1. Device Utilization for One Tx Module (default mode)
	Table 2. Device Utilization for One Rx Module (default mode)
	Table 3. Device Utilization for One Rx and One Tx Module (default mode)
	Table 4. Device Utilization for 16 Rx and 16 Tx Modules (default mode)
	Table 5. Device Utilization for Legacy Mode (two Rx and one Tx)

	Memory Requirements
	Each Channel Configured Identically
	Each Channel Configured Differently
	Table 6. Memory Parameters

	Examples for the ProASIC3/E Device Family

	Functional Block Description
	Core429 Overview
	Functional Description
	Figure 1-1. Core429 Rx Block Diagram
	Figure 1-2. Core429 Tx Block Diagram

	Legacy Mode
	Clock Requirements
	Line Drivers
	Figure 1-3. Core429 Line Driver and Line Receiver Interface

	Line Receivers
	Development System
	Figure 1-4. Core429 Development System

	Tool Flows
	Evaluation
	Obfuscated
	RTL
	CoreConsole
	Figure 2-1. Core429 Configuration within CoreConsole
	Figure 2-2. Core429 Configuration within CoreConsole (continued)

	Importing into Libero IDE
	Simulation Flows
	Synthesis in Libero IDE
	Place-and-Route in Libero IDE

	Core Parameters
	Table 3-1. FIFO and Label Parameters

	Core Interfaces
	I/O Signal Descriptions
	ARINC Interface
	Table 4-1. Clock and Reset

	Default Mode Signals
	Table 4-2. Core Interface Signals (Continued)

	CPU Interface
	Table 4-3. CPU Interface Signals

	Legacy Interface
	Table 4-4. Legacy Interface Signals (Continued)

	Timing Diagrams
	CPU Interface Timing for Default Mode
	Figure 5-1. CPU Interface Control/Status Register Read Cycle
	Figure 5-2. CPU Interface Control Register Write Cycle
	Figure 5-3. CPU Interface Data Register Read Cycle
	Figure 5-4. CPU Interface Data Register Write Cycle
	Figure 5-5. CPU Interface Label Memory Read Cycle
	Figure 5-6. CPU Interface Label Memory Write Cycle

	Configuration Registers
	Default Mode Operation
	CPU Address Map
	Table 6-1. CPU Address Bit Positions

	Register Definitions
	Table 6-2. Rx Data Register
	Table 6-3. Rx Control Register
	Table 6-4. Rx Status Register
	Table 6-5. Rx Label Memory Register
	Table 6-6. Tx Data Register
	Table 6-7. Tx Control Register
	Table 6-8. Tx Status Register

	Label Memory Operation
	Figure 6-1. Label Memory Diagram

	Loopback Interface
	Legacy Operation
	Control Register
	Table 6-9. Legacy Control Register

	Status Register
	Table 6-10. Legacy Status Register

	Testbench Operation
	Core429 Verification
	Testbench
	Figure 7-1. Testbench Diagram

	Verification Testbench
	Figure 7-2. Core429 Verification Testbench

	Verification Tests
	User Testbench
	Figure 7-3. User Testbench

	Testbench Support Routines
	VHDL Support
	Verilog Support

	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

