
CoreI2C

Handbook

Actel Corporation, Mountain View, CA 94043

© 2007 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200090-1

Release: July 2007

No part of this document may be copied or reproduced in any form or by any means without prior written
consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of
merchantability or fitness for a particular purpose. Information in this document is subject to change
without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any
unauthorized person without prior written consent of Actel Corporation.

Trademarks
Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective
holders.

Table of Contents
Introduction . 5
Core Overview . 5

1 Functional Block Descriptions . 9
APB Interface . 9

Input Spike Filters . 9

Arbitration and Synchronization Logic . 9

Serial Clock Generator . 9

Address Comparator . 9

2 Tool Flows . 11
Available Versions . 11

CoreConsole . 11

Simulation Flows . 12

Synthesis in Actel Libero IDE . 12

Place-and-Route in Actel Libero IDE . 12

3 Top-Level I/O and Interface Definitions . 13
Top-Level I/O Descriptions . 13

Interface Definitions . 14

4 Register Map . 17
APB Register Map . 17

Register Descriptions . 17

5 Testbench Operation and Modification . 27
User Testbench . 27

6 System Operation . 29
Use with CoreMP7 . 29

Use with Core8051 . 30

Use with CoreABC . 31

7 Software Drivers . 33

A List of Document Changes . 35

B Product Support . 37
Customer Service . 37

Actel Customer Technical Support Center . 37

Actel Technical Support . 37

Website . 37

Contacting the Customer Technical Support Center . 37
v3.0 3

Table of Contents CoreI2C
Index . 39
4 v3.0

Introduction

Core Overview

Key Features
• Supports Philips Inter-Integrated Circuit (I2C) v2.1

• Master/Slave transmit/receive modes

• Advanced Peripheral Bus (APB) register interface

• Data transfers up to at least 400 kbps nominally; faster rates can be achieved, depending on external load circuitry.

• Multi-master collision detection and arbitration

• Own address and general call address detection

• 7-bit addressing format

• Fixed data width of 8 bits

• Data transfer in multiples of bytes

The bus uses two wires to transfer information among devices connected to the bus:

• I2CCLK (serial clock line)

• I2CDAT (serial data line)

Byte transfers across the serial line and APB interface are handled autonomously by CoreI2C. The core also keeps track
of serial transfers with a status register (serial_sta). The status register monitors both the serial bus and the state of the
core. Figure 1 on page 6 illustrates the CoreI2C functional block diagram.

Each device connected to the bus is software-addressable by a unique address. CoreI2C supports multi-master collision
detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer.

The input and output filtering rejects spikes on the bus data line to preserve data integrity. CoreI2C performs 8-bit
oriented, bidirectional data transfers, and may operate in the following four modes:

• Master transmitter mode (when SLAVE_ONLY_EN parameter = 0)

• Master receiver mode (when SLAVE_ONLY_EN parameter = 1)

• Slave receiver mode

• Slave transmitter mode
v3.0 5

Introduction CoreI2C
Figure 1 · CoreI2C Block Diagram

I2CDATI

Address Register

Address Comparator

Shift Register

Arbitration and
Synchronization Logic

Serial Clock Generator

Control Register

Status Register

Input Spike Filter

Input Spike Filter

Output

Output I2CDATO

I2CCLKI

I2CCLKO

PADDR[4:0]

PWDATA[7:0]

INT

PWRITE

PENABLE

PRDATA[7:0]

PSEL

APB
Interface

PCLK
PRESET_N

BCLK
6 v3.0

CoreI2C Core Overview
Figure 2 illustrates a typical application of CoreI2C. In this example, FPGA #1 is the I2C master, with CoreMP7
controlling CoreI2C. CoreMP7, coupled with CoreI2C in FPGA #1, controls communication between FPGA #1 and
an I2C device, as well as FPGA #2, where CoreI2C is configured in Slave-only mode with CoreABC.

Figure 2 · CoreI2C Application Example

I2C Master (Master/Slave mode)

I2CDAT

I2CCLK

VCC VCC

I2C Intelligent Device (Slave-only mode)

CoreMP7 Core
I2C

APB I2CDATO

I2CDATI

I2CCLKI

I2CCLKO

I2C Device

FPGA #1

FPGA #2

slave_only_en = 0

CoreABC
Core
I2C

APB
I2CDATO

I2CDATI

I2CCLKI

I2CCLKO

slave_only_en = 1

I2C Master
Source Code

RP RP
v3.0 7

Introduction CoreI2C
Utilization and Performance
CoreI2C can be implemented in any Actel device. A summary of CoreI2C utilization and performance for various
devices is listed in Table 1 and Table 2.

Supported Interfaces
CoreI2C is available with the following interfaces:

• APB interface for register access

• Serial interface

These interfaces are further described in “Interface Definitions” on page 14.

Table 1 · CoreI2C Device Utilization and Performance (Slave-only configuration)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device Total

Fusion 80 372 452 AFS600 3% 113 MHz

IGLOOTM 80 368 448 AGL600 3% 75 MHz

ProASIC®3/E 80 368 448 M7A3P250 7% 116 MHz

ProASICPLUS® 75 419 494 APA075 16% 79 MHz

Axcelerator® 88 265 353 AX250 9% 142 MHz

RTAX-S 88 265 353 RTAX250S 8% 106 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics were set as

follows: SLAVE_ONLY_EN = 1.

Table 2 · CoreI2C Device Utilization and Performance (Master/Slave configuration)

Family
Tiles Utilization

Performance
Sequential Combinatorial Total Device Total

Fusion 117 582 699 AFS600 5% 112 MHz

IGLOO 119 581 700 AGL600 5% 71 MHz

ProASIC3/E 119 581 700 M7A3P250 11% 118 MHz

ProASICPLUS 113 632 745 APA075 24% 69 MHz

Axcelerator 123 380 503 AX250 12% 151 MHz

RTAX-S 123 380 503 RTAX250S 12% 104 MHz

Note: Data in this table were achieved using typical synthesis and layout settings. Top-level parameters/generics were set as

follows: SLAVE_ONLY_EN = 0.
8 v3.0

v3.0 9

1
Functional Block Descriptions

CoreI2C, as shown in Figure 1 on page 6, consists of APB interface registers, serial input spike filters, arbitration and
synchronization logic, and a serial clock generation block. The following sections describe each design block briefly.

APB Interface
CoreI2C supports the APB interface, compatible with the Actel Core8051 and CoreMP7 processor cores, as well as the
CoreABC generic state machine control core (for simple FSM applications).

“Register Map” on page 17 defines and details the use of the APB registers.

Input Spike Filters
Input signals are synchronized with the internal clock, PCLK. Spikes shorter than three clock periods are filtered out.

Arbitration and Synchronization Logic
In Master mode, the arbitration logic checks that every transmitted logic 1 actually appears as a logic 1 on the bus. If
another device on the bus overrules a logic 1 and pulls the data line LOW, arbitration is lost. CoreI2C immediately
changes from Master transmitter to Slave receiver. The synchronization logic synchronizes the serial clock generator
block with the transmitted clock pulses coming from another Master device.

Serial Clock Generator
This programmable clock pulse generator provides the serial bus clock pulses when CoreI2C is in Master mode. The
clock generator is switched off when CoreI2C is in Slave mode. The baud rate clock (BCLK) is a pulse-for-transmission
speed control signal and is internally synchronized with the clock input. BCLK can be used to set the serial clock
frequency when the cr[2:0] bits in the Control Register are set to '111'; otherwise, PCLK is used to determine the serial
clock frequency. The actual non-stretched serial bus clock frequency can be calculated based on the setting in the cr[2:0]
fields of the Control Register and the frequencies of PCLK and BCLK. Refer to Table 4-2 on page 18 for configuration.

Address Comparator
The comparator checks the received 7-bit slave address against its own slave address. It also compares the first received
8-bit byte with the general call address (00h). If a match is found, the Status Register is updated and an interrupt is
requested.

2
Tool Flows

Available Versions
CoreI2C is available in three versions. The Evaluation version does not require a license. Depending on your license tool
flow, functionality may be limited.

Evaluation
Precompiled simulation libraries are provided, allowing the core to be instantiated in CoreConsole and simulated within
the Actel Libero® Integrated Design Environment (IDE), as described in “Simulation Flows” on page 12. The design
may not be synthesized, as source code is not provided.

Obfuscated
Complete RTL code is provided for the core, allowing the core to be instantiated with CoreConsole. Simulation,
Synthesis, and Layout can be performed within Libero IDE. The RTL code for the core is obfuscated,1 and some of the
testbench source files are not provided. The testbench source is precompiled into the compiled simulation library
instead.

RTL
Complete RTL source code is provided for the core and testbenches.

CoreConsole
CoreI2C is preinstalled in the CoreConsole Intellectual Property Deployment Platform (IDP). To use the core,2 drag it
from the IP Core list into the main window. The CoreConsole project can be exported to Actel Libero IDE at this
point, providing access to CoreI2C. Other IP blocks can interconnect, allowing the complete system to be exported
from CoreConsole to Actel Libero IDE.

1. Obfuscated means the RTL source files have had formatting and comments removed, and all instance and net names have been replaced

with random character sequences.

2. A CoreI2C license is required to generate the design for export to Actel Libero IDE for simulation and synthesis.
v3.0 11

Tool Flows CoreI2C
The core can be configured using the configuration GUI within CoreConsole, as shown in Figure 2-1. The parameters
are fully described in the “Top-Level Generics/Parameters” section on page 14.

Figure 2-1. CoreI2C Configuration within CoreConsole

Simulation Flows
To run simulations, select the required testbench flow within CoreConsole and run Save & Generate from the Generate
pane. Select the required testbench through the Core Testbench Configuration GUI.

Simulating with the Simple User Application Testbench
To simulate, simply select the instance of CoreI2C as the top level in Libero IDE, and select Simulate in the Design
Flow window. Libero IDE will automatically generate a run.do file, invoke ModelSim,® and execute run.do.

Synthesis in Actel Libero IDE
Having set the design route appropriately, click the Synthesis icon in Actel Libero IDE. The Synthesis window appears,
displaying the Synplicity® project. Set Synplicity to use the Verilog 2001 standard if Verilog is being used. To run
Synthesis, click the Run icon.

Place-and-Route in Actel Libero IDE
Having set the design route appropriately and run Synthesis, click the Layout icon in Actel Libero IDE to invoke
Designer. CoreI2C requires no special place-and-route settings.
12 v3.0

3
Top-Level I/O and Interface Definitions

Top-Level I/O Descriptions

I/O Port Descriptions
The port signals for the CoreI2C macro are illustrated in Figure 3-1 and defined in Table 3-1. CoreI2C has 32 I/O
signals.

Figure 3-1 · CoreI2C I/O Signal Diagram

PRESET_N
BCLK

CoreI2C

PCLK

PENABLE

PADDR[4:0]

PRDATA[7:0]
INT

PWRITE

I2CCLKI
I2CCLKO
I2CDATI

I2CDATO

PWDATA[7:0]

PSEL

APB
IF

I2C
Serial IF

Table 3-1 · CoreI2C I/O Signal Descriptions

Name Type Description

APB Interface

PCLK Input APB System Clock – Reference clock for all internal logic

PRESET_N Input APB active low asynchronous reset

PADDR[4:0] Input APB address bus – This port is used to address internal CoreI2C registers.

PSEL Input APB Slave Select – This signal selects CoreI2C for reads or writes.

PENABLE Input APB Strobe – This signal indicates the second cycle of an APB transfer.

PWRITE Input
APB Write/Read – If HIGH, a write will occur when an APB transfer to CoreI2C takes
place; if LOW, a read from CoreI2C will take place.

PWDATA[7:0] Input APB write data

PRDATA[7:0] Output APB read data

INTERRUPT Output Microprocessor interrupt output

I2C Serial Interface

I2CCLKI Input Wired-AND I2C serial clock input

I2CCLKO Output Wired-AND I2C serial clock output

I2CDATI Input Wired-AND I2C serial data input

I2CDATO Output Wired-AND I2C serial data output

Other Signals

BCLK Input
Pulse for I2CCLK speed control. Used only if the configuration bits cr[2:0] = '111';
otherwise, various divisions of PCLK are used. If unused, connect to logic 0.

Note: All signals are active high (logic 1) unless otherwise noted.
v3.0 13

Top-Level I/O and Interface Definitions CoreI2C
Top-Level Generics/Parameters
CoreI2C has parameters (Verilog) or generics (VHDL), described in Table 3-2, for configuring the RTL code. All
parameters and generics are integer types.

Interface Definitions
CoreI2C includes the following interfaces:

• I2C serial interface

• APB register interface

I2C Serial Interface
The AC timing diagram is shown in Figure 3-2.

For detailed timing parameter information, refer to the Philips Inter-Integrated Circuit v2.1 Specification.

Figure 3-2 · I2C Timing Diagram

Table 3-2 · CoreI2C Parameter/Generic Descriptions

Name Valid Range Description

FAMILY 0 to 99

Must be set to match the supported FPGA family:

11 – Axcelerator

12 – RTAX-S

14 – ProASICPLUS

15 – ProASIC3

16 – ProASIC3E

17 – Fusion

20 – IGLOO

21 – IGLOOe

SLAVE_ONLY_EN 0 or 1
Set to '1' if the core is to be used in Slave-only mode.

Set to '0' if the core is to be used in Master-only mode or dual Master/Slave mode.

TLOW << TTIMEOUT THIGH TSU:DAT THD:DAT TBUF

MSB LSB ACK

P S
STOPSTART

S
START

VIH

VIL

VIH

VIL
I2CCLK

I2CDAT
14 v3.0

CoreI2C Interface Definitions
APB Interface
Figure 3-3 and Figure 3-4 depict typical write cycle and read cycle timing relationships relative to the system clock.

Figure 3-3 · Data Write Cycle

Figure 3-4 · Data Read Cycle

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PWDATA[7:0]

Register Address

Register Data

PCLK

PSEL

PWRITE

PENABLE

PADDR[4:0]

PRDATA[7:0]

Register Address

Register Data
v3.0 15

4
Register Map

APB Register Map
The internal register address map and reset values of each APB-accessible register for CoreI2C are shown in Table 4-1.
Values shown are in hexadecimal format. Type designations: "R" for read-only and "R/W" for read/write.

Register Descriptions
The following sections and tables detail the APB-accessible registers within CoreI2C.

Control Register
The CPU can read from and write to this 8-bit, directly addressable SFR. Two bits are affected by CoreI2C: the si bit is
set when a serial interrupt is requested, and the sto bit is cleared when a STOP condition is present on the bus.

Table 4-1 · CoreI2C Internal Register Address Map

PADDR[6:0] Type Reset Value Brief Description

0x00 R/W 0x00 Control Register; used to configure the core.

0x04 R 0xF8 Status Register; read-only value yields the current state of the core.

0x08 R/W 0x00 Data Register; read/write data to/from the serial interface.

0x0C R/W 0x00 Address Register; contains the programmable address of the core.

Note: Only the lower seven bits of PADDR are used.
v3.0 17

Register Map CoreI2C
Table 4-2 describes the function of each control register.

Status Register
The Status Register is read-only. The status values are listed, depending on mode of operation, in Table 4-2 through
Table 4-6 on page 22. Whenever there is a change of state, INTERRUPT is requested. After updating any registers, the
APB interface control must clear INTERRUPT by clearing the si bit of the Control Register.

Table 4-2 · Control Register

Bits Name Function

7 cr2 Clock rate bit 2; refer to bit 0.

6 ens1
Enable bit. When ens1 = 0, the sda and scl outputs are in a high-impedance state, and the
sda and scl input signals are ignored. When ens1 = 1, the core is enabled.

5 sta
The START Flag. When sta = 1, the core checks the status of the serial bus and generates a
START condition if the bus is free.

4 sto
The STOP Flag. When sto = 1 and the core is in Master mode, a STOP condition is
transmitted to the serial bus.

3 si
The Serial Interrupt Flag. The si flag is set by the core whenever there is a serviceable change
in the Status Register. After the register has been updated, the si bit must be cleared by
software.*

2 aa

The Assert Acknowledge Flag. When aa = 1, an acknowledge will be returned in these cases:

• The "own Slave address" has been received.

• The general call address has been received while the gc bit in the Address Register is
set.

• A data byte has been received while the core is in Master receiver mode.

• A data byte has been received while the core is in Slave receiver mode.

When aa = 0, a not-acknowledge will be returned in these cases:

• A data byte has been received while the core is in Master receiver mode.

• A data byte has been received while CoreI2C is in Slave receiver mode.

1 cr1 Serial clock rate bit 1; refer to bit 0.

0 cr0 Serial clock rate bit 0; clock rate is defined in Table 4-3.

Note: *The si bit is directly readable via the APB INTERRUPT signal.

Table 4-3 · Clock Rate Defined

cr2 cr1 c0 I2CCLK Frequency

0 0 0 PCLK frequency / 256

0 0 1 PCLK frequency / 224

0 1 0 PCLK frequency / 192

0 1 1 PCLK frequency / 160

1 0 0 PCLK frequency / 960

1 0 1 PCLK frequency / 120

1 1 0 PCLK frequency / 60

1 1 1 BCLK frequency / 8
18 v3.0

CoreI2C Register Descriptions
Operation Details
CoreI2C logic can operate in the following four modes:

1. Master Transmitter Mode
Serial data output through I2CDAT while I2CCLK puts out the serial clock.

2. Master Receiver Mode
Serial data is received via I2CDAT while I2CCLK puts out the serial clock.

3. Slave Receiver Mode
Serial data and the serial clock are received through I2CDAT and I2CCLK.

4. Slave Transmitter Mode
Serial data is transmitted via I2CDAT while the serial clock is received through I2CCLK.

Below are examples of using the Status Register to operate CoreI2C in Slave and Master mode.

Slave Mode Example
After setting the ens1 bit in the Control Register, the core is in non-addressed Slave mode. In Slave mode, the core looks
for its own Slave address and the general call address. If one of these addresses is detected, the core switches to addressed
Slave mode and an interrupt is requested. Then the core may operate as a Slave transmitter or a Slave receiver.

Transfer example:

• Microcontroller sets ens1 and aa bits.

• Core receives own address and '0'.

• Core generates interrupt request; Status Register = 60h (refer to Table 4-6 on page 22).

• Microcontroller prepares to receive data and then clears si bit.

• Core receives next data byte and then generates interrupt request. The Status Register contains 80h or 88h, depending
on aa bit (Refer to Table 4-6 on page 22).

• Transfer is continued according to Table 4-6 on page 22.

Master Mode Example
When the microcontroller wishes to become the bus Master, the core waits until the serial bus is free. Then the core
generates a START condition, sends the Slave address, and transfers the direction bit. The core may operate as a Master
transmitter or as a Master receiver, depending on the transfer direction bit.

Transfer example:

• Microcontroller sets ens1 and sta bits.

• Core sends START condition and then generates interrupt request. Status Register = 08h (refer to Table 4-4 on page
20).

• Microcontroller writes the Data Register (7-bit Slave address and '0') and then clears the si bit.

• Core sends Data Register contents and then generates interrupt request. The Status Register contains 18h or 20h,
depending on received ACK bit (refer to Table 4-4 on page 20).

• Transfer is continued according to Table 4-4 on page 20.
v3.0 19

Register Map CoreI2C
Status Register Codes per Mode of Operation

Table 4-4 · Status Register—Master Transmitter Mode

Status
Code

Status
Data Register

Action

Control Register Bits
Next Action Taken by Core

sta sto si aa

08h
A START condition has
been transmitted.

Load SLA + W X 0 0 X SLA + W will be transmitted; ACK will be received.

10h
A repeated START
condition has been
transmitted.

Load SLA + W X 0 0 X SLA + W will be transmitted; ACK will be received.

or load SLA + R X 0 0 X
SLA + W will be transmitted; core will be switched
to MST/REC mode.

18h
SLA + W has been
transmitted; ACK has
been received.

Load data byte 0 0 0 X Data byte will be transmitted; ACK will be received.

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or no action 1 1 0 X
STOP condition followed by a START condition
will be transmitted; sto flag will be reset.

20h
SLA + W has been
transmitted; not-ACK
has been received.

Load data byte 0 0 0 X Data byte will be transmitted; ACK will be received.

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or no action 1 1 0 X
STOP condition followed by a START condition
will be transmitted; sto flag will be reset.

28h

Data byte in Data
Register has been
transmitted; ACK has
been received.

Load data byte 0 0 0 X
Data byte will be transmitted; ACK bit will be
received.

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or no action 1 1 0 X
STOP condition followed by a START condition
will be transmitted; sto flag will be reset.

30h

Data byte in Data
Register has been
transmitted; not-ACK
has been received.

Data byte 0 0 0 X Data byte will be transmitted; ACK will be received.

or no action 1 0 0 X Repeated START will be transmitted.

or no action 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or no action 1 1 0 X
STOP condition followed by a START condition
will be transmitted; sto flag will be reset.

38h
Arbitration lost in
SLA + R/W or data
bytes.

No action 0 0 0 X
Bus will be released; non-addressed Slave mode will
be entered.

or no action 1 0 0 X
A START condition will be transmitted when the
bus becomes free.

Notes:

1. SLA – Slave address

2. SLV – Slave

3. REC – Receiver

4. TRX – Transmitter

5. SLA + W – Master sends Slave address, then writes data to Slave.

6. SLA + R – Master sends Slave address, then reads data from Slave.
20 v3.0

CoreI2C Register Descriptions
Table 4-5 · Status Register—Master Receiver Mode

Status
Code

Status
APB Config

Register Action

Control Register Bits
Next Action Taken by Core

sta sto si aa

08h
A START condition
has been transmitted.

Load SLA + R X 0 0 X SLA + R will be transmitted; ACK will be received.

10h
A repeated START
condition has been
transmitted.

Load SLA + R X 0 0 X SLA + R will be transmitted; ACK will be received.

or load SLA + W X 0 0 X
SLA + W will be transmitted; CoreI2C will be
switched to MST/TRX mode.

38h
Arbitration lost in
not-ACK bit.

No action 0 0 0 X Bus will be released; CoreI2C will enter Slave mode.

or no action 1 0 0 X
A START condition will be transmitted when the
bus becomes free.

40h
SLA + R has been
transmitted; ACK
has been received.

No action 0 0 0 0 Data byte will be received; not-ACK will be returned.

or no action 0 0 0 1 Data byte will be received; ACK will be returned.

48h

SLA + R has been
transmitted; not-
ACK has been
received.

No action 1 0 0 X Repeated START condition will be transmitted.

or no action 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or no action 1 1 0 X
STOP condition followed by a START condition will
be transmitted; sto flag will be reset.

50h
Data byte has been
received; ACK has
been returned.

Read data byte 0 0 0 0 Data byte will be received; not-ACK will be returned.

or read data byte 0 0 0 1 Data byte will be received; ACK will be returned.

58h
Data byte has been
received; not-ACK
has been returned.

Read data byte 1 0 0 X Repeated START condition will be transmitted.

or read data byte 0 1 0 X
STOP condition will be transmitted; sto flag will be
reset.

or read data byte 1 1 0 X
STOP condition followed by a START condition will
be transmitted; sto flag will be reset.

Notes:

1. SLA – Slave address

2. SLV – Slave

3. REC – Receiver

4. TRX – Transmitter

5. SLA + W – Master sends Slave address, then writes data to Slave.

6. SLA + R – Master sends Slave address, then reads data from Slave.
v3.0 21

Register Map CoreI2C
Table 4-6 · Status Register—Slave Receiver Mode

Status
Code

Status
Data Register

Action

Control Register Bits
Next Action Taken by Core

s t a s t o s i a a

60h
Own SLA + W has been
received; ACK has been
returned.

No action X 0 0 0
Data byte will be received and not-ACK will be
returned.

or no action X 0 0 1 Data byte will be received and ACK will be returned.

68h

Arbitration lost in SLA +
R/W as Master; own
SLA + W has been
received, ACK returned.

No action X 0 0 0
Data byte will be received and not-ACK will be
returned.

or no action X 0 0 1 Data byte will be received and ACK will be returned.

70h
General call address (00h)
has been received; ACK
has been returned.

No action X 0 0 0
Data byte will be received and not-ACK will be
returned.

or no action X 0 0 1 Data byte will be received and ACK will be returned.

78h

Arbitration lost in
SLA + R/W as Master;
general call address has
been received, ACK
returned.

No action X 0 0 0
Data byte will be received and not-ACK will be
returned.

or no action X 0 0 1 Data byte will be received and ACK will be returned.

80h

Previously addressed with
own SLV address; DATA
has been received, ACK
returned.

Read data byte X 0 0 0
Data byte will be received and not-ACK will be
returned.

or read data byte X 0 0 1 Data byte will be received and ACK will be returned.

88h

Previously addressed with
own SLA; DATA byte
has been received, not-
ACK returned.

Read data byte 0 0 0 0
Switched to non-addressed SLV mode; no
recognition of own SLA or general call address.

or read data byte 0 0 0 1
Switched to non-addressed SLV mode; own SLA or
general call address will be recognized.

or read data byte 1 0 0 0

Switched to non-addressed SLV mode; no
recognition of own SLA or general call address;
START condition will be transmitted when the bus
becomes free.

or read data byte 1 0 0 1

Switched to non-addressed SLV mode; own SLA or
general call address will be recognized; START
condition will be transmitted when the bus becomes
free.

90h

Previously addressed with
general call address;
DATA has been received,
ACK returned.

Read data byte X 0 0 0
Data byte will be received and not-ACK will be
returned.

or read data byte X 0 0 1 Data byte will be received and ACK will be returned.

Notes:

1. SLA – Slave address

2. SLV – Slave

3. REC – Receiver

4. TRX – Transmitter

5. SLA + W – Master sends Slave address, then writes data to Slave.

6. SLA + R – Master sends Slave address, then reads data from Slave.
22 v3.0

CoreI2C Register Descriptions
98h

Previously addressed with
general call address;
DATA has been received,
not-ACK returned.

Read data byte 0 0 0 0
Switched to non-addressed SLV mode; no
recognition of own SLA or general call address.

or read data byte 0 0 0 1
Switched to non-addressed SLV mode; own SLA or
general call address will be recognized.

or read data byte 1 0 0 0

Switched to non-addressed SLV mode; no
recognition of own SLA or general call address;
START condition will be transmitted when the bus
becomes free.

or read data byte 1 0 0 1

Switched to non-addressed SLV mode; own SLA or
general call address will be recognized; START
condition will be transmitted when the bus becomes
free.

A0h

A STOP condition or
repeated START
condition has been
received while still
addressed as SLV/REC
or SLV/TRX.

No action 0 0 0 0
Switched to non-addressed SLV mode; no
recognition of own SLA or general call address.

or no action 0 0 0 1
Switched to non-addressed SLV mode; own SLA or
general call address will be recognized.

or no action 1 0 0 0

Switched to non-addressed SLV mode; no
recognition of own SLA or general call address;
START condition will be transmitted when the bus
becomes free.

or no action 1 0 0 1

Switched to non-addressed SLV mode; own SLA or
general call address will be recognized; START
condition will be transmitted when the bus becomes
free.

Table 4-6 · Status Register—Slave Receiver Mode (continued)

Status
Code

Status
Data Register

Action

Control Register Bits
Next Action Taken by Core

s t a s t o s i a a

Notes:

1. SLA – Slave address

2. SLV – Slave

3. REC – Receiver

4. TRX – Transmitter

5. SLA + W – Master sends Slave address, then writes data to Slave.

6. SLA + R – Master sends Slave address, then reads data from Slave.
v3.0 23

Register Map CoreI2C
Table 4-7 · Status Register—Slave Transmitter Mode

Status
Code

Status
Data Register

Action

Control Register Bits
Next Action Taken by Core

s t a s t o si aa

A8h
Own SLA + R has been
received; ACK has been
returned.

Load data byte X 0 0 0
Last data byte will be transmitted; ACK will be
received.

or load data byte X 0 0 1 Data byte will be transmitted; ACK will be received.

B0h

Arbitration lost in
SLA + R/W as Master;
own SLA + R has been
received; ACK has been
returned.

Load data byte X 0 0 0
Last data byte will be transmitted; ACK will be
received.

or load data byte X 0 0 1 Data byte will be transmitted; ACK will be received.

B8h
Data byte has been
transmitted; ACK has
been received.

Load data byte X 0 0 0
Last data byte will be transmitted; ACK will be
received.

or load data byte X 0 0 1 Data byte will be transmitted; ACK will be received.

C0h
Data byte has been
transmitted; not-ACK
has been received.

No action 0 0 0 0
Switched to non-addressed SLV mode; no recognition
of own SLA or general call address.

or no action 0 0 0 1
Switched to non-addressed SLV mode; own SLA or
general call address will be recognized.

or no action 1 0 0 0
Switched to non-addressed SLV mode; no recognition
of own SLA or general call address; START condition
will be transmitted when the bus becomes free.

or no action 1 0 0 1

Switched to non-addressed SLV mode; own SLA or
general call address will be recognized; START
condition will be transmitted when the bus becomes
free.

C8h
Last data byte has been
transmitted; ACK has
been received.

No action 0 0 0 0
Switched to non-addressed SLV mode; no recognition
of own SLA or general call address.

or no action 0 0 0 1
Switched to non-addressed SLV mode; own SLA or
general call address will be recognized.

or no action 1 0 0 0
Switched to non-addressed SLV mode; no recognition
of own SLA or general call address; START condition
will be transmitted when the bus becomes free.

or no action 1 0 0 1

Switched to non-addressed SLV mode; own SLA or
general call address will be recognized; START
condition will be transmitted when the bus becomes
free.

Notes:

1. SLA – Slave address

2. SLV – Slave

3. REC – Receiver

4. TRX – Transmitter

5. SLA + W – Master sends Slave address, then writes data to Slave.

6. SLA + R – Master sends Slave address, then reads data from Slave.
24 v3.0

CoreI2C Register Descriptions
Data Register
The Data Register contains a byte of serial data to be transmitted, or a byte that has just been received. The APB
controller can read from and write to this 8-bit, directly addressable register while it is not in the process of shifting a
byte (i.e., after an interrupt has been generated).

The bit description in Table 4-8 is listed in both data and addressing context. Data context is the 8-bit data format from
MSB to LSB. Addressing context is based on a Master sending an address call to a Slave on the bus, along with a
direction bit (i.e., Master transmit data or receive data from a Slave).

Address Register
The Address Register, described in Table 4-9, is a read/write, directly accessible register.

Table 4-8 · Data Register

Bit Name Data Context Addressing Context

7 sd7 Serial data bit 7 (MSB) Serial address bit 6 (MSB)

6 sd6 Serial data bit 6 Serial address bit 5

5 sd5 Serial data bit 5 Serial address bit 4

4 sd4 Serial data bit 4 Serial address bit 3

3 sd3 Serial data bit 3 Serial address bit 2

2 sd2 Serial data bit 2 Serial address bit 1

1 sd1 Serial data bit 1 Serial address bit 0 (LSB)

0 sd0 Serial data bit 0 (LSB) Direction bit: '0' = write; '1' = read

Table 4-9 · Address Register

Bit Name Function

7 adr6 Own Slave address bit 6

6 adr5 Own Slave address bit 5

5 adr4 Own Slave address bit 4

4 adr3 Own Slave address bit 3

3 adr2 Own Slave address bit 2

2 adr1 Own Slave address bit 1

1 adr0 Own Slave address bit 0

0 gc
General Call Address Acknowledge. If the gc bit is set, the general call address is recognized;
otherwise it is ignored.
v3.0 25

5
Testbench Operation and Modification

User Testbench
An example user testbench is included with the Evaluation, Obfuscated, and RTL releases of CoreI2C. The user
testbench is provided in precompiled ModelSim format for the Evaluation release. The Obfuscated and RTL releases
provide the precompiled ModelSim format, as well as the source code for the user testbench, to ease the process of
integrating the CoreI2C macro into a design and verifying it. A block diagram of the example user design and testbench
is shown in Figure 5-1.

Figure 5-1 · CoreI2C User Testbench

The user testbench includes a simple example design that serves as a reference for users who want to integrate CoreI2C
into their own designs. RTL source code for the example design and user testbench shown in Figure 5-1 is included in
the user directory for all releases of the core. The example design source files and user testbench are listed in Table 5-1.

Conceptually, as shown in Figure 5-1, two instantiations of the CoreI2C macro are connected to an I2C bus emulated in
the user testbench. Example transmit and receive between the two CoreI2C units is demonstrated by the user testbench
so you can gain a basic understanding of how to use this core.

The source code for the user testbench contains an example wrapper to aid in FPGA implementation of the open-drain
connectors for I2CCLK and I2CDAT. Refer to the comments in the user testbench source code for details on the
support routines (tasks for Verilog testbenches; functions and procedures for VHDL testbenches).

To run the user testbench, refer to “Simulating with the Simple User Application Testbench” on page 12.

Table 5-1 · CoreI2C Sample User Testbench RTL Source Code

CoreI2C User RTL

Verilog VHDL

coreconsole/ccproject/COREI2C/rtl/test/user/smbus_wrp.v coreconsole/ccproject/COREI2C/rtl/test/vhdl/user/smbus_wrp.vhd

coreconsole/ccproject/COREI2C/rtl/test/user/testbench.v coreconsole/ccproject/COREI2C/rtl/test/vhdl/user/testbench.vhd

usmbus1 : smbus_wrp

CoreI2C
Open
Drain

Behavioral
µController

VDD

Pull-Up
Resistors

usmbus2 : smbus_wrp

Open
Drain CoreI2C

Behavioral
µController

APB APB
v3.0 27

6
System Operation

This chapter provides various hints to ease the process of implementation and integration of CoreI2C into your own
design.

Use with CoreMP7
CoreI2C can also be used with CoreMP7, the Actel soft IP version of the popular ARM7TDMI-STM microprocessor
that has been optimized for the M7 Fusion flash-based FPGA devices. To create a design using CoreMP7, internal flash
memory, and CoreI2C, you should use the CoreConsole IDP software. Refer to the CoreConsole documentation for
information on creating your CoreMP7-based design. Figure 6-1 gives an example design.

Figure 6-1 · Example System Using CoreMP7 and CoreI2C
v3.0 29

System Operation CoreI2C
Use with Core8051
CoreI2C can also be used with Core8051. An example FPGA design using Core8051 and CoreI2C is shown in Figure
6-2. For this example, the internal flash memory is used for Core8051 program storage and can be programmed
independently of the FPGA fabric by use of the FlashPro software and hardware (refer to the FlashPro v5.0 User’s Guide
for details on how to program the flash memory within the Fusion device).

Figure 6-2 · Example System Using Core8051 and CoreI2C
30 v3.0

http://www.actel.com/documents/flashpro_ug.pdf

CoreI2C Use with CoreABC
Use with CoreABC
CoreI2C can also be used with CoreABC. An example FPGA design using CoreABC and CoreI2C is shown in Figure
6-3. CoreABC allows a simple set of APB read and write cycles that can be used to configure CoreI2C and then to read
and compare the analog values to turn the digital outputs on and off.

Figure 6-3 · Example System Using CoreABC and CoreI2C
v3.0 31

v3.0 33

7
Software Drivers

Example software drivers are available from Actel for CoreI2C. Contact Actel Technical Support for information
(tech@actel.com).

mailto:tech@actel.com

v3.0 35

A
List of Document Changes

The following table lists critical changes that were made in the current version of the document.

Previous
Version

Changes in Current Version (v3.0) Page

v2.0
The data transfer rate and the SLAVE_EN_ONLY parameter for Master receiver mode were updated in the
“Key Features” section.

5

Figure 1 · CoreI2C Block Diagram was updated. 6

The first two paragraphs of the “I2C Serial Interface” section were updated. 14

Figure 3-1 · CoreI2C I/O Signal Diagram was updated to remove the BCLK signal. 13

Figure 3-3 · Data Write Cycle was updated to change the signal PRDATA to PWDATA. 15

The second table note, which stated the clock rate frequency of 100 kbps should not be exceeded, was removed
from Table 4-2 · Control Register.

18

B
Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support
Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about
contacting Actel and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

From Northeast and North Central U.S.A., call 650.318.4480
From Southeast and Southwest U.S.A., call 650. 318.4480
From South Central U.S.A., call 650.318.4434
From Northwest U.S.A., call 650.318.4434
From Canada, call 650.318.4480
From Europe, call 650.318.4252 or +44 (0) 1276 401 500
From Japan, call 650.318.4743
From the rest of the world, call 650.318.4743
Fax, from anywhere in the world 650.318.8044

Actel Customer Technical Support Center
Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware,
software, and design questions. The Customer Technical Support Center spends a great deal of time creating application
notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already
answered your questions.

Actel Technical Support
Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support.
Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on
the Actel web site.

Website
You can browse a variety of technical and non-technical information on Actel’s home page, at www.actel.com.

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through
Friday. Several ways of contacting the Center follow:

Email
You can communicate your technical questions to our email address and receive answers back by email, fax, or phone.
Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email
account throughout the day. When sending your request to us, please be sure to include your full name, company name,
and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.
v3.0 37

http://www.actel.com/custsup/search.html
http://www.actel.com/custsup/search.html
http://www.actel.com
http://www.actel.com
mailto:tech@actel.com

Product Support CoreI2C
Phone
Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name,
phone number and your question, and then issues a case number. The Center then forwards the information to a queue
where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M.
to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460
800.262.1060
Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com)
or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.
38 v3.0

http://www.actel.com/contact/offices/index.html
http://www.actel.com/contact/offices/index.html

Index
A
Actel

electronic mail 37
telephone 38
web-based technical support 37
website 37

address comparator 9
Address Register 25
Advanced Peripheral Bus (APB)

interface 9
register map 17

application example 7

B
block diagram 6

C
contacting Actel

customer service 37
electronic mail 37
telephone 38
web-based technical support 37

Control Register 17
Core8051, use with 30
CoreABC, use with 31
CoreConsole 11
CoreMP7, use with 29
customer service 37

D
Data Register 25

I
input spike filters 9

K
key features 5

L
logic, arbitration and synchronization 9

P
performance 8
product support 37–38

customer service 37
electronic mail 37
technical support 37
telephone 38
website 37

S
serial clock generator 9
software drivers 33
Status Register 18

codes 20
supported interfaces 8
system operation 29

T
technical support 37
typical application 7

U
user testbench 27
utilization 8

V
versions 11

W
web-based technical support 37
CoreI2C v2.0 39

Fo
Ac
Cu

Ac

Ph

Ac
Ph

Ac

Ph
r more information about Actel’s products, visit our website at http://www.actel.com
tel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA
stomer Service: 650.318.1010 • Customer Applications Center: 800.262.1060

tel Europe Ltd. • River Court, Meadows Business Park • Station Approach, Blackwater • Camberley Surrey GU17 9AB • United Kingdom

one +44 (0) 1276 609 300 • Fax +44 (0) 1276 607 540

tel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan
one +81.03.3445.7671 • Fax +81.03.3445.7668 • www.jp.actel.com

tel Hong Kong • Suite 2114, Two Pacific Place • 88 Queensway, Admiralty Hong Kong

one +852 2185 6460 • Fax +852 2185 6488 • www.actel.com.cn

50200090-1 /7.07

	Introduction
	Core Overview
	Key Features
	Figure 1 · CoreI2C Block Diagram
	Figure 2 · CoreI2C Application Example

	Utilization and Performance
	Table 1 · CoreI2C Device Utilization and Performance (Slave-only configuration)
	Table 2 · CoreI2C Device Utilization and Performance (Master/Slave configuration)

	Supported Interfaces

	Functional Block Descriptions
	APB Interface
	Input Spike Filters
	Arbitration and Synchronization Logic
	Serial Clock Generator
	Address Comparator

	Tool Flows
	Available Versions
	Evaluation
	Obfuscated
	RTL

	CoreConsole
	Figure 2-1. CoreI2C Configuration within CoreConsole

	Simulation Flows
	Simulating with the Simple User Application Testbench

	Synthesis in Actel Libero IDE
	Place-and-Route in Actel Libero IDE

	Top-Level I/O and Interface Definitions
	Top-Level I/O Descriptions
	I/O Port Descriptions
	Figure 3-1 · CoreI2C I/O Signal Diagram
	Table 3-1 · CoreI2C I/O Signal Descriptions

	Top-Level Generics/Parameters
	Table 3-2 · CoreI2C Parameter/Generic Descriptions

	Interface Definitions
	I2C Serial Interface
	Figure 3-2 · I2C Timing Diagram

	APB Interface
	Figure 3-3 · Data Write Cycle
	Figure 3-4 · Data Read Cycle

	Register Map
	APB Register Map
	Table 4-1 · CoreI2C Internal Register Address Map

	Register Descriptions
	Control Register
	Table 4-2 · Control Register
	Table 4-3 · Clock Rate Defined

	Status Register
	Status Register Codes per Mode of Operation
	Table 4-4 · Status Register-Master Transmitter Mode
	Table 4-5 · Status Register-Master Receiver Mode
	Table 4-6 · Status Register-Slave Receiver Mode
	Table 4-7 · Status Register-Slave Transmitter Mode

	Data Register
	Table 4-8 · Data Register

	Address Register
	Table 4-9 · Address Register

	Testbench Operation and Modification
	User Testbench
	Figure 5-1 · CoreI2C User Testbench
	Table 5-1 · CoreI2C Sample User Testbench RTL Source Code

	System Operation
	Use with CoreMP7
	Figure 6-1 · Example System Using CoreMP7 and CoreI2C

	Use with Core8051
	Figure 6-2 · Example System Using Core8051 and CoreI2C

	Use with CoreABC
	Figure 6-3 · Example System Using CoreABC and CoreI2C

	Software Drivers
	List of Document Changes
	Product Support
	Customer Service
	Actel Customer Technical Support Center
	Actel Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	Phone

	Index

