Axcelerator Starter Kit

User's Guide v1.1

Actel Corporation, Mountain View, CA 94043

© 2005 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 50200037-1/02.05

Release: February 2005

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person without prior written consent of Actel Corporation.

Trademarks

Actel and the Actel logo are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

Table of Contents

	Introduction 5 Document Organization 5 Document Assumptions 5
1	Setup and Self-Test 7 LVDS DDR Loopback Circuit 7 Switches and LEDs Circuit 8 Using and Testing the Example Design 8
2	Hardware Description 13 Axcelerator Evaluation Board Components 13 LVDS Connections 15 LED Device Connections 16 Switch Device Connections 16 Headers 17
3	Tutorial19Step 1 – Create a New Project19Step 2 – Add ACTgen Components24Step 3 – Perform a Pre-Synthesis Simulation27Step 4 – Synthesize the Design in Synplify®43Step 5 – Perform a Post-Synthesis Simulation46Step 6 – Implement the Design Using Designer46Step 7 – Perform a Timing Simulation with Back-Annotated Timing56Step 8 – Generate the Programming File56Step 9 – Program the Device57
A	Board Connections
B	P160 Connections
С	Board Schematic
D	Product Support

Table of Contents

Customer Service
Actel Customer Technical Support Center
Actel Technical Support
Website
Contacting the Customer Technical Support Center
Index

Introduction

Thank you for purchasing the Actel Axcelerator (AX) Starter Kit.

This guide provides you with the information you need to easily evaluate Axcelerator devices.

Document Organization

The Axcelerator Starter Kit contains the following chapters:

Chapter 1 – "Setup and Self-Test" describes how to setup the Axcelerator Evaluation Board and how to perform a self test.

Chapter 2 – "Hardware Description" describes the components on the Axcelerator Evaluation Board.

Chapter 3 - "Tutorial" contains a nine-step process that illustrates a basic Verilog design.

Appendix A - "Board Connections" contains a table listing the board connections.

Appendix B - "P160 Connections" contains a table listing the P160 connections.

Appendix C - "Board Schematic" shows the schematic of the Axcelerator Evaluation Board.

Appendix D - "Product Support" describes our support services.

Document Assumptions

This user's guide assumes the following:

- You intend to use Actel Libero® Integrated Design Environment (IDE) software.
- · You have installed and are familiar with Actel Libero IDE software.
- You are familiar with the Verilog hardware description language.
- You are familiar with UNIX workstations and operating systems or PCs and Windows[®] operating systems.

Setup and Self-Test

This chapter describes how to set up the Axcelerator Evaluation Board and how to perform a self-test. Figure 1-1 shows an AX Starter Kit example design specification.

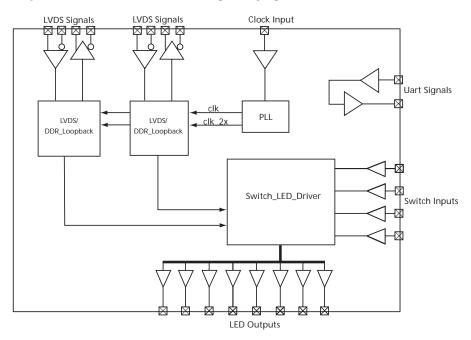


Figure 1-1. Design Specification

LVDS DDR Loopback Circuit

The AX Starter Kit example design contains a self-checking serial loopback circuit. This circuit uses the AX chip's Double Data Rate (DDR) functionality to transmit and receive data at 80 MHz. This is double the 40 MHz clocking rate of the rest of the system. When functioning, the circuit periodically sends a ten-bit test pattern (0101110011) at 80 Megabits per second. See the enclosed Verilog files for an example of using DDR and Low Voltage Differential Signaling (LVDS) I/Os. If a cable is connected from the LVDS outputs to the LVDS inputs, the circuit runs and an LED begins blinking to verify that the data is being transmitted and received correctly. If the I/Os are not connected or if there is another problem, the LED will not light up. There are two identical LVDS/DDR loopback circuits in the example design. One displays its status on LED[8] and is wired to the

Setup and Self-Test

SMA connectors on the board. The other is wired only to jumpers, and its status is displayed on LED[7].

Switches and LEDs Circuit

Table 1-1 will help in understanding the behavioral relationships between each of the switches and indications on the various LEDS.

Switch	Description
SWITCH[1]	Asynchronously turns on LEDs[8:2] while held. Sets LEDs[6:2] to 01010 for a short period when released.
SWITCH[2]	Asynchronously turns off all LEDs[8:2] while held. Sets LEDs[6:2] to 10101 for a short period when released.
SWITCH[3]	Sets LEDs[6:2] to begin a standard binary counting pattern. Any other switch overrides the counting mode. (The behavior of SWITCH[3] is the default behavior if you do not press any switches.)
SWITCH[4]	Reset. Asynchronous reset for all logic. Also turns all LEDs[8:1] on while held.

Table 1-1	Switches	and LEDs
-----------	----------	----------

Using and Testing the Example Design

This section describes using and testing the example design (AXEV_TOPPLACE_REV2_SEP28.pdf).

To verify that the design/board is programmed correctly, powered-up, and running:

1. Set up loopback on both LVDS (TX, RX) signal pairs via shunts placed on JP36 and JP37.

On header JP36:

- Using a shunt, connect RX2P to TX2P; i.e., receive 2 positive to transmit 2 positive. (Connect header pin 2 to pin 1 on JP36.)
- Using a shunt, connect RX2N to TX2N; i.e., receive 2 negative to transmit 2 negative. (Connect header pin 4 to pin 3 on header JP36.)

On header JP37:

- Using a shunt, connect RX1P to TX1P; i.e., receive 1 positive to transmit 1 positive. (Connect header pin 3 to pin 1 on JP37.)
- Using a shunt, connect RX1N to TX1N; i.e., receive 1 negative to transmit 1 negative. (Connect pin 4 to pin 2 on header JP37.)
- 2. Using a multimeter, test the impedance between power and ground for each voltage plane.

The reading should be taken between the test points labelled 3.3 V, 2.5 V. 1.8 V and 1.5 V and the test points labelled ground. A high reading is to be expected for all power/ground planes. If a short is detected (indicated by a low impedance reading of less than 1 W), do not proceed further.

3. Attach 9 V DC power to the Board at J1.

Plug the 9 V DC supply cable into the power plug on the back of the board.

4. Press SW4 and verify that all LEDs go high (turn on). Verify that LEDs[6:1] go low (turn off) when SW4 is released.

Note: LEDs[8:7] may stay on.

- 5. Press SW1 and verify that LEDs[8:2] turn on. When you release SW1, verify that LEDs[6:2] display 01010 for a short time (0 indicates the LED is off, 1 indicates the LED is on).
- 6. Press SW2 and verify that LEDs[8:2] turn off. When you release SW2, verify that LEDs[6:2] display 10101 for a short time.
- 7. Press SW3 and verify that LEDs[6:2] begin counting in a standard binary counting sequence.
- 8. Provided loopback cables are connected to the SMA connectors, or loopback shunts are connected to the headers JP36 and JP37 (as in step 1), the LVDS loopback status may be observed. Observe the LVDS/DDR loopback status by verifying that LED[8] and LED[7] are blinking.

Table 1-2 shows the Design Pin Description.

Name	Pin Number	Pin Type	Description
CLK_in	76	LVTTL Input	40 MHz clock input to PLL. This will be used to generate 40 and 80 MHz internal clocks.

Table 1-2. Design Pin Description

Setup and Self-Test

Name	Pin Number	Pin Type	Description
LED_out[1]	123	LVTTL Output	Driver for LED_1. This LED will be driven low unless the reset switch is active. In this case LED_1 will be driven high asynchronously.
LED_out[2]	122	LVTTL Output	Driver for LED_2. Asynchronously driven high by reset or SWITCH[1]. Asynchronously driven low by SWITCH[2]. If the clock circuit is functioning when the switch is released, the LED will be set as one of the following states. SWITCH[1] – LEDs[6:2] display 01010 for approximately 1 second, then return to 0. SWITCH[2] – LEDs[6:2] display 10101 for approximately 1 second then return to 0. SWITCH[3] – LEDs[6:2] begin a counting pattern. Counting continues until any other switch is touched.
LED_out[3]	121	LVTTL Output	See LED_out[2]
LED_out[4]	120	LVTTL Output	See LED_out[2]
LED_out[5]	109	LVTTL Output	See LED_out[2]
LED_out[6]	108	LVTTL Output	See LED_out[2]

Table 1-2. Design Pin Description (Continued)

Using and Testing the Example Design

Name	Pin Number	Pin Type	Description
LED_out[7]	107	LVTTL Output	Driver for LED_7. This LED will be driven high asynchronously by either reset or SWITCH[1]. After reset the LED will remain on briefly, then act as the status light for the LVDS loopback circuit 2. If the loopback circuit is functioning properly, this LED will flash. Otherwise, this LED will be off. (This circuit is connected to test header JP36.)
LED_out[8]	106	LVTTL Output	Driver for LED_8. This LED will be driven high asynchronously by either reset or SWITCH[1]. After reset the LED will remain on briefly, then act as the status light for the LVDS loopback circuit 1. If the loopback circuit is functioning properly, this LED will flash. Otherwise, this LED will be off. (This circuit is connected to SMA connectors J3, J5, J6, J4, and test header JP37).
LVDS_in2[0]	92	LVDS Input	LVDS positive input. Connect to LVDS_out2[0] for loopback test.
LVDS_in2[1]	91	LVDS Input	LVDS negative input. Connect to LVDS_out2[1] for loopback test.
LVDS_out2[0]	97	LVDS Output	LVDS positive output. Connect to LVDS_in2[0] for loopback test.
LVDS_out2[1]	96	LVDS Output	LVDS negative output. Connect to LVDS_in2[1] for loopback test.
LVDS_in1[0]	82	LVDS	LVDS positive input. Connect to LVDS_out1[0] for loopback test.
LVDS_in1[1]	81	Input	LVDS negative input. Connect to LVDS_out1[1] for loopback test.

Table 1-2. Design Pin Description (Continued)

Setup and Self-Test

Name	Pin Number	Pin Type	Description
LVDS_out1[0]	88	LVDS Input	LVDS positive output. Connect to LVDS_in1[0] for loopback test.
LVDS_out1[1]	87	LVDS Output	LVDS negative output. Connect to LVDS_in1[1] for loopback test.
SWITCH[1]	115	LVTTL Input	Asynchronously turns on all LEDs while held. Sets LEDs[2:6] to 101010 for a short period when released.
SWITCH[2]	114	LVTTL Input	Asynchronously turns off all LEDs while held. Sets LEDs[2:6] to 010101 for a short period when released.
SWITCH[3]	111	LVTTL Input	Sets LEDs[2:6] into a counting pattern. Any other switch will override the counting mode.
SWITCH[4]	110	LVTTL Input	Reset – asynchronous reset for all logic. Also drives all LEDs high while held.
UartRX	3	LVTTL Input	Uart input signal. Note that the example design does not actually contain a Uart. The UartRX and UartTX signals are connected to each other. This will echo any incoming characters back to any terminal that is connected.
UartTX	4	LVTTL Output	Uart output signal. See UartRX for more info.

 Table 1-2. Design Pin Description (Continued)

Hardware Description

This chapter describes the components of the evaluation board. See Figure 1-1 on page 7 for a drawing of the evaluation board.

Axcelerator Evaluation Board Components

The Axcelerator evaluation board consists of the following:

- · Wall mount power supply connector with switch and LED indicator
- Jumpers for I/O voltages of 1.5 V, 2.5 V or 3.3 V I/O on a per bank basis
- Multiple clock options
- · Four switches that provide input to the device
- · Eight LEDs driven by outputs from the device
- · Jumpers that allow disconnection of all external circuitry from the FPGA
- · Seven headers for easy access to device I/O signals
- Internal and external LVDS connections with loopback capability

For more information, refer to the following appendices:

- Appendix A "Board Connections" on page 59
- Appendix B "P160 Connections" on page 69
- Appendix C "Board Schematic" on page 73

Power Supply

The Axcelerator evaluation board has the following power supply requirements and features:

- Wall mount power supply
- 9 V, minimum 500 mA supply with 2.1 mm P5 type female connector (Note that the AX Starter Kit is supplied with a 9 V, 2 A supply as standard.)
- Digikey part number T413-P5P-ND for US
- Digikey Part Number T408-P5P-ND for Europe
- The power is controlled by an On/Off switch
- · LED D9 indicates the presence of a working wall mount supply
- LED D12 indicates the presence of a working 3.3 V source

Hardware Description

- LED D11 indicates the presence of a working 2.5 V source
- LED D13 indicates the presence of a working 1.5 V source
- JP1 JP8, one jumper per bank, can be used to select 1.5, 2.5, or 3.3 volts for the Device I/O Voltage, on a per bank basis

Clock Circuits

The evaluation board has multiple clock sources, which are described below.

External Clock

An external clock can be provided for the board using the SMA connector J7, which connects the external clock to pin 192 of the device. Pin 192 is a global HCLK input pin.

40 MHz Oscillator

The 40 MHz oscillator is connected to J13, pin 19 (bank 5 header) on the board. J13, pin 20 connects to pin 76 of the device. Pin 76 is a global CLK input pin. If you want to use pin 76 for a different clock signal, disconnect the jumper across J13, pins 19/20.

Multiplier Clock

An ICS512 PLL clock multiplier is provided on the board. The clock multiplier uses Y1, a Pletronics 25.0 MHz crystal, as its external clock source. The multiplier output clock frequency is determined by the jumper settings of JP25, as described in Table 2-1 below.

JP25 pins 1/2	JP25 pins 3/4	Clock Frequency
Closed	Closed	100 MHz
Closed	Open	133.33 MHz
Open	Closed	62.5 MHz
Open	Open	50 MHz

Table 2-1. JP25 Pins and Clock Frequency

The clock multiplier output is connected to J13, pin 21 (bank 5 header). J13, pin 22 connects to pin 77 of the device. Pin 77 is a global CLK input pin. If you want to use pin 77 for a different clock signal, disconnect the jumper across J13, pins 21/22.

Clock Socket

A clock socket, Y2, is provided on the board. The output of this socket is connected to J13, pin 17 (bank 5 header). J13, pin 18 connects to pin 70 of the device. Pin 70 is a global CLK input pin. If you want to use pin 70 for a different clock signal, disconnect the jumper across J13, pins 17/18.

Manual Clock

The manual clock button (SW6) lights D14, the pulse-generated LED, when activated, and generates a pulse. The manual clock is connected to J13, pin 15 (bank 5 header). J13, pin 16 connects to pin 71 of the device. Pin 71 is a global CLK input pin. If you want to use pin 71 for a different clock signal, disconnect the jumper across J13, pins 15/16.

LVDS Connections

Both internal and external LVDS is available with loopback capability. Pads for SMA connectors are provided for external LVDS connections. Jumper JP37 allows for loopback of external LVDS connections, and Jumper JP36 allows for loopback of internal LVDS connections. The LVDS connections are detailed in Table 2-2.

Source	Signal	Jumper/Pin	Device Connection
SMA J3	Receive P	JP38 – Pin 3	82
SMA J5	Receive N	JP38 – Pin 4	81
SMA J6	Transmit P	JP38 – Pin 1	88
SMA J4	Transmit N	JP38 – Pin 2	87
Device	Receive P	JP36 – Pin 1	92
Device	Receive N	JP36 – Pin 3	91
Device	Transmit P	JP36 – Pin 2	97
Device	Transmit N	JP36 – Pin 4	96

Table 2-2. LVDS Connections

Hardware Description

LED Device Connections

Eight LEDs are connected to the device via jumpers. If the jumpers are in place, the device I/O can drive any of the LEDs. The LEDs change based on the following output:

- A 1 on the output of the device lights the LED.
- A 0 on the output of the device switches off the LED.
- An unprogrammed or tristated output may show a faintly lit LED.

Table 2-3 lists the LED/device connection.

Note: If you want to use the device I/O for other purposes, remove the jumpers.

LED	Device Connection
D1	109
D2	108
D3	107
D4	106
D5	103
D6	102
D7	101
D8	100

Table 2-3. LED Device Connection

Switch Device Connections

Four switches are connected to the device via jumpers. If the jumpers are in place, the device I/O can be driven by the switches.

- Pressing the switch drives a 1 into the device. The 1 continues to drive while you hold the switch.
- Releasing the switch drives a 0 into the device.

Table 2-4 on page 17 lists the switch/device connections.

Note: If you want to use the device I/O for other purposes, remove the jumpers.

Switch	Device Connection
SW1	115
SW2	114
SW3	111
SW4	110

Table 2-4. Switch/Device Connection

Headers

Seven headers are included on the board, allowing easy access to the AX250 I/Os. Table 2-5 lists the header connections.

Pin	BANK 0/1	BANK2	BANK3	BANK4	BANK5	BANK6	BANK7
1	V _{CC1B0}	3.3 V					
2	3.3 V						
3	V _{CCIB1}	V _{CCIB2}	V _{CCIB3}	V _{CCIB4}	V _{CCIB5}	V _{CCIB6}	V _{CCIB7}
4	1.5 V						
5	P199	P154	P129	LED_1	P54	P27	UART_SIN
6	P198	P153	P128	LED1	P55	P28	UART_SOUT
7	P197	P152	P127	LED_2	P56	P29	P5
8	P191	P151	P126	LED2	P57	P30	P6
9	P186	P148	P123	LED_3	P60	P33	P7
10	P185	P147	P122	LED3	P61	P34	P10
11	P181	P146	P121	LED_4	P62	P35	P11

Table 2-5. Header Connections

Hardware Description

Pin	BANK 0/1	BANK2	BANK3	BANK4	BANK5	BANK6	BANK7
12	P180	P145	P120	LED4	P66	P36	P12
13	P175	P144	P117	LED_5	P67	P37	P13
14	P174	P141	P116	LED5	NC	P40	P16
15	P171	P140	USER_1	LED_6	MANUAL_CLOC K	P41	P17
16	P170	P139	USER1	LED6	MANUAL_CLK_I N	P42	P18
17	P166	P138	USER_2	LED_7	CLK_SOCKET	P43	P19
18	P165	P137	USER2	LED7	CLK_SOCKET_I	P44	P22
19	P162	P136	USER_3	LED_8	OSC_CLK	P47	P23
20	P161	P135	USER3	LED8	OSC_CLK_IN	P48	P24
21	P160	P134	USER_4	NC	MULT_CLK	P49	P25
22	P159	P133	USER4	NC	MULT_CLK_IN	P50	NC
23	GND	GND	GND	GND	GND	GND	GND
24	GND	GND	GND	GND	GND	GND	GND

Table 2-5. Header Connections (Continued)

This tutorial illustrates a basic Verilog design for an Axcelerator evaluation board. The design targets the Actel Axcelerator family. This tutorial contains the following nine high-level steps:

- "Step 1 Create a New Project"
- "Step 2 Add ACTgen Components"
- "Step 3 Perform a Pre-Synthesis Simulation"
- "Step 4 Synthesize the Design in Synplify®"
- "Step 5 Perform a Post-Synthesis Simulation"
- "Step 6 Implement the Design Using Designer"
- "Step 7 Perform a Timing Simulation with Back-Annotated Timing"
- "Step 8 Generate the Programming File"
- "Step 9 Program the Device"

In this tutorial, you will create a self-checking serial loopback system operating at 40 MHz. The AX device will transmit and receive data at 80 Megabits per second using its DDR functionality. A 10-bit test pattern (0101110011) will transmit and receive using the AX device's LVDS I/Os.

Step 1 – Create a New Project

In this step you will use the Libero IDE HDL editor to enter the Actel Verilog design.

To create the Verilog project:

1. Start Libero IDE by double-clicking the Actel Libero IDE icon on your desktop.

2. From the File menu, choose *New Project*. The New Project Wizard dialog box is displayed, as shown in Figure 3-1.

new Libero p	ect Wizard roject. xxample	
name: [e	mample	
location: 0	2VActelprj\example	 Browse
pe: G	Verilog VHDL	Help
	pe: G	

Figure 3-1. Project Wizard Welcome

- 3. Type *example* in the Project name field.
- 4. In the Project location field, click *Browse* to navigate to C:\Actelprj.
- 5. Type *example* in the Project location field after C:\Actelprj.
- 6. Select the *Verilog* radio button in the HDL type field.
- 7. Click Next.

Step 1 – Create a New Project

8. Select the Axcelerator family, AX250 die, and 208PQFP package. See Figure 3-2.

Select the	lamily, die and package of your ne	w project.
Start	Family:	
Select Device	Axcelerator 💌	Help
Select Tools	Die:	Package:
Add Files	AX125	208 PQFP
Finish	AX250 RTAX250S AX500 AX1000	208 CQFP 256 FBGA 352 CQFP 484 FBGA
1	RTAX1000S AX2000 RTAX2000S	

Figure 3-2. Family, Die, and Package

9. Click Finish.

The software creates the project example and opens it in the Libero IDE.

10. From the File menu, choose New.

The New dialog box opens, as shown in Figure 3-3.

ew	
File Type:	OK
Schematic ACT gen macro	Cancel
Verilog Header File Verilog Header File Stimulus Stimulus HDL File SDC File (sdc) Physical Design Constraint File (pdc)	Help
Name:	

Figure 3-3. New Dialog Box

- 11. Select Verilog Module in the File Type field.
- 12. Type *DDR_loopback* in the Name field.
- 13. Click OK.

The HDL Editor opens.

- 14. Enter the DDR_loopback file, described in Appendix A ("Board Connections" on page 59). If the document is open in an electronic form, cut and paste it from this document.
- 15. From the File menu, choose Save.

Step 1 – Create a New Project

The design file **DDR_loopback** appears on the Design Hierarchy tabbed page in Libero IDE. The file name **DDR_loopback** is listed under HDL files on the File Manager tabbed page in the Libero IDE, as shown in Figure 3-4 and Figure 3-5.

and the second se	Loopback (DDR_loopback.v) dr_transmitter (DDR_loopback.v)
taot	

Figure 3-4. Design Hierarchy Tab

Project Design Block Sym		
Schematic		
Package F	iles	
- HDL Files		
DD	R_loopback.v	
ACT gen M	acros	
• Implementa	ation Files	
Stimulus Fi	les	

Figure 3-5. File Manager Tab

- 16. Click the *File Manager* tab.
- 17. Right-click on *DDR_loopback.v* and select *check HDL*.

This checks the syntax of the **DDR_loopback.v** file. Before moving to the next section, check the code for errors and make modifications if necessary.

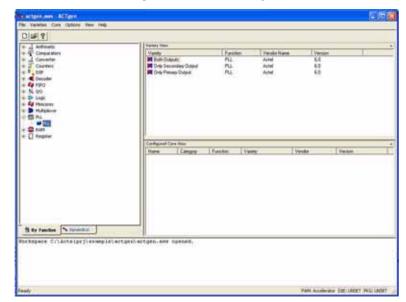
18. Repeat steps 8-13 for *Switch_LED_driver.v* and *top.v* files.

Step 2 – Add ACTgen Components

In this step, you learn how to add ACTgen components.

To add ACTgen components:

1. Click on the ACTgen icon in the Design Flow window.


The New dialog box opens, as shown in Figure 3-6. The ACTgen macro file type is selected.

ile Type:	OK
Schematic ACT gen macro	Cancel
Verilog Module Verilog Header File Stimulus Stimulus HDL File SDC File (sdc) Physical Design Constraint File (pdc)	Help
Vame:	

2. Enter *pll_ax3* in the Name field and click *OK*.

The ACTgen GUI opens.

3. Select *PLL* macros in the ACTgen GUI, as shown in Figure 3-7.

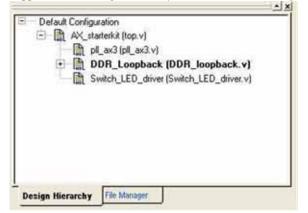
Figure 3-7. PLL Macros

4. Select the *Both Outputs* option in the Variety View window.

The ACTgen Macro Builder – PLL dialog box opens. Enter the following values, as shown in Figure 3-8 on page 26:

- REF Clock: 40 MHz
- CLK1: 40 MHz
- CLK2: 80 MHz

REF Clash Frequency (Ms)	412000	Freedback AF bolomed	
Dela Sel	4 then (100 ±	Cland	
best .	P Dynamic P Hardward (107 Data Logic	Canceding	
	C Enerali/D	4 Ma	
The second	and the second second		
P (DA1	Frequency (HPS)	pet outer	
Chek Dar	C R Reded of	Toustle :	
F 0.62	Tespeno 2011	5mi 0000	
- Del Da		pin one	
P. carter	W Rodet	Roadle	
	n I Base I	me l	
		the second se	


Figure 3-8. ACTgen Macro Builder - PLL

5. Click the *Save* button.

The Save As dialog box opens.

6. Verify that all the information is correct and click *Save*.

The pll_ax3 file appears in the Design Hierarchy window, as shown in Figure 3-9.

Figure 3-9. Design Hierarchy, pll_ax3

Step 3 – Perform a Pre-Synthesis Simulation

The next step is to simulate the RTL description of the design. First, you will use SynaptiCAD WaveFormer LiteTM AE to create a stimulus for the design, and then you will generate a test bench for the design.

Creating a Stimulus Using WaveFormer Lite

WaveFormer Lite generates VHDL test benches from drawn waveforms. Listed below are the three basic steps for creating test benches using WaveFormer Lite and the Actel Libero IDE software:

- Importing Signal Information
- · Drawing and Copying Waveforms
- Exporting the Test Bench

Importing Signal Information

Follow the steps below to launch WaveFormer Lite and import the signal information into it.

To launch WaveFormer Lite and import signal information:

1. Before you start WaveFormer Lite, make sure that the AX_starterkit block is at the top level (it will be in a bold font style on the Design Hierarchy tabbed page). If the AX_starterkit is not at the top level, right-click the file and select set as root.

2. Click the *WaveFormer Lite* icon in the Libero IDE, or right-click the *AX_starterkit* file on the Design Hierarchy tabbed page and select *Create Stimulus*.

WaveFormer Lite launches and the port signals appear in the diagram window, as shown in Figure 3-10.

Diagram - AX_sta	rterkit_tbenc	h.btim						
Add Signal Add Bus Add Clock Add Spacer	Delay Setup Hold Text		HEH LOW	TRI V		WHI WLO	聖	9+9
222.0ns 222.0ns	Ons	50ns		100ns	1.1	150ns		(200ns
LED_put[7:0]								^
SWITCH[3:0]								1
LVDS_in1[1:0]								
EVDS_out1[1:0]								i.
CLK_in								
LVDS_in2[1:0]								8
LVDS_put2[1.0]								
UartRX								1
Uartix								
c als	c							×

As shown in Figure 3-10, the AX_starterkit design contains the following signals:

- LED_out output signals
- SWITCH input signals
- LVDS_in1 input signals
- LVDS_out1 output signals
- CLK_in input signals
- LVDS_in2 input signals
- LVDS_out2 output signals
- UartRX input signals
- UartTX output signals

Drawing Waveforms

The state buttons are the buttons labeled with pictures of waveforms: HIGH, LOW, TRIstate, VALid, INValid, WHI (weak high), and WLO (weak low), as shown in Figure 3-11.

Figure 3-11. State Buttons

When a state button is activated, it is pushed in and colored red. The active state is the type of waveform that is drawn next. Click a state button to activate it.

The state buttons automatically toggle between the two most recently activated states. The state with the small red '1' above the name will be the toggle state. The initially activated state is HIGH and the initial toggle state is LOW in Figure 3-11.

Signal edges are automatically aligned to the closest edge grid when you draw signals using the mouse. Control the edge grid with the **Options > Grid Setting** menu items.

To draw a waveform:

- 1. Select the *High* state and place the mouse cursor inside the diagram window at the same vertical row as the signal name.
- 2. Click with the left mouse button.

This draws a waveform from the end of the signal to the mouse cursor. The red state button on the button bar determines the type of waveform drawn. The cursor shape also mirrors the red state button.

3. Move the mouse to the right and click again to draw another segment.

Copying Waveforms

You can copy and paste sections of waveforms onto (overwrite) or into (insert) any signal in the diagram.

To copy and paste waveform sections:

1. Select the names of the required signals. If you do not select a signal, the *Block Copy* command selects all the signals in the diagram.

2. From the Edit menu, select *Block Copy Waveforms*. This opens the **Block Copy Waveforms** dialog box with the selected signals displayed in the **Change Waveform Destination** list box, as shown in Figure 3-12.

Rat:	13	ns	🕫 In	sert
End:	0	ns	Co	renvirite
Nace At:	0	ns	# of Copi	es: 1
LVDS_ou CLK_in LVDS_ini LVDS_ou UartRX	2		LVDS_out1 CLK_in LVD5_in2 LVD5_out2 UartRX	
UartTX			UartTX	

Figure 3-12. Block Copy Waveform Dialog Box

- 3. In the *Block Copy Waveforms* dialog box, enter the values that define copy and paste (*Start, End,* and *Place At*).
- 4. Select either *Time* or *Clock Cycles* for the basic units of the dialog.
- 5. When entering values, remember the following:
 - When copying only signals (no clocks), time is the default base unit of the dialog.
 - When copying part of a clock, it is best to choose **clock cycles** as the base unit; choose the copied clock as the reference clock.
 - If time is selected when copying clocks, the End time minus Start time must equal an integral number of clock periods, and the Place At time must be at the same clock period offset as the Start time.
 - Start and End define the times of the block copy.
 - Place At is the time at which the block will be pasted.

Step 3 – Perform a Pre-Synthesis Simulation

- The **Insert** and **Overwrite** radio buttons determine whether the paste block is inserted into the existing waveforms or overwrites those waveforms.
- The list box at the bottom of the dialog determines which signal the copied waveforms will be pasted into.

To change this mapping:

• Select a line in the list box.

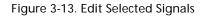
This places the destination signal in the drop-down list box on top of the list box.

• Select another signal from the drop-down list box.

Each destination signal can be used only once per copy.

6. Click OK to complete the copy and paste operation.

Creating Clocks


The signal CLK_in is a clock signal. Instead of drawing the entire clock waveform, Waveformer Lite allows you to create the clock signals with the GUI.

To create the CLK_in with the GUI:

- 1. Left-click the CLK_in signal name once to select it.
- 2. Right-click the *CLK_in* signal name.

A shortcut menu appears.

- Diagram AX_starterkit_thench.htlm* Add But Delay Setal Seals 9-91 0.000ps 0.000ps (films (100na (15049 (200hia) ______250mi (300ns SWITCH[4 1] LVDS_in1[1:0] Edit Selected Signals). LVDS Save As
- 3. Click Signal(s) <-> Clock(s) (see Figure 3-13). A clock signal appears.

4. Double-click (left mouse button) the *CLK_in* signal.

Step 3 – Perform a Pre-Synthesis Simulation

Signal Properties	2 🛛
Name:	Active Low
Sinclate Occa Analog Props	Grid Lines
C Drive C Sinclote C Watch Boolean Equation: ex. (SIG1 and SIG2)	
ſ	<u>ile</u>
Close Undedlad - Edgefiere	1 000 y
Clock Properties	
ChickEnable Net Used - Ad	vincéd Reaster;
C Doolean Estation C Verlag C	
The second se	
Win Egn 845-2 (5+1 5+6)*5 3	entities, Service
Label Eqn Hex(Inc(0,2,5))	-
Export Signal Direction:	rput 💌
T Avelop Display	Size Ratio: 1
West Ind Jook + Writigs	reg 👻
Radu) Den 👻 Bus Mill)	0 :58: 0
Faling Edge Sensitive	g Edge Sensitive
From the second	rev Next

The Signal Properties window appears. See Figure 3-14.

Figure 3-14. Signal Properties

5. Click the *Clock Properties* button.

Edit Clock Parameters	Ū	? 🗙			
Name:					
Reference Clk: None		•			
Freq: 40. Period: 25.		← KHz/us ← MHz/ns ← GHz/ps			
Period Formula: ex. 2*CLK0.pe	riod				
Starting Offset:	0	0			
Duty Cycle %:	50	50			
Rise Jitter (range):	0	0			
Fall Jitter (range):	0	0			
Min L to H:	0	0			
Max L to H:	0	0			
Min H to L:	0	0			
Max H to L:	0	0			
Rising Delay Correlation:	100	%			
Falling Delay Correlation:	100	%			
Rise to Fall Correlation:	100	%			
Invert (Starts Low) OK	Cancel				

The Edit Clock Parameters window appears. See Figure 3-15.

Figure 3-15. Edit Clock Parameters Dialog Box

- 6. Enter 40 MHz as the frequency.
- 7. Click OK.
- 8. Enter the remaining parameters.

9. Following the instructions on the previous pages, create the input signals for input SWITCH[4:1], as described in Table 3-1 to create the waveform shown in Figure 3-16.

	0 - 1 µs	1 - 1.5 μs	1.5 µs - 11 µs
SWITCH[4:1]	Low	8 HEX	Low

Table 3-1	. SWITCH[4:1]	Input Signals
-----------	---------------	---------------

M Signal Addition M Chick Add Spacer	Color I	ang Sept		LDW 18	WE SHA	WHE WED	100	80 87 80 87			
327us 1.327us		Pur.	Pys.	p _{ye}	_		_	Pys.	. Pyr	. [10us .	. jitiyi
URD IV II											1111
SWITCHER 1	0	181							 		
LVDS_in1[1.0]											
BALL MILLING											
CUK_in											
LVD5_ix2[1:0]											
したの同時の											
UwtRX											
Ulet Di											
	4										

Figure 3-16. Waveform

Saving Waveforms and Exporting Test Bench

Follow the instructions below to save a waveform.

To save a waveform:

- 1. After successfully creating the waveform, select *Save As* from the File menu.
- 2. In the *Save As* dialog box, enter *AX_startkit_tbench.btim* as the file name and click *Save*.
- 3. From the Export menu, choose *Export Timing Diagram As*.

4. Select VHDL w/Top Level Test Bench (*.vhd) in Save as type and enter AX_starterkit_tbench.vhd for the file name, as shown in Figure 3-17.

Save As			2 🔀
Save in: 🔯	stimulus -	• + €	d' 0-
File name:	AX_starterkit_tbench.vhd	_	Save
Save as type:	VHDL w/ Top Level Test Benc	h (".vhd) 💌	Cancel

Figure 3-17. Save As Dialog Box

The **WaveFormer Lite Report** window displays the VHDL test bench with a component declaration and instantiation inside.

5. Exit WaveFormer Lite (*File > Exit*).

The Libero IDE File Manager tabbed page displays the stimulus files and the design is ready to simulate under Model*Sim*[®].

Creating a Test Bench Using HDL Editor

You can create a test bench using the HDL editor.

To create a stimulus file with the HDL Editor:

1. From the File menu, choose New.

This opens the **New File** dialog box.

2. Select *Stimulus HDL file* from the File Type list, enter *AX_startkit_tbench* for the name, and click *OK*.

The file opens in the HDL Editor.

3. Create the VHDL test bench and save it.

Note: Use **test bench** as the entity name and follow Libero naming conventions. See the *Libero User's Guide* for more information.

Pre-Synthesis Simulation

After the test bench is generated, use ModelSim to perform a pre-synthesis simulation.

To perform a pre-synthesis simulation:

1. Select a stimulus file. Right-click *AX_starterkit* on the Libero IDE Design Hierarchy tabbed page and select *Select Stimulus*, as shown in Figure 3-18.

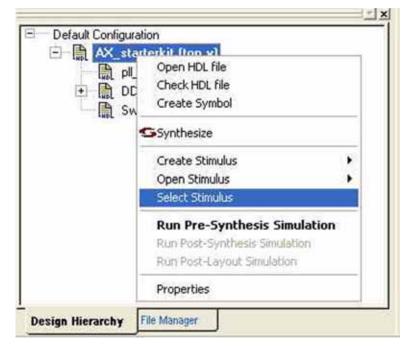


Figure 3-18. Select Stimulus

The Select Stimulus dialog box appears as shown in Figure 3-19.

Select Stimulus		
Click to select a stimulus file in the pro Use the Remove button to remove as Use the Up/Down arrow buttons to s The top level module should appear I	sociated files. pecify the compilation	
Stimulus files in the project: AX_starterkit_tbench.v	Add + <u> Add</u>	Associated files:
1	OK	Cancel Help

Figure 3-19. Select Stimulus Dialog Box

2. Select AX_starterkit_tbench.v in the Stimulus files in the project window, and click Add to add the file to the Associated files list. See Figure 3-20.

timulus file	s in the project:
× statterki	t_tbench.v

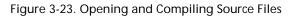
Figure 3-20. Selecting AX_starterkit_tbench.v

3. Click OK.

Step 3 – Perform a Pre-Synthesis Simulation

A check mark appears next to WaveFormer Lite in the Process windows, as shown in Figure 3-21.

Figure 3-21. Current Project State Dialog Box


4. Double-click the Model*Sim Simulation* icon in the Libero IDE Process window, or right-click *AX_starterkit* on the Libero IDE Design Hierarchy tabbed page and select *Run Pre-Synthesis Simulation*, as shown in Figure 3-22.

Lupl E	open HDL file	
+	Check HDL file	
+	Create Symbol	
- HDL	Synthesize	
	Create Stimulus	
	Open Stimulus	
	Select Stimulus	
	Run Pre-Synthesis Simulation	i i
	Run Post-Synthesis Simulation	
	Run Post-Layout Simulation	
	Properties	

Figure 3-22. Run Pre-Synthesis Simulation

Concession Name of Street, or other	(Manager)		100
TO DO THE LOUR DOOR THE C			
#NRE 0128 1	the second status as the the		
Values Values 24 (Constant) - 44 Status - 44 Status	Inc. of the second seco	<pre>Picture and picture and p</pre>	
(like) m(the)		and the second se	- 12
Anne 1 al Galle 2	an Andrew P		1.

The ModelSim simulator opens and compiles the source files, as shown in Figure 3-23.

After compilation, the simulator simulates for the default time period of 1000 ns. A wave window opens to display the simulation results, as shown in Figure 3-24.

and Antibertation Matter		T B Q Q Q B > D B B B B R	
Aeitherch/LV05_e1 Aeitherch/LV05_e1 Aeitherch/LV05_e2 Aeitherch/LV05_e2 Aeitherch/LE0_ex Aeitherch/LE0_ex Aeitherch/LE0_ex Aeitherch/LE0_ex Aeitherch/LE0_ex	921 55 4000000 54		
Now	1000000 pi		

Figure 3-24. Wave Default

5. For this simulation, there are no meaningful results in the first microsecond. Run the simulation for another nine microseconds by typing *run 9uS* at the Model*Sim* command prompt and pressing *Enter* (Figure 3-25).

Figure 3-25. Running Simulation

Step 4 – Synthesize the Design in Synplify®

Once the run command is complete, the wave window updates with the extended simulation results. Scroll through the wave window to verify that the design functions properly. See Figure 3-26. Use the **Zoom Full** button to see the entire simulation result. See Figure 3-27.

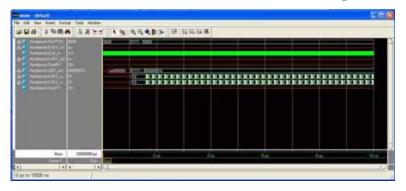


Figure 3-26. Wave Window

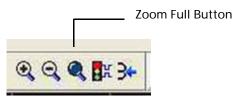


Figure 3-27. Zoom Full Button

6. In the Model Sim window, select Quit from the File menu.

Step 4 – Synthesize the Design in Synplify[®]

In this step you generate an EDIF netlist by synthesizing the design in Synplify. For HDL designs, Libero IDE launches and loads the Synplicity[®] Synplify synthesizer with the appropriate design files.

To create an EDIF netlist for the design using Synplify:

1. In the Libero IDE, double-click the *Synplify Synthesis* icon in the Libero IDE process window or right-click the *AX_starterkit* file on the Design Hierarchy tabbed page and select *Synthesize*.

This launches the Synplify Synthesis tool with the appropriate design files, as shown in Figure 3-28.

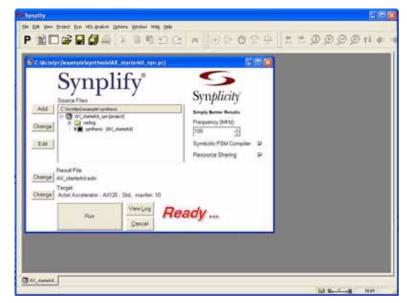


Figure 3-28. Synplify Synthesis Tool

2. From the Project menu, choose Implementation Options.

ichnology: ctel Axcelerator	Pat Availa	Speed Std	•		Implementations:
Device Mapping Options					
- Anno 1997	Option		Value	6	
Fanout Guide			10		
Hard limit to Fanout			1	12	
Disable I/O Insertion			Г		
				-	
<			1		24
Option Description					-
Click on an option for a d	escription.				5
					Synplicity

The Options for Implementation dialog box opens, as shown in Figure 3-29.

Figure 3-29. Options for Implementation Dialog Box

- 3. Set the following options in the dialog box:
 - Technology: Actel Axcelerator (set by Libero IDE)
 - Part: AX250
 - Speed: Std (default)
 - Fanout Guide: 10 (default)
 - Hard Limit to Fanout: Off (default)
 - Disable I/O Insertion: Off (default)
- 4. Accept the default values for each of the other tabbed pages in the Options for Implementation dialog box and click *OK*.
- 5. From the Synplify main window, click Run.

Synplify compiles and synthesizes the design into a netlist called **AX_starterkit.edn**. The resulting **AX_starterkit.edn** file is then automatically translated by Libero into a Verilog netlist called **AX_starterkit.v**. The resultant EDIF and Verilog files are displayed under the **Implementation** files on the **File Manager** tabbed page of Libero IDE.

Note: If any errors appear after clicking the **Run** button, edit the files using the **Synplify** editor. To edit the file, double-click the file name in the **Synplify** window. Any changes you make here are saved to the original design file in Libero IDE.

6. From the File menu, choose *Exit* to close Synplify. Click *Yes* to save any settings made to the *AX_starterkit.prj* in Synplify.

Step 5 – Perform a Post-Synthesis Simulation

The next step is to simulate the Verilog netlist of the AX_starterkit design using the test bench created in the "Creating a Stimulus Using WaveFormer Lite" section.

To simulate the Verilog netlist of the AX_starterkit design:

1. Select the Model*Sim Simulation* icon in the Libero IDE Process window, or right-click the *AX_starterkit* file in the Design Hierarchy tabbed page and select *Run Post-Synthesis Simulation*.

This launches the **ModelSim Simulator**, which compiles the source file and test bench. Once the compilation completes, the simulator runs for 1000 ns and a wave window opens to display the simulation results.

- 2. Using the run 9us command, extend the simulation to 10 µs.
- 3. Scroll through the wave window to verify that the andgate works correctly.

Step 6 – Implement the Design Using Designer

After creating and testing the design, the next phase is implementing the design using the Actel Designer software.

To implement the design using the Actel Designer software:

1. Double-click the Designer *Place-and-Route* icon in the Libero IDE Process window, or rightclick *AX_starterkit* on the Design Hierarchy tabbed page of the Designer Explorer window, and select *Run Designer*.

Step 6 – Implement the Design Using Designer

Detigs Flaw	
M "SEEDIR" set to 'Cl/Artelpr://example/designer/impli' ima_bIN set to 'Cl/Artelpr://example/designer/impli' "MA_MINITISTAINO" set to 'OUMERIC' "HHIDHLAYGE" set to 'OUMERIC' "HTIDHLAYGE" set to 'OUMERIC' "LICONT_TITUE_REFORT set to 'YERILOG' 'EXPONT_TITUE_REFORT' set to 'YERILOG' 'EXPONT_TITUE_REFORT' set to 'I' 'ADUTT_DERILIT_FILMARK' set to 'I'	
<pre>AMDIT_POF_FILE set to 1: AMDIT_POF_FILE set to 1: AMDIT_SDE_FILE set to 1: AMDIT_SDE_FILE set to 1: Imported the file C(\krwlpt)(soumple)spitherin(k1_starterRit,ods</pre>	
'AUDIT'FID'FILE' and is '1' 'AUDIT'ALC'FILE' and is '1' Inguctud the file:	

The Actel Designer application opens and the design files are read in, as shown in Figure 3-30.

Figure 3-30. Designer Application

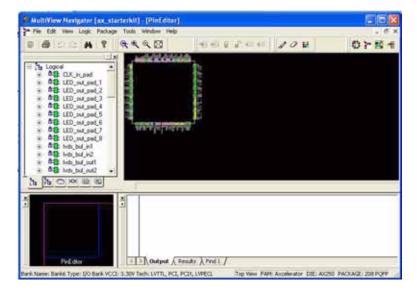
2. Compile the design.

208 PQFP
208 CQFP 256 FBGA 352 CQFP 484 FBGA
Die voltage:

The Device Selection Wizard window appears, as shown in Figure 3-31.

Figure 3-31. Device Selection Wizard

- 3. Select *AX250* in the Die field, *208 PQFP* in the Package field, and change the Speed to *STD*. Accept the default Die voltage and click *Next*.
- 4. Accept the default settings in the remaining fields and click *Finish*.
- 5. Double-click the *Compile* icon.


Designer compiles the design and shows the utilization of the selected device. The **Compile** icon in Designer turns green to indicate that the compile has successfully completed.

Assigning Pins

Once the design compiles successfully, use the PinEditor tool to perform drag-and-drop placement of pins and fix pin locations for subsequent place-and-route runs.

1. Click the PinEditor user tool.

Step 6 – Implement the Design Using Designer

This opens the **PinEditor** window inside the **MultiView Navigator** window, as shown in Figure 3-32.

Figure 3-32. Pin Editor Window

2. Select the *port* tab in the MultiView Navigator window, as shown in Figure 3-33.

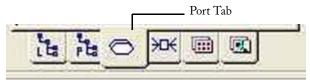
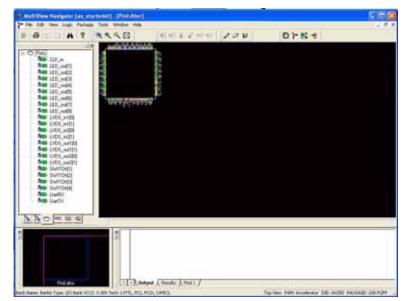



Figure 3-33. Port Tab

3. Expand the ports by selecting the "+" sign on the Ports tabbed page, as shown in Figure 3-34.

Figure 3-34. Expanding Ports

4. Drag the ports to the pin location.

___ Actel®

Step 6 – Implement the Design Using Designer

Port	Pin	Port	Pin
CLK_in	76	LVDS_in2[0]	92
LED_out[1]	123	LVDS_in2[1]	91
LED_out[2]	122	LVDS_out[0]	88
LED_out[3]	121	LVDS_out[1]	87
LED_out[4]	120	LVDS_out2[0]	97
LED_out[5]	109	LVDS_out2[1]	96
LED_out[6]	108	SWITCH[1]	115
LED_out[7]	107	SWITCH[2]	114
LED_out[8]	106	SWITCH[3]	111
LVDS_in1[0]	82	SWITCH[4]	110
LVDS_in1[1]	81	UartRX	3
		UartTX	4

5. Assign pins according to Table 3-2.

Table 3-2. Port/Pin Table

Note: For the LVDS I/Os, selecting either the p-channel or n-channel I/O will result in selecting both I/Os.

6. Once a pin number is assigned to all of the signals, select *Commit* from the File menu.

I/O Bank Configuration

There are LVDS I/Os in this example design. The I/O bank to which they are assigned must be configured for LVDS.

To configure the I/O Banks:

1. Select I/O Bank Settings from the PinEditor Tools menu, as shown in Figure 3-35.

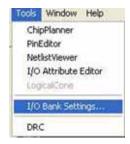


Figure 3-35. I/O Bank Settings

2. The I/O Bank Settings dialog box appears, as shown in Figure 3-36.

1/0 Bank Setting		×
Choose Bank:	Bank4 💌	
Select all technolo	ogies that the bank should supp	ort
E DALL	FT - PCI	E POX
LACHOR 1.5	V EVENOS 1.8V	VCM05 2.5V
☐ GTL+2.5V	E GTL+ 3:3V	
T SSTL 2	SSTL 21	
F SSR 3	🗂 SSTL 3	
F HSTLI		
C LVPECL	VDS	
VCCI : 2.50	W VREF:	<u> </u>
/ Acogn VREP	Firs	More Attributes
OK	Cancel Apply	Help

Figure 3-36. I/O Bank Settings Dialog Box

Step 6 – Implement the Design Using Designer

3. Choose Bank4, and select LVDS.

Note: Any I/O standards that are not compatible with LVDS are grayed out.

- 4. Accept the default settings for the other banks, and click OK to return to the main PinEditor GUI.
- 5. From the File menu, choose *Commit* to save the changes and close the PinEditor window.

Optional Designer Tools

After successfully compiling the design, you can use the Designer Tools to view a pre-layout static timing analysis with Timer, set time constraints in Timer, and use ChipEdit to assign modules. You can access each of these functions by clicking the appropriate icon.

Note: For more information on these functions, refer to the *Designer User's Guide* and online help. For this tutorial, no changes are made to the design.

Lay Out the Design

Follow the instructions below to lay out the design.

To lay out the design:

1. From Designer, click the *Layout* icon.

Timing-driven	0K.
🔽 Run place	Cancel
F Place incrementally	
E Lock existing placement (Fig.	Help
Elfort level 3	
<u>i i i i</u>	
Low High	
🔽 Run route	
F Route incrementally	
T Use Multiple Passes	
Corligue	

This opens the Layout Options dialog box, shown in Figure 3-37.

Figure 3-37. Layout Options

2. Click OK to accept the default layout options.

This runs the place-and-route process on the design. The Layout icon in designer turns green to indicate that the layout has been successfully completed.

Back-Annotate the Design

Use the following instructions to back-annotate the design.

To back-annotate the design:

1. From Designer, click the Back-Annotate icon.

Step 6 – Implement the Design Using Designer

C:\Actelprj\example\de	
	Browse
Extracted file names:	Output format:
AX_starterkit_ba	SDF 👱
Simulator language (* Venlog (* VHDL93	Export additional files
Timing C Fieldayout	G PostLayout
Status Current directory: C:Vkotelpityewample\de	
Speed Temp. Volt STD COM COM	

This opens the Back-Annotate dialog box, shown in Figure 3-38.

Figure 3-38. Back-Annotate Dialog Box

2. Accept the default settings and click OK.

The Back Annotate icon turns green.

- 3. From the File menu, choose *Exit*.
- 4. Click Yes to save the design before closing Designer.

Designer saves all the design information in an ADB file.

Note: The file AX_starterkit.adb appears under the Designer Files on the File Manager tabbed page in Libero IDE. To reopen the file in Designer, right-click the file and select **Open**.

Step 7 – Perform a Timing Simulation with Back-Annotated Timing

After completing the place-and-route and back-annotation of the design, perform a timing simulation with the Model*Sim* HDL simulator.

To perform a timing simulation:

1. Right-click the Model*Sim Simulator* icon in the Libero IDE Process window, or right-click the *AX_starterkit* file on the Design Hierarchy tabbed page and select *Run Post-Layout Simulation*.

This launches the **Model***Sim* **Simulator**, which compiles the source file and test bench.

Once the compilation completes, the simulator runs for 1000 ns and a wave window opens to display the simulation results.

- 2. Using the *run 9us* command, extend the simulation to 10 µs.
- 3. Scroll through the wave window to verify that the andgate works correctly.

Step 8 – Generate the Programming File

This step generates the necessary file to program the Axcelerator device.

To generate a programming file:

- 1. Right-click the AX_starterkit file on the Design Hierarchy tabbed page to open Designer.
- 2. Left click the Fuse icon in Designer.

Step 9 – Program the Device

File type:	AFM (APS2) Fuse F	iles 💌
Silicon signature:	ſ	
Output filename:	./AX_starterkit.afm	
🔽 Generate probe	file also	Browse
🔽 Use the JTAG n	eset pull-up resistor	
Use the global s	set fuse	
ОК	Cancel	Help

This opens the Generate Programming Files dialog box, as shown in Figure 3-39.

Figure 3-39. Generate Programming Files

3. Accept the default settings and file name and click OK.

On successful completion, the FUSE icon turns green. The programming file name AX_startkit.afm is saved to the Libero IDE, appearing on the File Manager tabbed page under Implementation files.

Step 9 – Program the Device

Two options are available for programming an Axcelerator device.

To use Actel Online Prototyping Service:

- 1. Locate the coupon in the *AX-EVAL-KIT* that allows you to submit five prototype designs to the Actel Online Prototyping Service (OPS).
- 2. Access the Actel OPS at www.actel.com/ops.

3. Submit designs as Actel programming (AFM) files. You may also use this service for a fee for subsequent designs.

To use Silicon Sculptor Software:

- 1. Use the Designer software to generate an AFM file for the part.
- 2. See *Axcelerator Adapter Modules* on the Actel website. Ensure you have the appropriate programming adapter module.
- 3. Use the Silicon Sculptor software to program the part once. Obtain the most recent version of Silicon Sculptor software at the Actel website. You should use the most recent version of Silicon Sculptor software with AFM files generated by the latest version of the Designer software.
- 4. Contact Actel if you need to obtain additional parts.
 - Note: Both AX250-PQ208 and AX500-PQ208 parts will work with the evaluation board included with the starter kit.

Board Connections

Table A-1 lists the board connections for the AX250 device.

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
1	V _{CCDA}		
2	V _{CCA}		
3	UART_SIN	Bank 7 - Pin 5	JX1 - Pin B8
4	UART_SOUT	Bank 7 - Pin 6	JX1 - Pin B9
5	I/O	Bank 7 - Pin 7	JX1 - Pin A9
6	I/O	Bank 7 - Pin 8	JX1 - Pin B10
7	I/O	Bank 7 - Pin 9	JX1 - Pin B11
8	V _{CCIB7}	Bank 7 - Pin 3	
9	GND		
10	I/O	Bank 7 - Pin 10	JX1 - Pin A11
11	I/O	Bank 7 - Pin 11	JX1 - Pin B12
12	I/O	Bank 7 - Pin 12	JX1 - Pin B13
13	I/O	Bank 7 - Pin 13	JX1 - Pin A13
14	V _{CCA}		
15	GND		
16	I/O	Bank 7 - Pin 14	JX1 - Pin B14
17	I/O	Bank 7 - Pin 15	JX1 - Pin B15
18	I/O	Bank 7 - Pin 16	JX1 - Pin A15
19	I/O	Bank 7 - Pin 17	JX1 - Pin B16

Table A-1	AX250 I	Board	Connections
	AX2301	Doard	CONTRACTIONS

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
20	V _{CCIB7}	Bank 7 - Pin 3	
21	GND		
22	I/O	Bank 7 - Pin 18	JX1 - Pin B17
23	I/O	Bank 7 - Pin 19	JX1 - Pin A17
24	I/O	Bank 7 - Pin 20	JX1 - Pin B18
25	I/O	Bank 7 - Pin 21	JX1 - Pin B19
26	V _{CCDA}		
27	I/O	Bank 6 - Pin 5	JX1 - Pin A19
28	I/O	Bank 6- Pin 6	JX1 - Pin B20
29	I/O	Bank 6 - Pin 7	JX1 - Pin B21
30	I/O	Bank 6 - Pin 8	JX1 - Pin A21
31	V _{CCIB6}	Bank 6 - Pin 3	
32	GND		
33	I/O	Bank 6- Pin 9	JX1 - Pin B22
34	I/O	Bank 6 - Pin 10	JX1 - Pin B23
35	I/O	Bank 6 - Pin 11	JX1 - Pin A23
36	I/O	Bank 6 - Pin 12	JX1 - Pin B24
37	I/O	Bank 6 - Pin 13	JX1 - Pin B25
38	V _{CCA}		
39	GND		
40	I/O	Bank 6 - Pin 14	JX1 - Pin A25

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
41	I/O	Bank 6 - Pin 15	JX1 - Pin B26
42	I/O	Bank 6 - Pin 16	JX1 - Pin B27
43	I/O	Bank 6 - Pin 17	JX1 - Pin A27
44	I/O	Bank 6 - Pin 18	JX1 - Pin B28
45	V _{CCIB6}	Bank 6- Pin 3	
46	GND		
47	I/O	Bank 6 - Pin 19	JX1 - Pin B29
48	I/O	Bank 6 - Pin 20	JX1 - Pin A29
49	I/O	Bank 6 - Pin 21	JX1 - Pin B30
50	I/O	Bank 6 - Pin 22	JX1 - Pin B31
51	GND		
52	V _{CCA}		
53	V _{CCDA}		
54	I/O	Bank 5 - Pin 5	JX1 - Pin A31
55	I/O	Bank 5 - Pin 6	JX1 - Pin B32
56	I/O	Bank 5 - Pin 7	JX1 - Pin B33
57	I/O	Bank 5 - Pin 8	JX1 - Pin A33
58	V _{CCIB5}	Bank 5 - Pin 3	
59	GND		
60	I/O	Bank 5 - Pin 9	JX1 - Pin B34
61	I/O	Bank 5 - Pin 10	JX1 - Pin B35

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
62	I/O	Bank 5 - Pin 11	JX1 - Pin A35
63	V _{CCDA}		
64	V _{CCA}		
65	GND		
66	I/O	Bank 5 - Pin 12	JX1 - Pin B36
67	I/O	Bank 5 - Pin 13	JX1 - Pin B37
68	V _{CCIB5}	Bank 5 - Pin 3	
69	GND		
70	CLK_SOCKET_IN	Bank 5 - Pin 18	JX1 - Pin A39
71	MANUAL_CLK_IN	Bank 5 - Pin 16	JX1 - Pin A37
72	V _{CCPLH}		
73	V _{COMPPLH}		
74	V _{CCPLG}		
75	V _{COMPPLG}		
76	OSC_CLK_IN	Bank 5 - Pin 20	
77	MULT_CLK_IN	Bank 5 - Pin 22	
78	V _{CCDA}		
79	PRD		
80	PRC		
81	RXDATA1N		
82	RXDATA1P		

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
83	V _{CCPLF}		
84	V _{COMPPLF}		
85	V _{CCPLE}		
86	V _{COMPPLE}		
87	TXDATA1N		
88	TXDATA1P		
89	V _{CCIB4}	Bank 4- Pin 3	
90	GND		
91	RXDATA2N		
92	RXDATA2P		
93	V _{CCA}		
94	GND		
95	V _{CCDA}		
96	TXDATA2N		
97	TXDATA2P		
98	V _{CCIB4}	Bank 4 - Pin 3	
99	GND		
100	LED_8	Bank 4 - Pin 19	JX2 - Pin A40
101	LED_7	Bank 4 - Pin 17	JX2 - Pin A39
102	LED_6	Bank 4 - Pin 15	JX2 - Pin A38
103	LED_5	Bank 4 - Pin 13	JX2 - Pin A37

Table A-1. AX250 Board Connection	ons (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
104	GND		
105	V _{CCDA}		
106	LED_4	Bank 4 - Pin 11	JX2 - Pin B36
107	LED_3	Bank 4 - Pin 9	JX2 - Pin A36
108	LED_2	Bank 4 - Pin 7	JX2 - Pin A35
109	LED_1	Bank 4 - Pin 5	JX2 - Pin B34
110	USER_4	Bank 3 - Pin 21	JX2 - Pin A34
111	USER_3	Bank 3 - Pin 19	JX2 - Pin A33
112	V _{CCIB3}	Bank 3 - Pin 3	
113	GND		
114	USER_2	Bank 3 - Pin 17	JX2 - Pin B32
115	USER_1	Bank 3 - Pin 15	JX2 - Pin A32
116	I/O	Bank 3 - Pin 14	JX2 - Pin A31
117	I/O	Bank 3 - Pin 13	JX2 - Pin B30
118	V _{CCA}		
119	GND		
120	I/O	Bank 3 - Pin 12	JX2 - Pin A30
121	I/O	Bank 3 - Pin 11	JX2 - Pin A29
122	I/O	Bank 3 - Pin 10	JX2 - Pin B28
123	I/O	Bank 3 - Pin 9	JX2 - Pin A28
124	V _{CCIB3}	Bank 3 - Pin 3	

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
125	GND		
126	I/O	Bank 3 - Pin 8	JX2 - Pin A27
127	I/O	Bank 3 - Pin 7	JX2 - Pin B26
128	I/O	Bank 3 - Pin 6	JX2 - Pin A26
129	I/O	Bank 3 - Pin 5	JX2 - Pin A25
130	V _{CCDA}		
131	I/O	Bank 2 - Pin 22	JX2 - Pin B24
132	I/O	Bank 2 - Pin 21	JX2 - Pin A24
133	I/O	Bank 2 - Pin 20	JX2 - Pin A23
134	I/O	Bank 2 - Pin 19	JX2 - Pin B22
135	V _{CCIB2}	Bank 2 - Pin 3	
136	GND		
137	I/O	Bank 2 - Pin 18	JX2 - Pin A22
138	I/O	Bank 2 - Pin 17	JX2 - Pin A21
139	I/O	Bank 2- Pin 16	JX2 - Pin B20
140	I/O	Bank 2 - Pin 15	JX2 - Pin A20
141	I/O	Bank 2 - Pin 14	JX2 - Pin A19
142	V _{CCA}		
143	GND		
144	I/O	Bank 2 - Pin 13	JX2 - Pin B18
145	I/O	Bank 2 - Pin 12	JX2 - Pin A18

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
146	I/O	Bank 2 - Pin 11	JX2 - Pin A17
147	I/O	Bank 2 - Pin 10	JX2 - Pin B16
148	I/O	Bank 2 - Pin 9	JX2 - Pin A16
149	V _{CCIB2}	Bank 2 - Pin 3	
150	GND		
151	I/O	Bank 2 - Pin 8	JX2 - Pin A15
152	I/O	Bank 2 - Pin 7	JX2 - Pin B14
153	I/O	Bank 2 - Pin 6	JX2 - Pin A14
154	I/O	Bank 2 - Pin 5	JX2 - Pin A13
155	GND		
156	V _{CCA}		
157	V _{CCDA}		
158	GND		
159	I/O	Bank 0/1 - Pin 22	JX2 - Pin B12
160	I/O	Bank 0/1 - Pin 21	JX2 - Pin A12
161	I/O	Bank 0/1 - Pin 20	JX2 - Pin A11
162	I/O	Bank 0/1 - Pin 19	JX2 - Pin B10
163	V _{CCIB1}	Bank 0/1 - Pin 3	
164	GND		
165	I/O	Bank 0/1 - Pin 18	JX2 - Pin A10
166	I/O	Bank 0/1 - Pin 17	JX2 - Pin A9

Table A-1. AX250 Board Connections (Continued)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
167	V _{CCDA}		
168	V _{CCA}		
169	GND		
170	I/O	Bank 0/1 - Pin 16	JX2 - Pin B8
171	I/O	Bank 0/1 - Pin 15	JX2 - Pin A8
172	V _{CCIB1}	Bank 0/1 - Pin 1	
173	GDN		
174	I/O	Bank 0/1 - Pin 14	JX2 - Pin A7
175	I/O	Bank 0/1 - Pin 13	JX2 - Pin B6
176	V _{CCPLD}		
177	V _{COMPPLD}		
178	V _{CCPLC}		
179	V _{COMPPLC}		
180	I/O	Bank 0/1 - Pin 12	JX2 - Pin A6
181	I/O	Bank 0/1 - Pin 11	JX2 - Pin A5
182	V _{CCDA}		
183	PRB		
184	PRA		
185	I/O	Bank 0/1 - Pin 10	JX2 - Pin B4
186	I/O	Bank 0/1 - Pin 9	JX2 - Pin A4
187	V _{CCPLB}		

Table A-1.	AX250	Board	Connections	(Continued)
10.010 / 1 11		204.4		(001101000)

AX250 Pin Number	Board Connect	Header Connect (I/O only)	P160 Connect (I/O only)
188	V _{COMPPLB}		
189	V _{CCPLA}		
190	V _{COMPPLA}		
191	I/O	Bank 0/1 - Pin 8	JX2 - Pin A3
192	HCLK		
193	V _{CCIB0}		
194	GND		
195	V _{CCA}		
196	GND		
197	I/O	Bank 0/1 - Pin 7	JX2 - Pin B36
198	I/O	Bank 0/1 - Pin 6	JX2 - Pin A2
199	I/O	Bank 0/1 - Pin 5	JX2 - Pin A1
200	V _{CCIB0}		
201	GND		
202	V _{CCDA}		
203	TDO		
204	TDI		
205	ТСК		
206	TMS		
207	TRST		
208	GND/LP		

Table A-1. AX250 Board Connections (Continued)

P160 Connections

Table B-1 lists the P160 connections.

JX1 P160 Left Header	Board Connect	JX2 P160 Right Header	Board Connect
A1	NC	A1	P199
A2	GND	A2	P198
A3	NC	A3	P191
A4	5.0 V	A4	P186
A5	NC	A5	P181
A6	GND	A6	P180
A7	NC	A7	P174
A8	3.3 V	A8	P171
A9	P5	А9	P166
A10	GND	A10	P165
A11	P10	A11	P161
A12	2.5 V	A12	P160
A13	P13	A13	P154
A14	GND	A14	P153
A15	P18	A15	P151
A16	5.0 V	A16	P148
A17	P23	A17	P146
A18	GND	A18	P145
A19	P27	A19	P141

Table B-1. P160 Connections

JX1 P160 Left Header	Board Connect	JX2 P160 Right Header	Board Connect
A20	3.3 V	A20	P140
A21	P30	A21	P138
A22	GND	A22	P137
A23	P35	A23	P133
A24	2.5 V	A24	P132
A25	P40	A25	P129
A26	GND	A26	P128
A27	P43	A27	P126
A28	5.0 V	A28	P123
A29	P48	A29	P121
A30	GND	A30	P120
A31	P54	A31	P116
A32	3.3 V	A32	USER_1
A33	P57	A33	USER_3
A34	GND	A34	USER_4
A35	P62	A35	LED_2
A36	2.5 V	A36	LED_3
A37	MANUAL_CLK_IN	A37	LED_5
A38	GND	A38	LED_6
A39	CLK_SOCKET_IN	A39	LED_7
A40	5.0 V	A40	LED_8

Table B-1. P160 Connections (Continued)

JX1 P160 Left Header	Board Connect	JX2 P160 Right Header	Board Connect
B1	NC	B1	GND
B2	NC	B2	P197
B3	NC	B3	5.0 V
B4	NC	B4	P185
B5	NC	B5	GND
B6	NC	B6	P175
B7	NC	B7	3.3 V
B8	UART_SIN	B8	P170
B9	UART_SOUT	B9	GND
B10	P6	B10	P162
B11	P7	B11	2.5 V
B12	P11	B12	P159
B13	P12	B13	GND
B14	P16	B14	P152
A15	P17	A15	5.0 V
B16	P19	B16	P147
B17	P22	B17	GND
B18	P24	B18	P144
B19	P25	B19	3.3 V
B20	P28	B20	P139
B21	P29	B21	GND

Table B-1. P160 Connections (Continued)

JX1 P160 Left Header	Board Connect	JX2 P160 Right Header	Board Connect
B22	P33	B22	P134
B23	P34	B23	2.5 V
B24	P36	B24	P131
B25	P37	B25	GND
B26	P41	B26	P127
B27	P42	B27	5.0 V
B28	P44	B28	P122
B29	P47	B29	GND
B30	P49	B30	P117
B31	P50	B31	3.3 V
B32	P55	B32	USER_2
B33	P56	B33	GND
B34	P60	B34	LED_1
B35	P61	B35	2.5 V
B36	P66	B36	LED_4
B37	P67	B37	GND
B38	NC	B38	NC
B39	NC	B39	5.0 V
B40	NC	B40	NC

Table B-1. P160 Connections (Continued)

Board Schematic

For board schematics, refer to http://www.actel.com/documents/AXEV_CS_REV2_SEP28.pdf.

Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about contacting Actel and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call **650.318.4480** From Southeast and Southwest U.S.A., call **650.318.4480** From South Central U.S.A., call **650.318.4434** From Northwest U.S.A., call **650.318.4434** From Canada, call **650.318.4480** From Europe, call **650.318.4252** or +44 (0)1276 401 500 From Japan, call **650.318.4743** From the rest of the world, call **650.318.4743** Fax, from anywhere in the world **650.318.8044**

Actel Customer Technical Support Center

Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support

Visit the Actel Customer Support website (www.actel.com/custsup/search.html) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the Actel web site.

Website

You can browse a variety of technical and non-technical information on Actel's home page, at www.actel.com.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through Friday. Several ways of contacting the Center follow:

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone

Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name, phone number and your question, and then issues a case number. The Center then forwards the information to a queue where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460 800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com) or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.

Index

A

Actel web site 75 web-based technical support 75

В

Board Connections 59

С

Contacting Actel customer service 75 electronic mail 76 telephone 76 web-based technical support 75 Customer service 75

D

design layout 19 Document Organization 5

Ε

Electronic mail 76

Η

Hardware Description 13 axcelerator evaluation board components 13 clock circuits 14 LED device connections 16 LVDS connections 15 power supply 13

Ρ

P160 Connections 69 Product Support 75–76 Product support customer service 75 electronic mail 76 technical support 75 web site 75

S

simulation 7, 13

Т

Tutorial 19 add ActGen components 24 create a new project 19 generate the programming file 56 implement the design using Designer 46 perform a post-synthesis simulation 46 perform a pre-synthesis simulation 27 perform a timing simulation with back-annotated timing 56 synthesize the design in synplify 43

W

Web-based technical support 75

For more information about Actel's products, visit our website at http://www.actel.com

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060 Actel Europe Ltd. • Dunlop House, Riverside Way • Camberley, Surrey GU15 3YL • United Kingdom Phone +44 (0) 1276 401 450 • Fax +44 (0) 1276 401 490 Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668

Actel Hong Kong • Suite 2114 Two Pacific Place • 88 Queensway, Admiralty Hong Kong Phone +852.2185.6460 Fax +852.2185.64688

50200037-1/02.05

