UG0331
User Guide
SmartFusion2 Microcontroller Subsystem

& Microsemi

Power Matters.

& Microsemi

Power Matters.”

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
www.microsemi.com

© 2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

50200331. 15.0 3/18

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

& Microsemi

Power Matters.”

Contents

1 Revision History 1
1.1 ReVISION 15,0 . ..o 1
1.2 ReVISION 14.0 1
1.3 ReVISION 13,0 . ..o 1
14 ReVISION 12.0 . .. 1
15 ReVISION 11,0 . .. 2
1.6 Revision 10.0 2
1.7 RevVISION 9.0 2
1.8 ReVISION 8.0o 2
1.9 ReVISION 7.0 . . 2
1.10 ReViSION 6.0 3
1.11 RevisSion 5.0 3
1.12 ReVISION 4.0 3
1.13 ReVISiON 3.0 4
1.14 ReVISION 2.0 . . 4
1.15 RevViSiION 1.0 . ..o 4

2 Cortex-M3 Processor Overview and Debug Features 6
2.1 Features 6
2.2 Functional Description e 7
2.3 Cortex-M3 Processor NVIC e 8
24 Cortex-M3 Processor SysTick TImer e 12
25 Cortex-M3 Processor Debug Subsystem 12

2.5.1 Cortex-M3 Processor Debug Port 12
252 Cortex-M3 Processor Trace System 13
2.6 Cortex-M3 Processor Port Descriptions 15
2.7 How to Use the Cortex-M3 Processor and the Debug Subsystem 16
2.71 Configuration Through Libero Software and Firmware 16

3 Cortex-M3 Processor (Reference Material) 18
3.1 System Level Interface 19
3.2 Integrated Configurable Debug 19
3.3 Cortex-M3 Processor Features and Benefits Summary 19
3.4 Cortex-M3 Processor Core Peripherals e e 20

3.41 Nested Vectored Interrupt Controller 20
3.4.2 System Control Block 20
3.4.3 System Timer ..o 20
3.44 Memory Protection Unit 20
3.5 Cortex-M3 Processor DescCriptiont 20
3.5.1 Programmers Model 20
3.5.2 Memory Model 29
3.5.3 Exception Model 37
3.54 Fault Handling e 43
3.5.5 Power Management 45
3.6 Cortex-M3 Processor Instruction Set 47
3.6.1 Instruction Set Summary 47
3.6.2 CMSIS FUNCHONS e e 50
3.6.3 Aboutthe Instruction Descriptions 51

UGO0331 User Guide Revision 15.0 iii

& Microsemi

Power Matters.”

3.6.4 Memory Access INStructions 58

3.6.5 General Data processing instructionsttt 68

3.6.6 Multiply and Divide Instructions 77

3.6.7 Saturating Instructions 79

3.6.8 Bitfield instructions 81

3.6.9 Branch and Control Instructions 83

3.6.10 Miscellaneous Instructions 89

3.7 Cortex-M3 Processor Peripherals 95
3.71 About the Cortex-M3 Processor Peripherals 95

3.7.2 System Control Block e 102

3.7.3 System Timer, SysTiCK i e 119

3.74 Memory Protection Unit 122

4 Cache Controller 133
41 Features 133
4.2 Functional Description e 134
421 Cache MatrixX 134

422 MemMOory Mappingo ot 134

423 Memory Maps and Transaction Mapping e 136

424 Cache Locked Mode e 141

425 1] (=Y =T 142

4.3 How to Use Cache Controller e e 143
4.3.1 System Registers Used for Cache Operations 144

5 Embedded NVM (eNVM) Controllers 145
51 Features 145
5.2 Functional Description 146
521 Memory Organization 147

5.2.2 Data Retention Time e 148

523 eNVM ACCESS TiMeo e e 148

524 Theory of Operation 148

5225 eNVMCommand Register 151

5.2.6 Error RESpONSE 159

5.2.7 Interrupt to Cortex-M3 Processor e 159

5.3 S UMY . o et e 159
5.3.1 User Protectable 4K Regions e e 160

5.3.2 eNVM Pages for Special Purpose Storage 163

5.4 How to Use eNVM . .. e 165
5.4.1 Data Storage in eNVM Using the LiberoeNVM Client 165

54.2 Reading the eNVM BIOCK e 172

543 Writingtothe eNVM BIOCKo 173

5.4.4 Firmware and Sample Project 173

5.5 SYSREG Control Registers e 174
5.6 eNVM Control Registers e e e e 180
5.6.1 Status Register Bit Definitions 184

6 Embedded SRAM (eSRAM) Controllers 187
6.1 Features . ..o 187
6.2 Functional Description e 188
6.2.1 Memory Organization 190

6.2.2 Modes of Operation 191

6.2.3 Pipeline Modes and Wait States for Read and Write Operations 191

6.3 How to Use €SRAM e e 194
6.4 SYSREG Control Registers e 198
7 AHBBus Matrix 210

UGO0331 User Guide Revision 15.0 iv

10

& Microsemi

Power Matters.”

71 Functional Description 21
711 Architecture OVerview e 211
7.1.2 Timing Diagramso 214
7.1.3 Details of Operation 218
71.4 System Memory Map 225
7.2 How to Use AHB Bus MatrixX e 233
7.21 Design FIow e 233
7.3 Register Map e 235
High Performance DMA Controller i, 236
8.1 Features 237
8.2 Functional Description e 237
8.2.1 Initialization 240
8.2.2 Details of Operation 241
8.3 How to Use HPDMA . .. e 241
8.3.1 Design FIow o e 241
8.3.2 HPDMA Use Models e e e e 245
8.4 HPDMA Controller Register Map e 246
8.4.1 HPDMA Register Bit Definitions 247
8.5 SYSREG Control Register e 263
Peripheral DMA 264
9.1 Features 264
9.2 Functional DescCription e 265
9.2.1 Architecture Overview 265
9.2.2 PortList 268
9.2.3 Initialization e 269
9.24 Details of Operations 269
9.3 How to Use the PDMA e 271
9.3.1 Design FIow e 271
9.3.2 PDMAUSsEe Models 274
9.4 PDMA Register Map 275
9.41 PDMA Configuration Register Bit Definitions 278
9.5 SYSREG Control Registers e 283
Universal Serial Bus OTG Controller 284
10.1 Features 284
10.2 Functional Description 285
10.2.1 Architecture Overview e 285
10.2.2 USB OTG Controller Interface Signals i 287
10.2.3 USB OTG Controller Operations e e 291
10.3 How to Use USB OTG Controller e e e e 300
10.3.1 Libero Settings for USB OTG Configuration 300
10.3.2 Software: Firmware, USB Class Specific Code, and ApplicationCode 303
10.3.3 USB OTG Controller Clocksand Resets i 308
10.3.4 Programmability 308
10.3.5 Common RegiSters e 309
10.3.6 Indexed Registers e 315
10.3.7 FIFO RegISters e e e 330
10.3.8 Control and Status Registers (OTG, Dynamic FIFO and Version) 331
10.3.9 ULPI and Configuration Registers i 338
10.3.10 Non-Indexed End Point Control/Status Registers 344
10.3.11 Extended Registers e 351
10.3.12 Direct Memory Access (DMA) Registers e 354
10.3.13 Multipoint Control and Status Registers i 358
10.3.14 Link Power Management Registers i 366

UGO0331 User Guide Revision 15.0 v

& Microsemi

Power Matters.”

10.3.15 USB System Registers e 371

11 Ethernet MAC . .. 374
111 Features 374
11.2 Functional Description 375
11.2.1 EMAC Functional Blocks e 375

11.3 TSEMAC PHY Interfaces e e e 377
1.4 EMAC Operation 381
11.4.1 Transmit Operation 382

11.4.2 Receive Operation e 383

11.5 How to Use TSEMAC e e e 384
11.5.1 SGMIl Interface Configuration 387

11.5.2 SECDED Features for TSEMAC Buffers 389

11.6 SYSREG Control Register for EMAC 392
11.7 EMAC Configuration Register Summary 393
11.8 EMAC Register Bit Definitions 399
11.9 CoreMACFIEr OVEIVIEW o ottt e e e e e 434
11,91 Features e 434

12 CAN Controller 436
12.1 Features 436
1211 ComplianCeo 436

12.1.2 Receive Path e 436

12.1.3 Transmit Path e 437

1214 EDAC . . 437

12.1.5 Enable or Disable Control e 437

12.1.6 System Dependencies 437

12.2 Functional DescCription e 437
12.2.1 CAN Controller Interface Signals 437

12.2.2 Transmit ProCedurest e 438

12.2.3 Receive Procedures e 439

12.2.4 Interrupt Generation 441

1225 CANTestModeso e 442

12.3 CAN Controller Configuration e 442
12.3.1 Peripheral Signals Assignment Table i i 443

12.3.2 EDAC CAN Configuration e e e 444

12.4 How to Use the MSS CAN Controller i 446
12.4.1 Hardware Design Flow e 446

12.5 USE CaSS . ot ittt ettt e 448
12.5.1 Use Case 1: Automatic Bit Rate Detection, 448

1252 UseCase 2: SRAM TestMode i e i 448

12.6 CAN Controller Register Map i e e e e e e 451
12.6.1 SYSREG Control Registers e 451

12.6.2 CAN Controller Registers e 452

12.6.3 Configuration Register 454

12.6.4 Command Register 455

12.6.5 Transmit Message Control and Command Register 456

12.6.6 Transmit Buffer Status Register 459

12.6.7 Receive Message Control and Command Register 460

12.6.8 Receive Buffer Status Register 464

12.6.9 Error Capture Register 465

12.6.10 Error Status Register 466

12.6.11 Interrupt Registers e 466

13 MMUART Peripherals 469
UG0331 User Guide Revision 15.0 Vi

& Microsemi

Power Matters.”

13.1 Features 469
13.2 Functional Description 470
13.2.1 Architecture Overview e 470

13.2.2 Port List ..o 471

13.2.3 Initialization 473

13.2.4 Details of Operation e 474

13.3 How to Use MMUART e e 486
13.3.1 Design Flow o e 486

13.3.2 MMUART Use ModelSo e e 489

13.4 MMUART Register Map e e e e e e e e 490
13.4.1 Receiver Buffer Register (RBR) 491

13.4.2 Transmit Holding Register (THR) 491

13.4.3 FIFO Control Register (FCR) e 491

13.4.4 Baud Rate Divisor Registers 492

13.4.5 Interrupt Enable Register (IER) 494

13.4.6 Multi-Mode Interrupt Enable Register (IEM) 494

13.4.7 Interrupt Identification Register (IIR) 495

13.4.8 Multi-Mode Interrupt Identification Register (IIM) 496

13.4.9 Line Control Register (LCR) e 496

13.4.10 Modem Control Register (MCR) e e 497

13.4.11 Line Status Register (LSR) 498

13.4.12 Modem Status Register (MSR) e 499

13.4.13 Scratch Register (SR)o 500

13.4.14 Multi-Mode Control Register 0 (MMO) e 500

13.4.15 Multi-Mode Control Register 1 (MM1) 501

13.4.16 Multi-Mode Control Register 2 (MM2) e 501

13.4.17 Glitch Filter Register (GFR) e 502

13.4.18 Transmitter Time Guard Register (TTG) i 503

13.4.19 Receiver Timeout Register (RTO) e 503

13.4.20 Address Register (ADR) 503

14 Serial Peripheral Interface Controller 504
141 Features . ..o 504
14.2 Functional Description 505
14.2.1 Architecture Overview e 505

14.2.2 Interface 506

14.2.3 Initialization e 516

14.2.4 Details of Operation e 517

14.3 How to Use SPl 519
14.3.1 Design Flow e 520

14.3.2 SPIUse MOdEIS e 525

14.4 SPIRegIStEr Map e 527
14.41 SYSREG Configuration Register Summary 527

14.4.2 SPIRegister SUMMary 527

14.4.3 SPIRegisterDetails 528

15 Inter-Integrated Circuit Peripherals 538
15.1 Features . ..o 538
15.2 Functional Description e 539
15.2.1 Architecture Overview 539

15.2.2 Port List 540

15.2.3 Initialization 541

15.2.4 Details of Operation e 542

1583 HOWIO USE 12C ..ot e e e 544
15.3.1 Design Flow e 544

15.3.2 PG USE MOTEIS . . . oottt e e 548

UGO0331 User Guide Revision 15.0 vii

17

18

154

16.1
16.2

16.3

16.4

Communication Block

17.1
17.2

17.3

17.4
17.5

18.1
18.2

1°C RegisterMap
15.4.1 ControlRegister
1542 StatusRegister
154.3 DataRegister..........
15.4.4 Slave0 Address Register
1545 SMBusRegister
15.4.6 FrequencyRegister
15.4.7 GlitchRegister
15.4.8 Slavel Address Register

16 MSS GPIO

Features
MSS GPIO Functional Description

16.2.1 MSS GPIO Configuration Registers (GPIO_X_CFG)

16.2.2 MSS GPIO Reset Functionality

MSS GPIOUSsageoiiii e
16.3.1 Configuring MSS GPIO Using Libero SoC
16.3.2 MSSGPIOUseModels

GPIORegisterMap i
16.4.1 SYSREGBIlock Registers
16.4.2 Software Reset Control Register
16.4.3 MSS GPIO Definitions o i
16.4.4 Loopback Control Register
16.4.5 GPIO Input Source Select Control Register
16.4.6 GPIO System Reset Control Register
16.4.7 1/0 MUX Associated WithGPIOs

Features

Functional Description
17.2.1 Architecture Overview
17.2.2 Frame/Command Marker
1723 Clocks
1724 Resets ... e
1725 Interrupts
17.2.6 COMM_BLK Initialization
17.2.7 CoreSysServices SoftIP

How to Use the CommunicationBlock
17.3.1 COMM_BLK Configuration
17.3.2 UseModel e

COMM_BLK Configuration Registers

COMM_BLK Register Interface Details
17.5.1 ControlRegister
17.5.2 StatusRegister
17.5.3 Interrupt Enable Register
1754 ByteDataRegister
1755 WordDataRegister
17.5.6 Frame/Command Byte Register
17.5.7 Frame/Command Word Register

RTC System

Features e

Functional Description
18.2.1 Architecture Overview
18.2.2 PortList
18.2.3 Detailsof Operation

UGO0331 User Guide Revision 15.0

& Microsemi

Power Matters.”

viii

& Microsemi

Power Matters.”

18.3 How to Use RTC . .. 605
18.3.1 Design Flow e 605

18.3.2 RTC Use Model e 608

18.4 RTC Register Mapo e e e e e 608
18.4.1 Counter Bit Positions 609

18.4.2 Register Bit Allocation e 609

18.4.3 Control Register 610

18.4.4 Mode Register 611

18.4.5 Prescaler 611

18.4.6 Alarmand Compare Registers i 612

18.4.7 Dateand Time Registers e 612

18.5 SYSREG Control Registers e 613
19 System Timer 614
19.1 Features 614
19.2 Functional Description 614
19.2.1 Architecture Overview e 614

19.2.2 Port List 615

19.2.3 Details of Operation e 616

19.3 How to Use Timer 619
19.3.1 Design Flow e e 619

19.3.2 TimerUse Models 621

19.4 Timer Register Map 622
19.4.1 Timerx Value Register 623

19.4.2 Timer x Load Value Register 623

19.4.3 Timer x Background Load Value Register i 623

19.4.4 Timer x Raw Interrupt Status Register 624

19.4.5 Timer x Masked Interrupt Status Register 625

19.4.6 Timer 64 Value Upper Register e e 625

19.4.7 Timer 64 Value Lower Register 625

19.4.8 Timer 64 Load Value Upper Register 625

19.4.9 Timer 64 Load Value Lower Register i 626

19.4.10 Timer 64 Background Load Value Upper Register 626

19.4.11 Timer 64 Background Load Value Lower Register 627

19.4.12 Timer 64 Control Register e e 627

19.4.13 Timer 64 Raw Interrupt Status Register 628

19.4.14 Timer 64 Masked Interrupt Status Register 628

19.4.15 Timer 64 Mode Register 628

20 Watchdog Timer e 629
201 Features o 629
20.2 Functional Description e 630
20.2.1 Architecture OVerview e 630

20.2.2 Port List ... 631

20.2.3 Details of Operation e 631

20.3 How to Use the Watchdog Timer e 633
20.3.1 Design Flow o e 634

20.3.2 Watchdog TimerUse Models i e s 637

20.4 Watchdog Timer Register Map e 638
20.4.1 Watchdog Timer Configuration Register Bit Definitions 638

20.5 SYSREG Control Registers e 641
21 Reset Controller 642
21.1 Functional Description e 643
21.1.1 Power-On Reset Generation Sequence 643

21.1.2 Power-Up to Functional Time Sequence 645

UGO0331 User Guide Revision 15.0 ix

& Microsemi

Power Matters.”

21.2 Power-Up to Functional Time Data e 646
21.2.1 Parameters Used for Obtaining Power-Up to Functional TimeData 646

21.2.2 VDD Power-Up to Functional Time i 647

21.2.3 DEVRST_N Power-Up to Functional Time i, 651

21.2.4 Power-On Reset 654

21.25 System Reset 654

2126 BIOCK ReSEtS 656

21.3 CoreResetP Soft Reset Controller e 660
21.3.1 ReSet TOPOIOgY . . .ottt 661

21.3.2 Implementation 663

21.3.3 Timing Diagramso 664

214 How to Use the Reset Controller e 666
21.4.1 Ramp Delay Configuration 666

21.4.2 Reset Controller Configurator 666

21.5 SYSREG Control Registers e 669
22 System Register Block 670
22.0.1 SYSREG Block Register Write Protection 670

22.0.2 Register TypeS ...t 671

221 Register Lock Bits Configuration 674
2211 Lock Bit File ... 675

22.1.2 Lock Bit File Syntaxo 675

22.1.3 Locking and Unlocking a Register e 676

22.2 Register Map 676
223 Register Details 682
22.3.1 System Registers Behavior for M2S005/010 Devices 682

22.3.2 eSRAM Configuration Register 683

22.3.3 eSRAM Latency Configuration Register 683

22.3.4 DDR Configuration Register e 684

22.3.5 eNVM Configuration Register i 684

22.3.6 eNVM Remap Base Address Control Register ot 686

22.3.7 eNVM FPGA Fabric Remap Base Address Register 687

22.3.8 Cache Configuration Register e 687

22.3.9 Cache Region Control Register e 688

22.3.10 Cache Lock Base Address Control Register 688

22.3.11 Cache Flush Index Control Register i 688

22.3.12 MSS DDR Bridge Buffer Timer Control Register 689

22.3.13 MSS DDR Bridge Non-Bufferable Address Control Register 689

22.3.14 MSS DDR Bridge Non-Bufferable Size Control Register. 689

22.3.15 MSS DDR Bridge Configuration Register 690

22.3.16 EDAC Configuration Register i e 691

22.3.17 Master Weight Configuration Register O i, 691

22.3.18 Master Weight Configuration Register 1 692

22.3.19 Software Interrupt Register e 693

22.3.20 Software Reset Control Register 693

22.3.21 M3 Configuration Register e 695

22.3.22 Fabric Interface Control (FIC) Register i, 695

22.3.23 Loopback Control Register 696

22.3.24 GPIO System Reset Control Register i 696

22.3.25 GPIO Input Source Select Control Register i 697

22.3.26 MDDR Configuration Register 697

22.3.27 USB I/O Input Select Control Register i 698

22.3.28 Peripheral Clock MUX Select Control Register 698

22.3.29 Watchdog Configuration Register i 699

22.3.30 MDDR I/O Calibration Control Register i 699

22.3.31 EDAC Interrupt Enable Control Register 699

22.3.32 USB Configuration Register 701

UGO0331 User Guide Revision 15.0 X

22.3.33
22.3.34
22.3.35
22.3.36
22.3.37
22.3.38
22.3.39
22.3.40
22.3.41
22.3.42
22.3.43
22.3.44
22.3.45
22.3.46
22.3.47
22.3.48
22.3.49
22.3.50
22.3.51
22.3.52
22.3.53
22.3.54
22.3.55
22.3.56
22.3.57
22.3.58
22.3.59
22.3.60
22.3.61
22.3.62
22.3.63
22.3.64
22.3.65
22.3.66
22.3.67
22.3.68
22.3.69
22.3.70
22.3.71
22.3.72
22.3.73
22.3.74
22.3.75
22.3.76
223.77
22.3.78
22.3.79
22.3.80
22.3.81
22.3.82
22.3.83
22.3.84
22.3.85
22.3.86
22.3.87
22.3.88
22.3.89
22.3.90
22.3.91

& Microsemi

Power Matters.”

eSRAM PIPELINE Configuration Register 701
RTC Wake Up Configuration Register i 702
MAC Configuration Register e e 702
MSS DDR PLL Status Low Configuration Register 703
MSS DDR PLL Status High Configuration Register 704
MSS DDR Fabric Alignment Clock Controller (FACC) Configuration Register 1. 705
MSS DDR Fabric Alignment Clock Controller Configuration Register2 707
PLL LOCK Enable Control Register i 709
MSS DDR Clock Calibration Control Register 709
PLL Delay Line Select Control Register 709
MAC Status Clear on Read Control Register i .. 710
Reset Source Control Register 710
Dcode Bus Error Address Status Register 711
ICode Bus Error Address Status Register 711
System Bus Error Address Status Register 711
ICode Miss Control Status Register 711
ICode Hit Control Status Register 711
DCode Miss Control Status Register 712
DCode Hit Control Status Register 712
ICode Transaction count Control Status Register 712
DCode Transaction Count Control Status Register 712
MSS DDR Bridge DS master Error Address Status Register 713
MSS DDR Bridge High Performance DMA Master Error Address Status Register 713
MSS DDR Bridge AHB Bus Error Address Status Register 713
MSS DDR Bridge Buffer Empty Status Register 714
MSS DDR Bridge Disable Buffer Status Register 714
€SRAMO EDAC CoUNt . . .ot e e 715
eSRAMT EDAC CouNt . . .o ot 715
MAC EDAC Transmitter Count e 715
MAC EDAC Receiver Count 715
USB EDAC COUNE . ..ot e e e e e e 716
CAN EDAC CoUNt . .ot e e 716
eSRAMO EDAC Address Register e 716
eSRAM1 EDAC Address Register e e 716
MAC EDAC Receiver Address Register i 717
MAC EDAC Transmitter Address Register i 717
CAN EDAC Address Register e 717
USB EDAC Address Register i e e 77
Security Configuration Register for Masters 0, 1,and 2 718
Security Configuration Register for Masters 4, 5,and DDR_FIC 718
Security Configuration Register for Masters 3,6,7,and8 719
Security Configuration RegisterforMaster9 L. 720
M3 Status Register 721
ETM Count Low Register e 721
ETM Count High Register e 721
Device Status Register 722
eNVM Protect User Register e 722
Smart Fusion2 eNVM Status Register 724
Device Version Register e 724
MSS DDR PLL Status Register e 724
USB Status Register 725
eNVM Status Register e 725
DDRB Status Register 726
MDDR |0 Calibration Status Register 726
MSS DDR Clock Calibration Status 727
Watch Dog Load Register e 727
Watch Dog MVRP Register e 727
User Configuration Register O i e i 727
User Configuration Register 1 e e 727

UGO0331 User Guide Revision 15.0 Xi

& Microsemi

Power Matters.”

22.3.92 User Configuration Register 2 728

22.3.93 User Configuration Register 3 e 728

22.3.94 Fabric Protected Size Register e e 728

22.3.95 Fabric Protected Base Address Register 729

22.3.96 MSS GPIO Definitionsot e 730

22.3.97 EDAC Status Register 730

22.3.98 MSS Internal Status Register e 731

22.3.99 MSS External Status Register 731
22.3.100Watchdog Timeout Event e 733
22.3.101Clear MSS COUNEISottt e e e e e e e 733
22.3.102Clear EDAC COUNIEISottt e e e e e e e e e 733
22.3.103Flush Configuration Register 734
22.3.104MAC Status Clear Control Register e 735
22.3.105|0MUXCELL_CONFIG[n] Configuration Register 736

23 Fabric Interface Interrupt Controller 738
231 Features 738
23.2 Functional Description 739
23.2.1 Architecture OVEIVIEW e 739

23.2.2 FlC Port List e 741

23.3 How to Use FIICo e e 741
23.3.1 Configuring the FIIC Using the Libero SoC 741

23.3.2 FlICUse Models e 743

23.4 FIIC Controller Registers e e e e 749
23.5 FIIC Controller Register Bit Definitions e 749
24 Fabric Interface Controller 757
24.1 Functional Description e 758
2411 MSStothe FPGA FabricInterface i 759

24.1.2 Configure FIC for Master or Slave Interface 759

24.2 Advanced AHB-Lite Options e 759
24.2.1 Configure FIC in Bypass Mode or Synchronous PipelinedMode 759

24.2.2 Master ldentity Porttothe Fabric 760

24.2.3 Configure MSS Master View for the FPGA Fabric Address 760

24.3 FIC Interface Port List e 761
24.4 TimINg Diagrams 763
24.5 Implementation Considerations e 766
24.6 Fabric Interface Clocks 766
247 How to Use FIC 767
2471 FIC Configuration e 767

24.7.2 Configuring the FIC Subsystem Clocks 774

24.7.3 Configuring the FIC Subsystem Reset i, 778

2474 UseModels e 779

24.8 Reference DOCUMENESo 782
24.9 SYSREG Control Registers for FIC_0and FIC_1 i 783
25 APB Configuration Interface 784
251 Functional Block Diagram Description e 784
25.1.1 Architecture OVerview e 784

25.1.2 Port List 785

25.1.3 CoreSF2Config Soft IP 786

25.2 HOW 1o USE ..o 787
25.2.1 Configuring FIC_2 (Peripheral Initialization) Using LiberoSoC 787

2522 FIC 2Use MOdElSo 790

UGO0331 User Guide Revision 15.0 Xii

& Microsemi

Power Matters.”

26 Error Detection and Correction Controllers 792
26.1 Functional Descriplion e 792
26.1.1 EDAC Checksum Bits Width e i 793

26.2 CoNfiguUratioN 793
26.3 How to Use EDAC o e e 794

UGO0331 User Guide Revision 15.0 Xiii

Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38
Figure 39
Figure 40
Figure 41
Figure 42
Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48
Figure 49
Figure 50
Figure 51
Figure 52
Figure 53
Figure 54

& Microsemi

Power Matters.”

Cortex-M3 Processor R2P1 Block Diagram as Implemented in the SmartFusion2 SoC FPGA7

Trace System Block Diagram 14
CM3 Configurator e 16
Cortex-M3 Processor Implementation 18
Core Register Set 21
Program Status Register 22
Priority Mask Register 25
Fault Mask Register e 26
Base Priority Mask Register 26
Control Register 27
Processor Memory Map 29
Memory Ordering Restrictions 30
Bit-band Mapping 34
Byte-Invariant Big-Endian Format 35
Little Endian Format 35
Vector Table 40
Exception Entry Stack Contents e 42
A R 53
LR 53
LS 54
RO R . 54
RRX 55
ISER Register Bit Assignments 96
ICER Register Bit Assignments 97
ISPR Register Bit Assignments 97
ICPR Register Bit Assignments 98
IABR Register Bit Assignments 98
IPR Register Bit ASSignments 99
IABR Register Bit AsSignments e 100
ACTLR Bit ASSIgNMENtSo e e 103
CPUID Register Bit Assignments 103
ICSR Bit Assignments e 104
VTOR Bit ASSIgNMENtSo e 106
AIRCR Bit ASSIGNMENES o e 107
SCR Bit ASSIgNmeENts 108
CCR Bit ASSIGNMENTS ot e e e 109
SHPR1 Bit ASSIgNMENts e 111
SHPR2 Bit ASSIgNMENTS e 111
SHPRS3 Bit ASSIGNMENESo 111
SHCSR Bit ASSigNMeENts 112
CFSR Bit ASSIgNMeENts 113
MMFSR Bit ASSIgNmMeENts e 114
MMFSR Bit ASSIgNmeNts e 115
UFSR Bit ASSIgNMENtS e 116
HFSR Bit ASSIgNments e 117
SYST_CTRL Register Bit Assignments i 120
SYST_RVR Register Bit Assignments 120
SYST_CVR Register Bit Assignments 121
SYST_CALIB Register Bit Assignments 121
MPU_TYPE Register Bit Assignments i 124
MPU_CTRL Register Bit Assignments i 124
SYST_CVR Register Bit Assignments 125
MPU_RBAR Bit AsSignments e 126
MPU_RASR Bit AsSignments e 127

UGO0331 User Guide Revision 15.0 Xiv

Figure 55
Figure 56
Figure 57
Figure 58
Figure 59
Figure 60
Figure 61
Figure 62
Figure 63
Figure 64
Figure 65
Figure 66
Figure 67
Figure 68
Figure 69
Figure 70
Figure 71
Figure 72
Figure 73
Figure 74
Figure 75
Figure 76
Figure 77
Figure 78
Figure 79
Figure 80
Figure 81
Figure 82
Figure 83
Figure 84
Figure 85
Figure 86
Figure 87
Figure 88
Figure 89
Figure 90
Figure 91
Figure 92
Figure 93
Figure 94
Figure 95
Figure 96
Figure 97
Figure 98
Figure 99
Figure 100
Figure 101
Figure 102
Figure 103
Figure 104
Figure 105
Figure 106
Figure 107
Figure 108
Figure 109
Figure 110
Figure 111
Figure 112
Figure 113

& Microsemi

Power Matters.”

SRD Field . .o 131
Cache Controller Interfaces to Cortex-M3 Processor, AHB Bus Matrix, and MDDR Bridge 133
Cache Controller Block Diagram e e e 134
General Cache Architecture and Addressing 139
IAR Compiler OpltioNnSo e 140
IAR Assembler Options e 141
Cache Controller Interface e 142
MSS Configurator with Cache Controller Configuration Options 143
MSS Configurator with Remapping Options for eNVM, eSRAM, and MDDR 143
System Builder with Remapping Options for eNVM, eSRAM,and MDDR 144
eNVM Connection to AHB Bus Matrix i 145
eNVM Controller Block Diagram 146
Write Path 149
Read Path e 150
Timing Diagram Showing Single Word Read Operation 154
Timing Diagram Showing Consecutive Reads Incrementing through Memory 154
Timing Diagram Showing Cache Fill Read Operations Utilizing Bursts 155
eNVM Program (ProgramADS) and Verify (VerifyADS) Operations 156
Exclusive Register Access and Filling Data in WDBUFF 156
Issuing the ProgramADS Commandt 156
Completion of ProgramADS and Issue of VerifyADS Command 157
Completion of eNVM Verify Operation 157
Complete eNVM Program and Verify Operations Waveform 158
Exclusive Register Access and Filling Datain WDBUFF 158
ProgramAD Command 158
ProgramDA Command 158
ProgramStart Command e 159
eNVM Special Sectors for the M2S050TS Device with 256 KBeNVM_0................... 160
eNVM Special Sectors for the M2S005S Device with 128 KBeNVM_0 160
eNVM Special Sectors for the M2S010TS, M2S025TS Devices with 256 KB eNVM_0 161
eNVM Special Sectors for the M2S060TS Devices with 256 KBeNVM_0 161
eNVM Special Sectors for the M2S090TS, M2S150TS Devices with512KB 162
System Builder Window e 166
System Builder - Device Features Tab 167
System Builder - Memories Tab 168
Add Data Storage Client Dialog 169
System Builder - Memories Tab with TwoeNVM Clients 170
System Builder - Microcontroller Tab 171
System Builder - Security Tab 172
Firmware Catalog Showing the Generation of Sample Project foreNVM 173
eSRAM_0 and eSRAM_1 Connectionto AHBBus Matrix 188
eSRAM Controller Block Diagram e 189
System Builder Window 194
System Builder - Microcontroller Tab 195
System Builder - SECDED Tab 196
System Builder - Security Tab e 197
AHB Bus Matrix Masters and Slaves 210
Master Stage and Slave Stage Interconnection 212
Block Diagram of APB Destinations Connected to AHB Bus Matrix 213
AHB-Lite Write Transactions e 214
AHB-Lite Read Transactions i e 215
AHB-to-AHB Write Transactions e 216
AHB-to-AHB Read Transactionsttt e e 217
Pure Round Robin and Fixed Priority Slave Arbitration Scheme 219
WRR and Fixed Priority Slave Arbitration Scheme L. 221
Slave Arbitration Flow Diagram e 223
AHB Bus Matrix to Fabric Interface Controller 224
Default System Memory Map 225
Memory Map after eSRAM Remap (64 KBeSRAM) 226

UGO0331 User Guide Revision 15.0 XV

Figure 114
Figure 115
Figure 116
Figure 117
Figure 118
Figure 119
Figure 120
Figure 121
Figure 122
Figure 123
Figure 124
Figure 125
Figure 126
Figure 127
Figure 128
Figure 129
Figure 130
Figure 131
Figure 132
Figure 133
Figure 134
Figure 135
Figure 136
Figure 137
Figure 138
Figure 139
Figure 140
Figure 141
Figure 142
Figure 143
Figure 144
Figure 145
Figure 146
Figure 147
Figure 148
Figure 149
Figure 150
Figure 151
Figure 152
Figure 153
Figure 154

Figure 155
Figure 156
Figure 157
Figure 158
Figure 159
Figure 160
Figure 161
Figure 162
Figure 163
Figure 164
Figure 165
Figure 166
Figure 167
Figure 168
Figure 169
Figure 170
Figure 171

& Microsemi

Power Matters.”

Use Case for eSRAM Execution e 227
Virtual eNVM View (After Chip Boot) e 228
Virtual eNVM View for Soft Processor i 229
DDR Memory Remap e e e 230
AHB Bus Matrix in Libero SoC Design MSS Configurator 233
AHB Bus Matrix Configuration Window 234
HPDMA Interfacing With MSSDDR Bridge and AHB Bus Matrix 236
HPDMA Controller Block Diagram e e 237
HPDMA Registers 238
DMA Controller Flow Chart e e 239
Enable HPDMA in the Libero SOC Design MSS Configurator 242
HPDMA Transfers Data Between DDR Memory and MSS Internal Memory 243
HPDMA Transfers Data Between SDR Memory and MSS Internal Memory 243
HPDMA Driver User GUIdEot e e e e 244
HPDMA EXamples e e 245
PDMA Interfacing with AHB Bus Matrix i 264
PDMA Internal Architecture 265
Flow of Ping-Pong Operation on DMA Channel 267
Enable PDMA . 271
PDMA AHB Bus Master Matrix Configuration 272
PDMA Transfers Data Between FICand MSSMemory i . 272
PDMA Signalso 273
PDMA Driver User GUIde e e 273
PDMA EXampIeso e 274
MSS Showing a USB OTG Controller e 285
USB OTG Controller in SmartFusion2 e 286
Block Diagram for Connections between USB Controller and ULPI PHY through MSS 288
Block Diagram for Connections Between USB Controller and UTMI PHY through FPGA Fabric 290
Basic USB Flow Diagram when USB Controllerisin HostMode 292
Basic USB Flow Diagram when USB Controller is in USB Device/Peripheral Mode 293
Basic USB Flow Diagram when USB ControllerisinOTGMode 295
LPM State Transition Diagram e 296
MSS Configurator with USB and GPIO Macros Enabled 300
MSS USB Configurator with ULPI Interface Settings 301
MSS USB Configurator with UTMI Interface Settings 302
MSS GPIO Configurator with GPIO Settings for External USB PHY Reset 303
I/0O Editor Configurator with Settings for External USB PHY Reset Pin Mapping 303
Firmware Catalog with MSS USB Firmware Drivers and Sample Class Drivers 304
MSS Showing a TSEMAC 374
TSEMAC Block Diagram e e e 375
RMII, RGMII, RTBI, RevMIl, SMII Derived from Available Protocols by Appropriate Wrapper in Fabric

380

TBI Brought to Fabric for EPCS Soft IP for SGMII Interface 380
External PHY Interface Selection in MSS EMAC Configurator 384
Line Speed Selection in MSS EMAC Configurator i, 385
External PHY Management Interface Selections in MSS EMAC Configurator 386
MSS Ethernet Configurator with TBlinterface i, 387
SGMII Interface Signals: TBIto SERDES e 387
I/0 Editor With SGMIl and PHY Ports e 388
SECDED Configurator with Ethernet TX RAM and Ethernet RX RAM Configuration Options . . . 389
Firmware Catalog Showing the Generation of Sample Project for TSEMAC 390
CoreMACFilter Interaction with MSS MAC and GMII Ethernet PHY 435
CoreMACFilter interaction with MSS MAC and SGMII Ethernet PHY 435
CAN Controller Block Diagram 436
Transmit Message Buffers 438
Receive Message Buffers 439
Interrupt Generation 441
CAN Configurator GUI e e e e 442
Main Connection Options - Either MSIO orFabric 443

UGO0331 User Guide Revision 15.0 XVi

Figure 172
Figure 173
Figure 174
Figure 175
Figure 176
Figure 177
Figure 178
Figure 179
Figure 180
Figure 181
Figure 182
Figure 183
Figure 184
Figure 185
Figure 186

Figure 187
Figure 188
Figure 189
Figure 190
Figure 191
Figure 192
Figure 193
Figure 194
Figure 195
Figure 196
Figure 197
Figure 198
Figure 199
Figure 200
Figure 201
Figure 202
Figure 203
Figure 204
Figure 205
Figure 206
Figure 207
Figure 208
Figure 209
Figure 210
Figure 211
Figure 212
Figure 213
Figure 214
Figure 215
Figure 216
Figure 217
Figure 218
Figure 219
Figure 220
Figure 221
Figure 222
Figure 223
Figure 224
Figure 225
Figure 226
Figure 227
Figure 228
Figure 229

& Microsemi

Power Matters.”

Extra Connection to Fabricand GPIO Options e 444
Enabling EDAC for the CAN from the SECDED Configurator 445
Enabling CAN Controller With MSS Configurator 446
CAN Signals 446
Firmware Driver Enable and Generate i 447
Automatic Bit Rates Detection Flow Chart 448
MSS Showing MMUART Peripherals e 470
MMUART Block Diagram e e 471
Synchronous and Asynchronous Mode Topologiesot ... 475
Sample Time Correction with FractionalBaudRate 476
Example with Fractional Baud Rate of 4.5 477
Example with Fractional Baud Rate of 2 and 3/64th ... 477
Synchronous Input and Adaptation to Internal Baud Clocking 478
Bi-Directional Synchronous Clock Configuration Options 479

Input Filtering Circuit and Timing for GLR=4 (Pulses Less than 4 APB Clock Cycles Filtered Out) . .
480

LIN Header e 480
LIN Break Field Width => 11 Tbit Count Interrupt i 481
LIN PID Parity Error Interrupt e 481
LIN Receive FOM 482
RZIModulation 482
RX RZI-to-NRZ Demodulation 483
Tx NRZ-to-RZI Modulation e 483
O-Bit Format 484
Single Wire Error Signal Timingwhen EERR=1 485
Transmit Mode TE Output Enable Timingwhen EERR=1 485
Receive Mode TE Output Enable and NACK Timingwhen EERR=1 486
Enable MMUART . .. 486
MSS MMUART Configurator e e 487
MMUART Interface Signals e e 487
MMUART Driver User GUIe et 488
MMUART Sample Project o e e e e e 489
Setup to Communicate With Host PC Through MMUART Interface - Block Diagram 489
Microcontroller Subsystem Showing SPI Peripherals 504
SPI Controller Block Diagram 505
Motorola SPIMode 0 e 508
Motorola SPI Mode 0 Multiple Frame Transfer 508
Motorola SPIMode 1 e 509
Motorola SPIMode 2 e 509
Motorola SPIMode 3 509
Write Operation Timingo e 511
Read Operation TIMingo e 511
Page Program Timingot e 512
National Semiconductor MICROWAVE Single Frame Transfer 513
National Semiconductor MICROWIRE Multiple Frame Transfer 513
Tl Synchronous Serial Single Frame Transfer 514
Tl Synchronous Serial Multiple Frame Transfer 514
SPE Command/Data Format 515
Enable SPI .. . 520
MSS SPI Configurator - Connection Type 1O e 521
MSS SPI Configurator - Connection Type Fabric 522
SPI Interface Signals - Connection Type 10 i e 522
SPI Interface Signals - Connection Type Fabric 523
SPIDriver User's GUIdEe 523
SPISample Project 524
Interfacing External SPI Flash to MSS SPI_0-Block Diagram 525
Interfacing External SPI Slave Device Using MSS SPI Routing Through Fabric Block Diagram . 526
Microcontroller Subsystem Showing 12c Peripherals 538
[2C BIOCK DIAQram vv oot e e e e e e e e 539

UGO0331 User Guide Revision 15.0 Xvii

Figure 230
Figure 231
Figure 232
Figure 233
Figure 234
Figure 235
Figure 236
Figure 237
Figure 238
Figure 239
Figure 240
Figure 241
Figure 242
Figure 243
Figure 244
Figure 245
Figure 246
Figure 247
Figure 248
Figure 249
Figure 250
Figure 251
Figure 252
Figure 253
Figure 254
Figure 255
Figure 256
Figure 257
Figure 258
Figure 259
Figure 260
Figure 261
Figure 262
Figure 263
Figure 264
Figure 265
Figure 266
Figure 267
Figure 268
Figure 269
Figure 270
Figure 271
Figure 272
Figure 273
Figure 274
Figure 275
Figure 276
Figure 277
Figure 278
Figure 279
Figure 280
Figure 281
Figure 282
Figure 283
Figure 284
Figure 285
Figure 286
Figure 287
Figure 288

& Microsemi

Power Matters.”

8-bit Data Transfer Cycle 540
PMBus and SMBus Devices Interface 543
ENable 12C ... 544
MSS 12C Configurator e 545
IPC INterface SIGNAISottt 545
I2C DVEr USEI'S GUIE\ttt et e e e e 546
12C SamMPle PrOJECE\ttt e e 547
Interfacing External EEPROM to MSS 12C_0 - Block Diagram 548
12C Loopback BIOCK DIagram e e 550
GPIO Connected on APB Slave in MSS 562
GPIO, IOMUX, and MSIO e 563
MSS GPIO Block Diagram 564
GPIO Configuration Register (GPIO_X_CFG) e 565
Enable GPIO in MSS Configurator et 568
MSS GPIO Configurator e 569
Configuring GPIO Byte-Wise Reset i e e 570
Configuring GPIOs as Input, Output, Tristate, or Bi-directional 571
Connectivity Preview 572
GPIO Signals 572
GPIO Loopback Diagram e 574
Interfacing of COMM_BLK with AHB Bus Matrix 593
Interfacing of COMM_BLK with System Controller 594
System Services Driver in Firmware Core Configurator 596
System Services Driver Folder Hierarchy 596
Microcontroller Subsystem Showing RTC i 601
RTC Block Diagram e e e 602
Enabling RTC in the Libero SOC Design MSS Configurator 605
RTC Configuration Window e e e 606
RTC Signals 606
RTC Driver User GUIEot e e e e e 607
RTC EXamples e 608
MSS Showing Timer Peripherals 614
Timer Block Diagram e 615
Block Diagram 32-Bit Mode 618
Block Diagram 64-Bit Mode e 618
Timer Driver User GuIide e 619
Generating Sample Project 621
Microcontroller Subsystem Showing Watchdog Timer 629
Block Diagram for the Watchdog Timer e 630
Watchdog Timer CoUNter e e e e e e 632
Enabling Watchdog Timer in the Libero SOC Design MSS Configurator 634
Watchdog Timer Configuration Window s 635
Watchdog Timer Signals e 635
RTC Driver User GUIE oot e e e e e e e e e e 636
Watchdog Timer Examples e 637
Reset Signals Distribution in SmartFusion2 Devices 642
Conceptual Block Diagram of Power-On Reset Generation 643
Power on Reset Delay Configuration e 644
SYSRESET MaCrot e 644
Power up to Functional Time Sequence Diagram iiiiieennana.. 645
VDD Power-up to Functional Time Design Setup i 647
VDD Power-up to functional timing diagram 648
VDD Power-Up to Functional Time Flow e 650
DEVRST_N Power-Up to Functional Timing i 651
DEVRST_N Power-up to Functional Time Flow 653
Functional Block Diagram of Reset Controller During Power-OnReset 654
SYSRESET N Generation e e e 655
Functional Block Diagram of Reset Controller During SYSRESET N 655
Reset Controller With Only Block Level Resets 656

UGO0331 User Guide Revision 15.0 Xviii

Figure 289
Figure 290
Figure 291
Figure 292
Figure 293
Figure 294
Figure 295
Figure 296
Figure 297
Figure 298
Figure 299
Figure 300
Figure 301
Figure 302
Figure 303
Figure 304
Figure 305
Figure 306
Figure 307
Figure 308
Figure 309
Figure 310
Figure 311
Figure 312
Figure 313
Figure 314
Figure 315
Figure 316
Figure 317
Figure 318
Figure 319
Figure 320
Figure 321
Figure 322
Figure 323
Figure 324
Figure 325
Figure 326
Figure 327
Figure 328
Figure 329
Figure 330
Figure 331

Figure 332

Figure 333
Figure 334
Figure 335

Figure 336

Figure 337
Figure 338
Figure 339
Figure 340
Figure 341
Figure 342
Figure 343

& Microsemi

Power Matters.”

M3_SYS_RESET_N Generation e 657
MDDR_AXI_RESET N Generation i 657
MDDR_APB_RESET_N Generationt 658
WDOG_RESET_N Generation e e et 658
FIC_2 APB_M_PRESET_N Generation0t iuiiiiiinn.n. 659
MSS GPIO_OUT Reset Generationt e 660
Block Level Reset Generation 660
MSS_READY Signal Generationt 661
CoreResetP Connectivity with Peripheral Resets 662
CoreResetP Connectivity with SERDES IFBlock 663
Timing for Reset Signals Initiated by the Assertion of POWER_N_RESET_N............... 664
Timing for Reset Signals Initiated by the Assertion of FIC_2_APB_M_PRESET_N 664
Timing for Reset Signals Initiated by the Assertion of EXT_RESET_IN_N 665
Timing for Reset Signals Initiated by the Assertion of USER_FAB_RESET IN.N 665
Ramp Delay Configuration e 666
Configuring Reset 666
Configuring Reset 667
Connecting Fabric LOGIC o e 667
Initialization Sub-system with CoreResetP Soft IP 668
Initialization Sub-system for FIC Sub-systems 669
Register Write Protect 670
Field Write Protect 671
Bit Write Protect 671
R P TyYPE . 672
RV Ty 673
RO Ty .ot e 673
RO-P TYPE .ot 674
RO-U TP . oo 674
Register Lock Bit Settings o 674
Lock Bit Configuration File 675
The FIIC Connection to AHB Bus Matrix i 738
Block Diagram for Fabric Interface Interrupt Controller 739
Combinational Circuit for Mapping MSS Interrupts toa MSS_INT_M2F 739
Configure FIIC in the MSS Configurator e e 741
FIIC Configurator e 742
Fabric to the MSS Interrupt 743
MSS to Fabric Interrupt 745
The FIC Connection tothe AHB Bus Matrix it 757
Fabric Interface Controller Block Diagram e 758
Fabric Interface Controller Top-Level View i 761
AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction in Bypass Mode ... 763

AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction in Bypass Mode ... 763
AHB-Lite Bus Signals from FIC to the Fabric Slave for a Write Transaction in Synchronous Pipelined
Mode 764
AHB-Lite Bus Signals from FIC to the Fabric Slave for a Read Transaction in Synchronous Pipelined
Mode 764

AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction in Bypass Mode 765
AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction in Bypass Mode 765
AHB-Lite Bus Signals from Fabric Master to FIC for a Write Transaction in Synchronous Pipelined

Mode 766
AHB-Lite Bus Signals from Fabric Master to FIC for a Read Transaction in Synchronous Pipelined
Mode 766

MSS Configurator e 767
FIC Configurator 768
MSS to FPGA Fabric Interface Core 768
Advanced Options Configuration e 769
FPGA Fabric Address Regions (MSS Master View) i, 769
Master/AHB-Lite Memory Space Configuration—16 MBperSlot 769
Master/AHB-Lite Memory Space Configuration —256 MB perSlot 770

UGO0331 User Guide Revision 15.0 XiX

Figure 344
Figure 345
Figure 346
Figure 347
Figure 348
Figure 349
Figure 350
Figure 351
Figure 352
Figure 353
Figure 354
Figure 355
Figure 356
Figure 357
Figure 358
Figure 359
Figure 360
Figure 361
Figure 362
Figure 363
Figure 364
Figure 365
Figure 366
Figure 367
Figure 368

& Microsemi

Power Matters.”

Master/AHB-Lite Master Access Configuration i 770
FIC Master/AHB-Lite Subsystem 772
Master/APB Address Configuration 773
Master/APB Slave Slots Configuration 773
FIC Master/APB Subsystem 774
Clocking Scheme for Synchronous Communication Between the MSS and the FPGA Fabric .. 775
MSS CCC FIC Clock Configuration e 776
Fabric Clocks Configuration e 777
Configure the MSS Reset Sub-Block 778
AHB-Lite Slaves in the FPGA Fabric Connectedtothe MSS Master 779
APB Slaves in the FPGA Fabric Connectedtothe MSS 780
FPGA System with the MSS Slave and the FabricMaster 781
Fabric APB MasterwithMSS as Slave 782
APB Configuration Interface and Subsystems Connectivity with MSS Master 784
Configure FIC_2in MSS Configurator it 787
FIC 2 Configurator e e 788
FIC_2 Configuration for MSS DDRo 788
FIC_2 Configuration for MSS DDR, FDDR, and SERDESo, 789
MSS DDR Design with APB Configuration Interface 790
Top-Level Components with APB Configuration Interface Signals 791
Interfacing of CoreSF2Config Mirrored APB Slave with SERDES_IF Block 791
EDACINWrite MOde o 792
EDAC in Read Mode (Reading From Memory) i, 792
EDAC in Read Mode (Reading From Memory) i 794
EDAC in Read Mode (Reading From Memory) i 795

UGO0331 User Guide Revision 15.0 XX

Tables

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Table 9

Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Table 30
Table 31
Table 32
Table 33
Table 34
Table 35
Table 36
Table 37
Table 38
Table 39
Table 40
Table 41
Table 42
Table 43
Table 44
Table 45
Table 46
Table 47
Table 48
Table 49
Table 50
Table 51
Table 52
Table 53
Table 54

& Microsemi

Power Matters.”

Cortex-M3 Processor EXceptions 8
Cortex-M3 Processor Interrupts 8
Signal MUtIpleXingo 14
Port Details of the Cortex-M3-Subsystem 15
MPU Configuration Register 17
SysTick Configuration Register e 17
Summary of Processor Mode, Execution Privilege Level, and Stack Use Options 21
Core Register Set Summary e 21
PSR Combinations and Attributes 23
Application Program Status Register 23
IPSR Bit ASSIgNMENESo 23
EPSR Bit Assignments 24
PRIMASK Register Bit Assignments e 25
FAULT Register Bit Assignments i e 26
BASEPRI Register Bit Assignments 26
Control Register Bit ASSigNmeNts 27
Memory Access Behavior 30
Memory Region Shareability and Cache Policies 31
SRAM Memory Bit-banding Regions e 32
Peripheral Memory Bit-banding Regions 32
CMSIS Functions for Exclusive Access Instructions 37
Properties of the Different Exception Types e 39
Exception Return Behavior 43
Faults ... 43
Fault Status and Fault Address Registers i 45
Cortex-M3 Processor INStructions e 47
CMSIS Functions to Generate some Cortex-M3 Processor instructions 50
CMSIS Functions to Access the Special Registers 51
Condition Code SUffiXes e 57
Memory Access Instructions e 58
OffSet RANGES oot 60
OffSEt RaNgeso 63
Data Processing InStructions 68
Multiply and Divide INStructions e 77
Packing and Unpacking Instructions 81
Branch and Control Instructions 83
Branch Ranges 84
Miscellaneous INStructions 89
Core Peripheral Register Regions 95
NVIC Register SUMmMary e 95
CMSIS Access NVIC FUNCHionNs e e e e 96
NVIC_ISER Bit AssSignments 97
NVIC_ICER Bit Assignments e 97
NVIC_ISPR Bit ASSigNMENtS e e e e 98
NVIC_ICPR bit @ssignmentso 98
NVIC_IABR Bit ASSIgnmeNnts 99
NVIC_IPR Bit ASSIgNmMeNts e 99
STIR Bit ASSIgNMENESo 100
CMSIS Functions for NVIC Control e 101
Summary of the System Control Block Registers 102
ACTLR Bit Assignments e e e 103
CPUID register Bit AsSignments 103
ICSR Bit ASSIgNMENtSo 104
VTOR Bit ASSIgNMmENtso e 106

UGO0331 User Guide Revision 15.0 XXi

Table 55
Table 56
Table 57
Table 58
Table 59
Table 60
Table 61
Table 62
Table 63
Table 64
Table 65
Table 66
Table 67
Table 68
Table 69
Table 70
Table 71
Table 72
Table 73
Table 74
Table 75
Table 76
Table 77
Table 78
Table 79
Table 80
Table 81
Table 82
Table 83
Table 84
Table 85
Table 86
Table 87
Table 88
Table 89
Table 90
Table 91
Table 92
Table 93
Table 94
Table 95
Table 96
Table 97
Table 98
Table 99
Table 100
Table 101
Table 102
Table 103
Table 104
Table 105
Table 106
Table 107
Table 108
Table 109
Table 110
Table 111
Table 112
Table 113

& Microsemi

Power Matters.”

AIRCR Bit ASSIGNMENES o e 107
Priority GroUpINgot 107
SCR Bit ASSIgNMENSo e 108
CCR BIt ASSiIgNmeENts e e 109
System Fault Handler Priority Fields 110
SHPR1 Bit ASSIGNMENtS 111
SHPR2 Bit ASSIGNMENtS 111
SHPR3 Bit ASSIGNMENTS e 111
SHCSR Bit ASSigNmMeENts 112
MMFSR Bit ASSIgNMENtS 114
BFSR Bit ASSIgNMeENtso 115
UFSR Bit ASSignments e 116
HFSR Bit Assignments e 118
MMFAR Bit AssSignments e 118
BFAR Bit Assignments e 118
AFSR Bit AsSIgNMENtS e e 119
System Timer Registers Summary 119
SYST_CTRL Register Bit Assignments i 120
SYST_RVR Register Bit Assignments 120
SYST_CVR Register Bit Assignments i 121
SYST_CALIB Register Bit Assignments 121
Memory Attributes Summary 123
MPU Registers Summary e 123
MPU_TYPE Register Bit Assignments e 124
MPU_CTRL Register Bit Assignments e 124
MPU_RNR Bit AsSignments e 126
MPU_RBAR Bit Assignments e 126
MPU_RASR Bit ASSIgNMENtS 127
Example SIZE Field Values 128
TEX,C,B,and SEncoding e 128
Cache Policy for Memory Attribute Encoding 129
AP ENCOAINg . .« oo 129
Memory Region Attributes for a Microcontroller 132
Default (eNVM Remapped Mode) e e e 135
eSRAM Remapped Mode (Memory Map)o 135
DDR ReMaD . o ottt 136
Data Path for Various Maps e 137
System Registers for Cache Operations 144
eNVM Address Locationso 146
Memory Organization e 147
Data Retention Time e 148
AHBL Address Map to NVMo 150
Command (CMD) Register 151
Command Table 151
User Protection Regions 162
Special Purpose Storage Regions 163
Special Purpose Storage Regions for M2S060, M2S090, and M2S150 Devices 164
Available APIs for eNVM .o 174
SYSREG Control Registers 174
ENVM G R . 175
SW_ENVMREMAPSIZE . . . 177
ENVM_REMAP_BASE_CR ... e 177
ENVM_REMAP_FAB_CR ... e 178
ENVM_PROTECT _USER e e 178
ENVM ST ATUS . e 179
ENVM SR 180
eNVM Control Registers Base AdAressttt e 180
Control Registers Description e e 180
Status Register Bit Definitions e 184

UGO0331 User Guide Revision 15.0 XXii

Table 114
Table 115
Table 116
Table 117
Table 118
Table 119
Table 120
Table 121
Table 122
Table 123
Table 124
Table 125
Table 126
Table 127
Table 128
Table 129
Table 130
Table 131
Table 132
Table 133
Table 134
Table 135
Table 136
Table 137
Table 138
Table 139
Table 140
Table 141
Table 142
Table 143
Table 144
Table 145
Table 146
Table 147
Table 148
Table 149
Table 150
Table 151
Table 152
Table 153
Table 154
Table 155
Table 156
Table 157
Table 158
Table 159
Table 160
Table 161
Table 162
Table 163
Table 164
Table 165
Table 166
Table 167
Table 168
Table 169
Table 170
Table 171
Table 172

& Microsemi

Power Matters.”

NV_FREQRNG Calculations at Different M3_CLK Frequencies for All SmartFusion2 Devices . . 185

NV PAGE _STATUS .. 185
INTEN[10:0] . .o e e 185
CLRHINT 0] . .ot e e 186
eSRAM Block Sizes and Address Ranges 188
SRAM Organization in SECDED-ON Mode e 190
SRAM Organization in SECDED-OFF Mode i 190
Wait States in Different Operation Modes i 192
SYSREG Control Registers 198
ESRAM _CR . 199
ESRAM _MAX AT . 200
eSRAM Maximum Latency Values 200
ESRAM_PIPELINE_CR e e 201
ESRAMO_EDAC CNT .t e e e 201
ESRAMT _EDAC CNT .t e e e 201
ESRAMO_EDAC _ADR . .. 201
ESRAMT _EDAC _ADR ... 202
MMO_1_ 2 SECURITY .. e e 202
MM4_5 DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY 203
MMB3_6_7_8 SECURITY ... e 204
MMO _SECURITY . 204
EDAC SR . 205
CLR_EDAC_COUNTERS e e e 206
EDAC_IRQ_ENABLE_CR e 207
EDAC _CR .. 208
AHB Bus Matrix Connectivity e 211
Fixed Priority Masters 218
WRR MaSterso 218
Pure Round Robin and Fixed Priority Arbitration Scenario foreSRAM1 220
WRR and Fixed Priority Arbitration ScenarioforeNVM_0 222
WRR Arbitration Scenario for eSRAM_Oslave i 222
Decoding of Master Access tothe FabricSlaves 224
Pairing of Masters and Slaves i 232
AHB Bus Matrix Register Map e 235
MSS HPDMA APl . . 244
HPDMA Register Mapo e e 246
HPDMAEDR _REG e 247
HPDMADOSAR _REGot e e 251
HPDMADTSAR _REG o e e 251
HPDMAD2SAR _REG e 251
HPDMADS3SAR_REGo e e 251
HPDMADODAR _REG . .. 252
HPDMADIDAR _REG . . . 252
HPDMAD2DAR _REG . . . 252
HPDMAD3DAR _REG . . . 252
HPDMADOCR _REG . . . e e e e 253
HPDMADTICR _REG . . . e e e e e 254
HPDMAD2CR _REG . . . e e e e 255
HPDMAD3CR _REG . . . e e e 256
HPDMADOSR_REG . . . o e 257
HPDMADTISR_REG . . . o 257
HPDMAD2SR_REG . . . o e 258
HPDMAD3SR_REG . . . o 259
HPDMADOPTR_REG . .. e 259
HPDMADIPTR_REG . .. o e e 260
HPDMAD2PTR_REG . .. 260
HPDMADS3PTR_REG . .. o 261
HPDMAICR _REG . . .o e e 261
HPDMADR _REG . .. e e 262

UGO0331 User Guide Revision 15.0 XXiii

Table 173
Table 174
Table 175
Table 176
Table 177
Table 178
Table 179
Table 180
Table 181
Table 182
Table 183
Table 184
Table 185
Table 186
Table 187
Table 188
Table 189
Table 190
Table 191
Table 192
Table 193
Table 194
Table 195
Table 196
Table 197
Table 198
Table 199
Table 200
Table 201
Table 202
Table 203
Table 204
Table 205
Table 206
Table 207
Table 208
Table 209
Table 210
Table 211
Table 212
Table 213
Table 214
Table 215
Table 216
Table 217
Table 218
Table 219
Table 220
Table 221
Table 222
Table 223
Table 224
Table 225
Table 226
Table 227
Table 228
Table 229
Table 230
Table 231

& Microsemi

Power Matters.”

SYSREG Control Registers 263
RATIOHILO Field Definition e 268
POrt LISt . . 268
MSS PDMA APIS . o 273
SmartFusion2 SoC FPGA PDMA Register Map 275
Ratio HIGH _LOW .. 278
BUFFER _STATUS .. e e 278
CHANNEL_X_CONTROLt e e e e 279
PERIPHERAL _SEL ... e 280
CHANNEL X _STATUS . . e e 281
CHANNEL_x_ BUFFER_A_SRC_ADDR 281
CHANNEL_x_ BUFFER_A_DST_ADDR e e e 281
CHANNEL_x_BUFFER_A_TRANSFER_COUNT 282
CHANNEL_x_BUFFER_B_SRC_ADDR e 282
CHANNEL_x_BUFFER_B_DST_ADDRt 282
CHANNEL_x_BUFFER_B_TRANSFER_COUNT e 282
SYSREG Control Registers 283
ULPI Interface Signals at SmartFusion2 External I/Os 287
USB 10 Group Availability e 288
UTMI+Interface Signals at Fabric Interface in SmartFusion2 Device 288
Response to LPM Transaction as Peripheral i 297
APIs available in USB Firmware Drivers and Descriptionof CIL 304
Device Mode Class Driver APIs (LDL)o e 306
Functional Descriptions of Callback APIs 306
SOFTRESET_REG Bit for USB Controller SoftReset 308
Common Register Set Description 309
FADDR_REG(0x40043000)ttt ittt e e e e et e e e 310
POWER_REG (0x40043001)ttt ittt e e e e e e e e e e 310
TX_IRQ_REG (0x40043002) .. .ottt ettt e e e e e 311
RX_IRQ_REG (0x40043004) . .. ittt et e e e e e e e e 311
TX_IRQ_EN_REG (0X40043008)t ittt ettt et e e e e e 312
RX_IRQ_EN_REG (0x40043008)o\ttt e e 312
USB_IRQ_REG (0x4004300A) . . . oottt ittt e e e e e e 312
USB_IRQ_EN_REG (0x4004300B)ttt e 313
FRAME_REG (0x4004300C)ttt ettt et et et e e e e e 313
INDEX_REG (0x4004300E)ttt e e e 313
TEST_MODE_REG (0x4004300F)o\ttt e e e e e e 314
Operating Speed 314
Indexed Register Set Description 315
TX MAX P _REG .. 317
CSROL_REG (Peripheral)o e e 317
CSROL_REG (HOSt) .. oottt e e e e e e 318
CSROH_REG (Peripheral) e 319
CSROH_REG (HOSt)ot 319
TX_CSRL_REG (Peripheral) e e 320
TX_CSRL_REG (HOSt) . ..ot e e 320
TX_CSRH_REG (Peripheral) e 321
TX_CSRH_REG (HOSt) ..ttt e e e e 322
RX_MAX P REG . .. e e 323
RX_CSRL_REG (Peripheral) e e e e 324
RX_CSRL_REG (HOSt) . . . oot e e 324
RX_CSRH_REG (Peripheral) e e e 325
RxPktReady Bit Cleared e 326
RX_CSRH_REG (HOSt) . .. o e e 326
COUNTO_REG . ..t e e e e e e e s 327
RX_COUNT _REG .. e e 327
TYPEO _REG . . .o 327
TX TYPE _REG . . 328
NAK_LIMITO_REG e e e e e e 328

UGO0331 User Guide Revision 15.0 XXiv

Table 232
Table 233
Table 234
Table 235
Table 236
Table 237
Table 238
Table 239
Table 240
Table 241
Table 242
Table 243
Table 244
Table 245
Table 246
Table 247
Table 248
Table 249
Table 250
Table 251
Table 252
Table 253
Table 254
Table 255
Table 256
Table 257
Table 258
Table 259
Table 260
Table 261
Table 262
Table 263
Table 264
Table 265
Table 266
Table 267
Table 268
Table 269
Table 270
Table 271
Table 272
Table 273
Table 274
Table 275
Table 276
Table 277
Table 278
Table 279
Table 280
Table 281
Table 282
Table 283
Table 284
Table 285
Table 286
Table 287
Table 288
Table 289
Table 290

& Microsemi

Power Matters.”

TX INTERVAL_REG ... e e 328
Polling Intervals for Transfer Types e e 329
RX TYPE _REG .. e 329
RX_INTERVAL_REG . .. e e e 329
CONFIG_DATA REG ..ttt e e e e e e 330
FIFO_SIZE_REG . ..o e e e e 330
FIFO RegiSterso e 330
EPX_FIFO_REG (0x400430YZ) . .. oottt ittt e e e e e e e 331
Additional Control and Status Registers (OTG, Dynamic FIFO, and Version) 331
DEV_CTRL_REG (0x40043060)ttt e e 334
Encoding of VBUS Level 334
MISC_REG (0Xx40043061)ottt ettt et e e e e e e e 335
TX_FIFO_SIZE_REG (0x40043062)ttt e e e 335
RX_FIFO_SIZE_REG (0x40043063)o\ttt e e 336
TX_FIFO_ADD_REG (0x40043064)\ttt e e 336
Start Address of Transmit Endpoint 336
RX_FIFO_ADD_REG (0Xx40043066)ttt ettt et 337
VBUS_CSR_REG (write only) (0x40043068)ttt 337
VBUS_CSR_REG (read only) (0x40043068)ttt 337
HW_VERSION_REG (0x4004306C)o\ttt e e e 337
ULPI and Configuration Registers e 338
ULPI_VBUS_CTRL_REG (0x40043070)ttt e 339
ULPI_CARKIT_CTRL_REG (0x40043071) ...\ttt et e 339
ULPLIRQ_MASK_REG (0x40043072) ...\ttt ettt 340
ULPI_IRQ_SRC_REG (0X40043073) . . . o\ttt ettt et e e e e e e e e et 340
ULPI_DATA_REG (0x40043074) . . .\ttt e e e e e 340
ULPI_ADDR_REG (0X40043075) . . .« ottt ettt e e e e e e e e e e 340
ULPI_REG_CTRL (0X40043076)ttt e e e e e 341
ULPI_RAW_DATA_REG (0x40043077) (Asynchronous), 341
ULPI_RAW_DATA_REG (0x40043077) (SynChronous)o vt 341
Encoded UTMI Event Signals e 342
EP_INFO_REG (0x40043078)ottt ittt et e e e e e e e e 342
RAM_INFO_REG (0x40043079) .. .ottt ittt e e e e e e 342
LINK_INFO_REG (0x4004307A) . . oottt ettt e e e e e e e 342
VP_LEN_REG (0x4004307B) . . . oottt e e 343
HS_EOF1_REG (0x4004307C) . ..ottt ittt e e e e e e e e e 343
FS_EOF1_REG (0x4004307D) . ..ttt ettt e et e e e e e e 343
LS_EOF1_REG (0X4004307E)ottt e e e e e e e 343
SOFT_RESET_REG (0x4004307F) . . .ottt it e e e e e e 343
Endpoint0 Control and Status Registers e 344
Endpoint1 Control and Status Registers 345
Endpoint2 Control and Status Registers 345
Endpoint3 Control and Status Registers 346
Endpoint4 Control and Status Registers 347
EPX_TX_MAX P _REG . . .o e 348
EPX_RX_COUNT_REG e e 348
EPX_RX_MAX P REG .. . 348
EPX_TX_TYPE_REG e e 349
EPX_TX_INTERVAL_REG e e 349
EPX_RX_TYPE_REG e e e 349
EPX_RX_INTERVAL_REG e e 350
EPX_FIFO_SIZE_REG o e 350
Extended Registers Description 351
EPx_RQ_PKT_COUNT_REG (0x40043XYZ) ...ttt e e 352
RX_DPKT_BUF_DIS_REG (0x40043340)ottt it et e 352
TX_DPKT_BUF_DIS_REG (0x40043342)\ttt e 353
C_T_UCH_REG (0x40043344)ttt e e e s 353
C_T_HHSRTN_REG (0x40043346) oottt e e e 353
C_T_HSBT_REG (0x40043348)ttt e e e 353

UGO0331 User Guide Revision 15.0 XXV

Table 291
Table 292
Table 293
Table 294
Table 295
Table 296
Table 297
Table 298
Table 299
Table 300
Table 301
Table 302
Table 303
Table 304
Table 305
Table 306
Table 307
Table 308
Table 309
Table 310
Table 311
Table 312
Table 313
Table 314
Table 315
Table 316
Table 317
Table 318
Table 319
Table 320
Table 321
Table 322
Table 323
Table 324
Table 325
Table 326
Table 327
Table 328
Table 329
Table 330
Table 331
Table 332
Table 333
Table 334
Table 335
Table 336
Table 337
Table 338
Table 339
Table 340
Table 341
Table 342
Table 343
Table 344
Table 345
Table 346
Table 347
Table 348
Table 349

& Microsemi

Power Matters.”

Turnaround Timeout Period Settings 354
DMA REGISTER Description e e e 354
DMA_INT_REG (0x40043200)ottt ittt e e e e e e e e e e 356
CHx_DMA_CTRL_REG (0x40043204)ttt e s 356
CHx_DMA_ADDR_REG (0x40043208)\ttt e e 357
CHx_DMA_COUNT_REG (0x4004320C) ottt e e e e e e e e e 358
Additional Multipoint CSR Description e 358
EPx_TX_FUNC_ADDR_REG (0x40043080)ttt et 364
EPX_RX_FUNC_ADDR_REGt 364
EPx_TX_HUB_ADDR_REG (0x40043082)o\ttt e 364
EPx_RX_HUB_ADDR_REG e 365
EPx_TX_HUB_PORT_REG (0x40043083)\ttt e 365
EPX_RX_HUB _PORT_REG it e e e 365
Link Power Management Register Descriptions i 366
LPM_ATTR_REG (0x40043360)ttt et et e e e 367
LPM_CTRL_REG (0x40043362)(Peripheral) 367
LPM_CTRL_REG (0x40043362) (HOSt) v it e e 368
LPM_INTR_EN_REG (0x40043363)ttt ettt et et 368
LPM_INTR_REG (0x40043364)(Peripheral Mode)o .. 369
LPM_INTR_REG (0x40043364) (Host Mode)ot 369
LPM_FADDR_REG (0x40043365)o\ttt et e e e e e 370
MASTER_WEIGHT 1 _CR .. .o e e 371
USB_IO_INPUT_SEL_CR ... e e e e 372
USB _CR . 372
USB _EDAC CONT ..ottt e e e e e 372
USB_EDAC _ADR . .. 373
USB SR . 373
EDAC SR . 373
CLR_EDAC_COUNTERS ... e e 373
MU POt S o 378
GMIL P OtS o 378
Tl POt S . . 379
TX/IRX DESCHIPIOr . . .o e 381
PacketStartAddr 381
Packet Size 381
NeXt DeSCriPIOr . . . o 382
TSEMAC Firmware Drivers for Initialization and Configuration 391
TSEMAC Firmware Drivers for Ethernet PHY Management 391
TSEMAC Firmware Drivers for Transmit and Receive Operations 391
TSEMAC Firmware Drivers for Reading Status and Statistics 392
MAC_CR Registerin SYSREG Block 392
EMAC M-AHB Register Map o e 393
EMAC PE-MCXMAC Register Mapt e 393
EMAC A-MCXFIFO Register Map i e e e 394
EMAC PE-MSTAT Transmit and Receive Counters RegisterMap 395
EMAC PE-MSTAT Receive Counters RegisterMap 395
EMAC PE-MSTAT Transmit Counters RegisterMap 396
EMAC M-SGMII Register Mapot e e 397
DMA TX CTRL .o e e 399
DMA _TX DESC .. e e 399
DMA TX ST ATUS .o e 399
DMA RX CTRL .ot e 400
DMA _RX DESC . . e 400
DMA RX ST ATUS . . e 400
DMA _IRQ . _MASK . . 400
DMA IRQ . . 401
CF G o 401
CF G 402
P 403

UGO0331 User Guide Revision 15.0 XXVi

Table 350
Table 351
Table 352
Table 353
Table 354
Table 355
Table 356
Table 357
Table 358
Table 359
Table 360
Table 361
Table 362
Table 363
Table 364
Table 365
Table 366
Table 367
Table 368
Table 369
Table 370
Table 371
Table 372
Table 373
Table 374
Table 375
Table 376
Table 377
Table 378
Table 379
Table 380
Table 381
Table 382
Table 383
Table 384
Table 385
Table 386
Table 387
Table 388
Table 389
Table 390
Table 391
Table 392
Table 393
Table 394
Table 395
Table 396
Table 397
Table 398
Table 399
Table 400
Table 401
Table 402
Table 403
Table 404
Table 405
Table 406
Table 407
Table 408

& Microsemi

Power Matters.”

HALF DUPLEX o oottt e e e e e e e e 404
MAX_FRAME_LENGTH . . oottt e e e e 405
TEST oot 405
MILCONFIG .« .. oo e e e e e e e e 405
MI_COMMAND . .ot e e 406
MI_ADDRESS . ..ottt e e e 407
MILCTRL oot e 407
MILSTATUS © o oo e 407
MILINDICATORS . . . oot e e e e e e e e e 407
INTERFACE_CTRL ..ottt et e e e e e e 407
INTERFACE_STATUS . . oottt e e e 409
STATION_ADDRESST . . . o .o oot e e 409
STATION_ADDRESS2 . . . o . o oot e e 410
FIFO_CFGO . .ot e et e e e e e 410
FIFO_CFGT oot e e e e e e 411
FIFO_CFG2 . .ottt e e e e e e 411
FIFO CFG3 . oot e e e 412
FIFO CFGA . oottt e e 413
FIFO_CFGB . oottt e e e 413
FIFO_RAM_ACCESSO o\ oot e e e e e 414
FIFO_RAM_ACCESST . ..ot 415
FIFO_RAM_ACCESS2 ...ttt e 415
FIFO_RAM ACCESS3 oottt e e e 415
FIFO_RAM ACCESSA . ..o oo e e 415
FIFO_RAM _ACCESSSo\ o et et 415
FIFO_RAM_ACCESSB o v oo e e e e e e e 416
FIFO_RAM_ACCESST . .. oottt e e e 416
TRBA © o oot 416
TRIT oot 416
TR255 o e et 416
TRETT oot 417
TRIK o et 417
TRMAX o oo e 417
TRMGY . . oo e e 417
RBY T ottt 417
RPKT ot e 418
RECS ottt 418
RMCA oo e 418
RBCA oottt 418
RXCF ottt e e 418
RXPE oot 418
RXUO oot 419
RALN ot 419
RELR oot 419
RCDE .« ottt e e e e 419
ROSE ottt 419
RUND .« ottt e e e 420
ROVR .« oot e 420
RERG oot e 420
RIBR oottt e 420
RDRP et 420
TBY T e 421
TPKT e e 421
TMCA e 421
TBCA « oot 421
TXPE o 421
TDFR oot e 422
TEDF ot 422
TOCL o vt e e 422

UGO0331 User Guide Revision 15.0 XXVi

Table 409
Table 410
Table 411
Table 412
Table 413
Table 414
Table 415
Table 416
Table 417
Table 418
Table 419
Table 420
Table 421
Table 422
Table 423
Table 424
Table 425
Table 426
Table 427
Table 428
Table 429
Table 430
Table 431
Table 432
Table 433
Table 434
Table 435
Table 436
Table 437
Table 438
Table 439
Table 440
Table 441
Table 442
Table 443
Table 444
Table 445
Table 446
Table 447
Table 448
Table 449
Table 450
Table 451
Table 452
Table 453
Table 454
Table 455
Table 456
Table 457
Table 458
Table 459
Table 460
Table 461
Table 462
Table 463
Table 464
Table 465
Table 466
Table 467

& Microsemi

Power Matters.”

T o 422
TG o et 422
X O o 422
TN G 423
TPFH 423
TR P 423
TUBR 423
TR C S o 423
TR CF o 423
TOV R 424
TUN DD o 424
TR G o 424
AR 424
CA R 425
CAMT e 426
CAM 427
SGMII CONTROL . . . e e e e 429
SGMII ST ATUS . 429
AN SGMII ADVERTISEMENT . .. e e 430
AN LINK PARTNER BASE PAGE ABILITY ... e 430
AN EXPANSION . .o 431
AN NEXT PAGE TRANSMIT . .o e e e 431
AN NEXT PAGE TRANSMIT ... e e e e 431
EXTENDED STATUS . . e e e 432
JITTER DIAGNOSTICS . .o e s 433
TBI CONTROL . e e 433
CAN BUS Interfaceo e 437
TeSt MOAES . . oo 442
Summary of Different Valid CAN Connections 443
APB to SRAM Address Mappingot e 449
CAN SYSREG Control Registers e 451
CAN Controller Soft Reset Bit in the SOFT_RESET_CRRegister 452
Summary of CAN Controller Registers 452
CAN _CONFIG . e 454
CAN_COMMAND . . e 455
TX_MSGO_CTRL_CMD . . .ottt e e e e e e e 456
TX MSGO D .o 457
TX_MSGO_DATA HIGH . . e e 457
TX MSGO _DATA LOW L e e 457
Transmit Message1 to Transmit Message31 Registers Description 458
TX BUF _STATUS . e 459
RX_MSGO_CTRL_CMD . ..o e e e e e e 460
RX_MSGO_ID ..ot 461
RX_MSGO_DATA _HIGH ..o e e 461
RX_MSGO_DATA LOW . . e 462
RX MS GO _AMR . o 462
RX_MSGO_ACR .. 462
RX_MSGO_AMR D AT A . o 462
RX_MS GO _ACR DAT A e e 462
Receive Message1 to Receive Message 31 and ECR Registers Description 463
RX BUF ST ATUS .. e 464
EC R o 465
ERROR ST ATUS . . e 466
INT _ENABLE . .. 466
INT ST ATUS . e e e 467
MMUART I/0 Signal Descriptionsttt e 471
Soft Reset Bit Definition forthe MMUART _X i e 474
MSS MMUART APIS . . . e 488
MMUART Register Definitions 490

UGO0331 User Guide Revision 15.0 Xxviii

Table 468
Table 469
Table 470
Table 471
Table 472
Table 473
Table 474
Table 475
Table 476
Table 477
Table 478
Table 479
Table 480
Table 481
Table 482
Table 483
Table 484
Table 485
Table 486
Table 487
Table 488
Table 489
Table 490
Table 491
Table 492
Table 493
Table 494
Table 495
Table 496
Table 497
Table 498
Table 499
Table 500
Table 501
Table 502
Table 503
Table 504
Table 505
Table 506
Table 507
Table 508
Table 509
Table 510
Table 511
Table 512
Table 513
Table 514
Table 515
Table 516
Table 517
Table 518
Table 519
Table 520
Table 521
Table 522
Table 523
Table 524
Table 525
Table 526

& Microsemi

Power Matters.”

RBR . 491
THR 491
FCOR o 491
DR L 493
DM R L 493
D R 493
Baud Rates and Divisor Values for the 18.432 MHz Reference Clock 494
IER L 494
IEM 494
R 495
Interrupt Identification Bit Values 495
M e 496
LCR . 496
L 497
LR . 498
MO R L 499
SR 500
MM 500
MM e 501
M 501
G R 502
Tl G o 503
RO o 503
AD R L 503
SPlInterface Signals 506
Data Transfer Modes e 507
Summary of Master SPIModes e 507
Behavior of the Output Enable Signal i 510
Soft Reset Bit Definitions for SPI Peripheral 517
MS S SPI AP .« 524
SYSREG Control Registers 527
SPIRegister SUMMary e 527
CONT RO L .. e 528
TXRXDF _SIZE . . 529
StAtUS . . 530
INT _CLEAR .. 531
RX D AT A 531
X D AT A 531
CLK GEN . 531
SLAVE _SELECT .. 532
CLK_MODE Example, APB Clock =153.8 MHz i, 532
IS 533
RIS o 533
CONTROLZ .. 534
COMMAND . . . 535
PRI SIZE . . 536
CMD _SIZE . . . 536
HW S T ATUS . o 536
ST AT B . o 537
[2C INterface SIGNAISo oo et e e 540
Soft Reset Bit Definitions For 12C Peripherals 541
MSS I2C APIS .. o ittt e 546
12c Register Map 550
Control Register (CTRL)o e e 551
Clock Rate (CR) ...t 551
Status Register (STATUS) 552
Status Register — Master-Transmitter Mode 552
STATUS Register — Master-ReceiverMode 553
STATUS Register — Slave-ReceiverMode 554

UGO0331 User Guide Revision 15.0 XXiX

Table 527
Table 528
Table 529
Table 530
Table 531
Table 532
Table 533
Table 534
Table 535
Table 536
Table 537
Table 538
Table 539
Table 540
Table 541
Table 542
Table 543
Table 544
Table 545
Table 546
Table 547
Table 548
Table 549
Table 550
Table 551
Table 552
Table 553
Table 554
Table 555
Table 556
Table 557
Table 558
Table 559
Table 560
Table 561
Table 562
Table 563
Table 564
Table 565
Table 566
Table 567
Table 568
Table 569
Table 570
Table 571
Table 572
Table 573
Table 574
Table 575
Table 576
Table 577
Table 578
Table 579
Table 580
Table 581
Table 582
Table 583
Table 584
Table 585

STATUS Register — Slave-Transmitter Mode
STATUS Register — Miscellaneous States
Data Register (DATA)
Slave0 Address Register (Slave0 ADR)

SMBus Register (SMBUS)
Frequency Register (FREQ)

Glitch Register (GLITCHREG)
Slave1 Address Register (SLAVE1 ADR)
GPIO_X CFG ... e
MSS GPIO Interrupts
MSSGPIOAPIso
MSS GPIO RegisterMap
GPIO SYREG Registers
SOFT_RESET_CR
MSS_GPIO_DEF
LOOPBACK CR ... oo
GPIN_SRC_SEL_CR,
GPIO_SYSRESET_SEL_CR
Associated IOMUXes for GPIOs
IOMUX CELL11
IOMUXCELL12
IOMUXCELL13
IOMUXCELL14 i
IOMUXCELL15
IOMUXCELL16o
IOMUX CELL17
IOMUXCELL18
IOMUXCELL19
IOMUXCELL20
IOMUX CELL21
IOMUX CELL22
IOMUXCELL23 i
IOMUXCELL24
IOMUXCELL25
IOMUXCELL26,
IOMUX CELL27
IOMUXCELL28 i
IOMUXCELL29
IOMUXCELL30 ...
IOMUX CELL31
IOMUXCELL32
IOMUXCELL33
IOMUXCELL34
IOMUXCELL35
IOMUXCELL36coiiiin...
IOMUX CELL37 i
IOMUX CELL38
IOMUXCELL39
IOMUX CELL40
IOMUX CELL41
IOMUXCELL42
IOMUX CELL43
IOMUX CELL44
IOMUX CELL45
IOMUXCELL46
IOMUX CELLA47
IOMUX CELL48
IOMUXCELL49
IOMUX CELLS50

UGO0331 User Guide Revision 15.0

& Microsemi

Power Matters.”

XXX

Table 586
Table 587
Table 588
Table 589
Table 590
Table 591
Table 592
Table 593
Table 594
Table 595
Table 596
Table 597
Table 598
Table 599
Table 600
Table 601
Table 602
Table 603
Table 604
Table 605
Table 606
Table 607
Table 608
Table 609
Table 610
Table 611
Table 612
Table 613
Table 614
Table 615
Table 616
Table 617
Table 618
Table 619
Table 620
Table 621
Table 622
Table 623
Table 624
Table 625
Table 626
Table 627
Table 628
Table 629
Table 630
Table 631
Table 632
Table 633
Table 634
Table 635
Table 636
Table 637
Table 638
Table 639
Table 640
Table 641
Table 642
Table 643
Table 644

& Microsemi

Power Matters.”

IOMUX CELL 51 .o e 590
IOMUX CELL 52 . . .o e e e 590
IOMUX CELL 53 . . o e e 590
IOMUX CELL 54 . . o e 590
IOMUX CELL 55 . . o e e 591
IOMUX CELL 56 e e e 591
APIs forthe COMM _BLK 596
COMM_BLK Register Map e e e e 597
CONT RO L . 598
ST ATUS L 598
INT _ENABLE . .. 599
DA T A 599
DA T A 600
FRAME ST AR . . e 600
FRAME ST ART 82 . e 600
Calendar Counter DesCription i e 602
RTC Interface Signals 603
RTC APIS . .o 607
Allocation of Bits in Calendar Mode 609
Register Bit Allocation e 609
Register Map for RTC e e e 609
CONtrOl . . e 610
MOdE . . . 611
Prescaler 611
Alarm and COMPAreo e 612
Date and Time 612
The RTC_WAKEUP_CR inthe SYSREG BIOCKt 613
Timer Interface Signals e 615
Soft Reset Bit Definitions for System Peripheral 615
MSS Timer APIS . . o 619
Timer Register Map e 622
TIMX VAL 623
TIMX_LOADV AL . .o e 623
TIMX_BGLOADV AL . . 623
TIMX _CT R .o 624
TIMX RIS . 624
TIMX IS L 625
TIMBA VAL U . 625
TIMBA VAL L . o 625
TIMBA_LOADVAL _U . 625
TIMB4_LOADVAL L ..o 626
TIMB4_BGLOADVAL _U ... e 626
TIMB4_BGLOADVAL L . 627
TIMBA T RL .o 627
TIMBA RIS . . 628
TIMBA _MIS . . 628
TIMBA_MODE . . . 628
Watchdog Timer Interface Signals 631
Watchdog Timer APISo e 636
Watchdog Timer Register Interface Summary 638
WD OGY ALUE . 638
WDOGLOAD . .t 638
WDOGMV RP . 639
WDOGREFRESH 639
WDOGENABLE . .. 639
WDOGCONTROL . . oottt e e e 640
WD OGS T ATUS o e 640
WD OG RIS .. 640
Watchdog Timer SYSREG e e e 641

UGO0331 User Guide Revision 15.0 XXXi

Table 645
Table 646
Table 647
Table 648
Table 649
Table 650
Table 651
Table 652
Table 653
Table 654
Table 655
Table 656
Table 657
Table 658
Table 659
Table 660
Table 661
Table 662
Table 663
Table 664
Table 665
Table 666
Table 667
Table 668
Table 669
Table 670
Table 671
Table 672
Table 673
Table 674
Table 675
Table 676
Table 677
Table 678
Table 679
Table 680
Table 681
Table 682
Table 683
Table 684
Table 685
Table 686
Table 687
Table 688
Table 689
Table 690
Table 691
Table 692
Table 693
Table 694
Table 695
Table 696
Table 697
Table 698
Table 699
Table 700
Table 701
Table 702
Table 703

& Microsemi

Power Matters.”

VDD Power-Up to Functional Time e 648
DEVRST N Power-Up to Functional Time i, 651
GPIO_OUT Bank Reset Generation i e 659
Switch Register Map e e 669
Register TYPeS . ..o 671
SY SREG . . 676
Subset of System Registers 682
ESRAM _CR .o 683
ESRAM _MAX L AT . .ot e e 683
eSRAM Maximum Latency Values i e 684
DD R _CR . 684
ENVM _CR 684
SW_ENVMREMAPSIZE 686
ENVM_REMAP _BASE _CR e e e 686
ENVM_REMAP _FAB CR ... e e e e e 687
CC CR 687
CC _REGION _CR .. e e e e e e 688
CC_LOCK_BASE_ADDR_CR ... e e e e e 688
CC _FLUSH _INDX _CR ..t e e e e e e e e 688
DDRB_BUF_TIMER _CR e e e e e e 689
DDRB_NB_ADDR _CR ... e e e e 689
DDRB_NB _SIZE _CR ... e e 689
Non-Bufferable Region 689
DDRB_CR .o 690
EDAC CR . 691
MASTER_WEIGHTO _CR e e e e e 691
MASTER_WEIGHT _CR e e e e e e 692
Programmable Weight Values e i 692
SOFT _IRQ_CR . . 693
SOFT _RESET _CR ... e e e e e e 693
M3 CR 695
FAB _IF _CR .o 695
LOOPBACK _CR .. e e e e e 696
GPIO_SYSRESET_SEL_CR ... e 696
GPIN_SRC_SEL _CR ... e e 697
MD DR _CR . . 697
USB_IO _INPUT_SEL_CR ... e e e e e e e 698
PERIPH_CLK _MUX_SEL_CR e e e e e e 698
WDOG _CR . 699
MDDR_IO_CALIB_CR .. e 699
EDAC _IRQ_ENABLE _CR e e e 699
USB _CR . 701
ESRAM_PIPELINE_CR e e e e 701
MSS _IRQ_ENABLE._CR ... e 702
RTC_WAKEUPR _CR .. e e e e e 702
MAC _CR . 702
MSSDDR_PLL_STATUS_LOW_CR ... e 703
FACC _PLL_RANGE e e e e e e 704
MSSDDR_PLL_STATUS HIGH_CR e e e 704
MSSDDR _FACCT _CR ..ot e e e e 705
Clock Ratio e 707
MSSDDR _FACC2_CR . ..ot e e e e 707
PLL _LOCK _EN_CR .. e e 709
MSSDDR _CLK_CALIB_CR ... e e e e 709
PLL_DELAY LINE_SEL_CR e e e e e e 709
MAC_STAT _CLRONRD_CR ... e e e e e 710
RESET_SOURCE_CR ... e e e e e e e e 710
CC_DC_ERR_ADDR SR ... e 711
CC_IC_ERR_ADDR SR ... 71

UGO0331 User Guide Revision 15.0 XXXii

Table 704
Table 705
Table 706
Table 707
Table 708
Table 709
Table 710
Table 711
Table 712
Table 713
Table 714
Table 715
Table 716
Table 717
Table 718
Table 719
Table 720
Table 721
Table 722
Table 723
Table 724
Table 725
Table 726
Table 727
Table 728
Table 729
Table 730
Table 731
Table 732
Table 733
Table 734
Table 735
Table 736
Table 737
Table 738
Table 739
Table 740
Table 741
Table 742
Table 743
Table 744
Table 745
Table 746
Table 747
Table 748
Table 749
Table 750
Table 751
Table 752
Table 753
Table 754
Table 755
Table 756
Table 757
Table 758
Table 759
Table 760
Table 761
Table 762

CC_SB_ERR ADDR SRccven...
CC_IC_ MISS CNTR SR ..o,
CCIC HIT CNTR SRovviiiniiin...
CC_DC_MISS CNTR SRovvein...
CC_DC_HIT. CNTR.CR ..o,

CC_IC_TRANS_CNTR_SR
CC_DC_TRANS_CNTR_SR
DDRB_DS_ERR_ADR_SR
DDRB_HPD_ERR_ADR_SR
DDRB_SW_ERR_ADR_SR

DDRB_BUF EMPTY SR ...,
DDRB_DSBL DN SRoovoeean. ..
ESRAMO_EDAC_ CNT ...,
ESRAM1_EDAC CNT ..o,
MAC_EDAC_TX_CNT ..o,
MAC_EDAC RX_CNT ..o,
USB_EDAC CNT ..ot
CAN_EDAC CONT ..o
ESRAMO_EDAC_ADRoouveenen...
ESRAM1_EDAC_ADRovooennnin ..
MAC_EDAC_RX_ADRoovurnniiin..
MAC_EDAC_TX_ADR ...,
CAN_EDAC ADR ...t
USB_EDAC_ADR ...,
MMO_1 2 SECURITYoovoiannnnn...
MM4_5 DDR_FIC_SECURITY/MM4_5_FIC64_SECURITY
MM3 6 7 8 SECURITY ..o,
MM9_SECURITY ...,
M3_SR .t
ETM_COUNT LOW ...,
ETM_COUNT HIGH ..o,
DEVICE_SR .. oeeee e
ENVM_PROTECT USERovovernn...
ENVM_STATUS ..ot
DEVICE_VERSIONiuiiieeaann...
MSSDDR_PLL_STATUS ..o,
USB_SR ...ttt
ENVM_SR ..ot
DDRB_STATUS ..o oo

MDDR_IO_CALIB_STATUS

MSSDDR_CLK_CALIB_STATUS
WDOGLOAD
WDOGMVRP ...
USERCONFIGOo,
USERCONFIGT i
USERCONFIG2 i,
USERCONFIG3 i
FAB_PROT_SIZE
RegionSize i
FAB_PROT_BASE,
MSS_GPIO_DEF
EDAC_SR
MSS_INTERNAL_SR
MSS_EXTERNAL_SR
WDOGTIMEOUTEVENT
CLR_MSS_COUNTERS
CLR_EDAC_COUNTERS
FLUSH_CR ...
MAC_STAT_CLR_CR

UGO0331 User Guide Revision 15.0

& Microsemi

Power Matters.”

Xxxiii

Table 763
Table 764
Table 765
Table 766
Table 767
Table 768
Table 769
Table 770
Table 771
Table 772
Table 773
Table 774
Table 775
Table 776
Table 777
Table 778
Table 779
Table 780
Table 781
Table 782
Table 783
Table 784
Table 785
Table 786
Table 787

& Microsemi

Power Matters.”

IOMUXCELL_CONFIGIN] . . .ttt it e e e e e e e e e e e 736
MSS_IOMUXSELS [N][2:0] . .« o oot e et e e e e e e e e e 737
MSS_IOMUXSELA[N][2:0] . ..ottt e e 737
Interrupt Line Signal Distribution e 740
FIIC Port Listo 741
Interrupt Source NUMDbErS 744
Bit-Band Register Bit of Interrupt_Enable0 and Interrupt_Enable1 745
Bit-Band Register Bit of INTERRUPT_REASONO and INTERRUPT_REASON1 747
SmartFusion2 SoC FPGAFIIC RegisterMap e 749
INTERRUPT_ENABLED e e e 749
INTERRUPT _ENABLET e 753
INTERRUPT _REASONT .. e e 753
INTERRUPT _REASONOD . .. e e e e 754
INTERRUPT _MODE e e 756
Number of FICs Available for Usein Each Device 758
Master Group Access to Fabric Slaves i 760
FIC Memory RegioNs e e 760
Fabric Interface Controller Port List 762
Address Regions and Compatible Slots for 266 MB Per Slot Option 770
FAB_IF Register inthe SYSREG BIoCK e 783
FDDR APB Slave Configuration Interface Port List 785
MDDR APB Slave Configuration Interface Port List 785
SERDERIF APB Slave Configuration Interface Port List 786
MSS APB Master Configuration Interface Port List 786
Minimum Number of Checksum Bits Required Data 793

UGO0331 User Guide Revision 15.0 XXXiV

Revision History @ Microsemi

Power Matters.”

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 15.0

The following changes were made in revision 15.0 of this document.

« Configuration Through Libero Software and Firmware, page 16 updated.

* TESMAC Firmware Drivers information updated in Table 327, page 391, Table 328, page 391,
Table 329, page 391, Table 330, page 392.

+ Updated register information in Table 468, page 491, Table 666, page 689, Table 693, page 704,
Table 722, page 716, Table 723, page 716, Table 724, page 717, Table 725, page 717, Table 726,
page 717, and Table 727, page 717.

* Updated ULPI (UTMI+ Low Pin Interface) I/O Interface, page 287.

1.2 Revision 14.0

The following changes were made in revision 14.0 of this document.

* The power-up to functional time sequence information was updated to include the
POWER_ON_RESET_N signal. For more information, see Power-Up to Functional Time Sequence,
page 645.

* The test cases listed in Table 645, page 648 were updated for consistency with DS07128: IGLOO2
and SmartFusion2 Datasheet. The VDD power-up to functional time flow diagram (Figure 282,
page 650) was updated to include the POWER_ON_RESET_N signal. For more information, see
VDD Power-Up to Functional Time, page 648.

* The test cases listed in Table 646, page 651 were updated for consistency with DS07128: IGLOO2
and SmartFusion2 Datasheet. The DEVRST_N power-up to functional time flow diagram
(Figure 283, page 651) was updated to include the POWER_ON_RESET _N signal. For more
information, see DEVRST_N Power-Up to Functional Time, page 651.

1.3 Revision 13.0

The following changes were made in revision 13.0 of this document.

» Updated Power Management, page 45 (SAR 84698).

* Updated Table 72, page 120 (SAR 83563).

* Added System Registers Behavior for M2S005/010 Devices, page 682 (SAR 83541).

* Updated Table 738, page 724 (SAR 83014).

* Updated Software Reset Control Register, page 693 (SAR 82129).

+ Updated Figure 82, page 160, Figure 83, page 160, Figure 84, page 161, Figure 85, page 161, and
Figure 86, page 162 (SAR 85251).

* Updated Table 113, page 184 (SAR 85241).

1.4 Revision 12.0

The following changes were made in revision 12.0 of this document.

+ Updated Table 650, page 676 (SAR 70453).

* Updated bit name from MSS_IOMUXSEL4UPPERI[N] to MSS_IOMUXSEL4[N][2:0] in the Table 763,
page 736 (SAR 78918).

» Added Register Lock Bits Configuration, page 674 (SAR 79854).

* Updated Table 777, page 758 (SAR 78910).

* Updated Power-On Reset Generation Sequence, page 643 (SAR 76102).

* Updated Bit number [18:1] description in Table 658, page 686 (SAR 69988).

* Updated Register name CLRHINT[2:0] row in Table 112, page 180 (SAR 74635).

» Updated £ to < in Cortex-M3 Processor Overview and Debug Features, page 6 (SAR 76277).

* Added Figure 85, page 161 (M2S060 device) (SAR 78896).

UGO0331 User Guide Revision 15.0 1

https://www.microsemi.com/document-portal/doc_download/132042-ds0128-igloo2-and-smartfusion2-datasheet
https://www.microsemi.com/document-portal/doc_download/132042-ds0128-igloo2-and-smartfusion2-datasheet

Revision History @ Microsemi

Power Matters.”

* Added clocking information to SGMII Module, page 377 (SAR 75342).

* Added information regarding full behavioral simulation model in the applicable chapters (SAR
80669).

* Removed note from Peripheral Signals Assignment Table, page 443, and removed “System Clock
Frequency” section (SAR 53174).

* Added Power-Up to Functional Time Data, page 646 (SAR 81600).

* Added Error Detection and Correction Controllers, page 792 (SAR 80945).

. Updated Figure 153, page 375, Figure 155, page 380, Figure 160, page 387, and Figure 161,
page 388 (SAR 81447).

* Added a note for Functional Description, page 7 in Cortex-M3 Processor Overview and Debug
Features, page 6 (SAR 81261).

* Updated Table 640, page 639 and Table 641, page 640 (SAR 82053).

* Updated Bit number 2 description in Table 693, page 704 (SAR 82131).

1.5 Revision 11.0

The following changes were made in revision 11.0 of this document.

* Updated Table 367, page 413 and Table 368, page 413 (SAR 58939).
+ Updated Locked Transactions, page 231 (SAR 64773).

1.6 Revision 10.0

The following changes were made in revision 10.0 of this document.

* Updated Power-Up to Functional Time Sequence, page 645 (SAR 72958).

* Updated Table 481, page 497 (SAR 70358).

* Updated Functional Description, page 146 chapter in Embedded NVM (eNVM) Controllers,
page 145 chapter (SAR 73736).

* Updated Table 741, page 725 and Table 110, page 180 (SAR 70182).

* Added Figure 82, page 160, Figure 83, page 160, Figure 84, page 161, and Figure 86, page 162,
and added eNVM Pages for Special Purpose Storage, page 163 (SAR 66208).

* Updated SPI Use Models, page 525 (SAR 62152).

* Updated Table 104, page 175, Table 112, page 180, and Table 656, page 684 (SAR 71776).

1.7 Revision 9.0

The following changes were made in revision 9.0 of this document.

* Updated Reset Controller, page 642 (SAR 51042, 65634, 66764, 66981).
* Updated Figure 296, page 661 (SAR 67010)

* Added a note to System Reset, page 654 (SAR 64029)

* Updated FIC Implementation Considerations, page 766 (SAR 64802).

1.8 Revision 8.0

The following changes were made in revision 8.0 of this document.

* Removed M2S100 devices list from Features, page 145, Table 93, page 146, Table 94, page 147,
and Table 114, page 185 (SAR 62858).

* Updated Table 104, page 175 for NV_FREQRNG and replaced FREQRNG with NV_FREQRNG
throughout the document (SAR 62544)

* Updated Page Program, page 152 (SAR 61046).

» Updated System Register Block, page 670 (SAR 62544).

* Added a reference to SmartFusion2 SoC FPGA High Speed DDR Interfaces User Guide in the
HPDMA Use Models, page 245 (SAR 60106).

1.9 Revision 7.0

The following changes were made in revision 3.0 of this document.

» Updated Cache Engine, page 139 (SAR 58874).

UGO0331 User Guide Revision 15.0 2

Revision History

1.10

1.11

1.12

& Microsemi

Power Matters.”

Revision 6.0

The following changes were made in revision 3.0 of this document.

* Added a note to Trace Port Interface Unit (TPIU) Configuration, page 17 (SAR 55243).

+ Updated Table 3, page 14 and Table 4, page 15 (SAR 51221).

* Updated Table 4, page 15 (SAR 57010)

* Updated Memory System Ordering of Memory Accesses, page 30 (SAR 49728).

* Updated Power Management, page 45 (SAR 50897).

* Changed S bus to SBUS in Cache Controller, page 133 (SAR 48038)

* Added a note to Cache Locked Mode, page 141 (SAR 46463).

* Added notes in How to Use eNVM, page 165 (SARs 47902, 46463, 55243, and 49367).

* Updated Set Lock Bit and User Unlock Commands, page 153 (SAR 55728).

* Added a note to Page Program, page 152 (SAR 56496).

. Updated the document (SARs 46656, 57682, 55965, and 52508).

* Added eNVM Program and Verify Operations Timing Diagrams, page 155 (SAR 44080).

* Updated the HPDMA Details of Operation, page 241 (SARs 48855 and 46151).

* Updated Posted APB Writes, page 270 (SAR 48614).

* Added a note to PHY Interfaces, page 287 and to ULPI (UTMI+ Low Pin Interface) I/O Interface,
page 287 (SAR 50776).

* Updated Table 323, page 381 (SAR 51248)

* Updated Table 321, page 378 (SAR 52741)

* Added CoreMACFilter Overview, page 434 (SAR 58615).

* Updated Table 500, page 528 for TXRXDFCOUNT value (SAR 48912).

* Updated MSS GPIO Functional Description, page 563 (SAR 41775)

* Added a note to Table 543, page 577 (SAR 51119).

* Added a note to Power-On Reset Generation Sequence, page 643 (SAR 56613).

* Updated Table 763, page 736 for bit numbers (SAR 52993).

* Updated Table 772, page 749 (SAR 50361).

» Updated the introductory content of Fabric Interface Controller, page 757, and added a note to
Figure 336, page 766 (SAR 56584).

* Updated Embedded NVM (eNVM) Controllers, page 145, Embedded SRAM (eSRAM) Controllers,
page 187, AHB Bus Matrix, page 210, High Performance DMA Controller, page 236, Peripheral
DMA, page 264, Serial Peripheral Interface Controller, page 504, Communication Block, page 592,
System Register Block, page 670, Fabric Interface Interrupt Controller, page 738, and Fabric
Interface Controller, page 757 chapters for FTC comments (SAR 56085).

Revision 5.0

The following changes were made in revision 3.0 of this document.

» Updated the document (SAR 53559).
» Updated Figure 289, page 657 and Figure 290, page 657 (SAR 53672).
+ Updated Figure 356, page 782 (SAR 54025).

Revision 4.0

The following changes were made in revision 4.0 of this document.

» Corrected all instances of baud rate (SAR 47848).

» References to 1.0 v were removed (SAR 46823).

* Updated Features, page 133 of Cache Controller, page 133 (SAR 42397).

* Added a reference to the Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories application
note (SAR 47903).

* Updated Figure 57, page 134 (SAR 48354).

* Updated eNVMTheory of Operation, page 148 (SARs 47905 and 50072).

* Updated Figure 112, page 225, Figure 113, page 226, and Figure 117, page 230, Table 142,
page 220, and Table 146, page 232 (SARs 39867 and 48605).

* Updated the direction for ULPI_XCLK in Table 190, page 287 (SAR 48602).

* Updated Table 344, page 400 (SAR 46933).

* Updated Figure 239, page 562 (SAR 48715).

UGO0331 User Guide Revision 15.0 3

Revision History @ Microsemi

Power Matters.”

* Updated Table 611, page 612 (SAR 42472).

+ Updated Power-On Reset, page 654 (SAR 45905).

» Updated Table 650, page 676, Table 693, page 704, and Table 715, page 714 (SAR 48598).
» Updated details for CC_EDAC_EN in Table 669, page 691 (SAR 48194).

* Updated Table 735, page 722 (SAR 44275 and 48634).

* Updated Table 763, page 736 (SAR 49501).

* Updated details for CC_EDAC_EN in Table 138, page 208 (SAR 48194)

1.13 Revision 3.0

The following changes were made in revision 3.0 of this document.

* Updated "Purpose" section (SAR 48036).

* Updated Table 321, page 378 (SAR 47908).

* Updated links in CAN Controller, page 436 (SAR 47608).

* Restructured Fabric Interface Controller, page 757 as per inputs (SAR 47958).

114 Revision 2.0

The following changes were made in revision 2.0 of this document.

+ Modified the title of the user guide (SAR 45509).

* Restructured Cortex-M3 Processor Overview and Debug Features, page 6 (SAR 44811).

* Restructured Cache Controller, page 133 (SAR 44811).

* Restructured Embedded NVM (eNVM) Controllers, page 145 and updated AHBL Address Map to
NVM, page 150 (SAR 40367).

* Restructured Embedded SRAM (eSRAM) Controllers, page 187 (SAR 45900).

* Restructured AHB Bus Matrix, page 210 (SAR 46456).

* Restructured High Performance DMA Controller, page 236 (SAR 46151).

* Restructured Peripheral DMA, page 264 (SAR 46422).

* Restructured Universal Serial Bus OTG Controller, page 284 (SAR 47042).

* Restructured Ethernet MAC, page 374 (SAR 47043).

* Restructured CAN Controller, page 436 (SAR 50262).

* Restructured MMUART Peripherals, page 469 (SAR 50262).

* Restructured Serial Peripheral Interface Controller, page 504 (SAR 50262).

* Restructured Inter-Integrated Circuit Peripherals, page 538 (SAR 50262).

* Restructured MSS GPIO, page 562 (SAR 50262).

* Restructured Communication Block, page 592 (SAR 50262).

* Restructured RTC System, page 601 (SAR 46060).

* Restructured System Timer, page 614 (SAR 46048).

* Restructured Watchdog Timer, page 629 (SAR 46053).

* Restructured Reset Controller, page 642 and updated Power-Up to Functional Time Sequence,
page 645 (SAR 42469).

* Updated Figure 294, page 660 (SAR 43874).

* Restructured System Register Block, page 670 (SAR 47001).

+ Updated the "Flash Write ProtectSYSREG Block Register Write Protection" section (SAR 41978).

+ Updated Table 657, page 686, Table 739, page 724, Table 764, page 737, and Table 765, page 737
(SARs 43008 and 42733).

* Restructured Fabric Interface Interrupt Controller, page 738 (SAR 50262).

* Restructured Fabric Interface Controller, page 757 (SAR 45631).

* Restructured APB Configuration Interface, page 784 (SAR 50262).

* Updated DDR Remap, page 229 (SAR 42910).

+ Updated Table 779, page 760 (SAR 45578).

1.15 Revision 1.0

Revision 1.0 was the first publication of this document.

* Updated Cache Controller, page 133 (SAR 41865).
+ Table 89, page 135, Figure 57, page 134, and Table 91, page 137 (SAR 41865).
* Added Figure 250, page 593 (SAR 41229).

UGO0331 User Guide Revision 15.0 4

Revision History @ Microsemi

Power Matters.”

» Added Figure 328, page 761 through Figure 336, page 766 (SAR 39058).

UGO0331 User Guide Revision 15.0 5

Cortex-M3 Processor Overview and Debug Features @ M. .
icrosemi

2

2.1

Power Matters.”

Cortex-M3 Processor Overview and Debug
Features

The ARM Cortex-M3 processor is a low power consumption processor that features low gate count, low
interrupt latency, and low-cost debug. It is intended for deeply embedded applications that require
optimal interrupt response features. This processor implements the ARM v7-M architecture and is shown
in Figure 1, page 7. The SmartFusion®2 SoC FPGA device uses the R2P1 version of the Cortex-M3
core. This chapter highlights the Cortex-M3 processor and debug subsystem customizations made
specific to SmartFusion2.

For more details on the internals like programming model, exception model, instruction set, the
Cortex-M3 specific peripherals such as SysTick timer, memory protection unit and others, refer to the
Cortex-M3 Processor (Reference Material), page 18. The following manuals are available at the ARM
Info center.

. Cortex-M3 Technical Reference Manual
* ARM v7-M Architecture Reference Manual
* ARM v7-M Architecture Application Level Reference Manual

The Definitive Guide to the ARM Cortex-M3 by Joseph Yiu is recommended as additional reading (ISBN:
978-0-7506-8534-4).

Features

* A 32-bit processor core with low gate count and low latency interrupt processing.

* A RISC processor, with 3-stage pipeline Harvard architecture, pipeline core incorporating branch
speculation, single cycle multiplication, and hardware division, giving a Dhrystone benchmark of
1.25 DMIPS/MHz.

* A nested vectored interrupt controller (NVIC) that closely integrates with the processor core to
achieve low latency interrupt processing.

* A memory protection unit (MPU) is included. This facilitates the protected memory regions creation
and setting access rights for the protected regions.

* A Cortex-M3 processor, which is configured for SmartFusion2 MSS, and uses only little-endian.

* An auxiliary control register is included.

+ Multiple high-performance bus interfaces that are connected through an advanced
high-performance bus (AHB).

* A debug solution with the optional ability to:

* Implement breakpoints and code patches

* Implement watchpoints, tracing, and system profiling
* Support print style debugging

+ Bridge to a trace port analyzer

Manufacturers of Cortex-M3 processor integrated circuits are permitted some latitude in configuring a

particular implementation of the Cortex-M3 processor delivered by ARM. The following features are

implementation specifics in the SmartFusion2 device:

* MPU: This helps in creating protected and protected regions of memory

* Flash patch break point (FPB)

» Data watchpoint and trace (DWT) unit

* Instrumental trace macrocell (ITM)

+ Embedded trace macrocell (ETM)

+ Power-mode saving:
*+ HCLK s gated off when in SLEEPING or SLEEPDEEP mode.
SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface sleep mode exten-
sion handshake signals are available at the FPGA fabric interface.

UGO0331 User Guide Revision 15.0 6

http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp
http://infocenter.arm.com/help/index.jsp

Cortex-M3 Processor Overview and Debug Features

2.2

Figure 1

Interrupts and
Power Control

* Not all registers in the register bank are reset
* Endianness: little endian only

* Auxiliary control register is included
* Wake-up interrupt controller (WIC) is not included

& Microsemi

Power Matters.”

For more details of these configurations and optional features, refer to Cortex-M3 Processor (Reference

Material), page 18.

Functional Description

The following figure shows the Cortex-M3 processor, core peripherals and debug subsystem
implementations used in SmartFusion2.

Cortex-M3 Processor R2P1 Block Diagram as Implemented in the SmartFusion2 SoC FPGA

~

<

Cortex - M3
Processor
Debug
(Serial Wire
or JTAG)

Note:

Cortex-M3 Processor

N

Nested Vector CPU I/F
»| Interrupt »| Cortex-M3 Processor ETM
Controller (NVIC) Core >
y >
Instruction Data . A
I y Trigger
. . . Data Watchpoint
Flash Patch Break Point Memory Protection Unit
(FPB) P Trace
(DWT)
A A A A
A 4
> ‘ AHB Bus Matrix
A A A A A A
y A\ A 4 A 4
AHB
Access Port APBIF Instrumentation | |
(AHB - AP) Trace Macrocell
(IT™) Trace Port
Interface Unit
(TPIV)
!
>
v v v Private
|1-Code D-Code System Peripheral
Bus Bus Bus CoreSight Bus Trace Port
ROM Table v Interface

The following topics are covered in detail in the sub-sections:

+ Cortex-M3 Processor NVIC

+ Cortex-M3 Processor SysTick Timer

* Cortex-M3 Processor Debug Subsystem
+ Data Watch Point (DWP) and Trace

* Instrumentation Trace Macrocell

*+ Embedded Trace Macrocell

The Cortex-M3 operating frequency is dependent on device speed grade (up to 166 MHz). Refer to
SmartFusion2 Specifications-MSS Clock Frequency section from DS0128: IGLOO2 FPGA and
SmartFusion2 SoC FPGA Datasheet for more information.

UGO0331 User Guide Revision 15.0

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

Cortex-M3 Processor Overview and Debug Features

2.3

Cortex-M3 Processor NVIC

& Microsemi

Power Matters.”

The Cortex-M3 processor contains an NVIC, which is responsible for:

* Facilitating low-latency exception and interrupt handling
+ Controlling power management

The NVIC supports 11 exceptions as shown in Table 1, page 8. The NVIC also supports up to 83
dynamically re-prioritizable external interrupts, as shown in the Table 2, page 8, each with up to 16 levels
of priority. The NVIC maintains knowledge of stacked (nested) interrupts to enable tail-chaining of
interrupts. In MSS, the NVIC is configured to have 16 levels of priority (4 msb in BASEPRI register) are
implemented, so BASEPRI register [7-4] are used for the priority setting and [3-0] are read as zeros.

The following table lists exceptions. The detailed description of these exceptions can be found in the
ARM Cortex-M3 Technical Reference Manual.

Table 1+ Cortex-M3 Processor Exceptions
Position in
Interrupt Vector
Cortex-M3 Exceptions |Table Priority Description
Reset 1 (zero position is -3 Invoked on power-up and reset
stack pointer)
Non-maskable 2 -2 Non-maskable interrupt (NMI)}—watchdog timeout
exception interrupt
HardFault 3 -1 Hard fault interrupt: all fault conditions if the
corresponding fault handler is not enabled
Memory management |4 Configurable |Memory management interrupt: memory management
exception fault; MPU violation or access to illegal locations.
Bus fault exception 5 Configurable |Bus fault interrupt: bus error; occurs when the AHB
interface receives an error response from a bus slave
(also called prefetch abort if it is an instruction fetch or
data abort if it is a data access).
UsageFault 6 Configurable |Usage fault interrupt: exceptions resulting from a
program error or trying to access a coprocessor (the
Cortex-M3 does not support a coprocessor).
SVCall 11 Configurable |Supervisory call interrupt
Debug monitor 12 Configurable |Debug monitor interrupt: breakpoints, watchpoints, or
external debug requests
PendSV 14 Configurable |Pend supervisory interrupt
SysTick 15 Configurable |System tick timer interrupt
The interrupt sources listed in the following table are connected to the NVIC of the Cortex-M3 processor
in the MSS.
Table 2 Cortex-M3 Processor Interrupts
Cortex-M3
Interrupt | Signal Source Description
INTNMI WDOGTIMEOUTINT WATCHDOG | This interrupt is asserted (if enabled) if the counter
reaches zero and interrupt rather than reset
generation has been selected on counter timeout.
INTISR[0] |WDOGWAKEUPINT WATCHDOG |This interrupt is asserted (if enabled) on crossing
the WDOGMVRP level when the SLEEPING input is
asserted.

UGO0331 User Guide Revision 15.0 8

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf

Cortex-M3 Processor Overview and Debug Features - .
& Microsemi
Power Matters.”
Table 2 » Cortex-M3 Processor Interrupts (continued)
Cortex-M3
Interrupt [Signal Source Description
INTISR[1] |RTC_WAKEUP_INTR RTC RTC match/wake up interrupt from RTC block
INTISR[2] |SPIINTO SPIL O Interrupt from SPI 0
INTISR[3] |SPIINT1 SPI_1 Interrupt from SPI 1
INTISR[4] |[I2C_INTO 12C_0 Interrupt from 12C 0
INTISR[5] |I2C_SMBALERTO 12C_0 Interrupt from 12C 0
INTISR[6] |I12C_SMBSUSO 12C_0 Interrupt from 12C 0
INTISR[7] [I2C_INT1 12C_1 Interrupt from 12C 1
INTISR[8] |I2C_SMBALERT1 12C_1 Interrupt from 12C 1
INTISR[9] |I12C_SMBSUSH1 12C_1 Interrupt from 12C 1
INTISR[10] |MMUARTO_INTR MMUART_0 Interrupt from MMUART 0
INTISR[11] |[MMUART1_INTR MMUART _1 Interrupt from MMUART 1
INTISR[12] IMAC_INT MAC Interrupt from Ethernet MAC
INTISR[13] |PDMAINTERRUPT PDMA Interrupt from peripheral DMA block
INTISR[14] |TIMER1_INTR TIMER Timer1 interrupt
INTISR[15] |TIMER2_INTR TIMER Timer2 interrupt
INTISR[16] | CAN_INTR CAN Interrupt from CAN
INTISR[17] |[ENVM_INTO ENVMTOAHBO [Asserted on an eNVM_0 basis at the completion of
ERASE_PAGE, PROGRAM, etc.
INTISR[18] |[ENVM_INT1 ENVMTOAHB1 |Asserted on an eNVM_1 basis at the completion of
ERASE_PAGE, PROGRAM, ECC ERROR, etc.
INTISR[19] |COMM_BLK_INTR COMBLK Communication block interrupt
INTISR[20] |USB_MC_INT USB CPU interrupts
INTISR[21] |USB_DMA_INT uUSB Core’s DMA engine performs data transfer between
endpoint memories and system memory via AHB
master port. DMA controller-interrupt.
INTISR[22] IMSSDDR_PLL_LOCK_INT SYSREG Interrupt indicating that MSSDDR PLL has achieved
lock.
INTISR[23] |[MSSDDR_PLL_LOCKLOST_INT |SYSREG Interrupt indicating that MSSDDR PLL has lost lock.
INTISR[24] |SW_ERRORINTERRUPT SYSREG If set, it indicates to the Cortex-M3 processor that:
— One of the masters of the switch attempted an
access that resulted in either an error termination by
the slave (or possibly the switch itself) or
— Was decoded as an access to unimplemented
address space or o. If the master attempted an
access while disabled or
— In the case of the fabric master, attempted to
access the protected region of memory space
This signal is set by ORing the fields of
SW_ERRORSTATUS. It is cleared by writing 1 to
the SW_CLEARSTATUS bit.

UGO0331 User Guide Revision 15.0 9

Cortex-M3 Processor Overview and Debug Features

Table 2 »

Cortex-M3 Processor Interrupts (continued)

& Microsemi

Power Matters.”

Cortex-M3
Interrupt

Signal

Source

Description

INTISR[25]

CACHE_ERRINTR

SYSREG

If asserted, indicates that the interrupt is coming
from CACHE. This interrupt is generated in the
SysReg by ORing of the various interrupts from the
CACHE block: CC_HRESPERRINTO,
CC_HRESPERRINT1, CC_HRESPERRINT2,
CC_HRESPERRINTS.

INTISR[26]

DDRB_INTR

SYSREG

If asserted, indicates that the interrupt is coming
from DDRBRDIGE module.

Interrupts from MSS DDR Bridge module:
DDRB_ERROR and DDRB_LOCKTIMEOUT.
These interrupts are ORed in the SysReg and fed to
the Cortex-M3 processor.

INTISR[27]

HPD_XFR_CMP_INT

HPDMA

It is asserted when any HPDMA completes a
descriptor transfer. Once asserted, it remains
asserted until cleared by means of writing 1 to the
bit in the control register of the Descriptor-N (0, 1, 2,
3). If HPDMA completes more than one descriptor
transfers before the interrupt is serviced then this bit
remains asserted until all the descriptors have had
Clr_D<N>_Xfr_cmp_int written to 1.

INTISR[28]

HPD_XFR_ERR_INT

HPDMA

It is asserted when any HPDMA completes a
descriptor transfer with error. Once asserted, it
remains asserted until cleared by means of writing 1
to the bit in the control register of the Descriptor-N
(0, 1, 2, 3). If HPDMA completes more than one
descriptor with errors before the interrupt is serviced
then this bit remains asserted until all the
descriptors have had Clr_D<N>_Xfr_err_int written
to 1.

INTISR[29]

ECCINTR

SYSREG

It is asserted when an ECC error has been detected
in ESRAMO, ESRAM1, CACHE, MAC, CAN, MDDR,
and USB. This is generated by ORing ECC
interrupts from these modules.

INTISR[30]

MDDR_[O_CALIB_INT

SYSREG

The interrupt is generated when MDDR calibration is
finished. For the calibration after reset, this would be
followed by locking the codes directly.

However, for in-between runs during functional DDR
operation, the assertion of interrupt does not
guarantee lock as the state machine would wait for
the ideal time (DRAM self-refresh) for locking. This
can be used by the firmware to insert an ideal time,
and provides an indication of availability of locked
codes.

INTISR[31]

FAB_PLL_LOCK_INT

SYSREG

Interrupt indicating that MSSDDR PLL has achieved
lock

INTISR[32]

FAB_PLL_LOCKLOST_INT

SYSREG

Interrupt indicating that MSSDDR PLL has lost lock

UGO0331 User Guide Revision 15.0 10

Cortex-M3 Processor Overview and Debug Features @ Microseml:
Power Matters.”

Table 2 » Cortex-M3 Processor Interrupts (continued)

Cortex-M3

Interrupt |Signal Source Description

INTISR[33] |FIC64_INT SYSREG This interrupt will be generated by FIC64 when one
of the following conditions is true:
Write error for HPDMA or switch WCBs (from
DDR_AXI_INTF)
Simultaneous read and write accesses by HPDMA
and switch for same address
Lock time out condition

INTISR[34] |F2H_INTERRUPTI[0] FPGA fabric Interrupt from the FPGA fabric

INTISR[35] |F2H_INTERRUPT[1] FPGA fabric Interrupt from the FPGA fabric

INTISR[36] |F2H_INTERRUPT[2] FPGA fabric Interrupt from the FPGA fabric

INTISR[37] |F2H_INTERRUPT[3] FPGA fabric Interrupt from the FPGA fabric

INTISR[38] |F2H_INTERRUPT[4] FPGA fabric Interrupt from the FPGA fabric

INTISR[39] |F2H_INTERRUPT[5] FPGA fabric Interrupt from the FPGA fabric

INTISR[40] |F2H_INTERRUPTI[6] FPGA fabric Interrupt from the FPGA fabric

INTISR[41] |F2H_INTERRUPT[7] FPGA fabric Interrupt from the FPGA fabric

INTISR[42] |F2H_INTERRUPT[8] FPGA fabric Interrupt from the FPGA fabric

INTISR[43] |[F2H_INTERRUPT[9] FPGA fabric Interrupt from the FPGA fabric

INTISR[44] |F2H_INTERRUPTI[10] FPGA fabric Interrupt from the FPGA fabric

INTISR[45] |[F2H_INTERRUPT[11] FPGA fabric Interrupt from the FPGA fabric

INTISR[46] |F2H_INTERRUPT[12] FPGA fabric Interrupt from the FPGA fabric

INTISR[47] |F2H_INTERRUPT[13] FPGA fabric Interrupt from the FPGA fabric

INTISR[48] [F2H_INTERRUPT[14] FPGA fabric Interrupt from the FPGA fabric

INTISR[49] |F2H_INTERRUPTI[15] FPGA fabric Interrupt from the FPGA fabric

INTISR[50] |GPIO_INT[O] GPIO Interrupt from GPIO

INTISR[51] |GPIO_INT[1] GPIO Interrupt from GPIO

INTISR[52] |GPIO_INT[2] GPIO Interrupt from GPIO

INTISR[53] |[GPIO_INT[3] GPIO Interrupt from GPIO

INTISR[54] |GPIO_INT[4] GPIO Interrupt from GPIO

INTISR[55] |GPIO_INT[5] GPIO Interrupt from GPIO

INTISR[56] |GPIO_INT[6] GPIO Interrupt from GPIO

INTISR[57] |GPIO_INT[7] GPIO Interrupt from GPIO

INTISR[58] |GPIO_INT[8] GPIO Interrupt from GPIO

INTISR[59] |GPIO_INT[9] GPIO Interrupt from GPIO

INTISR[60] |GPIO_INT[10] GPIO Interrupt from GPIO

INTISR[61] |GPIO_INT[11] GPIO Interrupt from GPIO

INTISR[62] |GPIO_INT[12] GPIO Interrupt from GPIO

INTISR[63] |GPIO_INT[13] GPIO Interrupt from GPIO

INTISR[64] |GPIO_INT[14] GPIO Interrupt from GPIO

INTISR[65] |GPIO_INT[15] GPIO Interrupt from GPIO

UGO0331 User Guide Revision 15.0

1"

Cortex-M3 Processor Overview and Debug Features @ M. .
icrosemi

Power Matters.”

Table 2 » Cortex-M3 Processor Interrupts (continued)

Cortex-M3

Interrupt [Signal Source Description

INTISR[66] [GPIO_INT[16] GPIO Interrupt from GPIO

INTISR[67] [GPIO_INT[17] GPIO Interrupt from GPIO

INTISR[68] |GPIO_INT[18] GPIO Interrupt from GPIO

INTISR[69] |GPIO_INT[19] GPIO Interrupt from GPIO

INTISR[70] [GPIO_INT[20] GPIO Interrupt from GPIO

INTISR[71] |GPIO_INT[21] GPIO Interrupt from GPIO

INTISR[72] |GPIO_INT[22] GPIO Interrupt from GPIO

INTISR[73] [GPIO_INT[23] GPIO Interrupt from GPIO

INTISR[74] [GPIO_INT[24] GPIO Interrupt from GPIO

INTISR[75] [GPIO_INT[25] GPIO Interrupt from GPIO

INTISR[76] |[GPIO_INT[26] GPIO Interrupt from GPIO

INTISR[77] |[GPIO_INT[27] GPIO Interrupt from GPIO

INTISR[78] [GPIO_INT[28] GPIO Interrupt from GPIO

INTISR[79] [GPIO_INT[29] GPIO Interrupt from GPIO

INTISR[80] |GPIO_INT[30] GPIO Interrupt from GPIO

INTISR[81] [GPIO_INT[31] GPIO Interrupt from GPIO

24 Cortex-M3 Processor SysTick Timer
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero,
reloads, that is, wraps to the value in the SYST_RVR register on the next clock edge, and then counts
down on subsequent clocks. The SysTick timer is used to generate a periodic interrupt to the Cortex-M3
processor. The SysTick can be polled by the software or it can be configured to generate an interrupt.
The SysTick interrupt has its own entry in the vector table and therefore its own handler.

2.5 Cortex-M3 Processor Debug Subsystem

251 Cortex-M3 Processor Debug Port

The debug port uses a serial wire (SW) JTAG debug port (SWJ-DP). This enables either the JTAG or the
SW protocol to be used for debugging. The SWJ-DP defaults to JTAG mode at power-up and can be
switched to SW by applying a specific sequence to the debug pins.

The trace port interface unit (TPIU) is configured to support ITM debug trace and ETM debug trace.
Serial wire mode is used for the TPIU output data and this is overlaid on the JTAG TDO port. One
implication of this is that instrumentation trace cannot be used along with JTAG-based debugging. SW
debugging and ITM can be used together.

The Cortex-M3 processor provides the following debug Interfaces:

+ SWJ-DP: JTAG is the industry-standard interface used to download and debug programs on a target
processor, as well as for other functions. It offers access to all of the Cortex-M3 processor
CoreSight® debug capabilities.

* SW-DP: The serial wire debug (SWD) mode is an alternative to the standard JTAG interface. SWD
uses two pins to provide the same debug functionality as JTAG with no performance penalty, and
introduces data trace capabilities with the serial wire viewer (SWV). The SWD interface pins are
overlaid with the JTAG signals, allowing standard target connectors to be used.

+ TCLK: SWCLK (serial wire clock)
+ TMS: SWDIO (serial wire debug data input/output)

UGO0331 User Guide Revision 15.0 12

Cortex-M3 Processor Overview and Debug Features —_~ . .
& Microsemi

2.5.2

Power Matters.”

+ DO: SWO (output pin for SWV, refer to the next section).

+ SWV.: It provides real-time data trace information from various sources within the Cortex-M3
processor device. This is output via the single serial wire output (SWO) pin while your system
processor continues running at full speed. SWV can only be used with the SWD interface.

+ ETM: The embedded trace macrocell provides high bandwidth instruction trace via four dedicated
trace pins.

Cortex-M3 Processor Trace System

The debug system of the Cortex-M3 processor is based on the CoreSight architecture. The
CoreSight-based designs enable the memory and peripheral registers to be examined even when the
CPU is running. It also includes several trace capabilities:

» Data trace, generating events to record data reads/writes, exceptions/interrupts, and PC (program
counter) sampling information.

» Software trace, supporting output of debug messages (for example, printf) to the host.

« Instruction trace, collecting a sequence of every executed instruction continuously for a selected
portion of your application.

Trace data can be useful for debugging issues and collecting statistics:

* Locating errors that have irregular symptoms

* Analyzing dynamic system behavior

+ Optimizing performance bottlenecks

» Counting code coverage statistics

Trace results are generated in the form of packets, which can be of various lengths. The trace
components transfer the packets using the advanced trace bus (ATB) to the TPIU, which formats the
packets into the trace interface protocol (TIP). The data is then captured by an external trace capture
device such as a trace port analyzer (TPA).

The main components of the Cortex-M3 processor that can be a trace source:

. DWT, for data trace
. ITM, for software trace
. ETM, for full instruction trace

DWT, ITM, and ETM generate trace data in the form of packets and transfer them through the ATB to the
TPIU.
The TPIU has two operation modes:

* Clocked mode, using up to 4-bit (1-, 2- or 4-bit) parallel data outputs

* SWV mode, using the single-bit SWO format. Instruction trace from ETM must use the parallel trace
port, while packets of data trace and software trace normally use SWO (called SWO trace) but can
also be multiplexed with the ETM trace stream through the parallel trace port.

UGO0331 User Guide Revision 15.0 13

Cortex-M3 Processor Overview and Debug Features

& Microsemi

Power Matters.”

The following figure shows the diagram of a Cortex-M3 processor trace system. JTAG/SWD, SWO, and
the 4-bit parallel trace port can be deployed into a 20-pin Cortex Debug + ETM connector on the target.

Note: The TDO signal of JTAG is multiplexed with SWO, so that SWO trace is not accessible when the DP is in
a JTAG configuration. Only the SWD interface can be used together with SWO.

Figure 2+ Trace System Block Diagram

ATB

> ETM

CPUI/F

Trigger

e . —

Cortex-M 3

A
Reanpion Trace Port

\ 4

ATB ATB Interface Unit

ATB Interrupt Trace > g (TPIU)
P
4 Watch points Time Stamp

sSwWo
Cortex-M3 Processor
DAP BUS

To Standard JTAG Cortex-M3 Processor o |
3 Debug (Serial Wire P
Connector via 10 or JTAG))‘
pads

To Trace for Cortex-M3 Processor I‘
Connector via Cortex-M3 Processor | g
<

FPGA Fabric Debug + EMT

The following table shows pin multiplexing details for JTAG, SWD, and ETM modes of the debug section.
For more details on pin information, refer to the DS0115: SmartFusion2 Pin Descriptions Datasheet.

AHB Bus
Matrix

JTAG/ 4-Bit
SWD Trace

Table 3 » Signal Multiplexing

FPGA Pin JTAG Mode |SWD Mode ETM Mode
JTAG_TMS/ ™S SWDIO SWDIO
M3_TMS/

M3_SWDIO

JTAG_TCK/ TCK SWCLK SWCLK
M3_TCK

UGO0331 User Guide Revision 15.0 14

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130718

Cortex-M3 Processor Overview and Debug Features

2.5.21

2522

2523

2.6

& Microsemi

Power Matters.”

Table 3 » Signal Multiplexing (continued)

JTAG_TDO/ TDO SWO SWO
M3_TDO/

M3_SWO

JTAG_TDI/ DI TRACECLK
M3_TDI

TRACEDATA[3:0]

Data Watch Point (DWP) and Trace

The DWT unit is able to provide either focused data trace or global data trace. It has four comparators
used to compare the following conditions:

* Hardware watch point: generates a watch point event to the processor to invoke debug modes such
as halt or debug monitor.

+ ETM trigger: causes the ETM to emit a trigger packet in the instruction trace stream.

+ PC sampler event trigger

+ Data address sample trigger

Instrumentation Trace Macrocell

ITM provides the support for the debug message output, such as printf, and feeds output to the TPIU.
ITM uses a FIFO to buffer the output messages and outputs are not delayed as UART transfers. The
output messages can be collected at the TPI or the SWV interface on TPIU. ITM timestamps the outputs
and it outputs the messages from the DWT unit.

Embedded Trace Macrocell

The ETM block is a high speed, low power-consumption debugging tool that provides instruction trace
only, and which feeds output to the TPIU. The ETM has a FIFO queue of 24 bytes, and ETM outputs 8
bits of data at a time at the core clock speed. This output is compatible with the AMBA trace bus (ATB).
The ETM trace is supported by tools like Keil Trace, IAR Trace, Greenhills software trace, and others.
The ETM provides the following features:

» Tracing of 16-bit and 32-bit thumb instructions

* Four EmbeddedICE watchpoint inputs

* A Trace Start/Stop block with EmbeddedICE inputs
* Two external inputs

* Global time-stamping

Cortex-M3 Processor Port Descriptions

The following table lists all the ports related to the Cortex-M3 subsystem, their direction, and a
description of the ports.

Table 4 « Port Details of the Cortex-M3-Subsystem

Port Name Direction |Pad |Description

RXEV In No |Causes the Cortex-M3 to wake up from a wait for event (WFE) instruction.
The event input, RXEV, is registered even when not waiting for an event,
and so affects the next WFE.

TXEV Out No |Event transmitted as a result of a Cortex-M3 SEV (send event) instruction.
This is a single-cycle pulse equal to 1 M3_CLK period.

SLEEP Out No |[Signal is asserted when the Cortex-M3 processor is in sleep now or sleep-

on-exit mode, and indicates that the clock to the processor can be stopped.

UGO0331 User Guide Revision 15.0 15

Cortex-M3 Processor Overview and Debug Features @ M. .
icrosemi

Power Matters.”

Table 4 « Port Details of the Cortex-M3-Subsystem (continued)

Port Name Direction |Pad |Description

DEEPSLEEP Out No |[Signal is asserted when the Cortex-M3 processor is in sleep now or sleep-
on-exit mode when the SLEEPDEEP bit of the system control register is
set.

SLEEPHOLDREQnN |In No Request to extend Cortex-M3 processor sleep state. Signal is asserted
when SLEEPING signal is High.

SLEEPHOLDACKn |Out No |[Signal is asserted to confirm the Cortex-M3 processor sleep state
extension request.

TRACECLK Out No |TRACETRACEDATA changes on both the edges of TRACECLK.

TRACEDATA[3:0] Out No |Output data for clocked modes.

2.7 How to Use the Cortex-M3 Processor and the Debug

Subsystem

271 Configuration Through Libero Software and Firmware

The Cortex-M3 processor and debug subsystem can be configured using the Libero® SoC design
software. Using the MSS Cortex-M3 (CM3) configurator macro, various options can be selected, as
shown in the following figure.

Figure 3+ CM3 Configurator

B Configuring CM3 (MSS_CM3 - 0... [|B|X]

Configuration

o ow]

Use Memory Protection Unit
Sys Tick Timer
Calibration Register | 0x2000000

STCLK = M3_CLE | (32 [
4

g
Events 16

Expose R¥EY port ko the FPGEA Fabric ||
Expose TXEW port ko the FPGA Fabric []

Syskem Power Managermenk

Expose SLEEPING port to the FPGA Fabric [F
Expose SLEEFDEEP port to the FPGA Fabric [
Expose SLEEPHOLD® ports to the FRGA Fabric [

Trace Port: Interface Linit

TRACECLE is M3_CLK divided by 4 O

Expose TRACE* ports ko the FPGA Fabric [

The timing arcs for interrupts to the Cortex-M3 sourced from the FPGA fabric have been updated in
Libero SoC. In addition, timing arcs for the Cortex-M3 Embedded Trace Macrocell (ETM) have been

added.

UGO0331 User Guide Revision 15.0 16

Cortex-M3 Processor Overview and Debug Features

& Microsemi

Power Matters.”

2711 Memory Protection Unit
The MPU can be enabled by the selection option provided, as shown in the preceding figure. The
following table lists all the registers that can be used to configure the MPU for the creation of the
protected memory regions and setting the privileges for the created memory region in the firmware.
Table 5 « MPU Configuration Register
Name of Register Access Type Address Reset Value
MPU type register Read Only OxEOOOED90 0x800
MPU control register Read/Write OxEOOOEDY94 0x0
MPU region number Read/Write OxEOOOED98 NA
MPU region base address Read/Write OxEOOOED9C NA
MPU region attribute and size Read/Write OxEOOOEDAO NA
2.71.2 SysTick Timer Configuration
The SysTick timer can be configured using the Libero software, as shown in the Figure 3, page 16, for
the SysTick calibration value; which is the rollover value of the internal SysTick timer, and SysTick clock
frequency as the division (4, 8, 16, or 32) of Cortex-M3 clock. This value is loaded into the
STCLK_DIVISOR register and it has to be configured to make sure that the SysTick clock frequency is
less than half of the frequency of Cortex-M3. SysTick also can be configured using the firmware by using
the following register, as depicted in the following table
Table 6 « SysTick Configuration Register
Name of Register Access Type Address Reset value
SysTick Control & Status Read/Write 0xEO00EO010 0x0
SysTick Reload value Read/Write OxEOOOEO14 Unpredictable
SysTick Current Value Read/Write clear OxEOOOE018 Unpredictable
SysTick Calibration value Read-only OxEOOOEO1C STCALIB set through the Libero software
2.71.3 Events Configuration
TXEV and RXEV event signals of the Cortex-M3 processor can be exposed to the FPGA fabric. This can
be configured using the Libero software, as shown in Figure 3, page 16.
2714 System Power Management Configuration
The Cortex-M3 processor provides various power modes. M3_CLK is gated off when in SLEEPING or
SLEEPDEEP mode. SLEEPING and SLEEPDEEP signals are available at the FPGA fabric interface.
Sleep mode extension handshake signals are available at the FPGA fabric interface. System power
management options can be configured as shown in Figure 3, page 16.
2.71.5 Trace Port Interface Unit (TPIU) Configuration
TRACECLK & TRACEDATA[3:0] can be exposed to the FPGA fabric. TACECLK can be configured for
these signals by using the Libero software, as shown in the Figure 3, page 16.
Note: If the user design is using the FPGA fabric based master, the Cortex-M3 processor requires a valid

program in eNVM (from eNVM start address 0x60000000) to execute at power-up or power-on reset.
The valid program can be a simple user boot code or a simple loop program. You can select a .hex file of
a valid program for eNVM data client using the SystemBuilder.

UGO0331 User Guide Revision 15.0 17

Cortex-M3 Processor (Reference Material) @ Microsemi

3

Figure 4 »

Power Matters.”

Cortex-M3 Processor (Reference Material)

The Cortex-M3 processor is a high performance 32-bit processor designed for the microcontroller
market. It offers significant benefits to developers, including:

+ Outstanding processing performance combined with fast interrupt handling

+ Enhanced system debug with extensive breakpoint and trace capabilities

. Efficient processor core, system, and memories

» Ultra-low power consumption with integrated Sleep modes

» Platform security robustness, with optional integrated memory protection unit (MPU)

Cortex-M3 Processor Implementation

Cortex-M3
processor

Processor Embedded

—»| WIC[e—>| NVIC @ Core > race Macrocell

<

v

Debug Memory Serial
“ Access Protection Unit ere >
Port Viewer
Flash Data

Patch Watchpoints

¢ 4

Bus Matrix
Code SRAM and
Interface Peripheral Interface
A A

v v

The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard
architecture, making it ideal for demanding embedded applications. The processor delivers exceptional
power efficiency through an efficient instruction set and extensively optimized design, providing high-end
processing hardware including a range of single-cycle and SIMD multiplication and multiply-with-
accumulate capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly-coupled
system components that reduce processor area while significantly improving interrupt handling and
system debug capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set
based on Thumb-2 technology, ensuring high code density and reduced program memory requirements.
The Cortex-M3 processor instruction set provides the exceptional performance expected of a modern 32-
bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

The Cortex-M3 processor closely integrates a configurable nested interrupt controller (NVIC), to deliver
industry-leading interrupt performance. The NVIC includes a non-maskable interrupt (NMI), and provides
up to 256 interrupt priority levels. NVIC in SmartFusion2 SoC FPGA MSS is set to have 83 interrupts
(including non-maskable interrupt). The tight integration of the processor core and NVIC provides fast
execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency.

This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and
store-multiple operations. Interrupt handlers do not require wrapping in assembly code, removing any

UGO0331 User Guide Revision 15.0 18

Cortex-M3 Processor (Reference Material)

3.1

3.2

3.3

& Microsemi

Power Matters.”

code overhead from the ISRs. A Tail-chain optimization also significantly reduces the overhead when
switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep
function that enables the entire device to be rapidly powered down while still retaining program state.

System Level Interface

The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high speed,
low latency memory accesses. It supports unaligned data accesses and implements atomic bit
manipulation that enables faster peripheral controls, system spinlocks, and thread-safe Boolean data
handling.

The Cortex-M3 processor has an optional memory protection unit (MPU) that provides fine grain memory
control, enabling applications to utilize multiple privilege levels, separating and protecting code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded applications
such as automotive systems.

Integrated Configurable Debug

The Cortex-M3 processor implements a complete hardware debug solution. This provides high system
visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug
(SWD) port that is ideal for microcontrollers and other small package devices. The MCU vendor
determines the debug feature configuration and therefore this can differ across different devices and
families.

For system trace the processor integrates an Instrumentation Trace Macrocell™ (ITM) alongside data
watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system events these
generate, a Serial Wire Viewer (SWV) can export a stream of software-generated messages, data trace,
and profiling information through a single pin.

The optional Embedded Trace Macrocell (ETM) delivers unrivaled instruction trace capture in an area far
smaller than traditional trace units, enabling many low cost MCUs to implement full instruction trace for
the first time.

The optional Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint
comparators that debuggers can use. The comparators in the FPB also provide remap functions of up to
eight words in the program code in the CODE memory region. This enables applications stored on a non-
erasable, ROM-based microcontroller to be patched if a small programmable memory, for example flash,
is available in the device. During initialization, the application in ROM detects, from the programmable
memory, whether a patch is required. If a patch is required, the application programs the FPB to remap a
number of addresses. When those addresses are accessed, the accesses are redirected to a remap
table specified in the FPB configuration, which means the program in the non-modifiable ROM can be
patched.

Cortex-M3 Processor Features and Benefits Summary

« Tight integration of system peripherals reduces area and development costs.

» Thumb instruction set combines high code density with 32-bit performance.

» Code-patch ability for ROM system updates.

» Power control optimization of system components.

* Integrated Sleep modes for low power consumption.

+ Fast code execution permits slower processor clock or increases sleep mode time.

* Hardware division and fast multiplier.

» Deterministic, high-performance interrupt handling for time-critical applications.

» Optional memory protection unit (MPU) for safety-critical applications.

» Extensive debug and trace capabilities—Serial Wire Debug and Serial Wire Trace reduce the
number of pins required for debugging, tracing and code profiling.

UGO0331 User Guide Revision 15.0 19

Cortex-M3 Processor (Reference Material) @ Microsemi

3.4
3.4.1

3.4.2

3.4.3

344

3.5
3.5.1

3.5.11

3.5.1.2

Power Matters.”

Cortex-M3 Processor Core Peripherals

Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is an embedded interrupt controller that supports low
latency interrupt processing.

System Control Block

The System control block (SCB) is the programmers model interface to the processor. It provides system
implementation information and system control, including configuration, control, and reporting of system
exceptions.

System Timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System
(RTOS) tick timer or as a simple counter.

Memory Protection Unit

The Memory protection unit (MPU) improves system reliability by defining the memory attributes for
different memory regions. It provides up to eight different regions, and an optional predefined
background region.

Cortex-M3 Processor Description

Programmers Model

This section describes the Cortex-M3 processor programmers model. In addition to the individual core
register descriptions, it contains information about the processor modes and privilege levels for software
execution and stacks.

Processor Mode and Privilege Levels for Software Execution

The processor modes are:

» Thread mode: Used to execute application software. The processor enters Thread mode when it
comes out of reset.

+ Handler mode: Used to handle exceptions. The processor returns to Thread mode when it has
finished all exception processing.

The privilege levels for software execution are:

* Unprivileged: The software:
. has limited access to the MSR and MRS instructions, and cannot use the CPS instruction
. cannot access the system timer, NVIC, or system control block
* might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

« Privileged: The software can use all the instructions and has access to all resources.
Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL Register, page 27. In Handler mode, software execution is always
privileged.

Only privileged software can write to the CONTROL register to change the privilege level for software
execution in Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call
to transfer control to privileged software.

Stacks

The processor uses a full descending stack. This means the stack pointer holds the address of the last
stacked item in the stack memory. When the processor pushes a new item onto the stack, it decrements
the stack pointer and then writes the item to the new memory location. The processor implements two
stacks, the main stack and the process stack, held in independent registers, see Stack Pointer, page 22.

UGO0331 User Guide Revision 15.0 20

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

In Thread mode, the CONTROL register controls whether the processor uses the main stack or the
process stack, see CONTROL Register, page 27. In Handler mode, the processor always uses the main
stack. The options for processor operations are:

Table 7 « Summary of Processor Mode, Execution Privilege Level, and Stack Use Options

Privilege level for
Processor mode |Used to execute |software execution [Stack used

Thread Applications Privileged or Main stack or process stack
unprivileged
Handler Exception handlers |Always privileged Main stack

3.5.1.3 Core Registers

The following figure shows the processor core registers.

Figure 5+ Core Register Set

R1
R2
R3
Low Registers
R4
R5
R6 General-purpose Registers
L R7
R8
R9
High Registers R10
R11
- R12)
Stack Pointer SP (R13) | pspt || wmsP* *Banked version of SP
Link Register LR (R14)
Program Counter PC (R15)
PSR Program Status Register
PRIMASK
FAULTMASK Exception Mask Registers Special Registers
BASEPRI
CONTROL CONTROL Register
Table 8 « Core Register Set Summary
Required
Name Type1 privilege2 Reset value Description
R0O-R12 RW Either Unknown General-Purpose Registers
MSP RW Privileged See description |Stack Pointer
PSP RW Either Unknown Stack Pointer
LR RwW Either OxFFFFFFFF Link Register
PC RW Either See description |Program Counter
PSR RW Privileged Unknown Program Status Register
ASPR RwW Either Unknown Application Program Status Register
IPSR RO Privileged 0x00000000 Interrupt Program Status Register

UGO0331 User Guide Revision 15.0 21

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

Table 8 « Core Register Set Summary (continued)

Required
Name Type1 privilege2 Reset value Description
R0O-R12 RW Either Unknown General-Purpose Registers
EPSR RO Privileged 0x01000000 Execution Program Status Register
PRIMASK RW Privileged 0x00000000 Priority Mask Register
FAULTMASK |RW Privileged 0x00000000 Fault Mask Register
BASEPRI RW Privileged 0x00000000 Base Priority Mask Register
CONTROL RW Privileged 0x00000000 CONTROL Register
1. Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.
2. An entry of Either means privileged and unprivileged software can access the register.

The following sections describe these registers in detail.

3.5.1.3.1

3.5.1.3.2

3.5.1.3.3

3.51.34

3.5.1.3.5

Figure 6

General-Purpose Registers
R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register indicates the
stack pointer to use:

0: Main Stack Pointer (MSP). This is the reset value.
1: Process Stack Pointer (PSP)

On reset, the processor loads the MSP with the value from address 0x00000000.

Link Register

The Link Register (LR) is register R14. It stores the return information for subroutines, function calls, and
exceptions. On reset, the processor sets the LR value to OXFFFFFFFF.

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On reset, the
processor loads the PC with the value of the reset vector, which is at address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit and must be 1.

Program Status Register
The Program Status Register (PSR) combines:

Application Program Status Register (APSR)
Interrupt Program Status Register (IPSR)
Execution Program Status Register (EPSR)

These registers are mutually exclusive bitfields in the 32-bit PSR. The bit assignments are shown in the
following figure.

Program Status Register

31 30 29 28

27 26 25 24 23 |

16115 109 8!

APSR |N

Z{C V| Q Reserved

IPSR

Reserved ISR_NUMBER

EPSR

Reserved

ICIIT Reserved ICIIT Reserved

UGO0331 User Guide Revision 15.0 22

Cortex-M3 Processor (Reference Material)

3.5.1.3.6

3.5.1.3.7

& Microsemi

Power Matters.”
Access these registers individually or as a combination of any two or all three registers, using the register
name as an argument to the MSR or MRS instructions. For example:

* Read all of the registers using PSR with the MRS instruction.
* Write to the APSR using APSR with the MSR instruction.

The following table shows the PSR combinations and attributes.

Table 9 PSR Combinations and Attributes

Register Type Combination

PSR Rw'2 APSR, EPSR, and IPSR
IEPSR RO EPSR and IPSR

IAPSR RW' APSR and IPSR
EAPSR RW?2 APSR and EPSR

1. The processor ignores writes to the IPSR bits.
2. Reads of the EPSR bits return zero, and the processor ignores writes
to the these bits.

See the instruction descriptions in MRS, page 91 and MSR, page 92 for more information about how to
access the program status registers.

Application Program Status Register

The APSR contains the current state of the condition flags from previous instruction executions. See the
register summary in the following table for its attributes. The following table lists the bit assignments.

Table 10 = Application Program Status Register

Bits Name Function

[31] N Negative flag

[30] 4 Zero flag

[29] C Carry or borrow flag
[28] \% Overflow flag

[27] Q Saturation flag
[27:0] - Reserved

Interrupt Program Status Register

The IPSR contains the exception type number of the current Interrupt Service Routine (ISR). See the
register summary in Table 8, page 21 for its attributes. The following table lists the bit assignments.

Table 11« IPSR Bit Assignments

Bits Name Function
[31:9] Reserved

UGO0331 User Guide Revision 15.0 23

Cortex-M3 Processor (Reference Material)

3.5.1.3.8

& Microsemi

Power Matters.”

Table 11« IPSR Bit Assignments
Bits Name Function
[8:0] ISR_NUMBER |This is the number of the current exception:

0 = Thread mode
1 = Reserved

2 = NMI

3 = HardFault

4 = MemManage
5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall

12 = Reserved for Debug
13 = Reserved

14 = PendSV
15 = SysTick
16 = IRQO.
255 = |RQ239

See Exception Types, page 37 for more information

Execution Program Status Register
The EPSR contains the Thumb state bit, and the execution state bits for either the:

* If-Then (IT) instruction
* Interruptible-Continuable Instruction (ICl) field for an interrupted load multiple or store multiple
instruction.

See the register summary in Table 8, page 21 for the EPSR attributes. The following table lists the bit

assignments.

Table 12+ EPSR Bit Assignments
Bits Name Function
[31:27] Reserved.

[26:25], [15:10] |ICI/T

Indicates the interrupted position of a continuable
instruction, or the execution state of an IT instruction (see

IT, page 85).
[24] T Thumb state bit.
[23:16] Reserved.
[9:0] Reserved.

Attempts to read the EPSR directly using the MRS instruction always return zero. Attempts to write the
EPSR using the MSR instruction are ignored.

UGO0331 User Guide Revision 15.0

24

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Interruptible-continuable Instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, or POP instruction, the
processor:

+ Stops the load multiple or store multiple instruction operation temporarily

» Stores the next register operand in the multiple operation to EPSR bits[15:12]
Atfter servicing the interrupt, the processor:

« Continues loading the register pointed to by bits[15:12]

* Resumes execution of the multiple load or store instruction

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then Block

The If-Then block contains up to four instructions following an IT instruction. Each instruction in the block
is conditional. The conditions for the instructions are either all the same, or some can be the inverse of
others. See IT, page 85 for more information.

Thumb State

The Cortex-M3 processor only supports execution of instructions in Thumb state. The following can clear
the T bit to O:

* instructions BLX, BX and POP{PC}

* restoration from the stacked xPSR value on an exception return

* bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See Lockup, page 45 for
more information.

The T bit can be modified both by software, using the mechanisms described in this section, and directly
by the debugger.

3.5.1.3.9 Exception Mask Registers
The exception mask registers disable the handling of exceptions by the processor. Disable exceptions
where they might impact on timing critical tasks.
To access the exception mask registers use the MSR and MRS instructions, or the CPS instruction to
change the value of PRIMASK or FAULTMASK. See MRS, page 91, MSR, page 92, and CPS, page 89
for more information.

Priority Mask Register
The PRIMASK register prevents activation of all exceptions with configurable priority. See the register
summary in Table 8, page 21 for its attributes. The following figure for bit assignments for MSR or MRS
access.

Figure 7 + Priority Mask Register

31 10
Reserved
PRIMASKJ

Table 13+ PRIMASK Register Bit Assignments

Bits Name Function
[31:1] Reserved
[0] PRIMASK |0: no effect
1: prevents the activation of all exceptions with configurable priority.

UGO0331 User Guide Revision 15.0 25

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Fault Mask Register

The FAULTMASK register prevents activation of all exceptions except for Non-Maskable Interrupt (NMI).
See the register summary in Table 8, page 21 for its attributes.

31 | 10

Reserved

FAU LTMASKJ

Figure 8 « Fault Mask Register
The following table lists the big assignments for MSR or MRS access.

Table 14 = FAULT Register Bit Assignments

Bits Name Function
[31:1] |- Reserved
[0] FAULTMASK |0: no effect
1: prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except the NMI
handler.

Base Priority Mask Register

The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a
nonzero value, it prevents the activation of all exceptions with the same or lower priority level as the
BASEPRI value. See the register summary in Table 8, page 21 for its attributes.

Figure 9+ Base Priority Mask Register
131 i i i i i 817 | 0i

Reserved BASEPRI

The following table lists the big assignments for MSR or MRS access.

Table 15+« BASEPRI Register Bit Assignments

Bits Name Function
[31:8] Reserved

[7:0] BASEPRI' Priority mask bits:

0x00: no effect

Nonzero: defines the base priority for exception processing.

The processor does not process any exception with a priority value
greater than or equal to BASEPRI.

1. This field is similar to the priority fields in the interrupt priority registers. The device implements only
bits[7:M] of this field, bits [M-1:0] read as zero and ignore writes. See Interrupt Priority Registers,

page 99 for more information. Remember that higher priority field values correspond to lower exception
priorities.

UGO0331 User Guide Revision 15.0 26

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.5.1.3.10 CONTROL Register

The CONTROL register controls the stack used and the privilege level for software execution when the
processor is in Thread mode. Refer to the register summary in Table 8, page 21 for its attributes. The
following figure shows the bit assignments for MSR or MRS access.

Figure 10 « Control Register
131 | | | | | | | 210

Reserved

Active Stake PointerJ
Thread Mode Privilege Level

Table 16 = Control Register Bit Assignments

Bits Name Function
[31:2] Reserved
[1 Active stack pointer Defines the currently active stack pointer:

0: MSP is the current stack pointer
1: PSP is the current stack pointer.
In Handler mode this bit reads as zero and ignores writes.

[0] Thread mode privilege |Defines the Thread mode privilege level:
level 0: Privileged
1: Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active stack pointer
bit of the CONTROL register when in Handler mode. The exception entry and return mechanisms
automatically update the CONTROL register based on the EXC_RETURN value, see Table 23, page 43.

In an OS environment, ARM recommends that threads running in Thread mode use the process stack
and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to the PSP,
either:

+ use the MSR instruction to set the Active stack pointer bit to 1, see MSR, page 92
» perform an exception return to Thread mode with the appropriate EXC_RETURN value, see
Table 23, page 43.
Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR
instruction. This ensures that instructions after the ISB instruction execute using the new stack pointer.
Refer to ISB, page 91.

UGO0331 User Guide Revision 15.0 27

Cortex-M3 Processor (Reference Material) @ Microsemi

3.514

3.5.1.5

3.5.1.6

Note:

Power Matters.”

Exceptions and Interrupts

The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested
Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the
normal flow of software control. The processor uses Handler mode to handle all exceptions except for
reset. Refer to Exception Entry, page 41 and Exception Return, page 42 for more information.

The NVIC registers control interrupt handling. See Nested Vectored Interrupt Controller, page 20 for
more information.

The following sections provide more information about the CMSIS

+ Power Management Programming Hints, page 47

* CMSIS Functions, page 50

* Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS, page 96
* NVIC programming hints, page 101

Data types

The processor:

» supports the following data types:
* 32-bit words
* 16-bit halfwords
+ 8-bit bytes.

* manages all data memory accesses as little-endian or big-endian. Instruction memory and Private
Peripheral Bus (PPB) accesses are always performed as little-endian. The Cortex-M3 processor
configured for SmartFusion2 SoC FPGA MSS uses only little-endian. Refer to Memory Regions,
Types and Attributes, page 29.

The Cortex Microcontroller Software Interface Standard

For a Cortex-M3 processor system, the Cortex Microcontroller Software Interface Standard (CMSIS)
defines:

* acommon way to:
* access peripheral registers
» define exception vectors
+ the names of:
+ the registers of the core peripherals
« the core exception vectors
* adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the Cortex-M3
processor. It also includes optional interfaces for middleware components comprising a TCP/IP stack
and a Flash file system.

CMSIS simplifies software development by enabling the reuse of template code and the combination of
CMSIS-compliant software components from various middleware vendors. Software vendors can expand
the CMSIS to include their peripheral definitions and access functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short descriptions of the
CMSIS functions that address the processor core and the core peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these differ from the
architectural short names that might be used in other documents.

UGO0331 User Guide Revision 15.0 28

Cortex-M3 Processor (Reference Material)

3.5.2

Figure 11 »

3.5.21

& Microsemi

Power Matters.”

Memory Model

This section describes the processor memory map, the behavior of memory accesses, and the
bit-banding features. The processor has a fixed memory map that provides up to 4GB of addressable
memory. The following illustration shows the processor memory map.

Processor Memory Map
OXFFFFFFFF
Vendor-specific 511MB
memory
0xE0100000
i i OXEOOFFFFF
Prlvatebpglpheral 1.0MB
0xE0000000
OXDFFFFFFF
External device 1.0GB|
0xA0000000
OX9FFFFFFF
Ox43FFFFFF External RAM 1.0GB
32MB Bit band alias
0x60000000
0x42000000 OXSFFFFFFF
Ox400FFFFF . . Peripheral 0.5GB!
1MB Bit band region
0x40000000 0x40000000
O0X23FFFFFF Ox3FFFFFFF
32MB Bit band alias SRAM 0.568
0x20000000
0x22000000 Ox1FFFFFFF
Code 0.5GB
0x200FFFFF
1MB Bi i
0x20000000. it band region 0x00000000

The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations
to bit data, see Bit-Banding, page 32.

The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral
registers, see Cortex-M3 Processor Peripherals, page 95.

Memory Regions, Types and Attributes

The memory map and the programming of the MPU splits the memory map into regions. Each region has
a defined memory type, and some regions have additional memory attributes. The memory type and
attributes determine the behavior of accesses to the region.

The memory types are:
Normal: The processor can re-order transactions for efficiency, or perform speculative reads.

Device: The processor preserves transaction order relative to other transactions to Device or Strongly-
ordered memory.

Strongly-ordered: The processor preserves transaction order relative to all other transactions Strongly-
Ordered or Device.

The different ordering requirements for Device and Strongly-ordered memory mean that the memory
system can buffer a write to Device memory, but must not buffer a write to Strongly-ordered memory.

UGO0331 User Guide Revision 15.0 29

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

The additional memory attributes include:

Shareable: For a shareable memory region, the memory system provides data synchronization between
bus masters in a system with multiple bus masters, for example, a processor with a DMA controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory region, software must ensure data
coherency between the bus masters.

Execute Never (XN): Means the processor prevents instruction accesses. A fault exception is generated
only on execution of an instruction executed from an XN region.

3.5.2.2 Memory System Ordering of Memory Accesses
For most memory accesses caused by explicit memory access instructions, the memory system does
not guarantee that the order in which the accesses complete matches the program order of the
instructions, providing this does not affect the behavior of the instruction sequence. Normally, if correct
program execution depends on two memory accesses completing in program order, software must insert
a memory barrier instruction between the memory access instructions.
However, the memory system does guarantee some ordering of accesses to Device and Strongly-
ordered memory. The following figure shows the ordering of the memory accesses caused by two
instructions A1 and A2 if A1 occurs before A2 in program order.
Figure 12+ Memory Ordering Restrictions
A2 Normal Device access Strongly-
ordered
Al access Non-shareable| Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly-ordered access - < < <
Where:
* - Means that the memory system does not guarantee the ordering of the accesses.
* < Means that accesses are observed in program order, that is, A1 is always observed before A2.
3.5.2.3 Behavior of Memory Accesses
The following table provides information about the behavior of accesses to each region in the memory
map.
Table 17 « Memory Access Behavior

Address range |Memory region MemoryType1 XN' Description

0x00000000- Code Normal Executable region for program code. You can also put

Ox1FFFFFFF data here.

0x20000000- SRAM Normal Executable region for data. You can also put code

Ox3FFFFFFF here.This region includes bit band and bit band alias
areas, see Table 19, page 32.

0x40000000- Peripheral Device XN This region includes bit band and bit band alias areas,

Ox5FFFFFFF see Table 20, page 32.

0x60000000- External RAM Normal Executable region for data.

Ox9FFFFFFF

0xA0000000- External device Device XN External Device memory.

OxDFFFFFFF

UGO0331 User Guide Revision 15.0 30

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

Table 17« Memory Access Behavior (continued)

Address range (Memory region MemoryType1 XN' Description

0xE0000000- Private Peripheral |Strongly- XN This region includes the NVIC, System timer, and
OXEOOFFFFF Bus ordered system control block.

0xE0100000- Vendor specific Device XN Accesses to this region are to vendor-specific
OxFFFFFFFF peripherals.

1. See Memory Regions, Types and Attributes, page 29 for more information.

The Code, SRAM, and external RAM regions can hold programs. However, ARM recommends that
programs always use the Code region. This is because the processor has separate buses that enable
instruction fetches and data accesses to occur simultaneously.

The MPU can override the default memory access behavior described in this section. For more
information, see Memory Protection Unit, page 20.

3.5.2.3.1 Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional access
constraints, and some regions are subdivided, as detailed in the following table.

Table 18 «+ Memory Region Shareability and Cache Policies

Address range Memory region Memory type1 Shareability gzﬁ:;lez
0x00000000- Ox1FFFFFFF |Code Normal WT
0x20000000- 0x3FFFFFFF |SRAM Normal WBWA
0x40000000- OX5FFFFFFF |Peripheral Device
0x60000000- Ox7FFFFFFF |External RAM Normal WBWA
0x80000000- OX9FFFFFFF WT
0xA0000000- OXBFFFFFFF |External device Device Shareable
0xC0000000- OXDFFFFFFF Non-

shareable
0xE0000000- OXEOOFFFFF |Private Peripheral Bus |Strongly-ordered |Shareable
0xE0100000- OxFFFFFFFF |Vendor-specific device |Device

1. See Memory Regions, Types and Attributes, page 29 for more information.
WT = Write through, no write allocate. WBWA = Write back, write allocate.

3.5.2.3.2 Instruction Prefetch and Branch Prediction
The Cortex-M3 processor:

+ Prefetches instructions ahead of execution
» Speculatively prefetches from branch target addresses.

3.5.24 Software Ordering of Memory Accesses

The order of instructions in the program flow does not always guarantee the order of the corresponding
memory transactions. This is because:

» the processor can reorder some memory accesses to improve efficiency, providing this does not
affect the behavior of the instruction sequence.

+ the processor has multiple bus interfaces

* memory or devices in the memory map have different wait states

* some memory accesses are buffered or speculative.

UGO0331 User Guide Revision 15.0 31

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Memory System Ordering of Memory Accesses, page 30 describes the cases where the memory system
guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical,
software must include memory barrier instructions to force that ordering. The processor provides the
following memory barrier instructions:

DMB: The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions
complete before subsequent memory transactions. See DMB, page 90.

DSB: The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions
complete before subsequent instructions execute. See DSB, page 91.

ISB: The Instruction Synchronization Barrier (ISB) ensures that the effect of all completed memory
transactions is recognizable by subsequent instructions. See ISB, page 91.

MPU programming

Use a DSB followed by an ISB instruction or exception return to ensure that the new MPU configuration
is used by subsequent instructions.

3.5.2.5 Bit-Banding
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-
band regions occupy the lowest 1MB of the SRAM and peripheral memory regions.
Note: The Cortex-M3 processor does not support exclusive accesses to bit-band regions.
The memory map has two 32MB alias regions that map to two 1MB bit-band regions:
» accesses to the 32MB SRAM alias region map to the 1MB SRAM bit-band region, as detailed in
Table 19, page 32.
» accesses to the 32MB peripheral alias region map to the 1MB peripheral bit-band region, as detailed
in Table 20, page 32.
Table 19« SRAM Memory Bit-banding Regions
Address Range Memory SRAM Region |Instruction and Data Accesses
0x20000000-0x200FFFFF |Bit-band region Direct accesses to this memory range behave as SRAM
memory accesses, but this region is also bit addressable
through bit-band alias.
0x22000000-0x23FFFFFF |Bit-band alias Data accesses to this region are remapped to bit band region.
A write operation is performed as read-modify-write.
Instruction accesses are not remapped.
Table 20 « Peripheral Memory Bit-banding Regions
Address range Memory SRAM Region |Instruction and Data Accesses
0x40000000-0x400FFFFF | Bit-band alias Direct accesses to this memory range behave as peripheral
memory accesses, but this region is also bit addressable
through bit-band alias.
0x42000000-0x43FFFFFF |Bit-band region Data accesses to this region are remapped to bit band region.
A write operation is performed as read-modify-write.
Instruction accesses are not permitted.

Notes:

* A word access to the SRAM or peripheral bit-band alias regions maps to a single bit in the SRAM or

peripheral bit-band region.
+ Bit band accesses can use byte, halfword, or word transfers. The bit band transfer size matches the

transfer size of the instruction making the bit band access.

UGO0331 User Guide Revision 15.0 32

Cortex-M3 Processor (Reference Material)

Figure 13 «

& Microsemi

Power Matters.”

The following formula shows how the alias region maps onto the bit-band region:

» bit_word_offset = (byte_offset x 32) + (bit_number x 4)
* bit_word_addr = bit_band_base + bit_word_offset

where:

» Bit_word_offset is the position of the target bit in the bit-band memory region.

» Bit_word_addr is the address of the word in the alias memory region that maps to the targeted bit.
* Bit_band_base is the starting address of the alias region.

+ Byte_offset is the number of the byte in the bit-band region that contains the targeted bit.

+ Bit_number is the bit position, 0-7, of the targeted bit.

The following illustration shows examples of bit-band mapping between the SRAM bit-band alias region
and the SRAM bit-band region.

+ The alias word at Ox23FFFFEOQ maps to bit[0] of the bit-band byte at 0x200FFFFF:
0x23FFFFEO = 0x22000000 + (OxFFFFF*32) + (0*4).

* The alias word at 0x23FFFFFC maps to bit[7] of the bit-band byte at 0xX200FFFFF:
0x23FFFFFC = 0x22000000 + (OXFFFFF*32) + (7*4).

* The alias word at 0x22000000 maps to bit[0] of the bit-band byte at 0x20000000:
0x22000000 = 0x22000000 + (0*32) + (0 *4).

* The alias word at 0x2200001C maps to bit[7] of the bit-band byte at 0x20000000:
0x2200001C = 0x22000000+ (0*32) + (7*4).

Bit-band Mapping
32MB Alias Region

| oxasFrFFFC | oxesFrFFFs | Ox23FFFFF4 | O0x23FFFFFO | Ox23FFFFEC | Ox23FFFFES | Ox23FFFFE4 | Ox23FFFFEO |

°

I 0x2200001C I 0x22000018 0x22000014 | 0x22000010 | 0x22000 0x22000008 0x22000004 I 0x22000000 I

/
|

1MB SRAM Bitband Region \

\7 6 5 4 3 2 1 07 6 3 21 07 6 5 4 3 2 1 07 6 5 4 3 2 10
T o T T 1 T
0x200FFFFF 0x200FFFFE \\ 0x200FFFFD 0x200FFFFC
I I — I — I —

o
°
°
7 6 5 4 3 2 1 07 6 5 4 3 2 1 07 6 5 4 3 2 1 7 6 5 4 3 2 1 0
U T T U
0x20000003 0x20000002 0x20000001 0x20000000
I — I — I — I —

3.5.2.5.1

Directly Accessing an Alias Region
Writing to a word in the alias region updates a single bit in the bit-band region.

Bit[0] of the value written to a word in the alias region determines the value written to the targeted bit in
the bit-band region. Writing a value with bit[0] set to 1 writes a 1 to the bit-band bit, and writing a value
with bit[0] set to O writes a 0 to the bit-band bit.

Bits[31:1] of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing
OxFF. Writing 0x00 has the same effect as writing OXOE.

Reading a word in the alias region:

+ 0x00000000 indicates that the targeted bit in the bit-band region is set to zero
+ 0x00000001 indicates that the targeted bit in the bit-band region is set to 1.

UGO0331 User Guide Revision 15.0 33

Cortex-M3 Processor (Reference Material) @ Microsemi

3.5.2.5.2

3.5.2.6

3.5.2.6.1

Figure 14

3.5.2.6.2

Figure 15

3.5.2.7

Power Matters.”

Directly accessing a bit-band region

Behavior of Memory Accesses, page 30 describes the behavior of direct byte, halfword, or word
accesses to the bit-band regions.

Memory Endianness

The processor views memory as a linear collection of bytes numbered in ascending order from zero. For
example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Byte-invariant
big-endian format or Little-endian format describes how words of data are stored in memory.

Byte-invariant Big-endian Format

In byte-invariant big-endian format, the processor stores the most significant byte of a word at the lowest-
numbered byte, and the least significant byte at the highest-numbered byte. The following illustration
shows the byte-invariant big-endian format.

Byte-Invariant Big-Endian Format

Memory Register
7 0
31 2423 1615 | 87 | 0
Address A BO msbyte BO B1 B2 B3
A+1 B1
A+2| B2

A+3| B3 |isbyte

Little-Endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-numbered
byte, and the most significant byte at the highest-numbered byte. Cortex-M3 processor configured for
SmartFusion2 SoC FPGA MSS uses only little endian. The following figure illustrates the little-endian
format.

Little Endian Format

Memory Register
7 0
31 2423 | 1615 | 87 | 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2(B2

A+3 B3 msbyte

Synchronization Primitives

The Cortex-M3 processor instruction set includes pairs of synchronization primitives. These provide a
non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory
location. Software can use them to perform a guaranteed read-modify-write memory update sequence,
or for a semaphore mechanism.

A pair of synchronization primitives comprises:

UGO0331 User Guide Revision 15.0 34

Cortex-M3 Processor (Reference Material)

3.5.2.71

3.5.2.7.2

& Microsemi

Power Matters.”

A Load-Exclusive Instruction
Used to read the value of a memory location, requesting exclusive access to that location.

A Store-Exclusive Instruction
Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:

0: it indicates that the thread or process gained exclusive access to the memory, and the write succeeds.

1: it indicates that the thread or process did not gain exclusive access to the memory, and no write is
performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

» the word instructions LDREX and STREX
* the halfword instructions LDREXH and STREXH
« the byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.
To perform a guaranteed read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Update the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and
tests the returned status bit. If this bit is:
0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out of date. The
software must retry the read-modify-write sequence.

Software can use the synchronization primitives to implement a semaphores as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the
semaphore is free.

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address.

3. Ifthe returned status bit from step2 indicates that the Store-Exclusive succeeded then the software
has claimed the semaphore. However, if the Store-Exclusive failed, another process might have
claimed the semaphore after the software performed step 1.

The Cortex-M3 processor includes an exclusive access monitor, that tags the fact that the processor has
executed a Load-Exclusive instruction. If the processor is part of a multiprocessor system, the system
also globally tags the memory locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

* It executes a CLREX instruction.

+ It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

* An exception occurs. This means the processor can resolve semaphore conflicts between different
threads.

In a multiprocessor implementation:
+ executing a CLREX instruction removes only the local exclusive access tag for the processor

« executing a Store-Exclusive instruction, or an exception. removes the local exclusive access tags,
and all global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see LDREX and STREX, page 66
and CLREX, page 67.

UGO0331 User Guide Revision 15.0 35

Cortex-M3 Processor (Reference Material)

3.5.2.8

3.5.3

3.5.31

3.5.3.2

& Microsemi

Power Matters.”

Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. Some CMSIS provides intrinsic
functions for generation of these instructions. The following table lists the functions that CMSIS provides.

Table 21+ CMSIS Functions for Exclusive Access Instructions

Instruction Intrinsic Function

LDREX, LDREXH, or LDREXB [unsigned char__LDREXB(volatile char *ptr)
unsigned short __ LDREXH(volatile short *ptr)
unsigned int __LDREXB(volatile int *ptr)

STREX, STREXH, or STREXB [int _ STREXB(unsigned char val, volatile char *ptr)
int_ STREXB(unsigned short val, volatile short *ptr)
int__ STREXB(unsigned int val, volatile int *ptr)

CLREX void _ CLREX(void)

The actual exclusive access instruction generated depends on the data type of the pointer passed to the
intrinsic function.

Exception Model

This section describes the exception model.

Exception States
Each exception is in one of the following states:

Inactive: The exception is not active and not pending.

Pending: The exception is waiting to be serviced by the processor. An interrupt request from a
peripheral or from software can change the state of the corresponding interrupt to pending.

Active: An exception that is being serviced by the processor but has not completed. An exception
handler can interrupt the execution of another exception handler. In this case both exceptions are in the
active state.

Active and pending: The exception is being serviced by the processor and there is a pending exception
from the same source.

Exception Types

The exception types are:

Reset: Reset is invoked on power up or a warm reset. The exception model treats reset as a special
form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in
an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry
in the vector table. Execution restarts as privileged execution in Thread mode.

NMI: A Non-Maskable Interrupt (NMI) can be signaled by a peripheral or triggered by software. This is
the highest priority exception other than reset. It is permanently enabled and has a fixed priority of -2.
NMIls cannot be:

* masked or prevented from activation by any other exception.
+ preempted by any exception other than Reset.

HardFault: A HardFault is an exception that occurs because of an error during exception processing, or
because an exception cannot be managed by any other exception mechanism. HardFaults have a fixed
priority of -1, meaning they have higher priority than any exception with configurable priority.

UGO0331 User Guide Revision 15.0 36

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

MemManage: A MemManage fault is an exception that occurs because of a memory protection related
fault. The MPU or the fixed memory protection constraints determines this fault, for both instruction and
data memory transactions. This fault is always used to abort instruction accesses to Execute Never (XN)
memory regions.

BusFault: A BusFault is an exception that occurs because of a memory related fault for an instruction or
data memory transaction. This might be from an error detected on a bus in the memory system.

UsageFault: A UsageFault is an exception that occurs because of a fault related to instruction execution.
This includes:

* an undefined instruction

* anillegal unaligned access

* invalid state on instruction execution
* an error on exception return.

The following can cause a UsageFault when the core is configured to report them:

+ anunaligned address on word and halfword memory access

+ division by zero.

SVCall: A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS
environment, applications can use SVC instructions to access OS kernel functions and device drivers.

PendSV: PendSV is an interrupt-driven request for system-level service. In an OS environment, use
PendSV for context switching when no other exception is active.

SysTick: A SysTick exception is an exception the system timer generates when it reaches zero.
Software can also generate a SysTick exception. In an OS environment, the processor can use this
exception as system tick.

Interrupt (IRQ): A interrupt, or IRQ, is an exception signaled by a peripheral, or generated by a software
request. All interrupts are asynchronous to instruction execution. In the system, peripherals use
interrupts to communicate with the processor.

UGO0331 User Guide Revision 15.0 37

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

For an asynchronous exception, other than reset, the processor can execute another instruction between
when the exception is triggered and when the processor enters the exception handler.

Table 22 « Properties of the Different Exception Types

Exception Vector address or

number’ IRQ number’ Exception type |Priority offset? Activation

1 Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C

4 -12 MemManage Configurable 0x00000010 Synchronous

5 -1 BusFault Configurable3 0x00000014 Synchronous when precise,
asynchronous when
imprecise

6 -10 UsageFault Configurable3 0x00000018 Synchronous

7-10 Reserved

11 -5 SVCall Configurable® 0x0000002C Synchronous

12-13 Reserved

14 -2 PendSV Configurable3 0x00000038 Asynchronous

15 -1 SysTick Configurable® 0x0000003C Asynchronous

16 and 0 and above Interrupt (IRQ) Configurable4 0x00000040 and Asynchronous

above above®

1. To simplify the software layer, the CMSIS only uses IRQ numbers and therefore uses negative values for exceptions other than
interrupts. The IPSR returns the Exception number, see Interrupt Program Status Register, page 23.

akrowbd

3.5.3.3

See Vector Table, page 40 for more information.

See System Handler Priority Registers, page 110.
See Interrupt Priority Registers, page 99.
Increasing in steps of 4.

Privileged software can disable the exceptions that Table 22, page 39 shows as having configurable
priority. See System Handler Control and State Register, page 112 and Interrupt Clear-enable Registers, page 97.

For more information about HardFaults, MemManage faults, BusFaults, and UsageFaults, see Fault
Handling, page 43.

Exception Handlers
The processor handles exceptions using:

Interrupt Service Routines (ISRs): Interrupts IRQO to IRQ239 are the exceptions handled by ISRs.

Fault handlers: HardFault, MemManage, UsageFault and BusFault are fault exceptions handled by the

fault handlers.

System handlers: NMI, PendSV, SVCall SysTick, and the fault exceptions are all system exceptions
that are handled by system handlers.

UGO0331 User Guide Revision 15.0

38

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.5.3.4 Vector Table
The vector table contains the reset value of the stack pointer, and the start addresses, also called
exception vectors, for all exception handlers. Figure 5, page 21 shows the order of the exception vectors
in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler
is Thumb code.
Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000
Figure 16 « Vector Table
On system reset, the vector table is fixed at address 0x00000000. Privileged software can write to the
VTOR to relocate the vector table start address to a different memory location, in the range 0x00000080 to
O0x3FFFFF80, see Vector Table Offset Register, page 106.
3.5.3.5 Exception Priorities
As Table 22, page 39 shows, all exceptions have an associated priority, with:
* alower priority value indicating a higher priority
» configurable priorities for all exceptions except Reset, HardFault, and NMI.
If software does not configure any priorities, then all exceptions with a configurable priority have a priority
of 0. For information about configuring exception priorities see System Handler Priority Registers,
page 110 and Interrupt Priority Registers, page 99.
Note: Configurable priority values are in the range 0-255. This means that the Reset, HardFault, and NMI

exceptions, with fixed negative priority values, always have higher priority than any other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that
IRQ[1] has higher priority than IRQ[O0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before
IRQ[O].

UGO0331 User Guide Revision 15.0 39

Cortex-M3 Processor (Reference Material) - .
& Microsemi

3.5.3.6

3.5.3.7

3.5.3.7.1

Power Matters.”

If multiple pending exceptions have the same priority, the pending exception with the lowest exception
number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same
priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted if a higher
priority exception occurs. If an exception occurs with the same priority as the exception being handled,
the handler is not preempted, irrespective of the exception number. However, the status of the new
interrupt changes to pending.

Interrupt Priority Grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping. This divides
each interrupt priority register entry into two fields:

* An upper field that defines the group priority
* Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor is executing
an interrupt exception handler, another interrupt with the same group priority as the interrupt being
handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines the order in
which they are processed. If multiple pending interrupts have the same group priority and subpriority, the
interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority, see
Application Interrupt and Reset Control Register, page 106.

Exception Entry and Return

Descriptions of exception handling use the following terms:

Preemption: When the processor is executing an exception handler, an exception can preempt the
exception handler if its priority is higher than the priority of the exception being handled. See Interrupt
Priority Grouping, page 41 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called nested exceptions. See Exception
Entry, page 41 more information.

Return: This occurs when the exception handler is completed, and:

» there is no pending exception with sufficient priority to be serviced
« the completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt
occurred. See Exception Return, page 42 for more information.

Tail-chaining: This mechanism speeds up exception servicing. On completion of an exception handler, if
there is a pending exception that meets the requirements for exception entry, the stack pop is skipped
and control transfers to the new exception handler.

Late-arriving: This mechanism speeds up preemption. If a higher priority exception occurs during state
saving for a previous exception, the processor switches to handle the higher priority exception and
initiates the vector fetch for that exception. State saving is not affected by late arrival because the state
saved is the same for both exceptions. Therefore the state saving continues uninterrupted. The
processor can accept a late arriving exception until the first instruction of the exception handler of the
original exception enters the execute stage of the processor. On return from the exception handler of the
late-arriving exception, the normal tail-chaining rules apply.

Exception Entry
Exception entry occurs when there is a pending exception with sufficient priority and either:

* The processor is in Thread mode
» The new exception is of higher priority than the exception being handled, in which case the new
exception preempts the exception being handled.

When one exception preempts another, the exceptions are nested.

UGO0331 User Guide Revision 15.0 40

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Figure 17

3.5.3.7.2

Power Matters.”

Sufficient priority means the exception has greater priority than any limit set by the mask register, see
Exception Mask Registers, page 25. An exception with less priority than this is pending but is not handled
by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving
exception, the processor pushes information onto the current stack. This operation is referred to as
stacking and the structure of eight data words is referred as a stack frame. The following figure illustrates
the information contained in the stack frame.

Exception Entry Stack Contents

<previous> ««—SP points here before interrupt
SP + 0x1C xPSR
SP + 0x18 PC
Decreasing | oP + 0x14 LR
memory SP + 0x10 R12
address | SP + 0x0C R3
SP + 0x08 R2
SP + 0x04 R1
v SP + 0x00 RO «—SP points here after interrupt

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The
alignment of the stack frame is controlled via the STKALIGN bit of the Configuration Control Register
(CCR).

The stack frame includes the return address. This is the address of the next instruction in the interrupted
program. This value is restored to the PC at exception return so that the interrupted program resumes.

The processor performs a vector fetch that reads the exception handler start address from the vector
table. When stacking is complete, the processor starts executing the exception handler. At the same
time, the processor writes an EXC_RETURN value to the LR. This indicates which stack pointer
corresponds to the stack frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing the exception
handler and automatically changes the status of the corresponding pending interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts executing the
exception handler for this exception and does not change the pending status of the earlier exception.
This is the late arrival case.

Exception Return
Exception return occurs when the processor is in Handler mode and execution of one of the following
instructions attempts to set the PC to an EXC_RETURN value:

e an LDM or POP instruction that loads the PC
¢ an LDRinstruction with PC as the destination
« aBXinstruction using any register.

The processor saves an EXC_RETURN value to the LR on exception entry. The exception mechanism
relies on this value to detect when the processor has completed an exception handler. Bits[31:4] of an
EXC_RETURN value are 0xFFFFFFF.

UGO0331 User Guide Revision 15.0 41

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

When the processor loads a value matching this pattern to the PC it detects that the operation is a not a
normal branch operation and, instead, that the exception is complete. Therefore, it starts the exception
return sequence. Bits[3:0] of the EXC_RETURN value indicate the required return stack and processor
mode, as noted in the following table.

Table 23

Exception Return Behavior

EXC_RETURN

Description

OXFFFFFFF1

Return to Handler mode.

Exception return gets state from the main stack.

Execution uses MSP after return.

OXFFFFFFF9

Return to Thread mode.

Exception Return get state from the main stack.

Execution uses MSP after return.

OXFFFFFFFD

Return to Thread mode.

Exception return gets state from the process
stack.

Execution uses PSP after return.

All other values

Reserved.

3.54 Fault Handling

Faults are a subset of the exceptions, see Exception Model, page 37. The following generates a fault:

* abus erroron:
* aninstruction fetch or vector table load
* adata access
* aninternally-detected error such as an undefined instruction

+ attempting to execute an instruction from a memory region marked as Non-Executable (XN).

+ attempting to execute an instruction while the EPSR T-bit is clear. For example, as the result of an

erroneous BX instruction, or a vector fetch from a vector table entry with bit[0] clear.
+ an MPU fault because of a privilege violation or an attempt to access an unmanaged region.

3.54.1 Fault Types

The following table shows the types of fault, the handler used for the fault, the corresponding fault status

register, and the register bit that indicates that the fault has occurred. See Configurable Fault Status

Register, page 113 for more information about the fault status registers.

Table 24 « Faults

Fault Handler Bit name Fault status register
Bus error on a vector |HardFault VECTTBL HardFault Status Register
read

Fault escalated to a FORCED

HardFault

MPU or default MemManage

memory map

mismatch:

on instruction access IACCVIOL MemManage Fault Status Register
on data access DACCVIOL

during exception MSTKERR

stacking

during exception MUNSKERR

unstacking

UGO0331 User Guide Revision 15.0

42

Table 24

Cortex-M3 Processor (Reference Material)

Faults (continued)

& Microsemi

Power Matters.”

Fault Handler Bit name Fault status register
Bus error: BusFault

during exception STKERR BusFault Status Register
stacking

during exception UNSTKERR

unstacking

during instruction IBUSERR

prefetch

Precise data bus error PRECISERR

Imprecise data bus IMPRECISERR

error

Attempt to access a [UsageFault NOCP UsageFault Status Register
coprocessor

Undefined instruction UNDEFINSTR

Attempt to enter an INVSTATE

invalid instruction set

state?

Invalid UsageFault INVPC UsageFault Status Register
EXC_RETURN value

lllegal unaligned load UNALIGNED

or store

Divide By 0 DIVBYZERO

1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.
2. Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple instruction

with ICI continuation.

3.5.4.2

Fault Escalation and HardFaults

All faults exceptions except for HardFault have configurable exception priority, see System Handler
Priority Registers, page 110. Software can disable execution of the handlers for these faults, see System
Handler Control and State Register, page 112.

Usually, the exception priority, together with the values of the exception mask registers, determines
whether the processor enters the fault handler, and whether a fault handler can preempt another fault

handler. as described in Exception Model, page 37

In some situations, a fault with configurable priority is treated as a HardFault. This is called priority
escalation, and the fault is described as escalated to HardFault. Escalation to HardFault occurs when:

A fault handler causes the same kind of fault as the one it is servicing. This escalation to HardFault
occurs because a fault handler cannot preempt itself because it must have the same priority as the
current priority level.

A fault handler causes a fault with the same or lower priority as the fault it is servicing. This is because
the handler for the new fault cannot preempt the currently executing fault handler.

An exception handler causes a fault for which the priority is the same as or lower than the currently
executing exception.

A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault does not
escalate to a HardFault. This means that if a corrupted stack causes a fault, the fault handler executes

UGO0331 User Guide Revision 15.0

43

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

even though the stack push for the handler failed. The fault handler operates but the stack contents are
corrupted.

Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can preempt any exception
other than Reset, NMI, or another HardFault.

3.5.4.3 Fault Status Registers and Fault Address Registers
The fault status registers indicate the cause of a fault. For BusFaults and MemManage faults, the fault
address register indicates the address accessed by the operation that caused the fault, as detailed in the
following table.
Table 25+« Fault Status and Fault Address Registers
Status Register | Address Register
Handler Name Name Register Description
HardFault HFSR HardFault Status Register
MemManage MMFSR MMFAR MemManage Fault Status Register
MemManage Fault Address Register
BusFault BFSR BFAR BusFault Status Register
BusFault Address Register
UsageFault UFSR UsageFault Status Register
3.544 Lockup
The processor enters a lockup state if a fault occurs when executing the NMI or HardFault handlers.
When the processor is in lockup state it does not execute any instructions. The processor remains in
lockup state until either:
+ ltisreset
* An NMI occurs
« ltis halted by the debugger.
Note: If lockup state occurs from the NMI handler a subsequent NMI does not cause the processor to leave
lockup state.
3.5.5 Power Management
The Cortex-M3 processor sleep modes reduce power consumption:
+ Sleep mode stops the processor clock.
. Deep sleep mode stops the system clock and switches off the PLL and flash memory.
The SLEEPDEEP bit of the SCR selects which Sleep mode is used, refer to System Control Register,
page 108.
This section describes the mechanisms for entering Sleep mode, and the conditions for waking up from
Sleep mode.
3.5.5.1 Entering Sleep Mode
This section describes the mechanisms software can use to put the processor into Sleep mode.
The system can generate spurious wakeup events, for example a debug operation wakes up the
processor. Therefore software must be able to put the processor back into Sleep mode after such an
event. A program might have an idle loop to put the processor back to Sleep mode.
3.5.5.1.1 Wait for Interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up
condition is true, see Wakeup from WFI or sleep-on-exit, page 46. When the processor executes a WFI

UGO0331 User Guide Revision 15.0 44

Cortex-M3 Processor (Reference Material) @ Microsemi

3.5.5.1.2

3.5.51.3

3.5.5.2

3.5.5.2.1

3.5.5.2.2

3.5.5.3

Power Matters.”

instruction it stops executing instructions and enters sleep mode. See Wakeup from WFE, page 46 for
more information.

Wait for Event

The wait for event instruction, WFE, causes entry to sleep mode dependent on the value of a one-bit
event register. When the processor executes a WFE instruction, it checks the value of the event register:

0: The processor stops executing instructions and enters Sleep mode.

1: The processor clears the register to 0 and continues executing instructions without entering Sleep
mode.

See WFI, page 94 for more information.

If the event register is 1, this indicate that the processor must not enter Sleep mode on execution of a
WFE instruction. Typically, this is because an external event signal is asserted, or a processor in the
system has executed an SEV instruction, see SEV, page 93. Software cannot access this register directly.

Sleep-on-exit
If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution of all

exception handles it returns to Thread mode and immediately enters Sleep mode. Use this mechanism in
applications that only require the processor to run when an exception occurs.

Wakeup from Sleep Mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to cause
exception entry.

Some embedded systems might have to execute system restore tasks after the processor wakes up, and
before it executes an interrupt handler. To achieve this set the PRIMASK bit to 1 and the FAULTMASK bit
to 0. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the
processor wakes up but does not execute the interrupt handler until the processor sets PRIMASK to
zero. For more information about PRIMASK and FAULTMASK see Exception Mask Registers, page 25.

Wakeup from WFE

The processor wakes up if:

» it detects an exception with sufficient priority to cause exception entry
* it detects an external event signal, see External Event Input, page 47
* in a multiprocessor system, another processor in the system executes an SEV instruction

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event
and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception
entry. For more information about the SCR see System Control Register, page 108.

The Wakeup Interrupt Controller

The Wakeup Interrupt Controller (WIC) is a peripheral that can detect an interrupt and wake the
processor from deep sleep mode. The WIC is enabled only when the DEEPSLEEP bit in the SCR is set
to 1, see System Control Register, page 108.

The WIC is not programmable, and does not have any registers or user interface. It operates entirely
from hardware signals.

When the WIC is enabled and the processor enters deep sleep mode, the power management unit in the
system can power down most of the Cortex-M3 processor. This has the side effect of stopping the
SysTick timer. When the WIC receives an interrupt, it takes a number of clock cycles to wakeup the
processor and restore its state, before it can process the interrupt. This means interrupt latency is
increased in deep sleep mode.

Note: If the processor detects a connection to a debugger it disables the WIC.

UGO0331 User Guide Revision 15.0 45

Cortex-M3 Processor (Reference Material)

3.5.54

3.5.5.5

3.6

3.6.1

& Microsemi

Power Matters.”

External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake
the processor from WFE, or to set the internal WFE event register to one to indicate that the processor
must not enter Sleep mode on a later WFE instruction. See Wait for Event, page 46 for more information.
Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following
functions for these instructions:

void _ WFE(void) // Wait for Event

void _ WFI(void) // Wait for Interrupt

Cortex-M3 Processor Instruction Set

This section is the reference material for the Cortex-M3 processor instruction set description in this user
guide.

Instruction Set Summary

The processor implements a version of the Thumb instruction set. The following table lists the supported
instructions.

In the following table:

. angle brackets, <>, enclose alternative forms of the operand

* braces, {}, enclose optional operands

+ the Operands column is not exhaustive

+ Op2is a flexible second operand that can be either a register or a constant
* most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 26 « Cortex-M3 Processor Instructions

Mnemonic Operands Brief description Flags
ADC, ADCS [{Rd,} Rn, Op2 Add with Carry N,ZC,V
ADD, ADDS |{Rd,} Rn, Op2 Add N,Z,C,V
ADD, ADDW [{Rd,} Rn, #imm12 Add N,Z,C,V
ADR Rd, label Load PC-relative Address

AND, ANDS |{Rd,} Rn, Op2 Logical AND N,Z C
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N, Z,C

B label Branch

BFC Rd, #lsb, #width Bit Field Clear

BFI Rd, Rn, #lsb, #width Bit Field Insert

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,z C
BKPT #imm Breakpoint

BL label Branch with Link

BLX Rm Branch indirect with Link

BX Rm Branch indirect

CBNz Rn, label Compare and Branch if Non Zero

CcBz Rn, label Compare and Branch if Zero

CLREX Clear Exclusive

UGO0331 User Guide Revision 15.0

46

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

Table 26 = Cortex-M3 Processor Instructions (continued)

Mnemonic Operands Brief description Flags
CLz Rd, Rm Count Leading Zeros

CMN Rn, Op2 Compare Negative N,Z C,V
CMP Rn, Op2 Compare N,Z, C,V
CPSID i Change Processor State, Disable Interrupts

CPSIE i Change Processor State, Enable Interrupts

DMB Data Memory Barrier

DSB Data Synchronization Barrier

EOR, EORS |{Rd,} Rn, Op2 Exclusive OR N, Z, C
ISB Instruction Synchronization Barrier

IT If-Then condition block

LDM Rn{!}, reglist Load Multiple registers, increment after

LDMDB, Rn{1}, reglist Load Multiple registers, decrement before

LDMEA

LDMFD, Rn{1}, reglist Load Multiple registers, increment after

LDMIA

LDR Rt, [Rn, #offset] Load Register with word

LDRB, LDRBT (Rt, [Rn, #offset] Load Register with byte

LDRD Rt, Rt2, [Rn, #offset] Load Register with two bytes

LDREX Rt, [Rn, #offset] Load Register Exclusive

LDREXB Rt, [Rn] Load Register Exclusive with Byte

LDREXH Rt, [Rn] Load Register Exclusive with Halfword

LDRH, LDRHT |Rt, [Rn, #offset] Load Register with Halfword

LDRSB, Rt, [Rn, #offset] Load Register with Signed Byte

LDRSBT

LDRSH, Rt, [Rn, #offset] Load Register with Signed Halfword

LDRSHT

LDRT Rt, [Rn, #offset] Load Register with word

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,z C
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N, Z, C
MLA Rd, Rn, Rm, Ra Multiply with Accumulate, 32-bit result

MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit result

MOV, MOVS Rd, Op2 Move N,Z C
MOVT Rd, #imm16 Move Top

MOVW, MOV [Rd, #imm16 Move 16-bit constant N, Z C
MRS Rd, spec_reg Move from Special Register to general register

MSR spec_reg, Rm Move from general register to Special Register|N, Z, C,V
MUL, MULS [{Rd,} Rn, Rm Multiply, 32-bit result N, Z
MVN, MVNS |Rd, Op2 Move NOT N,Z C
NOP No Operation

UGO0331 User Guide Revision 15.0

47

UGO0331 User Guide Revision 15.0

Cortex-M3 Processor (Reference Material) @ Microseml:
Power Matters.”
Table 26 = Cortex-M3 Processor Instructions (continued)
Mnemonic Operands Brief description Flags
ORN, ORNS |{Rd,} Rn, Op2 Logical OR NOT N,z C
ORR, ORRS |{Rd,} Rn, Op2 Logical OR N,Z C
POP reglist Pop registers from stack
PUSH reglist Push registers onto stack
RBIT Rd, Rn Reverse Bits
REV Rd, Rn Reverse byte order in a word
REV16 Rd, Rn Reverse byte order in each halfword
REVSH Rd, Rn Reverse byte order in bottom halfword and
sign extend
ROR, RORS |Rd, Rm, <Rs|#n> Rotate Right N,Z C
RRX, RRXS Rd, Rm Rotate Right with Extend N,z C
RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V
SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract
SDIV {Rd,} Rn, Rm Signed Divide
SEV Send Event
SMLAL RdLo, RdHi, Rn, Rm Signed Multiply with Accumulate (32 x 32 +
64), 64-bit result
SMULL RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32), 64-bit result
SSAT Rd, #n, Rm {,shift #s} |Signed Saturate Q
STM Rn{!}, reglist Store Multiple registers, increment after
STMDB, Rn{1}, reglist Store Multiple registers, decrement before
STMEA
STMFD, Rn{!}, reglist Store Multiple registers, increment after
STMIA
STR Rt, [Rn, #offset] Store Register word
STRB, STRBT |[Rt, [Rn, #offset] Store Register byte
STRD Rt, Rt2, [Rn, #offset] Store Register two words
STREX Rd, Rt, [Rn, #offset] Store Register Exclusive
STREXB Rd, Rt, [Rn] Store Register Exclusive Byte
STREXH Rd, Rt, [Rn] Store Register Exclusive Halfword
STRH, STRHT [Rt, [Rn, #offset] Store Register Halfword
STRT Rt, [Rn, #offset] Store Register word
SUB, SUBS {Rd,} Rn, Op2 Subtract N,ZC,V
SUB, SUBW {Rd,} Rn, #imm12 Subtract N,Z,C,V
sSvC #mm Supervisor Call
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword
TBB [Rn, Rm] Table Branch Byte

48

Cortex-M3 Processor (Reference Material)

3.6.2

Table 26 = Cortex-M3 Processor Instructions (continued)

& Microsemi

Power Matters.”

Mnemonic Operands Brief description Flags
TBH [Rn, Rm, LSL #1] Table Branch Halfword
TEQ Rn, Op2 Test Equivalence N, Z, C
TST Rn, Op2 Test N,Z C
UBFX Rd, Rn, #Isb, #width Unsigned Bit Field Extract
ubIv {Rd,} Rn, Rm Unsigned Divide
UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate

(32 x 32 + 64), 64-bit result
UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32), 64-bit result
USAT Rd, #n, Rm {,shift #s} |Unsigned Saturate Q
UXTB {Rd,} Rm {,ROR #n} Zero extend a Byte
UXTH {Rd,} Rm {,ROR #n} Zero extend a Halfword
WFE Wait for Event
WEFI Wait for Interrupt

CMSIS Functions

ISO/IEC C code cannot directly access some Cortex-M3 processor instructions. This section describes
intrinsic functions that can generate these instructions, provided by the CMSIS and that might be
provided by a C compiler. If a C compiler does not support an appropriate intrinsic function, you might
have to use inline assembler to access some instructions.

The following table lists the intrinsic functions that the CMSIS provides to generate instructions that
ISO/IEC C code cannot directly access.

Table 27 « CMSIS Functions to Generate some Cortex-M3 Processor instructions
Instruction CMSIS function

CPSIE | void __enable_irg(void)

CPSID | void __disable_irg(void)

CPSIEF void __enable_fault_irg(void)

CPSID F void __disable_fault_irg(void)

ISB void __ISB(void)

DSB void __ DSB(void)

DMB void __DMB(void)

REV uint32_t __ REV(uint32_t int value)
REV16 uint32_t _ REV16(uint32_t int value)
REVSH uint32_t _ REVSH(uint32_t int value)
RBIT uint32_t __ RBIT(uint32_t int value)
SEV void __ SEV(void)

WFE void __ WFE(void)

WFI void __ WFI(void)

UGO0331 User Guide Revision 15.0

49

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.3

3.6.3.1

3.6.3.2

3.6.3.3

3.6.3.3.1

Power Matters.”

The following table lists the functions that CMSIS provides for accessing the special registers using MRS
and MSR instructions.

Table 28 « CMSIS Functions to Access the Special Registers

Special Register |Access CMSIS function
PRIMASK Read uint32_t __get PRIMASK (void)

Write void __set PRIMASK (uint32_t value)
FAULTMASK Read uint32_t _ get FAULTMASK (void)

Write void __set FAULTMASK (uint32_t value)
BASEPRI Read uint32_t _ get BASEPRI (void)

Write void __set_ BASEPRI (uint32_t value)
CONTROL Read uint32_t __get. CONTROL (void)

Write void __set CONTROL (uint32_t value)
MSP Read uint32_t __get_ MSP (void)

Write void __set MSP (uint32_t TopOfMainStack)
PSP Read uint32_t __ get PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

About the Instruction Descriptions
The following sections provide more information about using the instructions:

Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific parameter.
Instructions act on the operands and often store the result in a destination register. When there is a
destination register in the instruction, it is usually specified before the operands.

Operands in some instructions are flexible in that they can either be a register or a constant. Refer to
Flexible Second Operand, page 51.

Restrictions when Using PC or SP

Many instructions have restrictions on whether you can use the Program Counter (PC) or Stack Pointer
(SP) for the operands or destination register. See instruction descriptions for more information.

Bit[0] of any address you write to the PC with a BX, BLX, LDM, LDR, or POP instruction must be 1 for correct
execution, because this bit indicates the required instruction set, and the Cortex-M3 processor only
supports Thumb instructions.

Flexible Second Operand

Many general data processing instructions have a flexible second operand. This is shown as Operand2 in
the descriptions of the syntax of each instruction.

Operand2 can be a constant or a register with optional shift.

Constant

You specify an Operand2 constant in the form:
#constant

where constant can be:

* any constant that can be produced by shifting an 8-bit value left by any number of bits within a 32-bit
word
* any constant of the form 0x00XY00XY

UGO0331 User Guide Revision 15.0 50

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

« any constant of the form 0xXY00XY00
» any constant of the form 0xXYXYXYXY

In the constants shown above, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values. These are
described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS,
TEQ or TST, the carry flag is updated to bit[31] of the constant, if the constant is greater than 255 and can
be produced by shifting an 8-bit value. These instructions do not affect the carry flag if Operand2 is any
other constant.

Instruction substitution

3.6.3.3.2

3.6.3.4

3.6.3.4.1

Your assembler might be able to produce an equivalent instruction in cases where you specify a constant
that is not permitted. For example, an assembler might assemble the instruction CMP Rd, #0xFFFFFFFE as
the equivalent instruction CMN Rd, #0x2.

Register with Optional Shift

You specify an Operand? register in the form:

Rm {, shift}

where:

Rm: is the register holding the data for the second operand.
shift: is an optional shift to be applied to Rm. It can be one of:
ASR #n: arithmetic shift right n bits, 1 <n < 32.

LSL #n: logical shift left n bits, 1 <n < 31.

LSR #n: logical shift right n bits, 1 <n < 32.

ROR #n: rotate right n bits, 1 <n < 31.

RRX: rotate right one bit, with extend.

-: if omitted, no shift occurs, equivalent to LSL #0.

If you omit the shift, or specify LSL #0, the instruction uses the value in Rm.

If you specify a shift, the shift is applied to the value in Rm, and the resulting 32-bit value is used by the
instruction. However, the contents in the register Rm remains unchanged. Specifying a register with shift
also updates the carry flag when used with certain instructions. For information on the shift operations
and how they affect the carry flag, refer to Shift Operations, page 52.

Shift Operations

Register shift operations move the bits in a register left or right by a specified number of bits, the shift
length. Register shift can be performed:

» directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to a destination
register

» during the calculation of Operand?2 by the instructions that specify the second operand as a register
with shift, refer to Flexible Second Operand, page 51. The result is used by the instruction.

The permitted shift lengths depend on the shift type and the instruction, refer to the individual instruction
description or Flexible Second Operand, page 51. If the shift length is 0, no shift occurs. Register shift
operations update the carry flag except when the specified shift length is 0. The following sub-sections
describe the various shift operations and how they affect the carry flag. In these descriptions, Rm is the
register containing the value to be shifted, and n is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into
the right-hand 32-n bits of the result. And it copies the original bit[31] of the register into the left-hand n
bits of the result. Refer to Figure 18, page 53.

UGO0331 User Guide Revision 15.0 51

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

You can use the ASR #n operation to divide the value in the register Rm by 2", with the result being
rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.

* Ifnis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.
« Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of Rm.

Figure 18 « ASR#3

Carry
Flag
31 5(41312)1(0
| 7 Y \ T | kT & T !
I
c |
3.6.342 LSR
Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it sets the left-hand n bits of the result to 0. See the following figure.
You can use the LSR #n operation to divide the value in the register Rm by 2", if the value is regarded as
an unsigned integer.
When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted out, bit[n-1], of the
register Rm.
. If nis 32 or more, then all the bits in the result are cleared to 0.
» Ifnis 33 or more and the carry flag is updated, it is updated to 0.
Figure 19« LSR
[Carry
000 Flag
vVvYy
31 5(41312|1|0

|AAT |A|AT |

UGO0331 User Guide Revision 15.0 52

Cortex-M3 Processor (Reference Material)

3.6.3.4.3

Figure 20

[— 1

Carry
Flag

3.6.3.44

Figure 21 «

& Microsemi

Power Matters.”

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n places, into the
left-hand 32-n bits of the result. And it sets the right-hand n bits of the result to 0. See Figure 20, page 54.

You can use he LSL #n operation to multiply the value in the register Rm by 2", if the value is regarded as
an unsigned integer or a two’s complement signed integer. Overflow can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit shifted
out, bit[32-n], of the register Rm. These instructions do not affect the carry flag when used with LSL #0.

. If nis 32 or more, then all the bits in the result are cleared to 0.
« Ifnis 33 or more and the carry flag is updated, it is updated to 0.

LSL

« O —

N leo—
o |leo—

31 5(4]3

N

AT | TAA|

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the
right-hand 32-n bits of the result. And it moves the right-hand n bits of the register into the left-hand n bits
of the result. See the following figure.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to the last bit rotation, bit[n-1], of the
register Rm.

« Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is updated, it is
updated to bit[31] of Rm.
. ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

ROR

Carry

*V‘

| Flag

31

UGO0331 User Guide Revision 15.0 53

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

3.6.345 RRX
Rotate right with extend moves the bits of the register Rm to the right by one bit. And it copies the carry
flag into bit[31] of the result. See the following figure.
When the instruction is RRXS or when RRX is used in Operand2 with the instructions MOVS, MVNS, ANDS,
ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[0] of the register Rm.
Figure 22+ RRX
Carry
Flag
31|30 110

Lt I

3.6.3.5

3.6.3.6

3.6.3.7

Address Alignment

An aligned access is an operation where a word-aligned address is used for a word, dual word, or
multiple word access, or where a halfword-aligned address is used for a halfword access. Byte accesses
are always aligned.

The Cortex-M3 processor supports unaligned access only for the following instructions:

+ LDR, LDRT

*+ LDRH, LDRHT

*+ LDRSH, LDRSHT
+ STR, STRT

+ STRH, STRHT

All other load and store instructions generate a UsageFault exception if they perform an unaligned
access, and therefore their accesses must be address aligned. For more information about UsageFaults
refer to Fault Handling, page 43.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory regions might
not support unaligned accesses. Therefore, ARM recommends that programmers ensure that accesses
are aligned. To trap accidental generation of unaligned accesses, use the UNALIGN_TRP bit in the
Configuration and Control Register, refer to Configuration and Control Register, page 109.

PC-relative Expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or literal data.
It is represented in the instruction as the PC value plus or minus a numeric offset. The assembler
calculates the required offset from the label and the address of the current instruction. If the offset is too
big, the assembler produces an error.

. For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the current instruction
plus 4 bytes.

. For most other instructions that use labels, the value of the PC is the address of the current
instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-aligned.

* Your assembler might permit other syntaxes for PC-relative expressions, such as a label plus or
minus a number, or an expression of the form [PC, #number].

Conditional Execution

Most data processing instructions can optionally update the condition flags in the Application Program
Status Register (APSR) according to the result of the operation; see Application Program Status
Register, page 23. Some instructions update all flags, and some only update a subset. If a flag is not
updated, the original value is preserved. See the instruction descriptions for the flags they affect.

UGO0331 User Guide Revision 15.0 54

Cortex-M3 Processor (Reference Material) - .
& Microsemi

3.6.3.7.1

3.6.3.7.2

Power Matters.”

You can execute an instruction conditionally, based on the condition flags set in another instruction,
either:

* Immediately after the instruction that updated the flags
» After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code suffixes to
instructions. See Table 29, page 57 for a list of the suffixes to add to instructions to make them
conditional instructions. The condition code suffix enables the processor to test a condition based on the
flags. If the condition test of a conditional instruction fails, the instruction:

+ Does not execute

« Does not write any value to its destination register
* Does not affect any of the flags

+ Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then instruction block. See
IT, page 85 for more information and restrictions when using the IT instruction. Depending on the vendor,
the assembler might automatically insert an IT instruction if you have conditional instructions outside the
IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and branch on the
result.

This section describes the condition flags and condition code suffixes.

Condition Flags

The APSR contains the following condition flags:

N: Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Z: Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C: Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V: Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR, refer to Program Status Register, page 22.
A carry occurs:

« Ifthe result of an addition is greater than or equal to 232
+ If the result of a subtraction is positive or zero
* As the result of an inline barrel shifter operation in a move or logical instruction

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result had the
operation been performed at infinite precision, for example:

+ If adding two negative values results in a positive value

» If adding two positive values results in a negative value

» If subtracting a positive value from a negative value generates a positive value
» If subtracting a negative value from a positive value generates a negative value

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except that the result is
discarded. See the instruction descriptions for more information. Most instructions update the status flags
only if the S suffix is specified. See the instruction descriptions for more information.

Condition Code Suffixes

The instructions that can be conditional have an optional condition code, shown in syntax descriptions as
{cond}. Conditional execution requires a preceding IT instruction. An instruction with a condition code is
only executed if the condition code flags in the APSR meet the specified condition. The following table
shows the condition codes to use. You can use conditional execution with the IT instruction to reduce the

UGO0331 User Guide Revision 15.0 55

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

number of branch instructions in code. The table also shows the relationship between condition code

suffixes and the N, Z, C, and V flags.

Table 29 « Condition Code Suffixes

Suffix Flags Meaning

EQ Z=1 Equal

NE Z=0 Not equal

CS or HS C=1 Higher or same, unsigned
CCorlLO CcC=0 Lower, unsigned

Mi N=1 Negative

PL N=0 Positive or zero

VS V=1 Overflow

vC V=0 No overflow

HI C=1andZ=0 Higher, unsigned

LS C=0or Z=1 Lower or same, unsigned

GE N=V Greater than or equal, signed
LT NI=V Less than, signed

GT Z=0andN=V Greater than, signed

LE Z=1andN!=V Less than or equal, signed
AL Can have any value |Always. This is the default when no suffix is specified.

The following example shows the use of a conditional instruction to find the absolute value of a number.

RO = abs(R1).

Example 1

Absolute value

MOVS RO,
IT MI
RSBMI RO,

R1 ;

RO, #0 ;

RO =

If negative,

R1, setting flags

skipping next instruction if value 0 or positive

RO = -RO

The following example shows the use of conditional instructions to update the value of R4 if the signed
values R0 is greater than R1 and R2 is greater than R3.

Example 2

Compare and update value

CMP RO,
ITT GT

CMPGT R2,
MOVGT R4,

R1 ;

Compare RO and R1,

setting flags

; Skip next two instructions unless GT condition holds

R3 ; If

RS ;

UGO0331 User Guide Revision 15.0

'greater than',

If still

compare R2 and R3, setting flags

'greater than', do R4 = R5

56

Cortex-M3 Processor (Reference Material)

3.6.3.8

Note:

3.64

& Microsemi

Power Matters.”

Instruction Width Selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding depending
on the operands and destination register specified. For some of these instructions, you can force a
specific instruction size by using an instruction width suffix. The .\W suffix forces a 32-bit instruction
encoding. The .N suffix forces a 16-bit instruction encoding.

If you specify an instruction width suffix and the assembler cannot generate an instruction encoding of
the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is the label of an
instruction or literal data, as in the case of branch instructions. This is because the assembler might not
automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and condition code,
if any. The following example shows instructions with the instruction width suffix.

Example 3
Instruction width selection
BCS.W label ; creates a 32-bit instruction even for a short branch

ADDS.W RO, RO, Rl ; creates a 32-bit instruction even though the same

; operation can be done by a 16-bit instruction

Memory Access Instructions

The following table provides memory access instructions:

Table 30 « Memory Access Instructions

Mnemonic Brief Description See

ADR Generate PC-relative address ADR, page 59

CLREX Clear Exclusive CLREX, page 67

LDM{mode} Load Multiple registers LDM and STM, page 64

LDR{type} Load Register using immediate offset LDR and STR, Immediate Offset, page 59
LDR{type} Load Register using register offset LDR and STR, Register Offset, page 61
LDR{type}T Load Register with unprivileged access LDR and STR, Unprivileged, page 62
LDR Load Register using PC-relative address LDR, PC-relative, page 63

LDREX{type} |Load Register Exclusive LDREX and STREX, page 66

POP Pop registers from stack PUSH and POP, page 65

PUSH Push registers onto stack PUSH and POP, page 65

STM{mode} Store Multiple registers LDM and STM, page 64

STR{type} Store Register using immediate offset LDR and STR, Immediate Offset, page 59
STR{type} Store Register using register offset LDR and STR, Register Offset, page 61
STR{type}T Store Register with unprivileged access LDR and STR, Unprivileged, page 62
STREX{type} [Store Register Exclusive LDREX and STREX, page 66

UGO0331 User Guide Revision 15.0

57

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.4.1

3.6.41.1

3.6.4.1.2

Note:

3.6.41.3

3.6.414

3.6.4.2

3.64.2.1

Power Matters.”

ADR

Generate PC-relative address.
Syntax

ADR{cond} Rd, label
where:

« cond is an optional condition code, see Conditional Execution, page 55.
* Rdis the destination register

* label is a PC-relative expression. See PC-relative Expressions, page 55.
Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to the
destination register.

ADR provides the means by which position-independent code can be generated, because the address is
PC-relative.

If you use ADR to generate a target address for a BX or BLX instruction, you must ensure that bit[0] of the
address you generate is set to 1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

You may have to use the .W suffix to get the maximum offset range or to generate addresses that are not
word-aligned. See Instruction Width Selection, page 58.

Restrictions
Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples

ADR R1, TextMessage ; Write address value of a location labelled as

; TextMessage to R1

LDR and STR, Immediate Offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words
where:

+ opis either LDR (load register) or STR (store register)
* typeisone of:
« B:unsigned byte, zero extend to 32 bits on loads.
+ SB: signed byte, sign extend to 32 bits (LDR only).
. H: unsigned halfword, zero extend to 32 bits on loads.
* SH: signed halfword, sign extend to 32 bits (LDR only).
e -:omit, for word.
« cond is an optional condition code; see Conditional Execution, page 55.

UGO0331 User Guide Revision 15.0 58

Cortex-M3 Processor (Reference Material) - .
& Microsemi

3.6.4.2.2

Power Matters.”

* Rtis the register to load or store.

* Rnis the register on which the memory address is based.

« oOffsetis an offset from Rn. If offset is omitted, the address is the contents of Rn.
* Rt2is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:
Offset Addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is
used as the address for the memory access. The register Rn is unaltered. The assembly language syntax
for this mode is:

[Rn, #offset]
Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the register Rn. The result is
used as the address for the memory access and written back into the register Rn. The assembly
language syntax for this mode is:

[Rn, #offset]!
Post-indexed addressing

The address obtained from the register Rn is used as the address for the memory access. The offset
value is added to or subtracted from the address, and written back into the register Rn. The assembly
language syntax for this mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords can either be
signed or unsigned. Refer to Address Alignment, page 55.

The following table lists the ranges of offset for immediate, pre-indexed and post-indexed forms.

Table 31+ Offset Ranges

Instruction Type Immediate Offset Pre-Indexed Post-Indexed

Word, halfword, signed halfword, |-255 to 4095 -255 to 255 -255 to 255
byte, or signed byte

Two words Multiple of 4 in the Multiple of 4 in the Multiple of 4 in the

range -1020 to 1020 ([range -1020 to 1020 ([range -1020 to 1020

3.6.4.2.3

Restrictions
For load instructions:
* Rtcan be SP or PC for word loads only

* Rt must be different from Rt2 for two-word loads
* Rn must be different from Rt and Rf2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:
« bit[0] of the loaded value must be 1 for correct execution

* abranch occurs to the address created by changing bit[0] of the loaded value to 0
. if the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

* Rtcan be SP for word stores only
* Rtmust not be PC

UGO0331 User Guide Revision 15.0 59

Cortex-M3 Processor (Reference Material)

3.6.4.24

3.6.4.3

3.6.4.3.1

3.6.4.3.2

Rn must not be PC
Rn must be different from Rt and Rf2 in the pre-indexed or post-indexed forms.

Condition flags

These instructions do not change the flags.

Examples

LDR

RS,

LDRNE R2,

STR R2,
STRH R3,
LDRD RS,
STRD RO,

LDR and STR, Register Offset

[R10]
[R5, #960]!

[R9, #const-struc]

[R4], #4

R9, [R3, #0x20]

R1, [R8], #-16

Load and Store with register offset.

Syntax
op{type}{cond} Rt, [Rn, Rm {,

where:

& Microsemi

Power Matters.”

Loads R8 from the address in R10.

Loads (conditionally) R2 from a word

’

’

960 bytes above the address in R5, and

increments R5 by 960

const-struc is an expression evaluating

’

to a constant in the range 0-4095.

Store R3 as halfword data into address in

’

R4, then increment R4 by 4

Load R8 from a word 8 bytes above the

’

’

address in R3, and load R9 from a word 9

; bytes above the address in R3

Store RO to address in R8, and store Rl to

’

’

a word 4 bytes above the address in RS,

and then decrement R8 by 16.

LSL #n}]

op is either LDR (load register) or STR (store register)
type is one of:
+ B:unsigned byte, zero extend to 32 bits on loads.

+ SB: signed byte, sign extend to 32 bits (LDR only).

. H: unsigned halfword, zero extend to 32 bits on loads.
» SH: signed halfword, sign extend to 32 bits (LDR only).
e -:omit, for word.
cond is an optional condition code, refer to Conditional Execution, page 55.
Rt is the register to load or store.
Rn is the register on which the memory address is based.
Rm is a register containing a value to be used as the offset.
LSL #n is an optional shift, with n in the range 0 to 3.

Operation
LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset is specified by
the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned. See Address Alignment, page 55.

UGO0331 User Guide Revision 15.0 60

Cortex-M3 Processor (Reference Material)

3.6.4.3.3

3.6.4.3.4

3.6.44

3.6.4.41

3.6.44.2

Restrictions

In these instructions:
Rn must not be PC
Rm must not be SP and must not be PC

Rt can be SP only for word loads and word stores
Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

& Microsemi

Power Matters.”

Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-

aligned address

If the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags
These instructions do not change the flags.

Examples

STR

RO, [R5, R1]

LDRSB RO, [R5, RI1,

STR

RO, [Rl, R2,

; Store value of RO into an address equal to

; sum of R5 and R1

LSL #1]1 ; Read byte value from an address equal to

; sum of R5 and two times R1l, sign extended it

; to a word value and put it in RO

; and four times R2.

LDR and STR, Unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt,

where:

op is either LDR (load register) or STR (store register)
type is one of:
B: unsigned byte, zero extend to 32 bits on loads.
SB: signed byte, sign extend to 32 bits (LDR only).

H: unsigned halfword, zero extend to 32 bits on loads.
SH: signed halfword, sign extend to 32 bits (LDR only).

-: omit, for word.

LSL #2] ; Stores RO to an address equal to sum of Rl

[Rn {, #offset}] ; immediate offset

cond is an optional condition code, refer to Conditional Execution, page 55.
Rt is the register to load or store.

Rn is the register on which the memory address is based.
offset is an offset from Rn and can be 0 to 255. If offset is omitted, the address is the value in Rn.

Operation

These load and store instructions perform the same function as the memory access instructions with
immediate offset, refer to LDR and STR, Immediate Offset, page 594. The difference is that these
instructions have only unprivileged access even when used in privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as normal
memory access instructions with immediate offset.

UGO0331 User Guide Revision 15.0

61

Cortex-M3 Processor (Reference Material) @ Microsemi

3.644.3

3.6.44.4

3.6.4.5

3.6.4.5.1

3.6.4.5.2

Note:

Power Matters.”

Restrictions
In these instructions:

* Rnmust not be PC.
* Rt must not be SP and must not be PC.

Condition Flags

These instructions do not change the flags.

Examples
STRBTEQ R4, [R7] ; Conditionally store least significant byte in

; R4 to an address in R7, with unprivileged access
LDRHT R2, [R2, #8] ; Load halfword value from an address equal to

; sum of R2 and 8 into R2, with unprivileged access.

LDR, PC-relative

Load register from memory.

Syntax

LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words
where:

* typeis one of:
* B:unsigned byte, zero extend to 32 bits.
+ SB: signed byte, sign extend to 32 bits.
* H:unsigned halfword, zero extend to 32 bits.
» SH: signed halfword, sign extend to 32 bits.
e -:omit, for word.
. cond is an optional condition code, see Conditional Execution, page 55.
* Rtis the register to load or store.
* Rt2is the second register to load or store.
* labelis a PC-relative expression. See PC-relative Expressions, page 55.

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address is specified
by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and halfwords
can either be signed or unsigned. See Address Alignment, page 55.

label must be within a limited range of the current instruction. The following table shows the possible
offsets between label and the PC.

Table 32« Offset Ranges

Instruction type Offset range
Word, halfword, signed halfword, byte, signed byte -4095 to 4095
Two words -1020 to 1020

You might have to use the .W suffix to get the maximum offset range. See Instruction Width Selection,
page 58.

UGO0331 User Guide Revision 15.0 62

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.4.5.3

3.6.4.54

3.6.4.6

3.6.4.6.1

3.6.4.6.2

Power Matters.”

Restrictions
In these instructions:

* Rtcan be SP or PC only for word loads
* Rt2 must not be SP and must not be PC
. Rt must be different from Rt2.

When Rt is PC in a word load instruction:

+ bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this halfword-
aligned address
. if the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

LDR RO, LookUpTable ; Load RO with a word of data from an address
; labelled as LookUpTable

LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7.

LDM and STM

Load and Store Multiple registers.

Syntax
op{addr mode}{cond} Rn{!}, reglist
where:

* oOpisoneof
* LDM (Load Multiple registers)
+ STM (Store Multiple registers)

* addr_mode is one of:
* IA (Increment address After each access.) This is the default.
» DB (Decrement address Before each access.)

* cond is an optional condition code, see Conditional Execution, page 55.

* Rnis the register on which the memory addresses are based.

. !'is an optional writeback suffix. If | is present the final address, that is loaded from or stored to, is
written back into Rn.

* reglistis a list of one or more registers to be loaded or stored, enclosed in braces. It can contain
register ranges. It must be comma separated if it contains more than one register or register range.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from Full Descending
stacks.

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto Empty Ascending
stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full Descending stacks.
Operation

LDM instructions load the registers in reglist with word values from memory addresses based on Rn.
STM instructions store the word values in the registers in reglist to memory addresses based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the accesses are at 4-
byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of registers in reglist. The accesses

UGO0331 User Guide Revision 15.0 63

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

happens in order of increasing register numbers, with the lowest numbered register using the lowest
memory address and the highest number register using the highest memory address. If the writeback
suffix is specified, the value of Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses are at 4-byte
intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers in reglist. The accesses
happen in order of decreasing register numbers, with the highest numbered register using the highest
memory address and the lowest number register using the lowest memory address. If the writeback
suffix is specified, the value of Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See PUSH and POP, page 65 for details.
3.6.4.6.3 Restrictions
In these instructions:

* Rnmustnot be PC

* reglist must not contain SP

* inany STM instruction, reglist must not contain PC

* inany LDM instruction, reglist must not contain PC if it contains LR
* reglist must not contain Rn if you specify the writeback suffix.

When PC is in reglist in an LDM instruction:

» bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch occurs to this
halfword-aligned address
« if the instruction is conditional, it must be the last instruction in the IT block.

3.6.4.6.4 Condition Flags
These instructions do not change the flags.
Examples
LDM R8, {RO,R2,R9} ; LDMIA is a synonym for LDM
TMDB R1!, {R3-R6,R11,R12}
Incorrect Examples
STM R5!, {R5,R4,R9} ; Value stored for R5 is unpredictable
LDM R2, {} ; There must be at least one register in the list.
3.6.4.7 PUSH and POP
Push registers onto, and pop registers off a full-descending stack.
3.6.4.71 Syntax
PUSH{cond} reglist
POP{cond} reglist
where:
cond is an optional condition code, see Conditional Execution, page 55.

reglist is a non-empty list of registers, enclosed in braces. It can contain register ranges. It must be
comma separated if it contains more than one register or register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory addresses for the access
based on SP, and with the final address for the access written back to the SP. PUSH and POP are the
preferred mnemonics in these cases.

3.6.4.7.2 Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest memory address
and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest memory address
and the highest numbered register using the highest memory address.

UGO0331 User Guide Revision 15.0 64

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.4.7.3

3.6.4.7.4

3.6.4.8

3.6.4.8.1

3.6.4.8.2

Power Matters.”

PUSH uses the value in the SP register minus four as the highest memory address, POP uses the value in
the SP register as the lowest memory address, implementing a full-descending stack. On completion,
PUSH updates the SP register to point to the location of the lowest stored value, POP updates the SP
register to point to the location immediately above the highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the POP
instruction has completed. Bit[0] of the value read for the PC is used to update the APSR T-bit. This bit
must be 1 to ensure correct operation.

See LDM and STM, page 64 for more information.
Restrictions
In these instructions:

* reglist must not contain SP
« for the PUSH instruction, reglist must not contain PC
» for the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

* bit[0] of the value loaded for PC must be 1 for correct execution
. if the instruction is conditional, it must be the last instruction in the IT block.

Condition Flags

These instructions do not change the flags.

Examples

PUSH {RO,R4-R7} ; Push RO,R4,R5,R6,R7 onto the stack

PUSH {R2,LR} ; Push R2 and the link-register onto the stack

POP {RO,R6,PC} ; Pop r0O,r6 and PC from the stack, then branch to the new PC

LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

where:

cond is an optional condition code, see Conditional Execution, page 55.

Rd is the destination register for the returned status.

Rt is the register to load or store.

Rn is the register on which the memory address is based.

offset is an optional offset applied to the value in Rn. If offset is omitted, the address is the value in Rn.
Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to a memory
address. The address used in any Store-Exclusive instruction must be the same as the address in the
most recently executed Load-exclusive instruction. The value stored by the Store-Exclusive instruction

UGO0331 User Guide Revision 15.0 65

Cortex-M3 Processor (Reference Material) @ Microsemi

Note:

3.6.4.8.3

3.64.8.4

3.6.4.9

3.6.4.9.1

3.6.4.9.2

3.6.49.3

Power Matters.”

must also have the same data size as the value loaded by the preceding Load-exclusive instruction. This
means software must always use a Load-exclusive instruction and a matching Store-Exclusive
instruction to perform a synchronization operation, see Synchronization Primitives, page 35.

If an Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it does not
perform the store, it writes 1 to its destination register. If the Store-Exclusive instruction writes 0 to the
destination register, it is guaranteed that no other process in the system has accessed the memory
location between the Load-exclusive and Store-Exclusive instructions.

For reasons of performance, keep the number of instructions between corresponding Load-Exclusive
and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that used in the
preceding Load-Exclusive instruction is unpredictable.

Restrictions
In these instructions:

« donotuse PC

* donot use SP for Rd and Rt

« for STREX, Rd must be different from both Rt and Rn

+ the value of offset must be a multiple of four in the range 0-1020.

Condition Flags

These instructions do not change the flags.

Examples
MOV R1, #0x1 ; Initialize the ‘lock taken’ value
try
LDREX RO, [LockAddr] ; Load the lock wvalue
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ

STREXEQ RO, R1l, [LockAddr] ; Try and claim the lock

CMPEQ RO, #0 ; Did this succeed?

BNE try ; No - try again

; Yes - we have the lock.
CLREX

Clear Exclusive.

Syntax

CLREX{cond}

where:

cond is an optional condition code, see Conditional Execution, page 55.

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its destination register and
fail to perform the store. It is useful in exception handler code to force the failure of the store exclusive if
the exception occurs between a load exclusive instruction and the matching store exclusive instruction in
a synchronization operation.

See Synchronization Primitives, page 35 for more information.

Condition Flags
These instructions do not change the flags.

UGO0331 User Guide Revision 15.0 66

Power Matters.”

Cortex-M3 Processor (Reference Material) @ Microseml:
Examples
CLREX
3.6.5 General Data processing instructions
The following table shows the data processing instructions:
Table 33+ Data Processing Instructions
Mnemonic |Brief Description See
ADC Add with Carry "ADD, ADC, SUB, SBC, and RSB" section
ADD Add ADD, ADC, SUB, SBC, and RSB, page 69
ADDW Add ADD, ADC, SUB, SBC, and RSB, page 69
AND Logical AND AND, ORR, EOR, BIC, and ORN, page 70
ASR Arithmetic Shift Right ASR, LSL, LSR, ROR, and RRX, page 71
BIC Bit Clear AND, ORR, EOR, BIC, and ORN, page 70
CLz Count leading zeros CLZ, page 72
CMN Compare Negative CMP and CMN, page 73
CMP Compare CMP and CMN, page 73
EOR Exclusive OR AND, ORR, EOR, BIC, and ORN, page 70
LSL Logical Shift Left ASR, LSL, LSR, ROR, and RRX, page 71
LSR Logical Shift Right ASR, LSL, LSR, ROR, and RRX, page 71
MOV Move MOV and MVN, page 73
MOVT Move Top MOVT, page 75
MOVW Move 16-bit constant MOV and MVN, page 73
MVN Move NOT "MOV and MVN" on page 73
ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN, page 70
ORR Logical OR AND, ORR, EOR, BIC, and ORN, page 70
RBIT Reverse Bits REV, REV16, REVSH, and RBIT, page 75
REV Reverse byte order in a word REV, REV16, REVSH, and RBIT, page 75
REV16 Reverse byte order in each halfword |REV, REV16, REVSH, and RBIT, page 75
REVSH Reverse byte order in bottom halfword [REV, REV16, REVSH, and RBIT, page 75
and sign extend
ROR Rotate Right ASR, LSL, LSR, ROR, and RRX, page 71
RRX Rotate Right with Extend ASR, LSL, LSR, ROR, and RRX, page 71
RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB, page 69
SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB, page 69
SUB Subtract ADD, ADC, SUB, SBC, and RSB, page 69
SUBW Subtract ADD, ADC, SUB, SBC, and RSB, page 69
TEQ Test Equivalence TST and TEQ, page 76
TST Test TST and TEQ, page 76

UGO0331 User Guide Revision 15.0

67

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.5.1

3.6.5.1.1

3.6.5.1.2

Note:

3.6.5.1.3

Power Matters.”

ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imml?2 ; ADD and SUB only
where:

* opisone of:
» ADD: Add
» ADC: Add with Carry
* SUB: Subtract
* SBC: Subtract with Carry
* RSB: Reverse Subtract
+ Sis an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see Conditional Execution, page 55.
» cond is an optional condition code, see Conditional Execution, page 55.
* Rdis the destination register. If Rd is omitted, the destination register is Rn.
* Rnis the register holding the first operand.
* Operand2is a flexible second operand. See Flexible Second Operand, page 51 for details of the
options.
* imm12is any value in the range 0-4095.

Operation
The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is clear, the
result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful because of the
wide range of options for Operand?2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword Arithmetic Examples, page 70.
See also ADR, page 59.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent to the SUB syntax
that uses the imm12 operand.

Restrictions
In these instructions:

* Operand2 must not be SP and must not be PC
* Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
* Rnmust also be SP
* any shift in Operand2 must be limited to a maximum of 3 bits using LSL
* Rncan be SP only in ADD and SUB
* Rdcan be PC only in the ADD{cond} PC, PC, Rm instruction where:
» you must not specify the S suffix
* Rm must not be PC and must not be SP
. if the instruction is conditional, it must be the last instruction in the IT block
» with the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in ADD and SUB, and
only with the additional restrictions:
« you must not specify the S suffix
« the second operand must be a constant in the range 0 to 4095.
* When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded to b00
before performing the calculation, making the base address for the calculation word-aligned.

UGO0331 User Guide Revision 15.0 68

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.5.1.4

3.6.5.1.5

3.6.5.2

3.6.5.2.1

Power Matters.”

+ If you want to generate the address of an instruction, you have to adjust the constant based on
the value of the PC. ARM recommends that you use the ADR instruction instead of ADD or SUB
with Rn equal to the PC, because your assembler automatically calculates the correct constant
for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

* bit[0] of the value written to the PC is ignored
* abranch occurs to the address created by forcing bit[0] of that value to 0.

Condition Flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

ADD R2, R1, R3

SUBS R8, R6, #240 ; Sets the flags on the result

RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280
ADCHI R11, RO, R3 ; Only executed if C flag set and Z

; flag clear.

Multiword Arithmetic Examples

The following example shows two instructions that add a 64-bit integer contained in R2 and R3 to another
64-bit integer contained in R0 and R1, and place the result in R4 and R5.

Example 4

64-bit addition

ADDS R4, RO, R2 ; add the least significant words

ADC R5, R1, R3 ; add the most significant words with carry

Multiword values do not have to use consecutive registers. The following example shows instructions
that subtract a 96-bit integer contained in R9, R1, and R11 from another contained in R6, R2, and R8.
The example stores the result in R6, R9, and R2.

Example 5

96-bit subtraction

SUBS R6, R6, RO ; subtract the least significant words
SBCS R9, R2, R1 ; subtract the middle words with carry
SBC R2, R8, R11 ; subtract the most significant words with carry

AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2

where:

* oOpisoneof
* AND: logical AND.
. ORR: logical OR, or bit set.
* EOR: logical Exclusive OR.
* BIC: logical AND NOT, or bit clear.
* ORN: logical OR NOT.
+ Sis an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see Conditional Execution, page 55.
« cond is an optional condition code, see Conditional Execution, page 55.

UGO0331 User Guide Revision 15.0 69

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

* Rdis the destination register.

* Rnis the register holding the first operand.

* Operand2is a flexible second operand. See Flexible Second Operand, page 51 for details of the
options.

3.6.5.2.2 Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR operations on the
values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of the
corresponding bits in the value of Operand2.

3.6.5.2.3 Restrictions

Do not use SP and do not use PC.
3.6.5.24 Condition Flags

If S is specified, these instructions:

« update the N and Z flags according to the result
» can update the C flag during the calculation of Operand?, see Flexible Second Operand, page 51
* do not affect the V flag.

Examples
AND R9, R2, #0xFF00

ORREQ R2, RO, RS

ANDS R9, R8, #0x19
EORS R7, R11, #0x18181818
BIC RO, R1, #0Oxab
ORN R7, R11, R14, ROR #4
ORNS R7, R11, R14, ASR #32

3.6.5.3 ASR,LSL, LSR, ROR, and RRX
Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right with Extend.

3.6.5.3.1 Syntax
op{S}{cond} Rd, Rm, Rs
op{S}{cond} Rd, Rm, #n
RRX{S}{cond} Rd, Rm
where:

* opisoneof:
* ASR: Arithmetic Shift Right.
* LSL: Logical Shift Left.
* LSR: Logical Shift Right.
* ROR: Rotate Right.

+ Sis an optional suffix. If S is specified, the condition code flags are updated on the result of the
operation, see Conditional Execution, page 55.

* Rdis the destination register.

* Rmis the register holding the value to be shifted.

* Rsis the register holding the shift length to apply to the value in Rm. Only the least significant byte is
used and can be in the range 0 to 255.

UGO0331 User Guide Revision 15.0 70

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

* nis the shift length. The range of shift length depends on the instruction:
» ASR shift length from 1 to 32
» LSL shift length from 0 to 31
* LSR shift length from 1 to 32
* ROR shift length from 1 to 31
Note: MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.
3.6.5.3.2 Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number of places
specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains unchanged. For
details on what result is generated by the different instructions, see Shift Operations, page 52.

3.6.5.3.3 Restrictions

Do not use SP and do not use PC.
3.6.5.3.4 Condition Flags

If S is specified:

» these instructions update the N and Z flags according to the result
+ the C flag is updated to the last bit shifted out, except when the shift length is 0, see Shift
Operations, page 52.

Examples
ASR R7, R8, #9 ; Arithmetic shift right by 9 bits
LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update

LSR R4, R5, #6 ; Logical shift right by 6 bits

ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of R6
RRX R4, R5 ; Rotate right with extend.
3654 CLZ

Count Leading Zeros.

3.6.5.4.1 Syntax
CLZ{cond} Rd, Rm

where:

cond is an optional condition code, see Conditional Execution, page 55.
Rd is the destination register.

Rm is the operand register.

3.6.5.4.2 Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the result in Rd.
The result value is 32 if no bits are set and zero if bit[31] is set.

3.6.5.4.3 Restrictions
Do not use SP, and do not use PC.

UGO0331 User Guide Revision 15.0 71

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.5.4.4

3.6.5.5

3.6.5.5.1

3.6.5.5.2

3.6.5.5.3

3.6.5.5.4

3.6.5.6

3.6.5.6.1

Power Matters.”

Condition Flags

This instruction does not change the flags.

Examples

CLZ R4,R9

CLZNE R2,R3

CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand?

CMN{cond} Rn, Operand?2

where:

cond is an optional condition code, see Conditional Execution, page 55.
Rn is the register holding the first operand.

Operand? is a flexible second operand. See Flexible Second Operand, page 51 for details of the options.

Operation

These instructions compare the value in a register with Operand2. They update the condition flags on the
result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same as a SUBS
instruction, except that the result is discarded.

The CMN instruction adds the value of Operand? to the value in Rn. This is the same as an ADDS
instruction, except that the result is discarded.

Restrictions
In these instructions:

* donotuse PC
* Operand2 must not be SP.

Condition Flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, R9
CMN RO, #6400

CMPGT SP, R7, LSL #2
MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2
MOV{cond} Rd, #immlé6
MVN{S}{cond} Rd, Operand2
where:

S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see Conditional Execution, page 55.

UGO0331 User Guide Revision 15.0 72

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.5.6.2

Note:
3.6.5.6.3

Note:

3.6.5.6.4

Power Matters.”

cond is an optional condition code, see Conditional Execution, page 55.
Rd is the destination register.
Operand? is a flexible second operand. See Flexible Second Operand, page 51 for details of the options.

imm16 is any value in the range 0-65535.

Operation
The MOV instruction copies the value of Operand2 into Rd.

When Operand? in a MOV instruction is a register with a shift other than LSL #0, the preferred syntax is the
corresponding shift instruction:

» ASR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR #n

* LSL{SKcond} Rd, Rm, #n is the preferred syntax for MOV{SKcond} Rd, Rm, LSL #n if n 1= 0
* LSR{SKcond} Rd, Rm, #n is the preferred syntax for MOV{S}cond} Rd, Rm, LSR #n

* ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR #n

* RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift instructions:

* MOV{SKcond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs
* MOV{SKcond} Rd, Rm, LSL Rs is a synonym for LSL{S}cond} Rd, Rm, Rs
* MOV{SKcond} Rd, Rm, LSR Rs is a synonym for LSR{SKcond} Rd, Rm, Rs
* MOV{SKcond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See ASR, LSL, LSR, ROR, and RRX, page 71.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation on the value,
and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the imm16 operand.

Restrictions
You can use SP and PC only in the MOV instruction, with the following restrictions:

» the second operand must be a register without shift
* you must not specify the S suffix.

When Rd is PC in a MOV instruction:

» bit[0] of the value written to the PC is ignored

» abranch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the use of a BX or
BLX instruction to branch for software portability to the ARM instruction set.

Condition Flags

+ If Sis specified, these instructions:

« update the N and Z flags according to the result

» can update the C flag during the calculation of Operand?, see Flexible Second Operand, page 51
* do not affect the V flag.

Example

MOVS R11, #0x000B ; Write value of 0x000B to R11l, flags get updated
MOV R1, #O0xFAQ05 ; Write value of 0xFA05 to R1l, flags are not updated
MOVS R10, R12 ; Write value in R12 to R10, flags get updated

MOV R3, #23 ; Write value of 23 to R3

MOV R8, SP ; Write value of stack pointer to RS8

MVNS R2, #0xF ; Write value of OxXFFFFFFFO (bitwise inverse of 0xF)

; to the R2 and update flags.

UGO0331 User Guide Revision 15.0 73

Cortex-M3 Processor (Reference Material)

3.6.5.7

3.6.5.7.1

3.6.5.7.2

3.6.5.7.3

3.6.5.7.4

3.6.5.8

3.6.5.8.1

3.6.5.8.2

3.6.5.8.3

& Microsemi

Power Matters.”

MOVT
Move Top.

Syntax

MOVT {cond} Rd, #immlé6

where:

cond is an optional condition code, see Conditional Execution, page 55.
Rd is the destination register.

imm16 is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its destination register.
The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables you to generate any 32-bit constant.

Restrictions
Rd must not be SP and must not be PC.

Condition Flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower halfword

; and APSR are unchanged.

REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
where:

*+ opisanyof:
* REV: Reverse byte order in a word.
* REV16: Reverse byte order in each halfword independently.
* REVSH: Reverse byte order in the bottom halfword, and sign extend to 32 bits.
* RBIT: Reverse the bit order in a 32-bit word.
* cond is an optional condition code, see Conditional Execution, page 55.
* Rdis the destination register.
* Rnis the register holding the operand.

Operation
Use these instructions to change endianness of data:

* REV: converts 32-bit big-endian data into little-endian data or 32-bit little-endian data into big-endian

data.
* REV16: converts 16-bit big-endian data into little-endian data or 16-bit little-endian data into
big-endian data.
* REVSH: converts either:
* 16-bit signed big-endian data into 32-bit signed little-endian data
* 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions
Do not use SP and do not use PC.

UGO0331 User Guide Revision 15.0

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.5.8.4

3.6.5.9

3.6.5.9.1

3.6.5.9.2

3.6.5.9.3

3.6.5.9.4

Power Matters.”

Condition Flags

These instructions do not change the flags.

Examples

REV R3, R7 ; Reverse byte order of value in R7 and write it to R3
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO
REVSH RO, R5 ; Reverse Signed Halfword

REVHS R3, R7 ; Reverse with Higher or Same condition
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result to R7.

TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand?2

TEQ{cond} Rn, Operand?2

where:

cond is an optional condition code, see Conditional Execution, page 55.

Rn is the register holding the first operand.

Operand? is a flexible second operand. See Flexible Second Operand, page 51 for details of the options.

Operation

These instructions test the value in a register against Operand2. They update the condition flags based on
the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of Operand2. This
is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that has that bit set
to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the value of
Operand2. This is the same as the EORS instruction, except that it discards the result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the logical Exclusive
OR of the sign bits of the two operands.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions:
» update the N and Z flags according to the result

» can update the C flag during the calculation of Operand2, see Flexible Second Operand, page 51
+ do not affect the V flag.

Examples
TST RO, #0x3F8 ; Perform bitwise AND of RO value to 0x3F8,

; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to

; value in R9, APSR is updated but result is discarded.

UGO0331 User Guide Revision 15.0 75

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.6 Multiply and Divide Instructions
The following table shows the multiply and divide instructions:
Table 34 « Multiply and Divide Instructions
Mnemonic Brief Description See
MLA Multiply with Accumulate, 32-bit result "MUL, MLA, and MLS" on page 71
MLS Multiply and Subtract, 32-bit result "MUL, MLA, and MLS" on page 71
MUL Multiply, 32-bit result "MUL, MLA, and MLS" on page 71
SDIV Signed Divide "SDIV and UDIV" on page 73
SMLAL Signed Multiply with Accumulate "UMULL, UMLAL, SMULL, and SMLAL" on page 72
(32x32+64), 64-bit result
SMULL Signed Multiply (32x32), 64-bit result "UMULL, UMLAL, SMULL, and SMLAL" on page 72
ubIv Unsigned Divide "SDIV and UDIV" on page 73
UMLAL Unsigned Multiply with Accumulate "UMULL, UMLAL, SMULL, and SMLAL" on page 72
(32x32+64), 64-bit result
UMULL Unsigned Multiply (32x32), 64-bit result "UMULL, UMLAL, SMULL, and SMLAL" on page 72
3.6.6.1 MUL, MLA, and MLS
Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and producing a
32-bit result.
3.6.6.1.1 Syntax
MUL{S}{cond} {Rd,} Rn, Rm ; Multiply
MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate
MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract
where:
cond is an optional condition code, see Conditional Execution, page 55.
S is an optional suffix. If S is specified, the condition code flags are updated on the result of the operation,
see Conditional Execution, page 55.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn, Rm are registers holding the values to be multiplied.
Ra is a register holding the value to be added or subtracted from.
3.6.6.1.2 Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant 32 bits of the
result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and places the least
significant 32 bits of the result in Rd.

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the value from Ra,
and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or unsigned.

UGO0331 User Guide Revision 15.0 76

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.6.1.3

3.6.6.1.4

3.6.6.2

3.6.6.2.1

3.6.6.2.2

Power Matters.”

Restrictions
In these instructions, do not use SP and do not use PC.
If you use the S suffix with the MUL instruction:

* Rd, Rn, and Rm must all be in the range R0 to R7
* Rd must be the same as Rm

« you must not use the cond suffix.

Condition Flags

If S is specified, the MUL instruction:

+ updates the N and Z flags according to the result
+ does not affect the C and V flags.

Examples

MUL R10, R2, RS ; Multiply, R10 = R2 x R5

MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1l) + R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2

MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2

MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6).

UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a
64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm

where:

* oOpisoneof
* UMULL: Unsigned Long Multiply
* UMLAL: Unsigned Long Multiply, with Accumulate
* SMULL: Signed Long Multiply
» SMLAL: Signed Long Multiply, with Accumulate
» cond is an optional condition code, see Conditional Execution, page 55.
* RdHi, RdLo are the destination registers. For UMLAL and SMLAL they also hold the accumulating
value.
* Rn, Rm are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers and places the least significant 32 bits of the result in RdLo, and the most significant 32 bits of the
result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It multiplies these
integers, adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo, and writes the
result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and the most
significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed integers. It
multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in RdHi and RdLo,
and writes the result back to RdHi and RdLo.

UGO0331 User Guide Revision 15.0 77

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.6.2.3

3.6.6.2.4

3.6.6.3

3.6.6.3.1

3.6.6.3.2

3.6.6.3.3

3.6.6.3.4

3.6.7

3.6.71

Power Matters.”

Restrictions
In these instructions:

* do not use SP and do not use PC
* RdHi and RdLo must be different registers.

Condition Flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, RS ; Signed (R5,R4) = (R5,R4) + R3 x RS8

SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

where:

cond is an optional condition code, see Conditional Execution, page 55.
Rd is the destination register. If Rd is omitted, the destination register is Rn.
Rn is the register holding the value to be divided.

Rm is a register holding the divisor.

Operation
SDIV performs a signed integer division of the value in Rn by the value in Rm.

UDIV performs an unsigned integer division of the value in Rn by the value in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is rounded towards
zero.

Restrictions
Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples

SDIV RO, R2, R4 ; Signed divide, RO = R2/R4

UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/RI1.

Saturating Instructions

This section describes the saturating instructions, SSAT and USAT.

SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before saturating.

UGO0331 User Guide Revision 15.0 78

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.7.1.1

Power Matters.”

Syntax

op{cond} Rd, #n, Rm {, shift #s}

3.6.7.1.2

3.6.71.3

3.6.71.4

where:

* oOpisoneof
+ SSAT: Saturates a signed value to a signed range.
» USAT: Saturates a signed value to an unsigned range.
. cond is an optional condition code, see Conditional Execution, page 55.
* Rdis the destination register.
* nspecifies the bit position to saturate to:
* nranges from 1 to 32 for SSAT
* nranges from 0 to 31 for USAT.
* Rmis the register containing the value to saturate.
* shift #s is an optional shift applied to Rm before saturating. It must be one of the following:
* ASR#s where sis in the range 1 to 31
» LSL#swhere sis in the range 0 to 31

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range 2 1< x<2n11,
The USAT instruction applies the specified shift, then saturates to the unsigned range 0 < x < 2"-1,
For signed n-bit saturation using SSAT, this means that:

« ifthe value to be saturated is less than -2, the result returned is -2"7
« if the value to be saturated is greater than 2M1.1, the result returned is 2" 7-1
. otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation using USAT, this means that:

» ifthe value to be saturated is less than 0, the result returned is 0
. if the value to be saturated is greater than 2"-1, the result returned is 2"-1
. otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If saturation occurs,
the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q flag unchanged. To clear the Q
flag to 0, you must use the MSR instruction, see MSR, page 92.

To read the state of the Q flag, use the MRS instruction, see MRS, page 91.

Restrictions
Do not use SP and do not use PC.

Condition Flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4, then
; saturate it as a signed 16-bit value and
; write it back to R7

USATNE RO, #7, RS ; Conditionally saturate value in R5 as an

; unsigned 7 bit value and write it to RO.

UGO0331 User Guide Revision 15.0 79

Cortex-M3 Processor (Reference Material)

3.6.8

3.6.8.1

3.6.8.1.1

3.6.8.1.2

3.6.8.1.3

3.6.8.1.4

3.6.8.2

Bitfield instructions

The following table shows the instructions that operate on adjacent sets of bits in registers or bitfields:

& Microsemi

Power Matters.”

Table 35+ Packing and Unpacking Instructions
Mnemonic |Brief description See
BFC Bit Field Clear BFC and BFI, page 81
BFI Bit Field Insert BFC and BFl, page 81
SBFX Signed Bit Field Extract ~ |SBFX and UBFX, page 81
SXTB Sign extend a byte SXT and UXT, page 82
SXTH Sign extend a halfword SXT and UXT, page 82
UBFX Unsigned Bit Field Extract [SBFX and UBFX, page 81
UXTB Zero extend a byte SXT and UXT, page 82
UXTH Zero extend a halfword SXT and UXT, page 82
BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #1sb,

BFI{cond} Rd, Rn,

where:

#width

#1sb, #width

cond is an optional condition code, see Conditional Execution, page 55.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-/sb.

Operation

BFC clears a bitfield in a register. It clears width bits in Rd, starting at the low bit position Isb. Other bits in Rd

are unchanged.

BFI copies a bitfield into one register from another register. It replaces width bits in Rd starting at the low bit
position Isb, with width bits from Rn starting at bit[0]. Other bits in Rd are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples
BFC R4, #8,
BFI R9, R2,

#12 ;
#8,

#12 ;

Clear bit 8 to bit 19

Replace bit 8 to bit 19

; bit 0 to bit 11 from R2.

SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

UGO0331 User Guide Revision 15.0

(12 bits)
(12 bits)

of R4 to O

of RY9 with

80

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.8.2.1

3.6.8.2.2

3.6.8.2.3

3.6.8.2.4

3.6.8.3

3.6.8.3.1

Power Matters.”

Syntax
SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see Conditional Execution, page 55.

Rd is the destination register.

Rn is the source register.

Isb is the position of the least significant bit of the bitfield. /sb must be in the range 0 to 31.
width is the width of the bitfield and must be in the range 1 to 32-Isb.

Operation

SBFX extracts a bitfield from one register, sign extends it to 32 bits, and writes the result to the destination
register.

UBFX extracts a bitfield from one register, zero extends it to 32 bits, and writes the result to the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from Rl and sign
; extend to 32 bits and then write the result to RO.

UBFX R8, R11l, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R1l1l and zero

; extend to 32 bits and then write the result to RS8.

SXT and UXT

Sign extend and Zero extend.

Syntax
SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}
where:

* extend is one of:
* B: Extends an 8-bit value to a 32-bit value.
. H: Extends a 16-bit value to a 32-bit value.
. cond is an optional condition code, see Conditional Execution, page 55.
* Rdis the destination register.
* Rmis the register holding the value to extend.
. ROR #n is one of:
* ROR#8: Value from Rm is rotated right 8 bits.
* ROR#16: Value from Rm is rotated right 16 bits.
* ROR#24: Value from Rm is rotated right 24 bits.
. If ROR #n is omitted, no rotation is performed.

UGO0331 User Guide Revision 15.0 81

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.8.3.2 Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.
2. Extract bits from the resulting value:
+ SXTB extracts bits [7:0] and sign extends to 32 bits.
+ UXTB extracts bits [7:0] and zero extends to 32 bits.
* SXTH extracts bits [15:0] and sign extends to 32 bits.
* UXTH extracts bits [15:0] and zero extends to 32 bits.
3.6.8.3.3 Restrictions

Do not use SP and do not use PC.

3.6.8.3.4 Condition Flags

These instructions do not affect the flags.

Examples

Power Matters.”

SXTH R4, R6, ROR #1l6 ; Rotate R6 right by 16 bits, then obtain the lower

; halfword of the result and then sign extend to

; 32 bits and write the result to R4.

UXTB R3, R10 ; Extract lowest byte of the value in R10 and zero

; extend it, and write the result to R3.

3.6.9 Branch and Control Instructions

The following table lists the branch and control instructions:

Table 36 «+ Branch and Control Instructions

Mnemonic (Brief description See

B Branch B, BL, BX, and BLX, page 83
BL Branch with Link B, BL, BX, and BLX, page 83
BLX Branch indirect with Link B, BL, BX, and BLX, page 83
BX Branch indirect B, BL, BX, and BLX, page 83
CBNz Compare and Branch if Non Zero |CBZ and CBNZ, page 85
CBz Compare and Branch if Zero CBZ and CBNZ, page 85

IT If-Then IT, page 85

TBB Table Branch Byte TBB and TBH, page 87

TBH Table Branch Halfword TBB and TBH, page 87

3.6.9.1 B, BL, BX, and BLX

Branch instructions.

3.6.9.1.1 Syntax
B{cond} label

BL{cond} label
BX{cond} Rm
BLX{cond} Rm
where:

B is branch (immediate).

UGO0331 User Guide Revision 15.0

82

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

BL is branch with link (immediate).

BX is branch indirect (register).

BLX is branch indirect with link (register).

cond is an optional condition code, see Conditional Execution, page 55.
label is a PC-relative expression. See PC-relative Expressions, page 55.

Rm is a register that indicates an address to branch to. Bit[0] of the value in Rm must be 1, but the
address to branch to is created by changing bit[0] to 0.

3.6.9.1.2 Operation
All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

* The BL and BLX instructions write the address of the next instruction to LR (the link register, R14).
+ The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Bcond label is the only conditional instruction that can be either inside or outside an IT block. All other
branch instructions can only be conditional inside an IT block, and are always unconditional otherwise,
see IT, page 85.

The following table lists the ranges for the various branch instructions.

Table 37 « Branch Ranges

Instruction Branch Range
B label -16 MB to +16 MB
Bcond label (outside IT block) (-1 MB to +1 MB
Bcond label (inside IT block) [-16 MB to +16 MB

BL{cond} label -16 MB to +16 MB
BX{cond} Rm Any value in register
BLX{cond} Rm Any value in register

You may have to use the .W suffix to get the maximum branch range. See Instruction Width Selection,
page 58.

3.6.9.1.3 Restrictions
The restrictions are:

* donotuse PC in the BLX instruction
« for BX'and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the target address
created by changing bit[0] to 0
» when any of these instructions is inside an IT block, it must be the last instruction of the IT block.
Note: Bcond is the only conditional instruction that is not required to be inside an IT block. However, it has a
longer branch range when it is inside an IT block.

3.6.9.1.4 Condition Flags

These instructions do not change the flags.

Examples

B loopA ; Branch to loopA

BLE ng ; Conditionally branch to label ng
B.W target ; Branch to target within 16MB range
BEQ target ; Conditionally branch to target

BEQ.W target ; Conditionally branch to target within 1MB

UGO0331 User Guide Revision 15.0 83

Cortex-M3 Processor (Reference Material)

3.6.9.2

3.6.9.2.1

3.6.9.2.2

3.6.9.2.3

& Microsemi

Power Matters.”

BL funC ; Branch with link (Call) to function funC, return address

; stored in LR

BX LR ; Return from function call

BXNE RO ; Conditionally branch to address stored in RO

BLX RO ; Branch with link and exchange (Call) to a address stored
; in RO.

CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.
Syntax

CBZ Rn, label

CBNZ Rn, label

where:

Rn is the register holding the operand.

label is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce the number of
instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0

BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:
CMP Rn, #0

BNE label

Restrictions
The restrictions are:

* Rnmust be in the range of R0 to R7

» the branch destination must be within 4 to 130 bytes after the instruction

* these instructions must not be used inside an IT block.

3.6.9.2.4

3.6.9.3

3.6.9.3.1

Condition Flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero.
IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

where:

x specifies the condition switch for the second instruction in the IT block.

UGO0331 User Guide Revision 15.0 84

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Note:

3.6.9.3.2

Note:

3.6.9.3.3

Note:

Power Matters.”

y specifies the condition switch for the third instruction in the IT block.
z specifies the condition switch for the fourth instruction in the IT block.

cond specifies the condition for the first instruction in the IT block. The condition switch for the second,
third and fourth instruction in the IT block can be either:

+ T: Then. Applies the condition cond to the instruction.

+ E: Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the
instructions in the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same,
or some of them can be the logical inverse of the others. The conditional instructions following the IT
instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of
their syntax.

Your assembler might be able to generate the required IT instructions for conditional instructions
automatically, so that you do not need to write them yourself. See your assembler documentation for
details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block.
Such an exception results in entry to the appropriate exception handler, with suitable return information in
LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception,
and execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is
permitted to branch to an instruction in an IT block.

Restrictions
The following instructions are not permitted in an IT block:

e T

e (CBZand CBNZ

- CPSID and CPSIE
« MOVS.NRd, Rm.

Other restrictions when using an IT block are:

* abranch or any instruction that modifies the PC must either be outside an IT block or must be the
last instruction inside the IT block. These are:
+ ADDPC, PC,Rm
+ MOV PC,Rm
+ B, BL,BX, BLX
* any LDM, LDR, or POP instruction that writes to the PC
+ TBBand TBH
» do not branch to any instruction inside an IT block, except when returning from an exception handler
» all conditional instructions except Bcond must be inside an IT block. Bcond can be either outside or
inside an IT block but has a larger branch range if it is inside one
+ each instruction inside the IT block must specify a condition code suffix that is either the same or
logical inverse as for the other instructions in the block.
Your assembler might place extra restrictions on the use of IT blocks, such as prohibiting the use of
assembler directives within them.

UGO0331 User Guide Revision 15.0 85

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.9.34

3.6.9.4

3.6.9.4.1

3.6.9.4.2

Power Matters.”

Condition Flags

This instruction does not change the flags.

Example

ITTE NE ; Next 3 instructions are conditional
ANDNE RO, RO, R1 ; ANDNE does not update condition flags
ADDSNE R2, R2, #1 ; ADDSNE updates condition flags

MOVEQ R2, R3 ; Conditional move
CMP RO, #9 ; Convert RO hex value (0 to 15) into ASCII

,. (lOV_Vg', lAl_lFl)
ITE GT ; Next 2 instructions are conditional
ADDGT R1, RO, #55 ; Convert 0OxA -> 'A'

ADDLE R1, RO, #48 ; Convert 0x0 -> '0'

IT GT ; IT block with only one conditional instruction

ADDGT R1, R1, #1 ; Increment R1 conditionally

ITTEE EQ ; Next 4 instructions are conditional

MOVEQ RO, R1 ; Conditional move

ADDEQ R2, R2, #10 ; Conditional add

ANDNE R3, R3, #1 ; Conditional AND

BNE.W dloop ; Branch instruction can only be used in the last

; instruction of an IT block

IT NE ; Next instruction is conditional
ADD RO, RO, R1 ; Syntax error: no condition code used in IT block.
TBB and TBH

Table Branch Byte and Table Branch Halfword.
Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

where:

Rn is the register containing the address of the table of branch lengths. If Rnis PC, then the address of
the table is the address of the byte immediately following the TBB or TBH instruction.

Rm is the index register. This contains an index into the table. For halfword tables, LSL #1 doubles the
value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for TBB, or
halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an index into the table. For
TBB the branch offset is twice the unsigned value of the byte returned from the table. and for TBH the
branch offset is twice the unsigned value of the halfword returned from the table. The branch occurs to
the address at that offset from the address of the byte immediately after the TBB or TBH instruction.

UGO0331 User Guide Revision 15.0 86

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.9.4.3 Restrictions

The restrictions are:

* Rnmust not be SP

* Rm must not be SP and must not be PC

* when any of these instructions is used inside an IT block, it must be the last instruction of the IT
block.

3.6.9.4.4 Condition Flags
These instructions do not change the flags.
Examples
ADR.W RO, BranchTable Byte
TBB [RO, R1] ; Rl is the index, RO is the base address of the
; branch table
Casel
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows

BranchTable Byte

DCB 0 ; Casel offset calculation
DCB ((Case2-Casel) /2) ; Case2 offset calculation
DCB ((Case3-Casel) /2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; Rl is the index, PC is used as base of the

; branch table

BranchTable H

DCI ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
DCI ((CaseB - BranchTable H)/2) ; CaseB offset calculation
DCI ((CaseC - BranchTable H)/2) ; CaseC offset calculation

CaseA

; an instruction sequence follows

CaseB

; an instruction sequence follows
CaseC
; an instruction sequence follows

UGO0331 User Guide Revision 15.0 87

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.10

3.6.10.1

3.6.10.1.1

3.6.10.1.2

3.6.10.1.3

Note:

3.6.10.2

Power Matters.”

Miscellaneous Instructions

The following table lists the remaining Cortex-M3 processor instructions:

Table 38 « Miscellaneous Instructions

Mnemonic Brief Description See
BKPT Breakpoint BKPT, page 89
CPSID Change Processor State, Disable Interrupts [CPS, page 89
CPSIE Change Processor State, Enable Interrupts |CPS, page 89
DMB Data Memory Barrier DMB, page 90
DSB Data Synchronization Barrier DSB, page 91
ISB Instruction Synchronization Barrier ISB, page 91
MRS Move from special register to register MRS, page 91
MSR Move from register to special register MSR, page 92
NOP No Operation NOP, page 92
SEV Send Event SEV, page 93
svC Supervisor Call SVC, page 93
WFE Wait For Event WFE, page 93
WEFI Wait For Interrupt WFI, page 94

BKPT

Breakpoint.

Syntax

BKPT #imm

where:

imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this to investigate
system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional information about
the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally, unaffected by the
condition specified by the IT instruction.

Condition Flags
This instruction does not change the flags.

Examples
BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
; extract the immediate value by locating it using the PC)

ARM does not recommend the use of the BKPT instruction with an immediate value set to 0xAB for any
purpose other than Semi-hosting.

CPS

Change Processor State.

UGO0331 User Guide Revision 15.0 88

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.10.2.1 Syntax
CPSeffect iflags

where:

+ effectis one of:
» |E: Clears the special purpose register.
» ID: Sets the special purpose register.
» iflags is a sequence of one or more flags:
* i Setor clear PRIMASK.
« f: Set or clear FAULTMASK.

3.6.10.2.2 Operation

CPS changes the PRIMASK and FAULTMASK special register values. See Exception Mask Registers,
page 25 for more information about these registers.

3.6.10.2.3 Restrictions
The restrictions are:

» use CPS only from privileged software, it has no effect if used in unprivileged software
* CPS cannot be conditional and so must not be used inside an IT block.

3.6.10.2.4 Condition Flags
This instruction does not change the condition flags.
Examples
CPSID 1 ; Disable interrupts and configurable fault handlers (set PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear PRIMASK)
CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK) .

3.6.10.3 DMB

Data Memory Barrier.
3.6.10.3.1 Syntax
DMB{cond}
where:
cond is an optional condition code, see Conditional Execution, page 55.

3.6.10.3.2 Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that appear, in program
order, before the DMB instruction are completed before any explicit memory accesses that appear, in
program order, after the DMB instruction. DMB does not affect the ordering or execution of instructions that
do not access memory.

3.6.10.3.3 Condition Flags

This instruction does not change the flags.
Examples

DMB ; Data Memory Barrier

UGO0331 User Guide Revision 15.0 89

Cortex-M3 Processor (Reference Material) @ Microsemi

3.6.10.4

3.6.10.4.1

3.6.10.4.2

3.6.104.3

3.6.10.5

3.6.10.5.1

3.6.10.5.2

3.6.10.5.3

3.6.10.6

3.6.10.6.1

Note:

Power Matters.”

DSB

Data Synchronization Barrier.

Syntax

DSB{cond}

where:

cond is an optional condition code, see Conditional Execution, page 55.

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the DSB, in
program order, do not execute until the DSB instruction completes. The DSB instruction completes when
all explicit memory accesses before it complete.

Condition Flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

ISB

Instruction Synchronization Barrier.

Syntax

ISB{cond}

where:

cond is an optional condition code, see Conditional Execution, page 55.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all
instructions following the ISB are fetched from cache or memory again, after the ISB instruction has been
completed.

Condition Flags

This instruction does not change the flags.

Examples

ISB ; Instruction Synchronisation Barrier

MRS

Move the contents of a special register to a general-purpose register.
Syntax

MRS{cond} Rd, spec reg

where:

cond is an optional condition code, see Conditional Execution, page 55.
Rd is the destination register.

spec_reg can be any of: APSR, IPSR, EPSR, [EPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

All the EPSR and IPSR fields are zero when read by the MRS instruction.

UGO0331 User Guide Revision 15.0 90

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.10.6.2 Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a PSR, for
example to clear the Q flag.

Note: BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction. See MSR, page 92.

3.6.10.6.3 Restrictions

Rd must not be SP and must not be PC.
3.6.10.6.4 Condition Flags

This instruction does not change the flags.

Examples

MRS RO, PRIMASK ; Read PRIMASK value and write it to RO.
3.6.10.7 MSR

Move the contents of a general-purpose register into the specified special register.
3.6.10.7.1 Syntax

MSR{cond} spec_reg, Rn

where:

cond is an optional condition code, see Conditional Execution, page 55.

Rn is the source register.

spec_reg can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK, BASEPRI,
BASEPRI_MAX, FAULTMASK, or CONTROL.

Note: The processor ignores MSR writes to the EPSR and IPSR fields.
3.6.10.7.2 Operation

The register access operation in MSR depends on the privilege level. Unprivileged software can only
access the APSR, see Table 10, page 23. Privileged software can access all special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.
Note: When you write to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

. Rn is non-zero and the current BASEPRI value is 0
. Rn is non-zero and less than the current BASEPRI value.

See MRS, page 91
3.6.10.7.3 Restrictions

Rn must not be SP and must not be PC.

3.6.10.7.4 Condition Flags
This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, Rl ; Read Rl value and write it to the CONTROL register.
3.6.10.8 NOP

No Operation.

3.6.10.8.1 Syntax

NOP{cond}
where:

cond is an optional condition code, see Conditional Execution, page 55.

UGO0331 User Guide Revision 15.0 91

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.10.8.2 Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might remove it from the
pipeline before it reaches the execution stage.

Use NOP for padding, for example to adjust the alignment of a following instruction.
3.6.10.8.3 Condition Flags

This instruction does not change the flags.

Examples

NOP ; No operation
3.6.10.9 SEV

Send Event.
3.6.10.9.1 Syntax

SEV{cond}

where:

cond is an optional condition code, see Conditional Execution, page 55.

3.6.10.9.2 Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a multiprocessor
system. It also sets the local event register to 1, see Power Management, page 45.

3.6.10.9.3 Condition Flags
This instruction does not change the flags.

Examples

SEV ; Send Event
3.6.10.10 SVC

Supervisor Call.

3.6.10.10.1 Syntax
SVC{cond} #imm

where:
cond is an optional condition code, see Conditional Execution, page 55.
imm is an expression evaluating to an integer in the range 0-255 (8-bit value).

3.6.10.10.2 Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to determine
what service is being requested.

3.6.10.10.3 Condition Flags
This instruction does not change the flags.

Examples
SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate value
; by locating it via the stacked PC)

3.6.10.11 WFE
Wait For Event.

UGO0331 User Guide Revision 15.0 92

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.6.10.11.1 Syntax

WFE { cond}
where:

cond is an optional condition code, see Conditional Execution, page 55.
3.6.10.11.2 Operation
WFE is a hint instruction.
If the event register is 0, WFE suspends execution until one of the following events occurs:

* an exception, unless masked by the exception mask registers or the current priority level

» an exception enters the Pending state, if SEVONPEND in the System Control Register is set

+ a Debug Entry request, if Debug is enabled

* an event signaled by a peripheral or another processor in a multiprocessor system using the SEV instruction.
If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see Power Management, page 45.

Condition flags
This instruction does not change the flags.

Examples
WFE ; Wait for event
3.6.10.12 WFI
Wait for Interrupt.
3.6.10.12.1 Syntax
WFI{cond}
where:
cond is an optional condition code, see Conditional Execution, page 55.
3.6.10.12.2 Operation
WFl is a hint instruction that suspends execution until one of the following events occurs:

* anon-masked interrupt occurs and is taken
* aninterrupt masked by PRIMASK becomes pending
* a Debug Entry request.

3.6.10.12.3 Condition Flags

This instruction does not change the flags.
Examples

WFI ; Wait for interrupt

UGO0331 User Guide Revision 15.0 93

Cortex-M3 Processor (Reference Material)

3.7

& Microsemi

Power Matters.”

Cortex-M3 Processor Peripherals

The following sections are the reference material for the Cortex-M3 processor core peripherals
descriptions in this user guide.

3.71 About the Cortex-M3 Processor Peripherals
The following table provides the address map of the Private peripheral bus (PPB).
Table 39 « Core Peripheral Register Regions
Address Core Peripheral See
0xEO00E008-0xEO0OEQOOF System control block Table 50, page 102
0xE000E010-0xEO00EQ1F System timer Table 71, page 119
OxEOOOE100-0xEOOOE4EF Nested Vectored Interrupt Controller |Table 40, page 95
OxEO00ED00-0XEOQQED3F | System control block Table 50, page 102
OxEO00ED90-0xEO00ED93 |MPU Type Register Reads as zero, indicating no
MPU is implemented1
O0xEO0O0ED90-0xEOO0EDB8 |Memory protection unit Table 77, page 123
O0xEO0OEF00-0xEO00EF03 Nested Vectored Interrupt Controller |Table 40, page 95
1. Software can read the MPU Type Register at 0xE000ED90 to test for the presence of a memory
protection unit (MPU).
In register descriptions:
« the register type is described as follows:
* RW: Read and write.
* RO: Read-only.
* WO: Write-only.
» the required privilege gives the privilege level required to access the register, as follows:
» Privileged: Only privileged software can access the register.
* Unprivileged: Both unprivileged and privileged software can access the register.
3.711 Nested Vectored Interrupt Controller
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The
NVIC supports:
* 1to 240 interrupts.
* A programmable priority level of 0-255 for each interrupt. A higher level corresponds to a lower
priority, so level 0 is the highest interrupt priority.
* Level and pulse detection of interrupt signals.
« Dynamic reprioritization of interrupts.
» Grouping of priority values into group priority and subpriority fields.
* Interrupt tail-chaining.
* An external Non-maskable interrupt (NMI).
The processor automatically stacks its state on exception entry and unstacks this state on exception exit,
with no instruction overhead. This provides low latency exception handling. The hardware
implementation of the NVIC registers is:
Table 40 = NVIC Register Summary
Required Reset
Address Name Type [privilege value See
OxEQ00E100- NVIC_ISERO- |RW |Privileged 0x00000000 Interrupt Set-enable Registers, page 96
0xEO00E11C NVIC_ISER7

UGO0331 User Guide Revision 15.0 94

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

Table 40 = NVIC Register Summary (continued)

Required Reset
Address Name Type [privilege value See
0XEOOOE180- NVIC_ICERO- [(RW |Privileged 0x00000000 Interrupt Clear-enable Registers, page 97
0xEO000E19C NVIC_ICER?
0XEO00E200- NVIC_ISPRO- [(RW |Privileged 0x00000000 Interrupt Set-pending Registers, page 97
0xEO00E21C NVIC_ISPR7
0XEO00E280- NVIC_ICPRO- |RW |Privileged 0x00000000 Interrupt Clear-Pending Registers, page 98
0xE000E29C NVIC_ICPR?7
0xEO0OE300- NVIC_IABRO- (RO |Privileged 0x00000000 Interrupt Active Bit Registers, page 98
0xEO00E31C NVIC_IABR7
0xE000E400- NVIC_IPRO- RW (Privileged 0x00000000 Interrupt Priority Registers, page 99
OxEOOOE4EF NVIC_IPR59
OxEOOOEF00 ([STIR WO |Configurable ' |0x00000000 Software Trigger Interrupt Register,

page 100

1. See the register description for more information.

3.71.2 Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS
CMSIS functions enable software portability between different Cortex-M3 profile processors. To access
the NVIC registers when using CMSIS, use the following functions:
Table 41+ CMSIS Access NVIC Functions

CMSIS Function

void NVIC_EnablelRQ(IRQn_Type IRQn)’

void NVIC_DisablelRQ(IRQn_Type IRQn)?

void NVIC_SetPendingIRQ(IRQn_Type IRQn)?
void NVIC_ClearPendingIRQ(IRQn_Type IRQn)?
uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)?

Description

Enables an interrupt or exception.

Disables an interrupt or exception.

Sets the pending status of interrupt or exception to 1.

Clears the pending status of interrupt or exception to 0.

Reads the pending status of interrupt or exception.
This function returns non-zero value if the pending status
is setto 1.

void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)® | Sets the priority of an interrupt or exception with

configurable priority level to 1.

uint32_t NVIC_GetPriority(IRQn_Type IRQn)? Reads the priority of an interrupt or exception with
configurable priority level.

This function return the current priority level.

1. The input parameter IRQn is the IRQ number, see Table 22 on page 34 for more information.

3.71.3 Interrupt Set-enable Registers

The NVIC_ISERO-NVIC_ISER?Y registers enable interrupts, and show which interrupts are enabled. See
the register summary in Table 40, page 95 for the register attributes.

The bit assignments are:

Figure 23 « ISER Register Bit Assignments
31]]]]]]] 0

SETENA bits

UGO0331 User Guide Revision 15.0 95

Cortex-M3 Processor (Reference Material)

3.71.4

Figure 24
31

Table 42+ NVIC_ISER Bit Assignments
Bits Name Function
[31:0] SETENA [Interrupt set-enable bits.

Write:

0: no effect

1: enable interrupt.
Read:

0: interrupt disabled
1: interrupt enabled.

& Microsemi

Power Matters.”

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not
enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never
activates the interrupt, regardless of its priority.

Interrupt Clear-enable Registers

The NVIC_ICERO-NVIC_ICERY? registers disable interrupts, and show which interrupts are enabled. See
the register summary in Table 40, page 95 for the register attributes.

The bit assignments are:

ICER Register Bit Assignments

CLRENA bits

3.71.5

Figure 25
31

Table 43+ NVIC_ICER Bit Assignments
Bits Name Function
[31:0] CLRENA Interrupt clear-enable bits.

Write:

0: no effect

1: disable interrupt.
Read:

0: interrupt disabled
1: interrupt enabled.

Interrupt Set-pending Registers

The NVIC_ISPRO-NVIC_ISPRY registers force interrupts into the pending state, and show which
interrupts are pending. See the register summary in Table 40, page 95 for the register attributes.

The bit assignments are:

ISPR Register Bit Assignments

SETPEND bits

UGO0331 User Guide Revision 15.0

96

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

NVIC_ISPR Bit Assignments

Function

Table 44 «
Bits Name
[31:0] SETPEND

Interrupt set-pending bits.

Write:

0: No effect

1: Changes interrupt state to pending.
Read:

0: Interrupt is not pending

1: Interrupt is pending.

Note: Writing 1 to the NVIC_ISPR bit corresponding to:

* Aninterrupt that is pending has no effect
+ Adisabled interrupt sets the state of that interrupt to pending.

3.7.1.6 Interrupt Clear-Pending Registers

The NVIC_ICPRO-NVIC_ICPRY registers remove the pending state from interrupts, and show which
interrupts are pending. See the register summary in Table 40, page 95 for the register attributes.

The bit assignments are:

Figure 26 + ICPR Register Bit Assignments

31

CLRPEND bits

Table 45+ NVIC_ICPR bit assignments
Bits Name Function
[31:0] CLRPEND Interrupt clear-pending bits.

Write:

0: no effect

1: removes pending state an interrupt.
Read:

0: interrupt is not pending

1: interrupt is pending.

Note: Writing 1 to an NVIC_ICPR bit does not affect the active state of the corresponding interrupt.

3.71.7 Interrupt Active Bit Registers

The NVIC_IABRO-NVIC_IABRY registers indicate which interrupts are active. See the register summary
in Table 40, page 95 for the register attributes.

The bit assignments are:

Figure 27 » |ABR Register Bit Assignments

31

ACTIVE bits

UGO0331 User Guide Revision 15.0 97

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 46 « NVIC_IABR Bit Assignments

Bits Name Function

[31:0] ACTIVE |Interrupt active flags:
0: interrupt not active
1: interrupt active.

A bit reads as one if the status of the corresponding interrupt is active or active and pending.

3.71.8 Interrupt Priority Registers
The NVIC_IPRO-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt. These registers are byte-

accessible. See the register summary in Table 40, page 95 for their attributes. Each register holds four priority fields as
shown:

Figure 28 » IPR Register Bit Assignments

31 ‘ 24 23] 1615] 8 7] 0
IPR59 PRI_239 PRI_238 PRI_237 PRI_236
IPRn PRI_4n+3 PRI_4n+2 PRI_4n+1 PRI_4n
IPRO PRI_3 PRI_2 PRI_1 PRI_O

Table 47 « NVIC_IPR Bit Assignments

Bits Name Function

[31:24] Priority, byte offset 3 Each priority field holds a priority value, 0-255. The lower
: - the value, the greater the priority of the corresponding

23:1 P ffset 2) . .

[23:16] riority, byte offset interrupt. The processor implements only bits [7:n] of

[15:8] Priority, byte offset 1 each field, bits [n-1:0] read as zero and ignore writes.

[7:0] Priority, byte offset 0

See Accessing the Cortex-M3 Processor NVIC Registers Using CMSIS, page 96 for more information
about the access to the interrupt priority array, which provides the software view of the interrupt priorities.

Find the IPR number and byte offset for interrupt m as follows:

« the corresponding IPRn number (see the preceding table), n is given by n=m DIV 4
» the byte offset of the required Priority field in this register is m MOD 4, where:

* byte offset O refers to register bits [7:0]

* byte offset 1 refers to register bits [15:8]

* byte offset 2 refers to register bits [23:16]

* byte offset 3 refers to register bits [31:24].

UGO0331 User Guide Revision 15.0 98

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

3.71.9 Software Trigger Interrupt Register
Write to the STIR to generate an interrupt from software. See the register summary in Table 40, page 95
for the STIR attributes.
When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR, see
System Control Register, page 108.
Note: Only privileged software can enable unprivileged access to the STIR.
The bit assignments are:
Figure 29 - |ABR Register Bit Assignments
31 : : : 9 8 0
Reserved INTID
Table 48 « STIR Bit Assignments
Bits Field Function
[31:9] Reserved.
[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-239. For example, a value
of 0x03 specifies interrupt IRQ3.
3.71.10 Level-sensitive and Pulse Interrupts
The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as
edge-triggered interrupts.
A level-sensitive interrupt is held asserted until the peripheral de-asserts the interrupt signal. Typically
this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse
interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To
ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one
clock cycle, during which the NVIC detects the pulse and latches the interrupt.
When the processor enters the ISR, it automatically removes the pending state from the interrupt, see
Hardware and Software Control of Interrupts, page 100. For a level-sensitive interrupt, if the signal is not
deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the
processor must execute its ISR again. This means that the peripheral can hold the interrupt signal
asserted until it no longer needs servicing.
See <reference required> for details of which interrupts are level-sensitive and which are pulsed.
3.7.1.10.1 Hardware and Software Control of Interrupts

The Cortex-M3 processor latches all interrupts. A peripheral interrupt becomes pending for one of the
following reasons:

» the NVIC detects that the interrupt signal is HIGH and the interrupt is not active

» the NVIC detects a rising edge on the interrupt signal

+ software writes to the corresponding interrupt set-pending register bit, see Interrupt Set-pending
Registers, page 97, or to the STIR to make an interrupt pending, see Software Trigger Interrupt
Register, page 100.

A pending interrupt remains pending until one of the following occurs:

+ The processor enters the ISR for the interrupt. This changes the state of the interrupt from pending
to active. Then:

* For alevel-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the
interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which
might cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt
changes to inactive.

UGO0331 User Guide Revision 15.0 99

Cortex-M3 Processor (Reference Material) - .
& Microsemi

3.71.11

3.71.1141

Power Matters.”

« For apulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the
state of the interrupt changes to pending and active. In this case, when the processor returns
from the ISR the state of the interrupt changes to pending, which might cause the processor to
immediately re-enter the ISR.

If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from

the ISR the state of the interrupt changes to inactive.

» Software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not

change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, state of the interrupt changes to:

. inactive, if the state was pending
. active, if the state was active and pending.

NVIC Design Hints and Tips

Ensure software uses correctly aligned register accesses. The processor does not support unaligned
accesses to NVIC registers. See the individual register descriptions for the supported access sizes.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only prevents the
processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of the new vector
table are setup for fault handlers, NMI and all enabled exception like interrupts. For more information see
Vector Table Offset Register, page 106.

NVIC programming hints

Software uses the CPSIE | and CPSID I instructions to enable and disable interrupts. The CMSIS
provides the following intrinsic functions for these instructions:

void _ disable irg(void) // Disable Interrupts
void enable irqg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including those listed in the
following table.

Table 49« CMSIS Functions for NVIC Control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping(uint32_t priority_grouping) |Set the priority grouping

void NVIC_EnablelRQ(IRQn_t IRQnN) Enable IRQnN

void NVIC_DisablelRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQnN) Return true (IRQ-Number) if IRQn is pending
void NVIC_SetPendingIRQ (IRQn_t IRQnN) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQnN) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQnN) Return the IRQ number of the active interrupt
void NVIC_SetPriority (IRQn_t IRQn, uint32_t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQnN) Read priority of IRQnN

void NVIC_SystemReset (void) Reset the system

The input parameter IRQn is the IRQ number, see Properties of the Different Exception Types, page 39.
For more information about these functions see the CMSIS documentation.

UGO0331 User Guide Revision 15.0 100

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.7.2 System Control Block

The System control block (SCB) provides system implementation information, and system control. This

includes configuration, control, and reporting of the system exceptions. The following table lists the SCB

registers.
Table 50 « Summary of the System Control Block Registers

Required |Reset
Address Name Type |privilege value See
OxEOOOE008 |ACTLR RW Privileged |0x00000000 Auxiliary Control Register, page 102
OxEOOOEDOO |CPUID RO Privileged |0x412FC230 [CPUID Base Register, page 103
OXEOOOEDO04 |ICSR RW' Privileged [0x00000000 Interrupt Control and State Register, page 104
OxEOOOEDO8 |VTOR RW Privileged |0x00000000 Vector Table Offset Register, page 106
OxEOOOEDOC |AIRCR RW?2 |Privileged [0xFA050000 |Application Interrupt and Reset Control Register,
page 106
OxEOOOED10 |SCR RW Privileged |0x00000000 System Control Register, page 108
OxEOOOED14 |CCR RW Privileged |0x00000200 Configuration and Control Register, page 109
OxEOOOED18 |SHPR1 RW Privileged |0x00000000 System Handler Priority Registers, page 110
OxEOOOED1C |SHPR2 RW Privileged |0x00000000 System Handler Priority Registers, page 110
OxEOOOED20 |SHPRS3 RW Privileged |0x00000000 System Handler Priority Registers, page 110
OxEOOOED24 |SHCRS [RW Privileged |0x00000000 System Handler Control and State Register,
page 112

OxEOOOED28 |CFSR RW Privileged |0x00000000 Configurable Fault Status Register, page 113
OxEOOOED28 |MMSR? |RW Privileged [0x00 MemManage Fault Status Register, page 114
OxEOOOED29 |BFSRP RW Privileged [0x00 BusFault Status Register, page 115
OxEOOOED2A |UFSRP RW Privileged |0x0000 UsageFault Status Register, page 116
OxEOOOED2C |HFSR RW Privileged |0x00000000 BusFault Status Register, page 115
OXEOOOED34 |MMAR RW Privileged [Unknown UsageFault Status Register, page 116
OxEOOOED38 |BFAR RW Privileged |Unknown HardFault Status Register, page 117
OxEOOOED3C |AFSR RW Privileged |0x00000000 MemManage Fault Address Register, page 118

1. See the register description for more information.
2. A sub-register of the CFSR.

3.7.21

Auxiliary Control Register

The ACTLR provides disable bits for the following processor functions:

+ IT folding

« write buffer use for accesses to the default memory map
» interruption of multi-cycle instructions.

By default this register is set to provide optimum performance from the Cortex-M3 processor, and does

not normally require modification.

UGO0331 User Guide Revision 15.0

101

Cortex-M3 Processor (Reference Material) —_~ - .
& Microsemi
Power Matters.”
See the register summary in the preceding table for the ACTLR attributes. The bit assignments are:
Figure 30 + ACTLR Bit Assignments
31]]]]]] 3210

DISFOLD4,
DISDEFWBUF

DISMCYCINT

Reserved

Table 51« ACTLR Bit Assignments

Bits Name Function
[31:3] Reserved
[2] DISFOLD When set to 1, disables the ability of the Cortex-M3 processor to execute an IT

instruction in parallel with a neighboring instruction.

[1] DISDEFWBUF When set to 1, disables write buffer use during default memory map accesses. This
causes all BusFaults to be precise BusFaults but decreases performance because
any store to memory must complete before the processor can execute the next
instruction. This bit only affects write buffers implemented in the Cortex-M3
processor.

[0] DISMCYCINT When set to 1, disables interruption of load multiple and store multiple instructions.
This increases the interrupt latency of the processor because any LDM or STM must
complete before the processor can stack the current state and enter the interrupt
handler.

3.7.2.2 CPUID Base Register

The CPUID register contains the processor part number, version, and implementation information. See
the register summary in Table 50, page 102 for its attributes. The bit assignments are:

Figure 31« CPUID Register Bit Assignments
31 : 24 23 20 19 16 15 : : 4 3 0

Implementer Variant Constant PartNo Revision

Table 52 « CPUID register Bit Assignments

Bits Name Function
[31:24] Implementer |Implementer code:
0x41 = ARM
[23:20] Variant Variant number, the r value in the rnpn product

revision identifier:
0x2 = Revision 2

[19:16] Constant Reads as OxF

[15:4] PartNo Part number of the processor:
0xC23 = Cortex-M3

UGO0331 User Guide Revision 15.0 102

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

Table 52« CPUID register Bit Assignments (continued)

Bits Name Function

[3:0] Revision Revision number, the p value in the rnpn
product revision identifier:
0x0 = Patch O

3.7.2.3 Interrupt Control and State Register
The ICSR:

* Provides:

* aset-pending bit for the Non-Maskable Interrupt (NMI) exception

» set-pending and clear-pending bits for the PendSV and SysTick exceptions
* Indicates:

» the exception number of the exception being processed

» whether there are preempted active exceptions

+ the exception number of the highest priority pending exception

* whether any interrupts are pending.

See the register summary in Table 50, page 102, and the Type descriptions in the following table, for the
ICSR attributes. The bit assignments are:

Figure 32 -« ICSR Bit Assignments
3130292827 262524232221 : 121110 9 8 : 0

VECTPENDING VECTACTIVE

I— ISRPENDING I— Reserved
Reserved for Debug RETTOBASE

Reserved
PENDSTCLR
PENDSTSET
PENDSVCLR
PENDSVSET
Reserved
NMIPENDSET

Table 53 « ICSR Bit Assignments

Bits Name Type [Function

[31] NMIPENDSET (RW NMI set-pending bit.

Write:

0: no effect

1: changes NMI exception state to pending.

Read:

0: NMI exception is not pending

1: NMI exception is pending.

Because NMI is the highest-priority exception, normally the processor enter the
NMI exception handler as soon as it registers a write of 1 to this bit, and
entering the handler clears this bit to 0. A read of this bit by the NMI exception
handler returns 1 only if the NMI signal is reasserted while the processor is
executing that handler.

[30:29] Reserved.

UGO0331 User Guide Revision 15.0 103

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

Table 53 « ICSR Bit Assignments (continued)
Bits Name Type [Function
[28] PENDSVSET (RW PendSV set-pending bit.
Write:
0: no effect
1: changes PendSV exception state to pending.
Read:
0: PendSV exception is not pending
1: PendSV exception is pending.
Writing 1 to this bit is the only way to set the PendSV exception state to
pending.
[27] PENDSVCLR |WO PendSV clear-pending bit.
Write:
0: no effect
1: removes the pending state from the PendSV exception.
[26] PENDSTSET (RW SysTick exception set-pending bit.
Write:
0: no effect
1: changes SysTick exception state to pending.
Read:
0: SysTick exception is not pending
1: SysTick exception is pending.
[25] PENDSTCLR [WO SysTick exception clear-pending bit.
Write:
0: no effect
1: removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.
[24] Reserved.
[23] Reserved for (RO This bit is reserved for Debug use and reads-as-zero when the processor is not
Debug use in Debug.
[22] ISRPENDING |RO Interrupt pending flag, excluding NMI and Faults:
0: interrupt not pending
1: interrupt pending.
[21:18] Reserved.
[17:12] VECTPENDIN |[RO Indicates the exception number of the highest priority pending enabled
G exception:
0: no pending exceptions
Nonzero: the exception number of the highest priority pending enabled
exception.
The value indicated by this field includes the effect of the BASEPRI and
FAULTMASK registers, but not any effect of the PRIMASK register.
[11] RETTOBASE |RO Indicates whether there are preempted active exceptions:
0: there are preempted active exceptions to execute
1: there are no active exceptions, or the currently-executing exception is the
only active exception.
[10:9] Reserved.
[8:0] VECTACTIVE? |RO Contains the active exception number:

0: Thread mode

Nonzero: The exception number! of the currently active exception.

Subtract 16 from this value to obtain the CMSIS IRQ number required to index
into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-Pending, or
Priority Registers, see Table 11, page 23.

UGO0331 User Guide Revision 15.0 104

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

1. This is the same value as IPSR bits[8:0], see Interrupt Program Status Register, page 23.

When you write to the ICSR, the effect is Unpredictable if you:

* write 1 to the PENDSVSET bit and write 1 to the PENDSVCLR bit
« write 1 to the PENDSTSET bit and write 1 to the PENDSTCLR bit.

3.7.24 \Vector Table Offset Register
The VTOR indicates the offset of the vector table base address from memory address 0x00000000. See
the register summary in Table 50, page 102for its attributes.
The bit assignments are:
Figure 33 « VTOR Bit Assignments
313029 | | | | 76 | 0
TBLOFF Reserved
I— Reserved
Table 54« VTOR Bit Assignments
Bits Name Function
[31:30] Reserved.
[29:7] TBLOFF Vector table base offset field. It contains bits[29:7] of the offset of the table base from the
bottom of the memory map.
Bit [29] determines whether the vector table is in the code or SRAM memory region:
0: Code
1: SRAM.
Bit [29] is sometimes called the TBLBASE bit.
[6:0] Reserved.
When setting TBLOFF, you must align the offset to the number of exception entries in the vector table.
<Configure the next statement to give the information required for your implementation, the statement
reminds you of how to determine the alignment requirement.> The minimum alignment is 32 words,
enough for up to 16 interrupts. For more interrupts, adjust the alignment by rounding up to the next power
of two. For example, if you require 21 interrupts, the alignment must be on a 64-word boundary because
the required table size is 37 words, and the next power of two is 64.
Table alignment requirements mean that bits [6:0] of the table offset are always zero.
3.7.2.5 Application Interrupt and Reset Control Register

The AIRCR provides priority grouping control for the exception model, endian status for data accesses,
and reset control of the system. See the register summary in Table 50, page 102 and Table 55, page 107
for its attributes.

To write to this register, you must write 0x5FA to the VECTKEY field, otherwise the processor ignores the
write.

UGO0331 User Guide Revision 15.0 105

Cortex-M3

Processor (Reference Material) @ Microseml:

Power Matters.”

The bit assignments are:

Figure 34 « AIRCR Bit Assignments

31 :]] 16 15 14 1110 8 7 3210

Onread: VECTKEYSTAT
On write: VECTKEY

ENDIANNESS J PRIGROUP J SYSRESETREQ J

Reserved Reserved

Reserved for Debug use VECTCLRACTIVE
g VECTRESET
Table 55+ AIRCR Bit Assignments
Bits Name Type |Function
[31:16] [Write: RW Register key:
VECTKEYSTAT Reads as 0xFA05.
Read: VECTKEY On writes, write 0x05FA to VECTKEY, otherwise the write is ignored.
[15] ENDIANNESS RO Data endianness bit:
0: Little-endian
1: Big-endian.
ENDIANNESS is set from the BIGEND configuration signal during reset.
[14:11] Reserved
[10:8] PRIGROUP R/W [Interrupt priority grouping field. This field determines the split of group
priority from subpriority, see "Binary Point" on page 102.
[7:3] Reserved.
[2] SYSRESETREQ WO System reset request:
0: no system reset request
1: asserts a signal to the outer system that requests a reset.
This is intended to force a large system reset of all major components
except for debug.
This bit reads as 0.
[1] VECTCLRACTIVE |WO Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.
[0] VECTRESET WO Reserved for Debug use. This bit reads as 0. When writing to the register
you must write 0 to this bit, otherwise behavior is Unpredictable.
3.7.2.5.1 Binary Point
The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in the Interrupt
Priority Registers into separate group priority and subpriority fields. The following table shows how the
PRIGROUP value controls this split. <If you implement fewer than 8 priority bits you might require more
explanation here, and want to remove invalid rows from the table, and modify the entries in the number of
columns.>
Table 56 « Priority Grouping

PRIGROUP |Binary point1 Group priority bits [Subpriority bits |Group priorities |Subpriorities

Interrupt priority level value, PRI_N[7:0] Number of

b000

DXXXXXXX.Y [7:1] [0] 128 2

UGO0331 User Guide Revision 15.0 106

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 56 « Priority Grouping (continued)
Interrupt priority level value, PRI_N[7:0] Number of
PRIGROUP |Binary point1 Group priority bits [Subpriority bits |Group priorities |Subpriorities
b001 bXXXxxX.yy [7:2] [1:0] 64 4
b010 bXxxxxx.yyy [7:3] [2:0] 32 8
b011 bxxxx.yyyy [7:4] [3:0] 16 16
b100 bxxx.yyyyy [7:5] [4:0] 8 32
b101 bxx.yyyyyy [7:6] [5:0] 4 64
b110 bx.yyyyyyy [7] [6:0] 2 128
b111 b.yyyyyyyy None [7:0] 1 256

1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority field bit.

Determining preemption of an exception uses only the group priority field, see Interrupt Priority Grouping,

page 41.
3.7.2.6 System Control Register
The SCR controls features of entry to and exit from low power state. See the register summary in
Table 50, page 102 for its attributes. The bit assignments are:
Figure 35+ SCR Bit Assignments
31 | | 543210
Reserved
SEVONPEND J
Reserved
SLEEPDEEP
SLEEPONEXIT
Reserved
Table 57 « SCR Bit Assignments
Bits Name Function
[31:5] Reserved.
[4] SEVONPEND Send Event on Pending bit:
0: only enabled interrupts or events can wakeup the processor, disabled interrupts are
excluded
1: enabled events and all interrupts, including disabled interrupts, can wakeup the
processor.
When an event or interrupt enters pending state, the event signal wakes up the
processor from WFE. If the processor is not waiting for an event, the event is registered
and affects the next WFE.
The processor also wakes up on execution of an SEV instruction or an external event.
[3] Reserved.
[2] SLEEPDEEP Controls whether the processor uses sleep or deep sleep as its low power mode:
0: sleep
1: deep sleep

UGO0331 User Guide Revision 15.0 107

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

Table 57 « SCR Bit Assignments (continued)

Bits Name Function

[1] SLEEPONEXIT |Indicates sleep-on-exit when returning from Handler mode to Thread mode:

0: do not sleep when returning to Thread mode.

1: enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty
main application.

[0] Reserved.

3.7.2.7 Configuration and Control Register
The CCR controls entry to Thread mode and enables:
» the handlers for NMI, HardFault and faults escalated by FAULTMASK to ignore BusFaults

« trapping of divide by zero and unaligned accesses
+ access to the STIR by unprivileged software, see "Software Trigger Interrupt Register" on page 93.

See the register summary in Table 50, page 102 for the CCR attributes.
The bit assignments are:
Figure 36 + CCR Bit Assignments
31 | | | | 10987 543210

STKALIGNJ
BFHFNMIGN

Reserved
DIV_0_TRP
UNALIGN_TRP
Reserved
USERSETMPEND
NONBASETHRDENA

Reserved

Table 58 « CCR Bit Assignments

Bits Name Function
[31:10] Reserved.
[9] STKALIGN Indicates stack alignment on exception entry:

0: 4-byte aligned

1: 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked PSR to indicate the
stack alignment. On return from the exception it uses this stacked bit to restore
the correct stack alignment.

[8] BFHFNMIGN Enables handlers with priority -1 or -2 to ignore data BusFaults caused by load
and store instructions. This applies to the HardFault, NMI, and FAULTMASK
escalated handlers:

0: data BusFaults caused by load and store instructions cause a lock-up

1: data BusFaults caused by load and store instructions are ignored.

Set this bit to 1 only when the handler and its data are in absolutely safe memory.
The normal use of this bit is to probe system devices and bridges to detect
problems.

UGO0331 User Guide Revision 15.0 108

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 58 « CCR Bit Assignments (continued)

Bits Name Function
[7:5] Reserved.
[4] DIV_0_TRP Enables faulting or halting when the processor executes an SDIV or UDIV

instruction with a divisor of 0:

0: do not trap divide by 0

1: trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

[3] UNALIGN_TRP Enables unaligned access traps:

0: do not trap unaligned halfword and word accesses

1: trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of
whether UNALIGN_TRP is set to 1.

[2] Reserved.

[1] USERSETMPEND |Enables unprivileged software access to the STIR, see Software Trigger
Interrupt Register, page 100:

0: disable

1: enable

[0] NONBASETHRDEN |Indicates how the processor enters Thread mode:

A 0: processor can enter Thread mode only when no exception is active.

1: processor can enter Thread mode from any level using the appropriate
EXC_RETURN value, see Exception Return, page 42.

3.7.2.8 System Handler Priority Registers

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that have
configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 50, page 102 for their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 59 « System Fault Handler Priority Fields

Handler Field See

MemManage PRI_4 System Handler Priority Register 2, page 111
BusFault PRI_5

UsageFault PRI_6

SVCall PRI_11 System Handler Priority Register 2, page 111
PendSV PRI_14 System Handler Priority Register 2, page 111
SysTick PRI_15

Each PRI_N field is 8 bits wide, but the processor implements only bits [7:M] of each field, and bits [M-
1:0] read as zero and ignore writes.

UGO0331 User Guide Revision 15.0 109

Cortex-M3 Processor (Reference Material)

3.7.2.8.1 System Handler Priority Register 1

The bit assignments are:

Figure 37 « SHPR1 Bit Assignments

& Microsemi

Power Matters.”

31 24:23 1615 8.7
Reserved PRI_6 PRI_5 PRI 4
Table 60 « SHPR1 Bit Assignments
Bits Name ([Function
[31:24] |PRI_7 Reserved
[23:16] |PRI_6 |Priority of system handler 6, UsageFault
[15:8] PRI_5 [Priority of system handler 5, BusFault
[7:0] PRI_4 [Priority of system handler 4, MemManage

3.7.2.8.2 System Handler Priority Register 2

The bit assignments are:
Figure 38 + SHPR2 Bit Assignments
31 | 2423
PRI_11 Reserved

Table 61« SHPR2 Bit Assignments
Bits Name Function
[31:24] PRI_11 [Priority of system handler 11, SVCall
[23:0] Reserved

3.7.2.8.3 System Handler Priority Register 3

The bit assignments are:

Figure 39 - SHPR3 Bit Assignments

31 2423 1615
PRI_15 PRI_14 Reserved
Table 62+ SHPR3 Bit Assignments
Bits Name Function
[31:24] PRI_15 Priority of system handler 15, SysTick exception
[23:16] PRI_14 Priority of system handler 14, PendSV
[15:0] Reserved

UGO0331 User Guide Revision 15.0

110

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.7.29 System Handler Control and State Register

The SHCSR enables the system handlers, and indicates:

» the pending status of the BusFault, MemManage fault, and SVC exceptions
» the active status of the system handlers.

See the register summary in Table 50, page 102 for the SHCSR attributes. The bit assignments are:
Figure 40 «+ SHCSR Bit Assignments

31 ‘ ‘ 19181716151413121110 9 8 7 6 43210
Reserved
USGFAULTENAﬂ & MEMFAULTACT
BUSFAULTENA BUSFAULTACT
MEMFAULTENA Reserved
SVCALLPENDED USGFAULTACT
BUSFAULTPENDED Reserved
MEMFAULTPENDED
USGFAULTPENDED
SYSTICKACT
PENDSVACT
Reserved
MONITORACT
SVCALLACT
Table 63+« SHCSR Bit Assignments
Bits Name Function
[31:19] - Reserved
[18] USGFAULTENA UsageFault enable bit, set to 1 to enable’
[17] BUSFAULTENA BusFault enable bit, set to 1 to enable?
[16] MEMFAULTENA MemManage enable bit, set to 1 to enable?
[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending2
[14] BUSFAULTPENDED |BusFault exception pending bit, reads as 1 if exception is pendingb
[13] MEMFAULTPENDED |MemManage fault exception pending bit, reads as 1 if exception is pending®
[12] USGFAULTPENDED |UsageFault exception pending bit, reads as 1 if exception is pendingb
[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active®
[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active
[9] - Reserved
[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active
[71 SVCALLACT SVCall active bit, reads as 1 if SVC call is active
[6:4] - Reserved
[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active
[2] - Reserved
[1 BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

UGO0331 User Guide Revision 15.0 111

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

Table 63« SHCSR Bit Assignments (continued)
Bits Name Function
[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.
2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. You can write to these bits to change the pending
status of the exceptions.
3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. You can write to these bits to change the active status of
the exceptions, but see the Caution in this section.

3.7.2.10

If you disable a system handler and the corresponding fault occurs, the processor treats the fault as a

HardFault.

You can write to this register to change the pending or active status of system exceptions. An OS kernel
can write to the active bits to perform a context switch that changes the current exception type.

» Software that changes the value of an active bit in this register without correct adjustment to the
stacked content can cause the processor to generate a fault exception. Ensure software that writes
to this register retains and subsequently restores the current active status.

« After you have enabled the system handlers, if you have to change the value of a bit in this register
you must use a read-modify-write procedure to ensure that you change only the required bit.

Configurable Fault Status Register

The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault. See the register
summary in Table 50, page 102 for its attributes. The bit assignments are:

Figure 41« CFSR Bit Assignments

The following subsections describe the sub-registers that make up the CFSR:

The CFSR is byte accessible. You can access the CFSR or its sub-registers as follows:

» access the complete CFSR with a word access to OXEOOOED28
» access the MMFSR with a byte access to 0OXEOOOED28
* access the MMFSR and BFSR with a halfword access to 0OXEOOOED28
» access the BFSR with a byte access to OXEOOOED29

+ access the UFSR with a halfword access to OXEOOOED2A

UGO0331 User Guide Revision 15.0

31 16 15 7 | 0
. Bus Fault Status Memory Management
Usage Fault Status Register Register Fault Status Register
\ \ \)
UFSR BFSR MMFSR

112

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

3.7.211 MemManage Fault Status Register
The flags in the MMFSR indicate the cause of memory access faults. The bit assignments are:

Figure 42 + MMFSR Bit Assignments

76543210

MMARVALID J
Reserved

MSTKERR
MUNSTKERR
Reserved
DACCVIOL
IACCVIOL

Table 64« MMFSR Bit Assignments

Bits Name Function

[7] MMARVALID MemManage Fault Address Register (MMFAR) valid flag:

0: value in MMAR is not a valid fault address

1: MMAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of priority, the
HardFault handler must set this bit to 0. This prevents problems on return to a stacked
active MemManage fault handler whose MMAR value has been overwritten.

[6:5] Reserved.

[4] MSTKERR MemManage fault on stacking for exception entry:

0: no stacking fault

1: stacking for an exception entry has caused one or more access violations.

When this bit is 1, the SP is still adjusted but the values in the context area on the stack
might be incorrect. The processor has not written a fault address to the MMAR.

[3] MUNSTKERR |MemManage fault on unstacking for a return from exception:

0: no unstacking fault

1: unstack for an exception return has caused one or more access violations.

This fault is chained to the handler. This means that when this bit is 1, the original return
stack is still present. The processor has not adjusted the SP from the failing return, and
has not performed a new save. The processor has not written a fault address to the

MMAR.
[2] Reserved
[1 DACCVIOL Data access violation flag:

0: no data access violation fault

1: the processor attempted a load or store at a location that does not permit the
operation.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has loaded the MMAR with the address of the attempted
access.

UGO0331 User Guide Revision 15.0 113

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 64« MMFSR Bit Assignments (continued)
Bits Name Function
[0] IACCVIOL Instruction access violation flag:

0: no instruction access violation fault

1: the processor attempted an instruction fetch from a location that does not permit
execution.

This fault occurs on any access to an XN region, even when the MPU is disabled or not
present.

When this bit is 1, the PC value stacked for the exception return points to the faulting
instruction. The processor has not written a fault address to the MMAR.

3.7.212 BusFault Status Register

The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

Figure 43 + MMFSR Bit Assignments
76543210
BFARVALID J
Reserved
STKERR
UNSTKERR
IMPRECISERR
PRECISERR
IBUSERR
Table 65+ BFSR Bit Assignments
Bits Name Function
[71 BFARVALID BusFault Address Register (BFAR) valid flag:
0: value in BFAR is not a valid fault address
1: BFAR holds a valid fault address.
The processor sets this bit to 1 after a BusFault where the address is known. Other
faults can set this bit to 0, such as a MemManage fault occurring later.
If a BusFault occurs and is escalated to a HardFault because of priority, the HardFault
handler must set this bit to 0. This prevents problems if returning to a stacked active
BusFault handler whose BFAR value has been overwritten.
[6:5] Reserved.
[4] STKERR BusFault on stacking for exception entry:
0: no stacking fault
1: stacking for an exception entry has caused one or more BusFaults.
When the processor sets this bit to 1, the SP is still adjusted but the values in the
context area on the stack might be incorrect. The processor does not write a fault
address to the BFAR.
[3] UNSTKERR BusFault on unstacking for a return from exception:
0: no unstacking fault
1: unstack for an exception return has caused one or more BusFaults.
This fault is chained to the handler. This means that when the processor sets this bit
to 1, the original return stack is still present. The processor does not adjust the SP
from the failing return, does not performed a new save, and does not write a fault
address to the BFAR.

UGO0331 User Guide Revision 15.0 114

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

Table 65+ BFSR Bit Assignments (continued)

Bits Name Function

[2] IMPRECISERR |Imprecise data bus error:
0: no imprecise data bus error
1: a data bus error has occurred, but the return address in the stack frame is not
related to the instruction that caused the error.
When the processor sets this bit to 1, it does not write a fault address to the BFAR.
This is an asynchronous fault. Therefore, if it is detected when the priority of the
current process is higher than the BusFault priority, the BusFault becomes pending
and becomes active only when the processor returns from all higher priority
processes. If a precise fault occurs before the processor enters the handler for the
imprecise BusFault, the handler detects both IMPRECISERR set to 1 and one of the
precise fault status bits set to 1.

[1 PRECISERR Precise data bus error:
0: no precise data bus error
1: a data bus error has occurred, and the PC value stacked for the exception return
points to the instruction that caused the fault.
When the processor sets this bit is 1, it writes the faulting address to the BFAR.

[0] IBUSERR Instruction bus error:

0: no instruction bus error

1: instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it
sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.
When the processor sets this bit is 1, it does not write a fault address to the BFAR.

3.7.213 UsageFault Status Register

The UFSR indicates the cause of a UsageFault. The bit assignments are:

Figure 44 « UFSR Bit Assignments
15 109 87 43210
Reserved Reserved
DIVBYZERO J NOCP J
UNALIGNED INVPC
INVSTATE
UNDEFINSTR
Table 66 = UFSR Bit Assignments
Bits Name Function
[15:10] Reserved.
[9] DIVBYZERO Divide by zero UsageFault:

0: no divide by zero fault, or divide by zero trapping not enabled

1: the processor has executed an SDIV or UDIV instruction with a divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the exception return
points to the instruction that performed the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR to 1, see
Configuration and Control Register, page 109.

UGO0331 User Guide Revision 15.0 115

Cortex-M3 Processor (Reference Material) @ Microsemi

Table 66 «

Power Matters.”

UFSR Bit Assignments (continued)

Bits

Name

Function

(8]

UNALIGNED

Unaligned access UsageFault:

0: no unaligned access fault, or unaligned access trapping not enabled

1: the processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit in the CCR to
1, see Configuration and Control Register, page 109.

Unaligned LDM, STM, LDRD, and STRD instructions always fault irrespective of the
setting of UNALIGN_TRP.

[7:4]

Reserved.

(3]

NOCP

No coprocessor UsageFault. The processor does not support coprocessor
instructions:

0: no UsageFault caused by attempting to access a coprocessor

1: the processor has attempted to access a coprocessor.

(2]

INVPC

Invalid PC load UsageFault, caused by an invalid PC load by EXC_RETURN:

0: no invalid PC load UsageFault

1: the processor has attempted an illegal load of EXC_RETURN to the PC, as a result
of an invalid context, or an invalid EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that tried to perform the illegal load of the PC.

(1]

INVSTATE

Invalid state UsageFault:

0: no invalid state UsageFault

1: the processor has attempted to execute an instruction that makes illegal use of the
EPSR.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that attempted the illegal use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

0]

UNDEFINSTR

Undefined instruction UsageFault:

0: no undefined instruction UsageFault

1: the processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return points to the
undefined instruction.

An undefined instruction is an instruction that the processor cannot decode.

3.7.2.14

Figure 45

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit
that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

HardFault Status Register

The HFSR gives information about events that activate the HardFault handler. See the register summary
in Table 50, page 102 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any
bit clears that bit to 0. The bit assignments are:

HFSR Bit Assignments

313029

Reserved

-

FORCED
DEBUGEVT

VECTTBLJ
Reserved

UGO0331 User Guide Revision 15.0 116

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 67 = HFSR Bit Assignments

Bits Name Function

[31] DEBUGEVT |Reserved for Debug use. When writing to the register you must write 0 to this bit,
otherwise behavior is Unpredictable.

[30] FORCED Indicates a forced HardFault, generated by escalation of a fault with configurable priority
that cannot be handles, either because of priority or because it is disabled:

0: no forced HardFault

1: forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status registers
to find the cause of the fault.

[29:2] Reserved.

[1] VECTTBL Indicates a BusFault on a vector table read during exception processing:

0: no BusFault on vector table read

1: BusFault on vector table read.

This error is always handled by the HardFault handler.

When this bit is set to 1, the PC value stacked for the exception return points to the
instruction that was preempted by the exception.

[0] Reserved.

The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are set to 1. A bit
that is set to 1 is cleared to O only by writing 1 to that bit, or by a reset.

3.7.2.15 MemManage Fault Address Register

The MMFAR contains the address of the location that generated a MemManage fault. See the register
summary in Table 50, page 102 for its attributes. The bit assignments are:

Table 68« MMFAR Bit Assignments

Bits Name Function

[31:0] ADDRESS |When the MMARVALID bit of the MMFSR is set to 1, this field holds the
address of the location that generated the MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a single read
or write instruction can be split into multiple aligned accesses, the fault address can be any address in
the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is valid. See
MemManage Fault Status Register, page 114.

3.7.216 BusFault Address Register

The BFAR contains the address of the location that generated a BusFault. See the register summary in
Table 50, page 102 for its attributes. The bit assignments are:

Table 69 - BFAR Bit Assignments

Bits Name Function

[31:0] ADDRESS [When the BFARVALID bit of the BFSR is set to 1, this field holds the
address of the location that generated the BusFault

When an unaligned access faults the address in the BFAR is the one requested by the instruction, even
if it is not the address of the fault.

UGO0331 User Guide Revision 15.0 117

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is valid. See
BusFault Status Register, page 115.

3.7.2.17 Auxiliary Fault Status Register
The AFSR contains additional system fault information. See the register summary in Table 50, page 102
for its attributes.
This register is read, write to clear. This means that bits in the register read normally, but writing 1 to any
bit clears that bit to 0.
The bit assignments are:
Table 70 « AFSR Bit Assignments
Bits Name Function
[31:0] IMPDEF [Implementation defined. The bits map to the AUXFAULT input signals.
Each AFSR bit maps directly to an AUXFAULT input of the processor, and a single-cycle HIGH signal on
the input sets the corresponding AFSR bit to one. It remains set to 1 until you write 1 to the bit to clear it
to zero.
When an AFSR bit is latched as one, an exception does not occur. Use an interrupt if an exception is
required.
3.7.218 System Control Block Design - Hints and Tips
Ensure software uses aligned accesses of the correct size to access the system control block registers:
+ except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.
+ for the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word accesses.
The processor does not support unaligned accesses to system control block registers.
In a fault handler. to determine the true faulting address:
* Read and save the MMFAR or BFAR value.
* Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The MMFAR or BFAR
address is valid only if this bit is 1.
Software must follow this sequence because another higher priority exception might change the MMFAR
or BFAR value. For example, if a higher priority handler preempts the current fault handler, the other fault
might change the MMFAR or BFAR value.
3.7.3 System Timer, SysTick
The processor has a 24-bit system timer, SysTick, that counts down from the reload value to zero,
reloads (wraps to) the value in the SYST_RVR register on the next clock edge, then counts down on
subsequent clocks.
When the processor is halted for debugging the counter does not decrement.
The system timer registers are:
Table 71+« System Timer Registers Summary
Required
Address Name Type |Privilege Reset Value ([See

OxEOOOEO10 [SYST_CTRL RW Privileged [0x00000004 |SysTick Control and Status Register,

page 120

0xEOO00EO14 [SYST_RVR RW Privileged |0x00000000 |SysTick Reload Value Register, page 120

OxEOOOEO18 [SYST_CVR RW Privileged [0x00000000 [SysTick Current Value Register, page 121

O0xEOOOEO1C |SYST_CALIB RO Privileged 0xC0000000 " SysTick Calibration Value Register,

page 121

UGO0331 User Guide Revision 15.0 118

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

1. SysTick calibration value.

3.7.3.1 SysTick Control and Status Register

The SYST_CTRL register enables the SysTick features. See the register summary in the preceding table
for its attributes. The bit assignments are:

Figure 46 « SYST_CTRL Register Bit Assignments

31 ‘ ‘ ‘ 171615]] 3210
Reserved Reserved 0]0]0
COUNTFLAG J CLKSOURCE —l
TICKINT
ENABLE

Table 72+ SYST_CTRL Register Bit Assignments

Bits Name Function
[31:17] Reserved.
[16] COUNTFLAG [Returns 1 if timer counted to 0 since last time this was read.
[15:3] Reserved.
[2] CLKSOURCE |Selects the SysTick timer clock source:
1: processor clock. Determined by STCLK_DIVISOR bits in M3_CR register.
[1] TICKINT Enables SysTick exception request:

0: counting down to zero does not assert the SysTick exception request

1: counting down to zero to asserts the SysTick exception request.
Software can use COUNTFLAG to determine if SysTick has ever counted to
zero.

[0] ENABLE Enables the counter:
0: counter disabled
1: counter enabled.

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR register and then
counts down. On reaching 0, it sets the COUNTFLAG to 1 and optionally asserts the SysTick depending
on the value of TICKINT. It then loads the RELOAD value again, and begins counting.

3.7.3.2 SysTick Reload Value Register

The SYST_RVR register specifies the start value to load into the SYST_CVR register. See the register
summary in Table 71, page 119 for its attributes. The bit assignments are:

Figure 47 + SYST_RVR Register Bit Assignments
31 2423 0

Reserved RELOAD

Table 73+ SYST_RVR Register Bit Assignments

Bits Name Function
[31:24] Reserved.

UGO0331 User Guide Revision 15.0 119

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 73+ SYST_RVR Register Bit Assignments (continued)

Bits Name Function

[23:0] RELOAD |Value to load into the SYST_CVR register when the counter is enabled and
when it reaches 0, see Calculating the RELOAD Value, page 121.

3.7.3.21 Calculating the RELOAD Value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value of 0 is possible,
but has no effect because the SysTick exception request and COUNTFLAG are activated when counting
from 1 to 0.

The RELOAD value is calculated according to its use. To generate a multi-shot timer with a period of N
processor clock cycles, use a RELOAD value of N-1. For example, if the SysTick interrupt is required
every 100 clock pulses, set RELOAD to 99.

3.7.3.3 SysTick Current Value Register

The SYST_CVR register contains the current value of the SysTick counter. See the register summary in
Table 71, page 119 for its attributes. The bit assignments are:

Figure 48 + SYST_CVR Register Bit Assignments
31 24 23 0

Reserved CURRENT

Table 74« SYST_CVR Register Bit Assignments

Bits Name Function
[31:24] Reserved.

[23:0] CURRENT [Reads return the current value of the SysTick counter.
A write of any value clears the field to 0, and also clears the SysTick
CTRL.COUNTFLAG bit to 0.

3.7.3.4 SysTick Calibration Value Register

The SYST_CALIB register indicates the SysTick calibration properties. See the register summary in
Table 71, page 119 for its attributes. The bit assignments are:

Figure 49 « SYST_CALIB Register Bit Assignments
313029 24 23 0

Reserved TENMS

|— SKEW

— NOREF

Table 75+ SYST_CALIB Register Bit Assignments

Bits Name Function
[31] NOREF |Reads as one. Indicates that no separate reference clock is provided.
[30] SKEW Reads as one. Calibration value for the 10ms inexact timing is not

known because TENMS is not known. This can affect the suitability of
SysTick as a software real time clock.

UGO0331 User Guide Revision 15.0 120

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 75+« SYST_CALIB Register Bit Assignments (continued)

Bits Name Function
[29:24] Reserved.

[23:0] TENMS [Reads as zero. Indicates calibration value is not known.

If calibration information is not known, calculate the calibration value required from the frequency of the
processor clock or external clock.

3.7.3.5 SysTick Design Hints and Tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for Low-power mode, the
SysTick counter stops.

Ensure software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct initialization sequence
for the SysTick counter is:

1. Program reload value.
2. Clear current value.
3. Program Control and Status register.

3.7.4 Memory Protection Unit
This section describes the Memory protection unit (MPU).

The MPU divides the memory map into a number of regions, and defines the location, size, access
permissions, and memory attributes of each region. It supports:

* independent attribute settings for each region

+ overlapping regions

« export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 processor
MPU defines:

* eight separate memory regions, 0-7
* abackground region.
When memory regions overlap, a memory access is affected by the attributes of the region with the

highest number. For example, the attributes for region 7 take precedence over the attributes of any
region that overlaps region 7.

The background region has the same memory access attributes as the default memory map, but is
accessible from privileged software only.

The Cortex-M3 processor MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a
MemManage fault. This causes a fault exception, and might cause termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process
to be executed. Typically, an embedded OS uses the MPU for memory protection.

Configuration of MPU regions is based on memory types, see Memory Regions, Types and Attributes,
page 29.

UGO0331 User Guide Revision 15.0 121

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

The following table shows the possible MPU region attributes. These include shareability and cache
behavior attributes that are not relevant to most microcontroller implementations. See MPU Configuration
for a Microcontroller, page 132 for guidelines for programming such an implementation.

Table 76 «+ Memory Attributes Summary
Memory Type |Shareability |Other Attributes Description
Strongly- All accesses to Strongly-ordered memory
ordered occur in program order. All Strongly-
ordered regions are assumed to be shared.
Device Shared Memory-mapped peripherals that several
processors share.
Non-shared Memory-mapped peripherals that only a
single processor uses.
Normal Shared Non-cacheable Write-through Normal memory that is shared between
Cacheable Write-back Cacheable |several processors.
Non-shared [Non-cacheable Write-through Normal memory that only a single
Cacheable Write-back Cacheable |processor uses.
Use the MPU registers to define the MPU regions and their attributes. The MPU registers are:
Table 77 = MPU Registers Summary
Required |Reset
Address Name Type |privilege |value See
OxEOOOED9S0 |MPU_TYPE RO Privileged |0x00000800 [MPU Type Register, page 124
OxEOOOED94 [(MPU_CTRL RW Privileged |0x00000000 |MPU Control Register, page 124
OxEOOOED98 [(MPU_RNR RW Privileged |0x00000000 |MPU Region Number Register,
page 125
OxEOOOED9C [(MPU_RBAR RwW Privileged [0x00000000 |MPU Region Base Address
Register, page 126
OxEOOOEDAO [MPU_RASR RW Privileged |0x00000000 [MPU Region Attribute and Size
Register, page 127
OxEOOOEDA4 |MPU_RBAR_A1 |RW Privileged [0x00000000 |Alias of MPU_RBAR, see MPU
Region Base Address Register,
page 126
OxEOOOEDA8 |MPU_RASR_A1 |RW Privileged [0x00000000 |Alias of MPU_RASR, see MPU
Region Attribute and Size
Register, page 127
OxEOOOEDAC (MPU_RBAR_A2 [(RW Privileged |0x00000000 |Alias of MPU_RBAR, see MPU
Region Base Address Register,
page 126
OxEOOOEDBO |MPU_RASR_A2 |RW Privileged [0x00000000 |Alias of MPU_RASR, see MPU
Region Attribute and Size
Register, page 127
OxEOOOEDB4 [(MPU_RBAR_A3 [RW Privileged [0x00000000 |Alias of MPU_RBAR, see MPU
Region Base Address Register,
page 126
OxEOOOEDB8 [MPU_RASR_A3 [RW Privileged |0x00000000 |Alias of MPU_RASR, see MPU
Region Attribute and Size
Register, page 127

UGO0331 User Guide Revision 15.0 122

Cortex-M3 Processor (Reference Material)

3.741 MPU Type Register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many regions it supports.
See the register summary in Table 77, page 123 for its attributes. The bit assignments are:

Figure 50 » MPU_TYPE Register Bit Assignments

& Microsemi

Power Matters.”

31 24 23 16 15 7 10
Reserved IREGION DREGION Reserved
SEPARATE —I
Table 78« MPU_TYPE Register Bit Assignments
Bits Name Function
[31:24] Reserved.
[23:16] IREGION Indicates the number of supported MPU instruction regions.
Always contains 0x00. The MPU memory map is unified and is described by
the DREGION field.
[15:8] DREGION [Indicates the number of supported MPU data regions:
0x08=Eight MPU regions.
[7:0] Reserved.
[0] SEPARATE |Indicates support for unified or separate instruction and date memory maps:
0: unified

3.74.2 MPU Control Register
The MPU_CTRL register:
* enables the MPU
* enables the default memory map background region

+ enables use of the MPU when in the HardFault, Non-maskable Interrupt (NMI), and FAULTMASK
escalated handlers.

See the register summary in Table 77, page 123 for the MPU_CTRL attributes. The bit assignments are:
Figure 51+ MPU_CTRL Register Bit Assignments (continued)

31

3210

Reserved

Table 79« MPU_CTRL Register Bit Assignments

PRIVDEFENA—|
HFNMIENA

ENABLE

Bits Name

Function

[31:3]

Reserved.

UGO0331 User Guide Revision 15.0

123

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

Table 79 « MPU_CTRL Register Bit Assignments (continued)

Bits Name Function
[2] PRIVDEFENA |Enables privileged software access to the default memory map:
0: If the MPU is enabled, disables use of the default memory map. Any memory
access to a location not covered by any enabled region causes a fault.
1: If the MPU is enabled, enables use of the default memory map as a background
region for privileged software accesses.
When enabled, the background region acts as if it is region number -1. Any region that
is defined and enabled has priority over this default map.
If the MPU is disabled, the processor ignores this bit.
[1] HFNMIENA Enables the operation of MPU during HardFault, NMI, and FAULTMASK handlers.
When the MPU is enabled:
0: MPU is disabled during HardFault, NMI, and FAULTMASK handlers, regardless of
the value of the ENABLE bit
1: the MPU is enabled during HardFault, NMI, and FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is Unpredictable.
[0] ENABLE Enables the MPU:
0: MPU disabled
1: MPU enabled
When ENABLE and PRIVDEFENA are both set to 1:
» For privileged accesses, the default memory map is as described in "Memory Model" on page 25.
Any access by privileged software that does not address an enabled memory region behaves as
defined by the default memory map.
* Any access by unprivileged software that does not address an enabled memory region causes a
MemManage fault.
XN and Strongly-ordered rules always apply to the System Control Space regardless of the value of the
ENABLE bit.
When the ENABLE bit is set to 1, at least one region of the memory map must be enabled for the system
to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is set to 1 and no regions are
enabled, then only privileged software can operate.
When the ENABLE bit is set to 0, the system uses the default memory map. This has the same memory
attributes as if the MPU is not implemented, see Table 17, page 30. The default memory map applies to
accesses from both privileged and unprivileged software.
When the MPU is enabled, accesses to the System Control Space and vector table are always permitted.
Other areas are accessible based on regions and whether PRIVDEFENA is set to 1.
Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the handler for
an exception with priority —1 or —2. These priorities are only possible when handling a HardFault or NMI
exception, or when FAULTMASK is enabled. Setting the HFNMIENA bit to 1 enables the MPU when
operating with these two priorities.
3.74.3 MPU Region Number Register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and MPU_RASR
registers. See the register summary in Table 77, page 123 for its attributes. The bit assignments are:

Figure 52+ SYST_CVR Register Bit Assignments

31 8 7 0

Reserved REGION

UGO0331 User Guide Revision 15.0 124

Cortex-M3 Processor (Reference Material)

3.744

Figure 53 ¢

& Microsemi

Power Matters.”

Table 80+ MPU_RNR Bit Assignments

Bits Name Function
[31:8] Reserved.

[7:0] REGION [Indicates the MPU region referenced by the MPU_RBAR and
MPU_RASR registers.

The MPU supports 8 memory regions, so the permitted values of
this field are 0-7.

Normally, you write the required region number to this register before accessing the MPU_RBAR or
MPU_RASR. However you can change the region number by writing to the MPU_RBAR with the VALID
bit set to 1, see MPU Region Base Address Register, page 126. This write updates the value of the
REGION field.

MPU Region Base Address Register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR, and can
update the value of the MPU_RNR. See the register summary in Table 77, page 123 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and update the
MPU_RNR. The bit assignments are:

MPU_RBAR Bit Assignments
31 N N-1 54 3 0

ADDR Reserved REGION

VALID
If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field

Table 81+ MPU_RBAR Bit Assignments

Bits

Name Function

[31:N]

ADDR Region base address field. The value of N depends on the region size. For more
information see ADDR Field, page 126.

[(N-1):5] Reserved.

(4]

VALID MPU Region Number valid bit:

Write:

0 = MPU_RNR not changed, and the processor:

updates the base address for the region specified in the MPU_RNR
ignores the value of the REGION field

1 = the processor:

updates the value of the MPU_RNR to the value of the REGION field
updates the base address for the region specified in the REGION field.
Always reads as zero.

[3:0]

REGION [MPU region field:
For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the MPU_RNR.

3.7.4.41

ADDR Field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE field in the
MPU_RASR, defines the value of N:

N = Log,(Region size in bytes),

UGO0331 User Guide Revision 15.0 125

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

If the region size is configured to 4GB, in the MPU_RASR, there is no valid ADDR field. In this case, the
region occupies the complete memory map, and the base address is 0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be aligned on a
multiple of 64KB, for example, at 0x00010000 or 0x00020000.

3.74.5 MPU Region Attribute and Size Register
The MPU_RASR defines the region size and memory attributes of the MPU region specified by the
MPU_RNR, and enables that region and any subregions. See the register summary in Table 77,
page 123 for its attributes.
MPU_RASR is accessible using word or halfword accesses:
» the most significant halfword holds the region attributes
+ the least significant halfword holds the region size and the region and subregion enable bits.
The bit assignments are:
Figure 54 «+ MPU_RASR Bit Assignments
31 29282726 24232221 191817 16 15 8 76 5 10
AP TEX |S|(C|B SRD SIZE
L Reserved L Reserved Reserved —
XN ENABLE
Reserved
Table 82+ MPU_RASR Bit Assignments
Bits Name Function
[31:29] Reserved.
[28] XN Instruction access disable bit:
0: instruction fetches enabled
1: instruction fetches disabled.
[27] Reserved.
[26:24] AP Access permission field, see Table 86, page 129.
[23:22] Reserved.
[21:19,17,16] [TEX, C,B |Memory access attributes, see Table 84, page 128.
[18] S Shareable bit, see Table 84, page 128.
[15:8] SRD Subregion disable bits. For each bit in this field:
0: corresponding sub-region is enabled
1: corresponding sub-region is disabled
See Subregions, page 131 for more information.
Region sizes of 128 bytes and less do not support subregions. When writing the
attributes for such a region, write the SRD field as 0x00.
[7:6] Reserved.
[5:1] SIZE Specifies the size of the MPU protection region. The minimum permitted value is 3
(b00010), see See SIZE Field Values, page 128 for more information.
[0] ENABLE Region enable bit.

For information about access permission, refer to MPU Access Permission Attributes, page 128.

UGO0331 User Guide Revision 15.0 126

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

3.7.4.5.1 SIZE Field Values
The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:
(Region size in bytes) = 2(SIZE+1)
The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The following table
provides example SIZE values, with the corresponding region size and value of N in the MPU_RBAR.
Table 83« Example SIZE Field Values
SIZE value |Region size [Value of N' |Note
b00100 (4) 32B 5 Minimum permitted size
b01001 (9) 1KB 10
b10011 (19) [1MB 20
b11101 (29) |1GB 30
b11111 (31) 4GB 32 Maximum possible size
1. Inthe MPU_RBAR, see MPU Region Base Address Register, page 126.
3.746 MPU Access Permission Attributes
This section describes the MPU access permission attributes. The access permission bits, TEX, C, B, S,
AP, and XN, of the MPU_RASR, control access to the corresponding memory region. If an access is
made to an area of memory without the required permissions, then the MPU generates a permission
fault.
The following table shows the encodings for the TEX, C, B, and S access permission bits.
Table 84« TEX, C, B, and S Encoding
TEX Cc B S Memory type Shareability Other attributes
b000 (O 0 x' Strongly-ordered Shareable
1 xa Device Shareable
1 0 0 Normal Not shareable Outer and inner write-through. No write
1 Shareable allocate.
1 0 Normal Not shareable Outer and inner write-back. No write
1 Shareable allocate.
b001 0 0 0 Normal Not shareable Outer and inner non-cacheable.
1 Shareable
1 x@ Reserved encoding
1 0 x@ Implementation defined attributes.
1 0 Normal Not shareable Outer and inner write-back. Write and read
1 Shareable allocate.
bo10 (O 0 x8 Device Not shareable Nonshared Device.
1 x@ Reserved encoding
1 x@ x@ Reserved encoding
b1BB (A A 0 Normal Not shareable Cached memory2, BB = outer policy,
1 Shareable AA = inner policy.

1. The MPU ignores the value of this bit.
2. See Table 85, page 129 for the encoding of the AA and BB bits.

UGO0331 User Guide Revision 15.0

127

Cortex-M3 Processor (Reference Material)

& Microsemi

Power Matters.”

The following table describes the cache policy for memory attribute encodings with a TEX value is in the
range 4-7.

Table 85+ Cache Policy for Memory Attribute Encoding
Encoding, AA or BB |Corresponding cache policy
00 Non-cacheable
01 Write back, write and read
allocate
10 Write through, no write allocate
11 Write back, no write allocate

The following table lists the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 86 « AP Encoding
Privileged Unprivileged

AP[2:0] Permissions Permissions Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from privileged software only

010 RW RO Writes by unprivileged software generate a permission fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Reads by privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software
3.74.7 MPU Mismatch

3.74.8

When an access violates the MPU permissions, the processor generates a MemManage fault, see
Exceptions and Interrupts, page 28. The MMFSR indicates the cause of the fault. See Auxiliary Fault
Status Register, page 119 for more information.

Updating an MPU Region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and MPU_RASR
registers. You can program each register separately, or use a multiple-word write to program all of these
registers. You can use the MPU_RBAR and MPU_RASR aliases to program up to four regions
simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

; Rl = region number

; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OxEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R4, [RO, #0x4] ; Region Base Address

UGO0331 User Guide Revision 15.0 128

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

STRH R2, [RO, #0x8] ; Region Size and Enable
STRH R3, [RO, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU if you have previously enabled the region
being changed. For example:

; Rl = region number
; R2 = size/enable
; R3 = attributes

; R4 = address

LDR RO,=MPU_RNR ; OxEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

BIC R2, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enable

STR R4, [RO, #0x4] ; Region Base Address

STRH R3, [RO, #0xA] ; Region Attribute

ORR R2, #1 ; Enable

STRH R2, [RO, #0x8] ; Region Size and Enable

Software must use memory barrier instructions:

* before MPU setup if there might be outstanding memory transfers, such as buffered writes, that
might be affected by the change in MPU settings
» after MPU setup if it includes memory transfers that must use the new MPU settings.

However, memory barrier instructions are not required if the MPU setup process starts by entering an
exception handler, or is followed by an exception return, because the exception entry and exception
return mechanism cause memory barrier behavior.

Software does not need any memory barrier instructions during MPU setup, because it accesses the
MPU through the PPB, which is a Strongly-Ordered memory region.

For example, if you want all of the memory access behavior to take effect immediately after the
programming sequence, use a DSB instruction and an ISB instruction. A DSB is required after changing
MPU settings, such as at the end of context switch. An ISB is required if the code that programs the MPU
region or regions is entered using a branch or call. If the programming sequence is entered using a
return from exception, or by taking an exception, then you do not require an ISB.

Updating an MPU region using multi-word writes

You can program directly using multi-word writes, depending on how the information is divided. Consider
the following reprogramming:

; Rl = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU RNR ; OxEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

You can do this in two words for pre-packed information. This means that the MPU_RBAR contains the
required region number and had the VALID bit set to 1, see MPU Region Base Address Register,
page 126. Use this when the data is statically packed, for example in a boot loader:

UGO0331 User Guide Revision 15.0 129

Cortex-M3 Processor (Reference Material) @ Microsemi

3.74.8.1

Figure 55

3.74.9

Power Matters.”

; Rl = address and region number in one
; R2 = size and attributes in one
LDR RO, =MPU MPU RBAR ; O0xEOOOEDSC, MPU Region Base register
STR R1, [RO, #0x0] ; Region base address and
; region number combined with VALID (bit 4) set to 1
STR R2, [RO, #0x4] ; Region Attribute, Size and Enable

Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in
the SRD field of the MPU_RASR to disable a subregion, see MPU Region Attribute and Size Register,
page 127. The least significant bit of SRD controls the first subregion, and the most significant bit
controls the last subregion. Disabling a subregion means another region overlapping the disabled range
matches instead. If no other enabled region overlaps the disabled subregion the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes, you must set
the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.

Example of SRD use

Two regions with the same base address overlap. Region one is 128KB, and region two is 512KB. To
ensure the attributes from region one apply to the first128KB region, set the SRD field for region two to
b00000011 to disable the first two subregions, as shown in the following figure.

SRD Field
Region 2, with Offset from
subregions base address

512KB
448KB
384KB
320KB
256KB
Region 1 192KB

128KB
Disabled subregion

- - 64KB
Base address of both regions Disabled subregion 0

MPU Design Hints and Tips

To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the
interrupt handlers might access.

Ensure software uses aligned accesses of the correct size to access MPU registers:

+ except for the MPU_RASR, it must use aligned word accesses
« for the MPU_RASR it can use byte or aligned halfword or word accesses.

The processor does not support unaligned accesses to MPU registers.

When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to
prevent any previous region settings from affecting the new MPU setup.

UGO0331 User Guide Revision 15.0 130

Cortex-M3 Processor (Reference Material) - .
& Microsemi

Power Matters.”

3.749.1 MPU Configuration for a Microcontroller

Usually, a microcontroller system has only a single processor and no caches. In such a system, program
the MPU as indicated in the following table.

Table 87 « Memory Region Attributes for a Microcontroller

Memory region |TEX C (B |[S |Memory type and attributes

Flash memory b000 (1 0 [0 |Normal memory, Non-shareable, write-through

Internal SRAM b000 1 0 1 Normal memory, Shareable, write-through

External SRAM |b000 1 1 1 Normal memory, Shareable, write-back, write-
allocate

Peripherals bo00 |0 |1 1 |Device memory, Shareable

In most microcontroller implementations, the shareability and cache policy attributes do not affect the
system behavior. However, using these settings for the MPU regions can make the application code
more portable. The values given are for typical situations. In special systems, such as multiprocessor
designs or designs with a separate DMA engine, the shareability attribute might be important. In these
cases refer to the recommendations of the memory device manufacturer.

UGO0331 User Guide Revision 15.0 131

Cortex-M3 Processor (Reference Material) @ Microsemi

Power Matters.”

UGO0331 User Guide Revision 15.0 132

Cache Controller - -
& Microsemi

Power Matters.”

4 Cache Controller

The SmartFusion2 SoC FPGA has an instruction cache. The ARM® Cortex® -M3 processor interfaces to
this instruction cache through the Cache Controller. The Cache Controller treats embedded SRAM
(eSRAM), embedded nonvolatile memory (eNVM), or DDR memory as main memory.

4.1 Features

+ 8 KB of cache size

+ Four-way set associativity: Cache Controller has a four-way set associative cache subsystem with
32 byte cache lines organized as 64 sets of 4 cache lines, with a total of 256 locations.

» Cache line size is 32 bytes, fixed irrespective of DDR burst.

» Least recently used (LRU) cache line replacement policy.

* Fill mechanism: Full cache line refill and critical word first.

* The Cortex-M3 processor can write to Cache Memory through the System bus (SBUS).

+ Zero wait state in case of a hit (instruction in Cache Memory) and can run up to the maximum
system frequency.

* Supports Cache locked mode

» Cache is constructed of latches

The following figure depicts the connectivity of the Cache Controller in a SmartFusion2 device.

Figure 56 « Cache Controller Interfaces to Cortex-M3 Processor, AHB Bus Matrix, and MDDR Bridge

ARM Cortex-M3]
MDDR Processor

S D |

bt

| —»|IDc Cache

MSS DDR Controller | | System NVM_0 NVM_1 SRAM_ 0| | eSRAM_1
Bridge | D/Ss R Controller eNVM_ eNvM_ e - e -
[} [)) [} [} [}
Y Y v] Y Y Y Y Y
MS6 MM2 MM1 MMO MM9 MS2 MS3 MSO MS1
HPDMA || mm3 MM7 > PDMA
MM4 MS4 MM5 MM6 MS5 MM8

T b AHB Bus Matrix t T
D ‘| USB OTG

FICo |

AHB To AHB Bridge with Address Decoder

MSS_FIC
MS6_USB

‘| MS5_MAC ~ MS5_SR MS5_APBO MS5_FIC2 MS5_APB1
N T T
| FIC_1 | |T”P'e Speed |SYSREG| | Apro| FIC_2 (Peripheral | APB_1 |

Ethernet MAC Initialization)

A
PDMA
| MMUART_0 <> Configuration” MMUART_1 < .| CAN |

| SPI_0 |<—><—>| WATCHDOG || SPI_1 |<—>4—>| GPIO |

| 12C 0 |<—><—>| FliC | | 12C_1 |<—><—>| RTC |

TIMERx2 COMM_BLK

UGO0331 User Guide Revision 15.0 133

Cache Controller

4.2

Figure 57 »

& Microsemi

Power Matters.”

Functional Description

The following figure depicts all sub-blocks in the Cache Controller block.

Cache Controller Block Diagram
Cortex-M3 Microcontroller
32 L 32 L 32
 / 4 / Y To cache memory
MMO MM1 MM2 MM 3
D | S
Cache Matrix (4 x 7)
D(W)/
D(RW) S(RW) IC(R) D(R) I(R) S(Rw) S(RW)
MSO0 MS1 MS2 MS3 MS4 MS6 MS5
A A A A
Cache Engine M;E\TIIBDtEC
A A Y
L2 La L3 I 128 32
Y A
D(RW) System Controller |c(R) IDC (R) D(W)/SG(RW)
Bus (RW)

MSS DDR Bridge
AHB Bus Matrix

MM - Mirrored Master MS - Mirrored Slave DSG - Data System and System Controller Bus
IDC - Icode and DCode Cacheable | - Instruction D - Data S- System R - Read W - Write

4.2.1

4.2.2

The Cache Controller consists of two primary components:

* Cache Matrix
* Cache Engine

Cache Matrix

The cache matrix is a multi-layer AHB-Lite switch matrix. It takes care of the connectivity between
masters and slaves, arbitration for slaves, memory mapping between main memory (eNVM, eSRAM, or
DDR), and Cache Memory. The masters and slaves in the AHB matrix are referred to as mirrored
masters (MM) and mirrored slaves (MS).

One master can access a slave at the same time another master accesses another slave. If more than
one master attempts to access the same slave simultaneously, arbitration is performed. Each of the slave
devices contains an arbiter, which manages accesses when more than one master attempts to access a
slave at the same time.

Memory Mapping

The following sections explain memory mapping for eNVM, eSRAM, and DDR address spaces to cache
regions.

UGO0331 User Guide Revision 15.0 134

Cache Controller - -
& Microsemi

Power Matters.”

4221 eNVM Mapping

The cache matrix decodes the code region addresses by any master accessing a targeted slave. By
default, the eNVM slave is mapped to the cache.

The following table shows the default memory map of the MSS digital subsystem - eNVM Remapped
mode.

Table 88 « Default (eNVM Remapped Mode)

Data/Code Region Space Address

CM3 Data Region ~ Reserved 0xE000_0000 to OXFFFF_FFFF
DDR _SPACE 3 (256 MB) 0xD000_0000 to OXDFFF_FFFF
DDR _SPACE 2 (256 MB) 0xC000_0000 to OXCFFF_FFFF
DDR_ SPACE 1 (256 MB) 0xB000_0000 to 0XBFFF_FFFF
DDR _SPACE 0 (256 MB) 0xA000_0000 to OXAFFF_FFFF
eNVM, Remap Area etc (1 GB) 0x6000_0000 to Ox9FFF_FFFF
Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) 0x4000_0000 to Ox5FFF_FFFF
Reserved 0x2001_0000 to Ox3FFF_FFFF
eSRAM-1 (32 KB) 0x2000_8000 to 0x2000_FFFF
eSRAM-0 (32 KB) 0x2000_0000 to 0x2000_7FFF

CM3 Code Region Reserved 0x0008_0000 to Ox1FFF_FFFF

eNVM (Virtual View) [512 KB] 0x0000_0000 to 0x0007_FFFF

The address range of the eNVM_0 is from 0x60000000 to 0x6003FFFF and the address range of

eNVM_1 is from 0x60040000 to 0x6007FFFF. The full eNVM (0x60000000 to 0x6007FFFF) is accessible

(read/write) in the system space (0x00000000 to 0x0007FFFF). The eNVM AHB controller maps a
specified segment of eNVM to this range. This allows multiple firmware images to be stored in eNVM.

Note: Not all devices fully populate either or both eNVM address spaces. Please refer to the SmartFusion2
data sheet for the available eNVM for the device.

4222 eSRAM Mapping

The cache matrix supports the ability of re-mapping eSRAM into code space. The two eSRAM blocks are

re-mapped to appear at the bottom of the Cortex-M3 processor code space as shown in the following
table using eSRAM Remapped mode.

Table 89« eSRAM Remapped Mode (Memory Map)

Data/Code Region Space Address

CM3 Data Region Reserved 0xEO000_0000 to OxFFFF_FFFF

DDR _SPACE 3 (256 MB) 0xD000_0000 to OXDFFF_FFFF
DDR _SPACE 2 (256 MB) 0xC000_0000 to OXCFFF_FFFF
DDR_ SPACE 1 (256 MB) 0xB000_0000 to 0XBFFF_FFFF
DDR _SPACE 0 (256 MB) [MIRRORED] 0xA000_0000 to OXAFFF_FFFF
eNVM, Remap Area etc (1 GB) 0x6000_0000 to 0x9FFF_FFFF
Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB) ~ 0x4000_0000 to Ox5FFF_FFFF
Reserved 0x2001_0000 to Ox3FFF_FFFF
eSRAM-1 (32 KB) [MIRRORED] 0x2000_8000 to 0x2000_FFFF

eSRAM-0 (32 KB) [MIRRORED] 0x2000_0000 to 0x2000_7FFF

UGO0331 User Guide Revision 15.0

135

Cache Controller

Table 89 « eSRAM Remapped Mode (Memory Map) (continued)

& Microsemi

Power Matters.”

Data/Code Region

Space

Address

CM3 Code Region

DDR_SPACE 0 (256 MB)

0x1000_0000 to Ox1FFF_FFFF

Reserved

0x0018_0000 to OXOFFF_FFFF

eNVM (Remap View) [512 KB]

0x0010_0000 to 0x0017_FFFF

Reserved

0x0001_0000 to 0x000F_FFFF

eSRAMO & eSRAM1 [64 KB]

0x0000_0000 to 0x0000_FFFF

42.2.3 DDR Mapping

In DDR Remapping, the user boot code is present in the DDR. DDR remapping is also used for

debugging purposes. This can give high performance execution in systems where DDR is present. The

DDR is also used as the main memory for the Cache Controller. In case the of DDR remapping, the

cacheable region can be configured to 128 MB, 256 MB, or 512 MB. The Cache Controller generates the
appropriate DDR address as per remap configuration settings before putting the address on the MDDR

bridge.

Table 90 + DDR Remap

Data/Code Region

Space

Address

CM3 Data Region

Reserved

0xE000_0000 to OxFFFF_FFFF

DDR _SPACE 3 (256 MB)

0xD000_0000 to OXxDFFF_FFFF

DDR _SPACE 2 (256 MB)

0xC000_0000 to OXCFFF_FFFF

DDR _SPACE 1 (256 MB)

0xB000_0000 to 0OxBFFF_FFFF

DDR _SPACE 0 (256 MB)

0xA000_0000 to OXAFFF_FFFF

eNVM, Remap Area etc (1 GB)

0x6000_0000 to OX9FFF_FFFF

Peripheral [SPI, UART, CAN, Fabric etc.] (0.5 GB)

0x4000_0000 to Ox5FFF_FFFF

Reserved

0x2001_0000 to 0x3FFF_FFFF

eSRAM-1 (32 KB)

0x2000_8000 to 0x2000_FFFF

|eSRAM-O (32 KB)

|0x2000_oooo to 0x2000_7FFF

CM3 Code Region

DDR_SPACE 1 (256 MB)

0x1000_0000 to Ox1FFF_FFFF

DDR_SPACE 0 (256 MB)

0x0000_0000 to OXOFFF_FFFF

423 Memory Maps and Transaction Mapping

The following table depicting transaction mapping depends upon the Memory map mode selected and

the possible destination slave for the transaction.

For example, the case eNVM Remapped mode is selected—the condition mentioned in the first row in

the table—If the cacheable transaction comes on ICode bus it will be targeted for the eNVM. This

transaction initiates on mirrored slave 2 (MS2). The transaction flow will be (MS4 — MM3 — MS2) and it
will be routed through AHB Bus Matrix. As shown in the Figure 57, page 134, all the instruction fetch are
first checked in the Cache Engine that is MS4 and from there to Cache Memory. If not present, then as
shown in the following table, the corresponding routing slave will be selected (For eNVM Remap mode it
is switch MS2). The following are the abbreviations used in the table:

IC: Instruction CODE (ICODE) Cacheable

INC: ICODE Non Cacheable
NC: Non Cacheable
DC: Data CODE (DCODE) Cacheable

UGO0331 User Guide Revision 15.0

136

Cache Controller @ Microseml:
Power Matters.”
DNC: DCODE Non Cacheable
(W): Write
(R): Read
Table 91« Data Path for Various Maps
Memory Map Supported Destination
Mode Buses Trans Region Slave Routed Through
1 Default Memory Map - eNVM Remapped
ICODE IC eNVM MS2 AHB Bus Matrix
INC eNVM MS2 AHB Bus Matrix
DCODE DC eNVM MS2 AHB Bus Matrix
DNC eNVM MSO AHB Bus Matrix
System Bus NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
System NC DDR MS5 MSS DDR Bridge
Controller Bus
NC NON MS1 AHB Bus Matrix
DDR
2 eSRAM Remapped
ICODE INC eNVM MS2 AHB Bus Matrix
INC DDR MS3 MSS DDR Bridge
INC eSRAM MS2 AHB Bus Matrix
DCODE DNC eNVM MSO AHB Bus Matrix
DNC (R) DDR MS3 MSS DDR Bridge
DNC (W) DDR MS5 MSS DDR Bridge
DNC eSRAM MSO0 AHB Bus Matrix
SBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
GBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
3 DDR Remapped
ICODE IC DDR MS3 MSS DDR Bridge
INC DDR MS3 MSS DDR Bridge
DCODE DC DDR MS3 MSS DDR Bridge
DNC(R) DDR MS3 MSS DDR Bridge
DNC(W) DDR MS5 MSS DDR Bridge
SBUS NC DDR MS5 MSS DDR Bridge
NC NON MS1 AHB Bus Matrix
DDR
GBUS NC DDR MS5 MSS DDR Bridge

UGO0331 User Guide Revision 15.0

137

Cache Controller - -
& Microsemi

Power Matters.”

Table 91 « Data Path for Various Maps (continued)

Memory Map Supported Destination
Mode Buses Trans Region Slave Routed Through
NC NON MS1 AHB Bus Matrix
DDR

4.2.3.1 Unimplemented Address Space

The cache matrix performs address decoding based on the memory map defined, and also to decide
which slave is addressed. Any access to RESERVED memory space in code region is considered
"unimplemented" from the point of view of the Cache Matrix.

4.2.3.2 Other Features of the Cache Matrix

+ If any master attempts a write access to an unimplemented address space, the cache matrix
completes the handshake with the master, with HRESP error indication. No write occurs to any
slave.

» If any master attempts a read access from an unimplemented address space, the cache matrix
completes the handshake with the master, with HRESP error indication. Garbage data is returned in
this case.

* The cache matrix supports locked transactions from the SBUS towards the eSRAM AHB controller,
through the switch, by monitoring HMASTLOCK. The cache matrix initiates IDLE on the AHB bus
after every LOCKED transfer. SmartFusion2 SoC FPGA - Cache Controller Configuration
Application Note

* The cache matrix handshakes correctly with masters performing AHB-Lite bursts to any slave. The
ICache slave on the cache matrix supports bursts from the cache master.

UGO0331 User Guide Revision 15.0 138

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129975
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129975

Cache Controller @ Microsemi

4233

Figure 58 ¢

Power Matters.”

Cache Engine

The Cache Engine takes care of address generation logic using a four-way set associative, hit and miss
generation logic, cache line filling/replacement, a temporary local buffer for cache line while writing, and
arbitration logic for ICode and DCode buses.

The Cache Controller has a four-way set associative cache subsystem with 32-byte cache lines
organized as 64 sets of 4 cache lines. Eight bits from the memory address (shown in the following figure)
select one of these 256 different locations. The Cache Controller can map a block of 32 data bytes to any
of the cache lines, replacing the LRU block. As one location of the memory contains 64-bit information
the required data can be selected by using the second bit from the memory address as shown in the
figure.

General Cache Architecture and Addressing

31 ... 11 10.. 3210

Tag 271 ~ 3

Block Offset

Index

[10:3] 64 Bits
\Y Tag Data

[10:5]

A
v

256

64

T 21 N
A 4
=<> . 32
A A 4
MUX
A 4
32
Hit Data

The Cache Engine has two buses interacting with the ICode and DCode buses through interfaces MS3
and MS4. It supports the following functionalities:

Only read transfers from ICode and DCode bus are cached

32 bytes local buffering of cache line read from slave

Support 32-/128-bit local interface on the AHB master side

All miss non-cacheable transactions targeted for eNVM are routed through MM4

Arbitration: In case of simultaneous access from ICode and DCode, all transactions from DCode are
processed before ICode is processed.

a. Supports full cache flush or index-based flushing

aorowb=

UGO0331 User Guide Revision 15.0 139

Cache Controller

4.2.3.3.1

& Microsemi

b. Supports hit/miss generation mechanism for Cache Memory and local buffer

c. One of the following types of transaction will come to the Cache Engine:

Transaction for cacheable region in DDR
Transaction for non-cacheable region in DDR
Transaction for cacheable region in eNVM

Power Matters.”

6. Supports Cache Disable mode where all transactions will be treated as non-cacheable and
replicated “as is” on DDR or switch-side

Accessing | and D Buses Concurrently

Accessing the | and D buses concurrently is not allowed in the M2S050 devices. In rare cases, accessing
the | and D buses concurrently might result in an invalid value returned to the internal registers from the
cache causing the firmware to not function properly. All other devices do not exhibit this behavior when

using Libero 11.4 SP1 or later.

IAR tool chain users can do a work around for this problem by preventing the Cortex-M3 processor from
issuing concurrent | and D buses access through the cache. To implement this work-around, updates are
required to the IAR tool chains. All libraries must be fully rebuilt from the source code to avoid this
interaction by preventing the cache D-Bus accesses. The user's linker scripts are required to locate
constants and data variables outside the memory regions accessed by the cache to prevent conflicts.

Consequently, IAR compilation requires using the -no_literal_pool option to prevent the

compiler/assembler from locating variables close to instructions known as literal pools. Refer to the
following two figures. This option prevents literal pool data generation of instructions that used D-bus
accesses.

Note: There is no known workaround for SoftConsole, Keil, or GCC (Linux) tool chains.

Figure 59

IAR Compiler Options

Options for node “FreeRTOS_wIP_WebServer™

A

Category:
General Optins | Muikifile Compilation

Discard Uruused Publ

Assembler

Custom Buld
Build Actions
Linker
Debusgger ¥ Usa command line options
mbr Command ne options: [one per line)
CMSIS DAP -no_lteral_poal
GDB Server
AR RiOM-manirtor
Tt/ ITAG Rt
Iink/)-Trace
TI Stedlaris
Marraiges
PE micro
RDI
ST4INK
Third-Party Driver
XL5 2100,/ 200,TCD]

; Factosy Seltngs

Cutput Converter ngu.lagalleguaguZ-Code |¢g:lmza‘.ma|0|.lml.nt |F' k

Cancel

UGO0331 User Guide Revision 15.0

140

Cache Controller - -
& Microsemi

Figure 60

424

Note:

Power Matters.”

IAR Assembler Options

Options for node "FreeRTOS lwiP WebServer”]

Categorny

General Options
CJC 4+ Compiler
Oulgaut Converter Language | Output | List | Preprocessor | Diagnostics | Bxtre Options
1Custom Buid
Buld Actions | Uss command line options

Linker
Command line options: [one per ine)
Debugger

Sirmudatar -no_Reral_poal

Angel

CMSIS DAR

GDB Server

TAR ROM-monitor

Tt/ ITAG

Iink/)-Trace

TI Stedlaris

Maraigor

PE macro

ROI =
ST4INK
Third-Party Driver
X¥D5100/200,/1CD1

: Factosy Seltngs

[ok || canen

e

Cache Locked Mode

Cache Locked mode is a special mode that provides predictable execution required for some specific
applications like avionics and certain security applications. Before enabling Cache Locked mode, the
software should ensure that the code is copied to the Cache Memory by simulating a sequential location
cache miss through DCode or writes through SBUS by enabling SBUS Write mode. After copying the
complete the 8 KB, Cache Locked mode is enabled. After Cache Locked mode is enabled, any access
from 0 to 8 KB is directly read from the cache and the cache is not invalidated or refilled for normal
operations. The memory region beyond 8 KB is treated as non-cacheable and accessed as per the
prevailing memory map.

In Cache Locked mode if an uncorrectable error is detected for cacheable address (0 to 8 KB), then the
cache line is fetched from the main memory using the cache lock base address and the entire cache line
in Cache Memory is replaced with new data from main memory. Cache Locked mode can only be used in
either DDR or eNVM remap modes and the lock base address should be used in the code region of CM3.
In Cache Locked mode the least recently used (LRU) cache update algorithm will be deactivated.

CC_CACHE_LOCK bit of CC_CR system register (Table 660, page 687) is used to lock or unlock the
entire 8 KB of Cache memory.

UGO0331 User Guide Revision 15.0 141

Cache Controller - -
& Microsemi

Power Matters.”

4.2.5 Interfaces

The following figure shows the Cache Controller interface in the MSS subsystem. There are two
interfaces through which the Cache Controller is connected to the main memories:

1. Interface towards MDDR bridge: 128-bit AHB-Lite, this interface is read only for instruction/data
reads and 32-bit AHB-Lite to access DDR memory through DDR bridge and system bus (read and
write access)

2. Interface towards AHB bus matrix: There are three 32-bit AHB-Lite modes:

* Read/write for non-cacheable data access to eSRAM/eNVM
* Read/write from SBus
* Read/write from ICode bus

Figure 61+« Cache Controller Interface

Cortex-M3

Processor wss

D
2 | p | 2]
64-Bit D
IDC MSS DDR M MDDR D DDR
Cache Controller s 128 Bridge Subsystem I‘R SDRAM
D IC 2 0]
2 »
AHB Bus Matrix
FICO| | FIC1
L P
2 A

Fabric SRAM

FPGA Fabric

UGO0331 User Guide Revision 15.0 142

Cache Controller - .
& Microsemi

Power Matters.”

4.3 How to Use Cache Controller

Cache Controller can be configured statically by using the Libero design software. The following figure
shows the Cache Controller enable option, cache region size selection.

Figure 62 + MSS Configurator with Cache Controller Configuration Options

Coriuaddl

ENV™

g
il

The following figure shows how to select the main memory from memory blocks eNVM, eSRAM, and
DDR SDRAM.

Figure 63 » MSS Configurator with Remapping Options for eNVM, eSRAM, and MDDR

MICROCONTROLLER SUBSYSTEM

CortexMz

MOOR DOR Bridge
wosﬁ)
L
- L
{ AHB Bus Matrix I I I I

|

& Configuring SWITCH (MSS_SWITCH - 0.0.510)

Configuration

=
Remapping
Remapped Region ko location 0x00000000 of Cortex-M3 I0 Code space

(=) ehum () esRAM) MDDR

Remap eNYM ko location 0x00000000 of Fabric Master space [|

elYM Remap Region Size 256KE v
eMVM Remap Base Address (Cortex-M3) 0x00000000
-] el Remap Base Address (Fabric Master) 0x00000000

Arbitration

UG0331 User Guide Revision 15.0 143

Cache Controller

Figure 64

& Microsemi

Power Matters.”

The selection of the main memory for the Cache Controller can also be made using the system builder
flow of the Libero SoC software. This procedure is explained in the following figure.

System Builder with Remapping Options for eNVM, eSRAM, and MDDR

& System Builder - Microcontroller Options

et g top Configure Microcontroller aplions

Note:

Wmmm@ S o>

Vet Trer \J Fiew Tewe Courtes "\ Perchar 0P Cormax 40 |/ Cache Contrales /' AP Bus Piatrs |

-

Ronapig

L] A MR
Fusmap shVP 15 ication, (000000 o Fabre Mastar iace [
e Fam -
N ey Burie Ak onten 41 (OO

S By s Ackiross {Fabric Master)

et ation

Cache Controller configurations like enable/disable, selecting the main memory, and Cache Locked
mode can also be performed using the firmware/application code with the register settings provided in
the System Registers Used for Cache Operations, page 144.

Refer to the following application notes for more details on the Cache Controller configurations:

* AC389: SmartFusion2 SoC FPGA - Cache Controller Configuration Application Note

* AC390: SmartFusion2 SoC FPGA — Remapping eNVM, eSRAM, and DDR/SDR SDRAM Memories
Application Note

Create or modify the linker scripts/linker settings of the application in such a way that all read and write

data sections are in non-cacheable memory regions or accessed through the system bus address space.

This note has to be strictly followed if eSRAM or DDR SDRAM are selected as the main memory for the

cache.

431 System Registers Used for Cache Operations
Table 92 « System Registers for Cache Operations
Flash
Register Write
Register Name Type Protect Reset Source Description
CC_CR RW-P Register SYSRESET_N Used to configure cache options like cache
enable/disable, cache lock enable/disable,
Debug mode system bus read & write.
CC_REGION_CR RW-P Register SYSRESET_N Defines the cache region size

CC_LOCK_BASE_ADDR_CR RW-P Register SYSRESET_N If Cache Lock mode is enabled and if there is

an ECC error while accessing the Cache
Memory, the base address can be used to
initiate the transaction to re-read the
erroneous data from the system memory
which is stored in this register.

CC_FLUSH_INDX_CR RW-P Register SYSRESET_N Used when Cache Memory index is to be

flushed or invalidated.

FLUSH_CR

RW N/A SYSRESET_N Used to flush the Cache Memory

Detailed bit-level descriptions of the cache registers are provided in the System Register Block,
page 670.

UGO0331 User Guide Revision 15.0 144

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129975
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129976
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129976

Embedded NVM (eNVM) Controllers @ Microsemi

5

5.1

Power Matters.”

Embedded NVM (eNVM) Controllers

The SmartFusion2 SoC FPGA devices have one or two embedded nonvolatile memory (eNVM) blocks
(depending on the device) for user non-volatile memory. The eNVM controller interfaces these eNVM
blocks to the advanced high-performance bus (AHB) bus matrix.

Features

Single error correction and dual error detection (SECDED) protected

Based on the selected SmartFusion2 device, the total size of eNVM memory ranges from 128 KB,
256 KB, and 512 KB.

» M2S005 has a single block of 128 KB.

. M2S010, M2S025, M2S050, and M2S060 have a single block of 256 KB.

+ M2S090 and M2S150 have two blocks of 256 KB each. The total eNVM size is 512 KB.

In devices with two blocks present, any two masters can accesses the eNVM blocks (eNVM_0 and
eNVM_1) in parallel, which improves the overall performance of the system.

As shown in the following figure, the eNVM block(s) is connected as slave to the AHB bus matrix.

Figure 65+ eNVM Connection to AHB Bus Matrix

ARM Cortex-M3|
MDDR Processor
S D |
1 T 1 |
\ L\ /
» IDC Cache Syst
»| MSS DDR pyg Controller | | Y ok eNVM_0 eNVM_1| |eSRAM 0| |eSRAM_1
Bridge |<¢—p- ontroller
<“>|"35 p Ic
7y T 1 1 J\ \ \ \ 1
Y YV Y Y Y Y Y
Y MS6 MM2 MM1 MMO MM9 MS2 MS3 MS0 MS1
HPDMA || MMm3 VM7 | e—- PDMA
MM4 MS4 MM5 MM6 MS5 MM8
f 4 42 AHB Bus Matrix :: ‘
Fico | o = > USBOTG
- [AHB To AHB Bridge with Address Decoder B >
12} ©
(%2} (2}
o 2MS5JV\AC MS5_SR MS5_APBO MS5_FIC2 MSSiAF’B1E
)) A]\ \
A \ A \ \ Y \
FIC_1 Triple Speed | | sysreg | | aps o FIC_2 (Peripheral APB_1

Ethernet MAC Initialization)

I

4
PDMA
[<—>{ Configuration MMUART_1 I“> CAN

SPI_O <—>| WATCHDOG” SPI_1 |<—> GPIO
12C_0 <—>| FliC || 12C_1 |<—> RTC

'

TIMERX2 COMM_BLK

MMUART_0

D‘

UGO0331 User Guide Revision 15.0 145

Embedded NVM (eNVM) Controllers

5.2

Figure 66

& Microsemi

Power Matters.”

Functional Description

The address range of eNVM_0 is 0x60000000 to 0x6003FFFF and the address range of eNVM_1 is
0x60040000 to 0x6007FFFF. The location of eNVM_1 always follows eNVM_0 in the system memory
map. The following table gives the eNVM_0 and eNVM_1 addresses for different devices.

Table 93+ eNVM Address Locations

Device eNVM_0 eNVM_1 Total NVM
M2S005 0x60000000 None 128 KB
M2S010 0x60000000 None 256 KB
M2S025 0x60000000 None 256 KB
M2S050 0x60000000 None 256 KB
M2S060 0x60000000 None 256 KB
M2S090 0x60000000 0x60040000 512 KB
M2S150 0x60000000 0x60040000 512 KB

Both eNVMs and embedded NVM controllers are identical and the eNVM controller consists of three
components:

« eNVM Array
* eNVM Controller
« eNVM to AHB Controller

eNVM Controller Block Diagram

eNVM Controller

eNVM Array

Sectorn

AHB
Bus
Matrix

M3_CLK o Write Write data o
- Assembly -

32-Eit Data
AHBL Interface Buffer
S

Ak Buffer
Il gl Commands and

64-Bit Data
_ HRDATA eNVM to B Interface _
-t AHB -¢ -
Controller

L]
HINT Read data
Read

64-Bit
Buffer

ECC

Address Interface

A

Sector0

__ 32-Bit
-

A

__FREQRNG

-

FREQRNG
DPD
NVM_BLOCK_SIZE
~ NVM_GA4C_INT
; NVM_BUSY

Yvy

M3_CLK is used within the MSS to clock the AHB bus matrix. Refer to UG0449: SmartFusion2 and
IGLOO2 Clocking Resources User Guide for more information on M3_CLK.

UGO0331 User Guide Revision 15.0 146

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132012

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

eNVM Array: The eNVM array is connected to a 25 MHz internal oscillator. This 25 MHz internal
oscillator is used during device start up to initialize the NVM controller. It is also used for eNVM program
operation. For other eNVM operations (Read and Verify), the eNVM controller operates at the M3_CLK.
During eNVM read operations, the NVM controller uses the NV_FREQRNG input to insert wait states to
match with the eNVM array access times. The eNVM array stores the data. Table 94, page 147 shows
the eNVM memory organization and the total size of the eNVM.

eNVM Controller: Decodes all transactions from the AHBL master and issues the commands to the
eNVM array.

ECC: The error-correcting code (ECC) block in eNVM Controller performs the SECDED. The ECC stores
error correction information with each block to perform SECDED on each 64-bit data word. ECC does not
consume any eNVM array bits. Refer to Table 113, page 184 for ECC status information. ECC block in
eNVM Controller is enabled by default. The user has no access to control the ECC block.

Read Data Buffer: Contains four 64-bit data words. It functions as a small cache by reading NVM data
as four consecutive 64-bit data words. Data read from the eNVM is stored in read data buffer (RDBUFF)
and presented to AHB read data bus (HRDATA) corresponding to HADDR.

If the data is not available, an eNVM read cycle is invoked to retrieve data from the eNVM array. To
support an 8-bit fixed length wrapping burst, four eNVM read cycles are automatically invoked and data
read from the eNVM is stored in RDBUFF. Read data is presented to HRDATA when the data for the
current read address becomes available.

Assembly Buffer (AB): The eNVM is page-based flash memory. Only one page of data (1,024 bits) can
be written at a time. The assembly buffer stores thirty-two 32-bit data words for programming. During
programming, the assembly buffer cannot be updated. If more than one page is to be written, the page
programming function needs to be called as many times as the number of pages.

Write Data Buffer: The write data buffer provides a secondary 32-word data buffer. This can be updated
with the next 32 words to be programmed during eNVM programming.

eNVM to AHB Controller: This block interfaces the eNVM Controller with the AHB-Lite (AHBL) master
as shown in Figure 66, page 146.

5.2.1 Memory Organization
The eNVM is divided into sectors based on the eNVM size. Each sector is divided into 32 pages. Each
page holds 1,024 bits of data. The following table lists the total available memory and its organization.
Table 94+ Memory Organization
Number of |Pages per Bytes per |Words per |64-Bit Locations |Total
Device NVM Size Sectors Sector Page Page per Page Bytes
M2S005 [128 KB 32 32 128 32 16 131072
M2S010 |256 KB 64 32 128 32 16 262, 144
M2S025 |256 KB 64 32 128 32 16 262, 144
M2S050 |256 KB 64 32 128 32 16 262, 144
M2S060 |256 KB 64 32 128 32 16 262, 144
M2S090 (512 KB 64 per NVM |32 per NVM 128 32 16 262, 144
(two eNVMs, per sector per NVM
each 256 KB)
M2S150 |[512 KB 64 per NVM |32 per NVM 128 32 16 262, 144
(two eNVMs, per sector per NVM
each 256 KB)

UGO0331 User Guide Revision 15.0 147

Embedded NVM (eNVM) Controllers @ Microsemi

Power Matters.”

5.2.2 Data Retention Time

The following table shows the retention time of the eNVM with respect to the number of programming
cycles. The same values are applicable for both commercial and industrial SmartFusion2 product
grades. Refer to DS0128: IGLOO2 FPGA and SmartFusion2 SoC FPGA Datasheet for more information
on Programming cycles and retention time.

Table 95« Data Retention Time

Programming Cycles Per eNVM Page Retention
<1000 20 years
< 10000 10 years

Note: The eNVM is not prevented from programming, even if a page exceeds the write count threshold. The
eNVM Controller generates a flag through Status register.

5.2.3 eNVM Access Time

Refer to the Embedded NVM (eNVM) Characteristics section from DS07128: IGLOO2 FPGA and
SmartFusion2 SoC FPGA Datasheet for eNVM Maximum Read Frequency and eNVM Page
Programming Time.

5.24 Theory of Operation
The eNVM AHB Controller supports the following operations:

. Interface from AHBL for read, write, and erase operations

» Issues all eNVM commands through AHBL read and write bus operation. The data width to and from
AHBL bus is 32 bits, and data to and from eNVM is 64 bits.

* AB can be read directly from AHBL bus.

+ eNVMs treated as ROM. AHBL write transactions to eNVM user data array receive errors on
HRESP and write will be ignored.

* Page Program command is used to write the NVM user data array.

* AB can be written directly or loaded from the write data buffer (WDBUFF). Data can be written to
WDBUFF in byte, half-word or word AHB transfers.

« Data for Page Program comes from WDBUFF or user data previously written into AB.

+ Command code in Table 98, page 151 determines the NVM commands to be issued. The eNVM
user data array is treated as ROM, so any program operations must be performed by submitting
relevant commands to the controller. Any AHBL writes to NVM user data without a valid NVM
command will cause the HRESP signal to be asserted on the AHBL bus. Any data that needs to be
written into the NVM user array must be uploaded first to the WDBUFF and then written into the
NVM user array through the assembly buffer. Program operation for the NVM user array occurs at
the page boundaries.

5.24.1 Write Control

The data to be programmed into eNVM must first be uploaded into WDBUFF due to the width difference
between the AHBL bus and the eNVM. Data can be written into WDBUFF by word, half-word, or byte
from the AHBL bus. ProgramDa and ProgramADS commands take care of uploading data into AB from
WDBUFF before programming eNVM.

Data is sent to eNVM from WDBUFF in chunks of double words (64 bits). Subsequent data transfer
commands to the AB and then to eNVM array, or commands such as ProgramAd, ProgramDa, and
ProgramStart, must specify the page address and upload data to AB to start eNVM array programming.
Refer to Table 98, page 151 for more information on commands.

UGO0331 User Guide Revision 15.0 148

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132042

Embedded NVM (eNVM) Controllers

Figure 67 « Write Path

AHBL Interface
P

5.24.2

eNVM to
AHB
Controller

Interface
<

Commands and
64-Bit Data

eNVM Controller

Read Control

[
'

ECC

Write
Data

Buffer

Assembly
Buffer

& Microsemi

Power Matters.”

Write data

64-Bit

eNVM Array

Sectorn

-

Address Interface

-

The following steps describe eNVM read control.

The read transaction from the eNVM user array to AHBL bus uses the read data buffer as a mini

cache.

-

Sector 0

If the requested 32-bit word exists in the read data buffer, it will be returned immediately on the AHB

bus; otherwise a 64-bit read access of the eNVM is initiated and will take several clock cycles as

configured by ENVM_CR register.
The eNVM data is stored in the read data buffer and provided to the AHB bus. Assuming that the
eNVM address is incremented, the data value stored in the read data buffer is available for the next

AHB read cycle.

UGO0331 User Guide Revision 15.0

149

Embedded NVM (eNVM) Controllers @ Microsemi

Power Matters.”

The following figure shows the eNVM array read path.

The AHB Controller also supports WRAP4 burst operations, which are initiated by the cache controller. In
this case, the AHB eNVM controller will automatically perform four 64-bit read operations (critical word
first) and fill the read data buffer in advance to the AHB read transactions to increase system throughput.

Figure 68 « Read Path

eNVM Array
Sectorn
Address Interface [~""""""TTTTTTTT
> Sector n-1
AHBL Interface Read .
~<———»| eNVMto Commar::rsfaacld Data Ece Buffer Read data
. n
AHB |@—m — __32-Bit | 4-64 Bit | 64-Bit
Controller < Registers "
n
Sector 0

In the eNVM array, the addresses are 64-bit locations; therefore each page of 1,024 bits (16 double
words = 32 words) requires an AHBL address map, as specified in the following table.

Table 96 = AHBL Address Map to NVM

Sector Number Page Number in Sector Address in Page Byte Number in 64-Bit Data
HADDR[17:12] HADDR[11:7] HADDR][6:3] HADDRJ[2:0]

When programming the eNVM, sector and page addresses must be programmed into the command
(CMD) register, as specified in Table 98, page 151.

5.24.3 eNVM Commands

The eNVM commands are explained in the Table 98, page 151. The eNVM Command register is used to

program the eNVM commands. The following section explains the details of the eNVM Command
register.

UGO0331 User Guide Revision 15.0 150

Embedded NVM (eNVM) Controllers

5.2.5

Table 97 «

& Microsemi

Power Matters.”

eNVM Command Register

The following table shows the Command register bit definitions.

Command (CMD) Register

Bit

Description

31:24

Command code

23:0

Address field; to supply address for NVM operation, refer to Table 98, page 151.

Table 98 «

The Command register is located at offset 0x148 in the Control register. Refer to Table 98, page 151 for
more information. By writing to CMD when HADDR([18:0] = 0x148, any eNVM operation may be invoked.
The eNVM goes into a busy state and HREADY is set High until it finishes the write operation. Any
further invoking of the eNVM operation will cause HREADY to go Low until it finishes the previous
operation.

The following steps describe when to write to the Command Register, decoding of commands and
command execution.

» The command register should only be written when the NVM is non-busy (Status Register bit 0).
Refer to Table 113, page 184 for the Status Register definitions

+ If the Command register is written when the NVM is still busy from a previous command then the
logic will prevent the new command and all future commands, the access_denied bit in the STATUS
register will be set. To recover from this state, 1 should be written to bit 1 in the CLRHINT[2:0]
register to clear the access_denied bit. This mechanism is used to detect the improper NVM
command sequences and protect the NVM data until the firmware recovers.

* When the AHBL triggers a write transaction with HADDR[18:0] = 0x148, HWDATA is treated as a
command (CMD).

+ CMD[31:24] will be decoded as the eNVM operation, as mentioned in Figure 68, page 150.

* The value from CMD[23:3] will be decoded as the NVM array address for the eNVM operation.
Depending on the command code, some LSB bits of CMD[23:0] will be ignored. For example, to
submit a program address, only the page address CMDI[17:7] is significant. Therefore CMD[17:7] is
taken as the NVM address and CMD[6:0] is ignored. Refer to Table 98, page 151 for more
information.

For masters, which are only capable of byte access, four cycles of write may be needed to fill the
Command (CMD) register, by writing to 0x14b, 0x14a, 0x149, and 0x148.

Command Table

Name

HADDR HWDATA Transaction
18 17:0 31:24 |23:0 Type Description

Read Page

0 AA X X Read

ProgramAd

—_

ACMD 05 PGA Write Submit page address for programming.
CMD[17:7] is considered as the eNVM
address and CMD[6:0] is ignored.

ProgramDa

-

ACMD 06 AAB Write Submit data to assembly buffer for
programming, up to 16 dwords can be
written to the assembly buffer as specified by
DWSIZE. ProgramDa must be preceded by
ProgramAd. CMD[17:7] is considered as the
eNVM address and CMD[6:0] is ignored.

ProgramStart

—_

ACMD 07 X Write Start program NVM operation

UGO0331 User Guide Revision 15.0 151

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

Table 98 «+ Command Table (continued)

HADDR HWDATA .
Transaction

Name 18 17:0 31:24 |23:0 Type Description

ProgramADS |1 ACMD 08 PGA Write Start whole program page procedure,
includes sending page address, sending
entire content of write data buffer to
assembly buffer, then starting the NVM
operation.

VerifyAd 1 ACMD 0D PGA Write Submit page address for standalone verify.
CMD[17:7] is taken as the eNVM address
and CMDI[6:0] is ignored.

VerifyDa 1 ACMD OE AAB Write Submit data to assembly buffer for
standalone verify. Up to 16 dwords can be
written to the assembly buffer, as specified
by DWSIZE. VerifyDa must be proceeded by
the VerifyAd. CMD[6:3] is taken as the
starting double word address and CMD[23:7]
is ignored.

VerifyStart 1 ACMD OF X Write Start standalone verify NVM operation

VerifyADS 1 ACMD 10 PGA Write Start whole standalone verify procedure;
includes sending page address, sending
entire content of write data buffer to
assembly buffer, and then starting NVM
operation.

User Unlock 13 X Write Submit a User Unlock NVM command before
Program NVM.

Note:
* AA =NVM Array address. Refer to Table 93, page 146.
* AAB = Address of assembly buffer. Refer to Table 112, page 180 for address values.
* ACMD = Address of CMD register. The Command register is located at offset 0x148 in the Control
register. Refer to Table 112, page 180 for more information.
*+ PGA = Page address
+ SEA = Sector address
« X =Notused
5.2.51 Read Page
Data read from eNVM is stored in the read data buffer (eight 32-bit memory blocks) and presented to
HRDATA based on HADDR[2:0]. For non-sequential reads, the read data buffer is checked first. If the
data is available, it is presented to HRDATA,; otherwise an eNVM read cycle is invoked to read the data
from the eNVM array and data is presented to HRDATA as soon as corresponding data is available.
To support 8-byte fixed length burst (that is, to read the complete read data buffer, which consists of eight
32-bit memory blocks), 4 eNVM read cycles (each 64-bit) are automatically invoked. Data read from the
eNVM is stored in the read data buffer.
5.2.5.2 Page Program

This mode allows writing the page with pre-erase. In Page Program there are three stages:

ProgramAd: This command is used to submit the page address to be programmed.

ProgramDa: Once the ProgramAd command is issued, data can be written to AB.

ProgramsStart: After ProgramAd and ProgramDa (optional), ProgramStart can be used to start the
NVM operation. Once the NVM operation starts and until it finishes, any further NVM accessing
AHBL transaction will result in HREADYOUT going Low until the operation is done.

UGO0331 User Guide Revision 15.0 152

Embedded NVM (eNVM) Controllers @ M. .
icrosemi

5.2.5.2.1

Note:

5.2.5.3

5.2.5.3.1

5.2.5.4

Power Matters.”

If the command ProgramDa is not issued after the ProgramAd operation, the current data in the
assembly buffer will be programmed to the NVM array.

Program Page with a Single AHBL Write

ProgramADS: During the command ProgramADS, a single AHBL write transaction can be used to start
and complete the program page procedure. By default, all WDBUFF content is written to AB and internal
program operation automatically begins. Once the NVM operation starts and until it finishes, any further
NVM accessing AHBL transaction will result in HREADYOUT going Low until the operation is done.

eNVM frequency range (NV_FREQRNG field of ENVM_CR system register) value must be set to
maximum value 15 to ensure the correct programming of the eNVM. After programming eNVM, restore
the original frequency range value for eNVM read or verify operations.

Standalone Verify

This mode allows verifying the operation of a page. In verify there are three stages:

» VerifyAd: This command is used to submit the page address to be verified.

» VerifyDa: Once the VerifyAd command is issued, data can be written to AB.

» VerifyStart: After VerifyAd and VerifyDa (optional), VerifyStart can be used to start the NVM
operation. Once the NVM operation starts and until it finishes, any further NVM accessing AHBL
transaction will result in HREADYOUT going Low until the operation is done. If the VerifyDa
command is not issued after the VerifyAd operation, the current data in assembly buffer is verified
with the NVM array.

Standalone-Verify with a Single AHBL Write

VerifyADS: With the command VerifyADS, a single AHBL write transaction can be used to start and
complete the verify page procedure. By default, all WDBUFF content is written to AB and the internal
Standalone-Verify operation automatically starts. Once the NVM operation starts and until it finishes, any
further NVM accessing AHBL transaction will result in HREADYOUT going Low until the operation is
done.

Set Lock Bit and User Unlock Commands

There is a user page lock bit to lock the page for writing. The Control Register PAGE_LOCK_SETI[0] is
used to set the user lock bit of the page. Refer to PAGE_LOCK_SET register in Table 112, page 180 for
more information. If PAGE_LOCK_SET[0] == 1, then nv_s_page_lock_set will be asserted when
submitting the address for Program.

To program a page, the User Unlock command must be submitted before submitting ProgramAd or
ProgramADS.

UGO0331 User Guide Revision 15.0 153

Embedded NVM (eNVM) Controllers @ Microsemi

Power Matters.”

5.2.5.5 eNVM Read Operations with Timing Diagrams

The following are the example eNVM read operations with the Cortex-M3 processor operating at 166
MHz. The eNVM NV_FREQRNG is set to 6.

5.2.5.51 Single Word Read

The following figure shows the AHB read command to 0x60001000 starting at the first cursor, and data
being returned at the second cursor 9 clock cycles later.

Figure 69 « Timing Diagram Showing Single Word Read Operation

- - |
] Ware ' (o[&
Eile Edit View Add Format Tools Bookmarks | Window | Help
£&| Wave - Default i o] X
|ageasngn

Ll SIS T Dl .

42036062 ps to 42099470 ps Jtesthench/GAM_ENVMTOAHE _inst/HTRANS [1:0]

5.2.5.5.2 Consecutive Reads Incrementing through Memory

In this case, four reads from addresses 0x60000010, 0x60000014, 0x60000018, and 0x6000001C are
initiated by the AHB master in succession. The first word is returned 9 clock cycles later (as shown in the
preceding figure), but the second word occurs in the following cycle, 9 clock cycles later the third word is
provided and the fourth word occurs in the next clock cycle. This pattern is repeated as the memory is
incremented as shown in the following figure.

Figure 70 + Timing Diagram Showing Consecutive Reads Incrementing through Memory

18 Wave o 5
File Edit View Add Format Tools Bookmarks Window Help
18| Wave - Default o x|

|aaes.an

[3T I »

|| 42158480 ps to 42296439 ps | ftestbench/ganvmetrl_instjgnvmctrl_main_inst/busy_cmd

.
Cursor 7 | 42170950 ps 2 I
i

UGO0331 User Guide Revision 15.0 154

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

5.2.5.5.3 Cache Fill Operation Utilizing Bursts
The internal cache fill operations using AHB wrapping can utilize bursts to optimize the cache fill
operations. The AHB-NVM controller always returns 8 words in a burst. The first word returns after 9
clock cycles, and second word in the following cycle as shown in the preceding figure. But the third word
occurs 7 clock cycles later, and the fourth word occurs a cycle later with a repeating pattern for the
remaining words as shown in following figure. This burst transfer is 8 clock cycles quicker than a non-
burst sequence of read commands.
Figure 71 « Timing Diagram Showing Cache Fill Read Operations Utilizing Bursts
ﬂWave - = | = ﬂ_j
File Edit View Add Format Tools Bookmarks Window Help
ﬂ Wave - Default -+] x|

are

|aaesan

Cursor 7 | 42356928 ps

6
| EErsa

I T T s »

B R (P
-
=R = L "\.\. I L
Cursor 3 | 42302861 ps 540
Cursor 6 | 42398860 ps.
P

42294553 ps to 42493470 ps AHE Bus

5.2.5.6

Note:

5.2.5.6.1

eNVM Program and Verify Operations Timing Diagrams

Timing diagrams in this section illustrate eNVM Program and Verify operations at the AHB bus transfer
level with the Cortex-M3 processor operating at 166 MHz. The eNVM NV_FREQRNG is set to 15. The
sample eNVM operation programs the eNVM sector 0 page 4 with random data and verifies the eNVM
sector 0 page 4.

In all the waveforms, the eNVM controller register offset is shown in AHB address line (HADDR). Refer to
eNVM Control Registers, page 180 for more information.

Sequence of eNVM Program and Verify Operations when using ProgramADS and
VerifyADS Commands

The following figure shows the following sequence of eNVM ProgramADS and VerifyADS commands:

1. Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS
register.

2. Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array.

3. Issues ProgramADS command.

4. Completes the eNVM Program operation and starts the eNVM Verification by issuing a VerifyADS
command.

5. Completes the eNVM verify operation.

6. Releases the exclusive register access by writing 0x0 to the REQACCESS register.

The status of the eNVM operations are monitored by polling the Status register response.

For a description of the registers, see Table 112, page 180.

UGO0331 User Guide Revision 15.0 155

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

The following figure shows the complete eNVM program (ProgramADS) and eNVM verify (VerifyADS)
operations.

Figure 72 + eNVM Program (ProgramADS) and Verify (VerifyADS) Operations

] ave -Defait

At cursor 1, steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM Program operation gets
completed and Verify operation gets started. At Cursor 3, the verify operation is completed. Refer to the
preceding figure.

eNVM commands sequence is shown in waveforms. See Figure 73, page 156 through Figure 76,
page 157.

The Cortex-M3 processor gets the exclusive register access by writing 0x1 to the REQACCESS register.
It reads the value 0x5 from AHB read data line (HRDATA), it means the exclusive register access is
issued. Then the WDBUFF (Write Data Buffer) register is filled with the random data, as shown in the
following figure.

Figure 73 » Exclusive Register Access and Filling Data in WDBUFF

H Wave - Default

0034 |
40014000 140034002 400540

The following figure shows issue of ProgramADS command by writing 0x08 to CMD register.

Figure 74 » Issuing the ProgramADS Command

M Wave - Default

Note: HWDATA[31:24] holds the ProgramADS command and HWDATA[23:0] holds the eNVM page address.
Refer to Table 97, page 151.

UGO0331 User Guide Revision 15.0 156

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

The following figure shows completion of ProgramADS and issue of VerifyADS command.

Figure 75 « Completion of ProgramADS and Issue of VerifyADS Command

Figure 76

5.2.5.6.2

£| Wave - Default

The ProgramADS command completion can be confirmed by polling Status register response. The
following figure shows the completion of eNVM verify operation.

Completion of eNVM Verify Operation

£E| Wave - Default

Sequence of eNVM Program and Verify Operations when Using ProgramAD,
ProgramDA, ProgramStart, VerifyAD, VerifyDA, and VerifyStart Commands

Figure 77, page 158 through Figure 81, page 159 show the sequence of eNVM program operation:

1.

2.

7.
8.

9.

Cortex-M3 master requests for exclusive register access by writing 0x1 to the REQACCESS
register. Refer to Figure 78, page 158.

Fills the WDBUFF (Write Data Buffer) register with the data to be written to the eNVM array. Refer to
Figure 78, page 158.

Issues ProgramAD command. Refer to Figure 79, page 158.

Completes the ProgramAD command and Issues the ProgramDA command. Refer to Figure 80,
page 158.

Completes the ProgramDA command and Issues ProgramStart command. Refer to Figure 81,
page 159.

Completes the eNVM Program operation and starts the eNVM verification by issuing a VerifyAD
command.

Completes the VerifyAD command and Issues the VerifyDA command.

Completes the VerifyDA command and Issue the VerifyStart command.

Completes the eNVM verify operation.

10. Releases the exclusive register access by writing 0x0 to the REQACCESS register.

The status of the eNVM operations are monitored by polling the Status register response.

UGO0331 User Guide Revision 15.0 157

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

The following figure shows the complete eNVM program and eNVM verify operations.

Figure 77 « Complete eNVM Program and Verify Operations Waveform

] ave -Defait

At cursor 1,steps 1 and 2 in the sequence are performed. At cursor 2, the eNVM ProgramStart operation
is completed and VerifyAD operation is started. At cursor 3, the verify operation is completed. Refer to

the preceding figure. The eNVM commands sequence is explained in waveforms in Figure 78, page 158
through Figure 81, page 159.

The following figure shows the Cortex-M3 master requesting for exclusive register access and filling
WDBUFF (Write Data Buffer).

Figure 78 « Exclusive Register Access and Filling Data in WDBUFF
ﬂ Wave - Default

The following figure shows the issuance of the ProgramAD command.

Figure 79 « ProgramAD Command
2| Wave - Default

The following figure shows the completion of ProgramAD command and the issuance of the ProgramDA
command.

Figure 80 « ProgramDA Command
B8 Wave - Default

UGO0331 User Guide Revision 15.0 158

Embedded NVM (eNVM) Controllers

Figure 81«

5.2.6

5.2.7

5.3

& Microsemi

Power Matters.”

The following figure shows the completion of the ProgramDA command and the issuance of the
ProgramStart command.

ProgramStart Command
2| Wave - Default

The completion of the eNVM command is confirmed by monitoring the eNVM status register for eNVM
ready and the next command in sequence is sent. VerifyAD, VerifyDA, and VerifyStart commands are
issued by writing corresponding command value into CMD register.

Error Response

The error response, which is indicated by the HRESP signal, is asserted if any of the following conditions
occur:

* AHBL burst read is terminated early or address sequence is not as expected. This should never
occur within the system during normal operation.

* AHBL write transaction addressed to read-only user data array

* AHBL read or write transaction to a protected memory area. Refer to Security, page 159.

Data on HRDATA with error response is zero. A write transaction addressed to read-only Control register
such as RD or RDT will not trigger an error response. However, the data in these registers will not be
affected.

Interrupt to Cortex-M3 Processor

Setting the Control registers INTEN[10:0], as shown in Table 112, page 180, allows the user to configure
HINT (INTISR[17] and INTISR[18] of Cortex-M3 processor) to assert an interrupt on any active status
events from eNVM, such as the assertion of any status bit from eNVM or when an internal eNVM
operation ends.

After HINT is asserted, the Cortex-M3 processor determines the next steps. The Cortex-M3 processor
can respond to the interrupt and then clear HINT by writing 1 to bit O of the write-only register
CLRHINT[2:0] (HADDR = 0x158) in Table 112, page 180. If the Cortex-M3 processor decides to ignore
the interrupt (by masking it out), the interrupt is cleared if read or write continues and the interrupt-
triggering events are not re-occurring. If the same triggering event happens again, HINT will remain
asserted.

Security

The eNVM is protected using four levels of security features:

+ The eNVM page protection uses two levels: factory lock and user lock. Factory lock is not accessible
for the user. Refer to the Set Lock Bit and User Unlock Commands, page 153.

« There are two or four special sectors per eNVM array that can be protected for read and write,
depending on which entity is accessing the region as shown in Figure 82, page 160 through
Figure 86, page 162. On devices with smaller or bigger eNVMs, the upper 4 KB special sector is
aligned to the top 4 KB region of the eNVM. These user-protectable 4 KB special sectors can be
configured by Libero software, see Figure 93, page 172.

* There are two private regions in M2S060, M2S090, and M2S150 as shown in Figure 85, page 161
and Figure 86, page 162 which are reserved for storing device certificate, eNVM digest, security
keys and so on. Only system controller can access the private regions. See eNVM Pages for Special
Purpose Storage, page 163

UGO0331 User Guide Revision 15.0 159

Embedded NVM (eNVM) Controllers @ M. .
icrosemi

Power Matters.”

* Using AHB bus master access control, the eNVM can be protected from different masters connected
on the AHB bus matrix. Refer to the AHB Bus Matrix, page 210.
» User-defined regions can be protected from the FPGA fabric.

5.31 User Protectable 4K Regions

Figure 82 « eNVM Special Sectors for the M2S050TS Device with 256 KB eNVM_0

M2S050TS
A
0x6003F000 to 0x6003FFFF Special Sector Upper 4 KB Region (UO)
eNVM_0
Total 256 KB 248 KB
0x60000000 to Ox60000FFF Special Sector Lower 4 KB Region (LO)
v

Figure 83 « eNVM Special Sectors for the M2S005S Device with 128 KB eNVM_0

M2S005S

0x6001F000 to 0x6001FFFF Special Sector Upper 4 KB Region (U0)

0x6001E000 to Ox6001EFFF Special Sector Lower 4 KB Region (L1)

0x6001D000 to 0x6001DFFF Special Sector Upper 4 KB Region (U1)

eNVM_0
Total 128 KB

112 KB

0x60000000 to 0x60000FFF Special Sector Lower 4 KB Region (LO)

UGO0331 User Guide Revision 15.0 160

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

Figure 84 « eNVM Special Sectors for the M2S010TS, M2S025TS Devices with 256 KB eNVM_0

eNVM_0
Total 256 KB

M2S010TS, M2S025TS

0x6003F000 to Ox6003FFFF

0x6003E000 to Ox6003EFFF

0x6003D000 to 0x6003DFFF

0x60000000 to 0x60000FFF

Special Sector Upper 4 KB Region (U0)
Special Sector Lower 4 KB Region (L1)

Special Sector Upper 4 KB Region (U1)

240 KB

Special Sector Lower 4 KB Region (LO)

Figure 85+ eNVM Special Sectors for the M2S060TS Devices with 256 KB eNVM_0

eNVM_0
Total 256 KB

M2S060TS

0x6003F000 to Ox6003FFFF

0x6003E000 to Ox6003EFFF

0x6003D000 to 0x6003DFFF

0x60000000 to 0x60000FFF

Private Region 4 KB
Private Region 4 KB

Special Sector Upper 4 KB Region (UO)

240 KB

Special Sector Lower 4 KB Region (LO)

UGO0331 User Guide Revision 15.0

161

Embedded

NVM (eNVM) Controllers @ M. .
icrosemi

Power Matters.”

Figure 86 « eNVM Special Sectors for the M2S090TS, M2S150TS Devices with 512 KB

Table 99 «

M2S090TS, M2S150TS

A A
0x6007F000 to 0x6007FFFF Private Region 4 KB
0x6007E000 to OX6007EFFF Private Region 4 KB
0x6007D000 to 0x6007DFFF Special Sector Upper 4 KB Region (U0)
0x6007C000 to 0x6007CFFF Special Sector Lower 4 KB Region (L1)
NVM_1
355 KB 0x6007B000 to 0x6007BFFF | T Special Sector Upper 4 KB Region (U1)
Total
eNVM ;E
512 KB
488 KB
eNVM_0
256 KB
0x60000000 to Ox60000FFF Special Sector Lower 4 KB Region (LO0)
v v

The security configuration is provided as input to the eNVM Controller from system registers as per the
ENVM_PROTECT_USER register described in Table 103, page 174 for configuration of upper and lower
regions of NVM. The following table shows user protection regions for different masters.

User Protection Regions

Master

Function

Cortex-M3 processor |Cortex-M3 processor can access the protected memory regions. Access bit defines the read

accessibility. Write allowed bit indicates that the masters which have read access can also
have write access.

Fabric master FIC_0 can access the protected memory regions. Access bit defines the read accessibility.

Write allowed bit indicates that the masters which have read access can also have write
access.

Other masters (PDMA |All other masters are allowed access. Access bit defines the read accessibility.
and HPDMA)

5.3.1.1

5.3.1.2

Read Protection

When AHB masters other than the system controller issue read transactions to protected regions, the
address and protection configuration is checked to determine whether the read is targeted to the
protected region and if the read is allowed. If the read is not allowed, eNVM read command is not sent to
the eNVM and an error is generated. For a specific AHB master to read a protected region, both the
factory and user allowed bits must be set. Refer to Table 108, page 178 for information on eNVM access
controls for AHB masters.

Write Protection

When AHB masters other than system controller issue write transactions (which may be one of the
program commands supported by this interface) to protected regions, the address and protection
configuration is checked to determine whether the transaction is targeted to the protected region. If the
transaction is not allowed, no command is sent to eNVM and the Status bit is asserted.

UGO0331 User Guide Revision 15.0 162

Embedded NVM (eNVM) Controllers @ Microsemi

5.3.1.3

Note:

5.3.2

Power Matters.”

Power-Down

During device startup, the eNVM(s) will be powered up as the fabric is powered up. As soon as the fabric
is active, if the user sets the deep power down (DPD) bit, the NVM(s) will be powered down. Each eNVM
block can be put into deep power down mode by configuring the SYSREG. The eNVM can permanently
be switched on or switched off. Refer to the ENVM_CR register (Table 103, page 174) for configuration
settings.

During Flash*Freeze, users may want to put the NVM(s) into deep power down mode, to save power.
The user should not enter power down while the NVM is in use. DPD is not entered automatically when
Flash*Freeze is entered.

Flash*Freeze applies mainly to the fabric.

eNVM Pages for Special Purpose Storage

A few pages in the final sector (N-1) of the last eNVM module are used for special purpose storage like
device certificate and eNVM digest. Some special purpose pages are reserved and protected. Refer
below tables for more information on eNVM special purpose storage based on SmartFusion2 device
density. The system controller performs read/write operations on unreserved eNVM pages using system
controller services. It only reads data from reserved eNVM pages. 16 pages in the final sector of eNVM_0
module for M2S005, M2S010, M2S025, and M2S050 devices are used for special purpose storage as
listed in the following table.

Table 100 » Special Purpose Storage Regions

Device eNVM module |Sector Page Type Usage
M2S005/M2S010/ |eNVM_0 N-1 16-24 Reserved Reserved for
M2S025/M2S050 future use
25-30 Reserved Device Certificate
31 Unreserved Digest for
eNVM_0

64 pages of eNVM in the final 2 sectors (private regions) of the last eNVM module for M2S060, M2S090,
and M2S150 devices are used as special purpose storage. See the following table for more information.

UGO0331 User Guide Revision 15.0 163

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

M2S060 device has 2 private regions in eNVM_0 and M2S090/M2S150 device has 2 private regions in
eNVM_1.

Table 101 « Special Purpose Storage Regions for M2S060, M2S090, and M2S150 Devices

Offset in
Sector page Range
in eNVM |Page Type Usage (Bytes) (Bytes)
N-2 20-0 Unreserved User Key Code#2 to User Key Code #N. 0 2687:0
N can be maximum 58.
Maximum 56 Key Codes (KC#2 to KC#58),each
occupies 48 Bytes
Minimum 5 Key Codes (KC#2 to KC#7), each
occupies 528 Bytes
29-21 Unreserved User Activation Code 1151:0
30 Unreserved User Activation Code (Total 1192 bytes across page |0 39:0
21 to page 30)
30 Unreserved User Defined (Key sizes + Exported bit + Valid bit) |40 55:0
byte array: 56 bytes holds 56 key sizes along with
exported and valid bit flags.
30 Unreserved Reserved for future use 96 31:0
31 Unreserved User PK-X (384-bit User PUF ECC Public Key) 0 47:0
31 Unreserved User PK-Y (384-bit User PUF ECC Public Key) 48 47:0
31 Unreserved User Activation Code exported flag (Digests Valid, |96 1 byte
Activation Code missing)
31 Unreserved User Activation Code valid flag 97 1 byte
31 Unreserved User Key Code #0 exported flag (Digests Valid, Key |98 1 byte
Code missing)
31 Unreserved User Key Code #0 valid flag 99 1 byte
31 Unreserved User Key Code #1 exported flag (Digests Valid, Key |100 1 byte
Code missing)
31 Unreserved User Key Code #1 valid flag 101 1 byte
31 Unreserved User Public Key valid flag 102 1 byte
31 Unreserved Reserved for future use 103 24:0

UGO0331 User Guide Revision 15.0

164

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

Table 101 « Special Purpose Storage Regions for M2S060, M2S090, and M2S150 Devices (continued)

N-1 Unreserved User Key Code #0 (256-bit User AES Key) 0 43:.0
Unreserved User Key Code#1 (384-bit User PUF ECC Key) 44 75:0
(76 bytes)
0 Unreserved Reserved for future use 120 7:0
9-1 Reserved Factory Activation Code 0 1151:0
10 Reserved Factory Activation Code (Total 1192 bytes across |0 1191:1152
page 1 to page 10)
10 Reserved Factory Key Code (384 bit Factory ECC Key Code) |40 75:0
10 Reserved Reserved for future use 116 11:0
15-11 Reserved Second ECC Key Certificate 0 639:0
21-16 Reserved Reserved for future use 0 767:0
22 Unreserved eNVM_1 Private User Digest of page 0 of N-1 and |0 127:0
all pages of N-2
23 Reserved eNVM_1 Private Factory Digest of pages from 1 to |0 127:0
30 of N-1 except pages 22, 23, and 24
24 Unreserved eNVM_1 Public Digest 127:0
30-25 Reserved Device Certificate 767:0
31 Unreserved eNVM_0 Digest 127:0
Notes:

5.4

5.4.1

Data Storage in eNVM Using the Libero eNVM Client

Refer to UG0443: SmartFusion2 SoC FPGA and IGLOO2 FPGA Security and Reliability User Guide
for more information on the certificates, key codes, and digests.
The system controller performs read/write operations on unreserved eNVM pages using system
controller services. It only reads data from reserved eNVM pages.

How to Use eNVM

This section describes how to use the eNVM in the SmartFusion2 devices. To configure the
SmartFusion2 device features and then build a complete system, use the System Builder graphical
design wizard in the Libero SoC software.

The Libero eNVM client creates the eNVM data that the FlashPro software uses to initialize the eNVM
during programming. The programmed eNVM can be accessed by the Cortex-M3 processor, HPDMA,
PDMA, or the FPGA fabric master connected to the AHB bus matrix.

The following figure shows the initial System Builder window where the required device features can be
selected. For details on how to launch the System Builder wizard and detailed information on how to
use it, refer to SmartFusion2 System Builder User Guide.

UGO0331 User Guide Revision 15.0

165

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=132037
http://coredocs.s3.amazonaws.com/Actel/Tool/SysBuilder/sf2_system_builder_ug_1.pdf

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

Figure 87 » System Builder Window
(® System Builder - Device Features B - B =)]

> Device Features Peripherals > > Clocks » > Microcontroller SECDED > 2 Security > 2> Interrupts > > Memory Map »
Select the SmartFusion2 features you will be using in your design

Memary
[CIMssExternal Memory L
(@ MDDR
Soft Memory Contraller (SMC)
[] M5 On-chip Flash Memary { eNVM)

[] Fabric External DDR Memory (FDDR:)
Microcontroller Options

[F] wiatchdog Timer
[] Peripheral DMA

[] Real Time Counter

1
1
'
1
1
'
I
1
'
I
1
i
| FAB_ CCC 3 8| 3
! B
1 2
: 5%
1 i o A
' 4 =
: gsc
H o FoDR
1 APR_BIAVE
'
: AP S pek | B
3
i 4786 PRESET N
1 1
s ; =
(| “ . 1
! . — kR !
0% g g o 1
RAM g GORESOR | 'y E !
P |
. [T :
| i i T |

UG0331 User Guide Revision 15.0 166

Embedded NVM (eNVM) Controllers

& Microsemi

Power Matters.”

The following steps describe how to generate a programming file with the eNVM client in an application
using System Builder.

1. Check the MSS On-chip Flash Memory (eNVM) check box under the Device Features tab and
leave the other check boxes unchecked. The following figure shows the System Builder - Device
Features tab.

Figure 88 « System Builder - Device Features Tab
() System Builder - Device Festures . [ESEER=)
> Device Features Memories » > Peripherals » } Clocks Microcontroller ») SECDED ;) Security »» Interrupts » > Memory Map)

Select the SmartFusion2 features you will be using in your design

Memory
[] MsS External Memory

(@ MDDR

Soft Memory Controller (S