
Application Note AC333

Connecting User Logic to the SmartFusion
Microcontroller Subsystem

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) device contains a hard microcontroller
subsystem (MSS), programmable analog circuitry, and FPGA fabric consisting of logic tiles, static
random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of an
ARM®Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system registers, Ethernet
MAC, several peripherals, DMA engine, real-time counter (RTC), embedded nonvolatile memory
(eNVM), embedded SRAM (eSRAM), and fabric interface controller (FIC). Refer to the SmartFusion
Customizable System-on-Chip (cSoC) datasheet for the architectural details of the MSS. The peripherals
included in the MSS are communication functions, such as Ethernet MAC, UART, SPI, I2C, and timers,
such as the system timer and watchdog timer, similar to those found in various microcontrollers. The
AHB bus matrix connects the peripherals within the MSS and also connects to user peripherals in the
FPGA fabric through the FIC. The FIC block performs an AHB-Lite or advanced peripheral bus3 (APB3)
bridging function between the AHB bus matrix and the FPGA fabric. Note that AHB-Lite and APB3 are
defined in the Advanced Microcontroller Bus Architecture-Lite (AMBA®-Lite) specification. The FIC
allows you to create custom logic that can map into the memory space of the Cortex-M3 processor and
other masters on the AHB bus. Similarly, you can implement an AHB-Lite or APB3 master in the fabric
that can access any slave on the AHB bus matrix, including those embedded within the MSS. Since the
FIC has an AMBA interface to the fabric, user logic must implement AMBA protocols in order to
communicate through the FIC. This application note explains to you how to create an AHB-Lite or APB3
wrapper on custom logic and how to connect it to the MSS system through the FIC.

Overview of AMBA
The AHB bus specification defines an on-chip communications standard for designing high-performance
embedded microcontrollers. Rev2.0 of the AMBA specification introduced the AHB protocol. The AMBA-
AHB is used for high-performance, high clock frequency system modules and the AMBA-APB is used for
low power peripherals. An AMBA-based microcontroller typically consists of a high-performance system
backbone bus and may also have a bridge to the lower bandwidth APB, where most of the peripheral
devices in the system are located. The advanced high-performance bus Lite (AHB-Lite) is a newer
version of the AMBA specification.

Introduction . 1
Overview of AMBA . 1
AMBA Interface in the FIC . 4

Implementing a Custom APB3 or AHB-Lite Interface . 6

Conclusion . 16
Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS 16
Appendix B: Simulating the User Logic Block . 22

List of Changes . 25
February 2012 1

© 2012 Microsemi Corporation

http://www.microsemi.com/soc/documents/SmartFusion_DS.pdf
http://www.microsemi.com/soc/documents/SmartFusion_DS.pdf

Connecting User Logic to the SmartFusion Microcontroller Subsystem
An AHB-Lite transfer consists of two distinct sections:

• Address phase, which lasts only a single cycle

• The data phase, which may require several cycles

The simplest transfer is one with no wait states, so the transfer consists of one address cycle and one
data cycle. During the simple transfer, the master drives the address and control signals onto the bus
after the rising edge of HCLK. The slave then samples the address and control information on the next
rising edge of HCLK. After the slave has sampled the address and control signals, it sends the
appropriate HREADY response. This response is sampled by the master on the third rising edge of
HCLK.

For write operations, the bus master will hold the data stable throughout the extended cycles. For read
transfers, the slave does not have to provide valid data until the transfer is about to complete. A slave
can insert wait states into any transfer to enable additional time for completion. Figure 1 shows a simple
write transfer and a read transfer with two wait states. Note that the control signals define the transfer
type, size, etc.

These control signals have exactly the same timing as the address bus. Table 1 shows the AHB-Lite
signals. For more information, visit the ARM website.

Figure 1 • AHB-Lite No-Wait Write Transfer (Left) and Two Wait State Read Transfer (Right)

Table 1 • AHB-Lite Signals

Signal Name Description

HCLK The bus clock times all bus transfers. All signal timings are related to the rising edge of HCLK.

HRESETn The bus reset signal is active Low and resets the system and the bus.

HADDR[31:0] The 32-bit system address bus.

HBURST[2:0] The burst type indicates if the transfer is a single transfer or forms part of a burst. Typically single
burst is used, that refers to HBURST= 000.

HMASTLOCK The protection control signals provide additional information about a bus access and are primarily
intended for use by any module that wants to implement some level of protection.

HSIZE[2:0] Indicates the size of the transfer; typically byte, halfword, or word are used.

HTRANS[1:0] Slave. Indicates the transfer type of the current transfer. This can be IDLE, BUSY,
NONSEQUENTIAL, or SEQUENTIAL.

HWDATA[31:0] The write data bus transfers data from the master to the slaves during write operations.

HWRITE Indicates the transfer direction. When High, this signal indicates a write transfer and when Low, a
read transfer.

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HREADY

HRDATA[31:0]

A

Control

A

Control

Data
(A)

Data
(A)

Data
(A)

Data
(A)

Address phase Data phase Address phase Data phase
2

http://www.arm.com/
http://www.arm.com/

Overview of AMBA
APB3 has a similar write and read transfer. The APB3 write transfer starts with the address, write data,
write signal, and select signal all changing after the rising edge of PCLK. In the next clock edge the
enable signal, PENABLE, is asserted, and this indicates that the Access phase is taking place.

The address, data, and control signals all remain valid throughout the Access phase. The transfer
completes at the end of this cycle. The enable signal, PENABLE, is deasserted at the end of the transfer.
The select signal, PSELx (or PSEL), also goes Low unless the transfer is to be followed immediately by
another transfer to the same peripheral. During an Access phase, when PENABLE is High, the transfer
can be extended by driving PREADY Low. During a read transfer, the timing of the address, write, select,
and enable signals are as described in write transfers. The slave must provide the data before the end of
the read transfer. The transfer is extended if PREADY is driven Low during an Access phase.

Figure 2 shows a simple write transfer and a write transfer with two wait states. Table 2 on page 4 shows
APB signals.

HRDATA[31:0] During read operations, the read data bus transfers data from the selected slave.

HREADYOUT When High, the HREADYOUT signal indicates that a transfer has finished on the bus.

HRESP The transfer response. When Low, the HRESP signal indicates that the transfer status is OKAY.
When High, the HRESP signal indicates that the transfer status is ERROR.

HSELx Each AHB-Lite slave has its own slave select signal, HSELx, and this signal indicates that the
current transfer is intended for the selected slave.

HRDATA[31:0] Master Read data bus.

HREADY When High, the HREADY signal indicates to the master and all slaves that the previous transfer is
complete.

Table 1 • AHB-Lite Signals (continued)

Figure 2 • APB3 Write Transfer

T0

PCLK

PREADY

PADDR Addr 1

PWRITE

PSEL

PENABLE

PRDATA Data 1

T3T2T1 T4 T0

PCLK

PREADY

PADDR Addr 1

PWRITE

PSEL

PENABLE

PRDATA Data 1

T3T2T1 T4 T5 T6
3

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Figure 3 shows an APB3 read transfer with and without wait states.

AMBA Interface in the FIC
The FIC is part of the MSS and performs an AHB-Lite to AHB-Lite or AHB-Lite to APB3 bridging function
between the MSS AHB bus matrix and an AHB-Lite or APB3 bus in the FPGA fabric. It provides two
buses between the MSS and the fabric. The first is mastered by the MSS and has slaves in the fabric and
the second has a master in the fabric and slaves in the MSS.

Figure 3 • APB3 Read Transfer

Table 2 • APB3 Signals

Signal Name Description

PCLK Clock. The rising edge of PCLK times all transfers on the APB3.

PRESETn Reset. The APB3 reset signal is active Low. This signal is normally connected directly to the system
bus reset signal.

PADDR Address. This is the APB3 address bus. It can be up to 32 bits wide and is driven by the peripheral
bus bridge unit.

PSELx Select. The APB3 bridge unit generates this signal to each peripheral bus slave.

It indicates that the slave device is selected and that a data transfer is required. There is a PSELx
signal for each slave.

PENABLE Enable. This signal indicates the second and subsequent cycles of an APB3 transfer.

PWRITE Direction. This bus is driven by the peripheral bus bridge unit during write cycles when PWRITE is
High. This bus can be up to 32 bits wide.

PWDATA Write data. This bus is driven by the peripheral bus bridge unit during write cycles when PWRITE is
High. This bus can be up to 32 bits wide.

PREADY Ready. The slave uses this signal to extend an APB3 transfer.

PRDATA Read data. The selected slave drives this bus during read cycles when PWRITE is Low. This bus can
be up to 32 bits wide.

PSLVERR This signal indicates a transfer failure. APB3 peripherals are not required to support the PSLVERR
pin. This is true for both existing and new APB3 peripheral designs. Where a peripheral does not
include this pin, the appropriate input to the APB bridge is tied Low.

T0

PCLK

PREADY

PADDR Addr 1

PWRITE

PSEL

PENABLE

PRDATA Data 1

T3T2T1 T4 T0

PCLK

PREADY

PADDR Addr 1

PWRITE

PSEL

PENABLE

PRDATA Data 1

T3T2T1 T4 T5 T6
4

AMBA Interface in the FIC
The interface to the fabric can be of the 32-bit AHB-Lite or 32-bit APB3 type. However, only one type of
interface can be enabled at any given time. Although it is possible to have master and slave at the same
time, in general the FIC will allow four possible communication scenarios:

• MSS master to FPGA AHB-Lite slave interface

• MSS master to FPGA APB3 slave interface

• Fabric AHB-Lite master to MSS slave

• Fabric APB3 master to MSS slave

In order to connect to the FIC, the AHB-Lite or APB3 interface must be added to custom user logic. The
interface must be an AHB-Lite compliant master or APB3 compliant master. For the slave case, the
interface must be an AHB-Lite compliant slave or an APB3 compliant slave interface.

To create an AHB-Lite master interface in the fabric, user logic must drive the address and control signals
onto the bus after the rising edge of HCLK. This is followed by data phase. In the data phase the fabric
provides data for the write operation and samples data from the FIC for read operation. HREADY is used
to insert wait states when a slow peripheral is accessed. To create an AHB-Lite slave in the fabric, user
logic samples the address and control and deasserts HREADY if it needs to insert a wait state. For read
transfers, the user logic block must make sure that the valid data is available on the bus before asserting
HREADY. For a write operation, the slave will sample data while deasserting HREADY.

Similarly for the APB3 master, the write transfer starts with the address, write data, write signal, and
select signal all changing after the rising edge of the clock and asserting PENABLE in the next cycle. If
the slave wants to extend the transfer by sending PREADY Low, wait for PREADY to go High and finish
the cycle. To create an APB slave, sample the address and control, and send the appropriate HREADY
response. If the user logic block can accept or send the data in the next cycle, asserting HREADY is not
necessary; otherwise insert a wait sate and assert HREADY.

Figure 4 • Connecting User logic to MSS
5

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Implementing a Custom APB3 or AHB-Lite Interface
The following sections provide detailed information on creating APB3 and AHB-Lite interfaces, including
example RTL source code. After creating the interface wrapper, you must connect to the MSS and then
go through the FPGA flow. Refer to the memory map section in the SmartFusion Microcontroller
Subsystem User’s Guide for addressing the FPGA fabric from the MSS and addressing various
peripherals inside the MSS. This application note has two appendices to guide you on the various FPGA
flows and finishing your design using Microsemi Libero® System-on-Chip (SoC) software:

• "Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS"

• "Appendix B: Simulating the User Logic Block"

Custom APB3 Slave
This section shows the design example for creating a custom APB3 wrapper on a register/memory block.
You can follow the same technique and create an APB3 interface on counters, registers, or any other
custom logic blocks. This example uses a memory block 8 bits wide by 16 bits deep as an APB3 slave.
This section describes the APB3 wrapper creation for regular and pipelined mode registers and memory.
Figure 5 shows the memory block diagram. Figure 6 and Figure 7 on page 7 show the timing diagrams
for regular and pipelined mode.

Figure 5 • Custom Memory Slave Block Diagram

Figure 6 • Custom Memory Timing Diagram for Regular Mode

nreset

Wr_en

Rd_en

Addr[3:0]

Data_in[7:0]

memory 16 × 8

clk Data_out[7:0]

address

data_in

wr_en

rd_en

clk

data_out

Address

Data

Data
6

http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_MSS_UG.pdf

Implementing a Custom APB3 or AHB-Lite Interface
Creating an APB3 wrapper for regular mode is simple. User logic must generate the write enable when
PSEL, PWRITE, and PENABLE signals are active. For read enable, user logic must generate the signal
during the first cycle so that data is ready on the bus during the second cycle. The address and data
signals connect directly to the memory blocks.

Figure 8 shows the RTL view for the wrapper. The write enable and read enable signals are generated as
shown in the following verilog code example:

assign wr_enable = (PENABLE && PWRITE && PSEL);
assign rd_enable = (!PWRITE && PSEL);

To create an APB3 wrapper on the pipelined memory, user logic must use the PREADY signal to insert a
wait state. User logic must generate the write enable when PSEL, PWRITE, and PENABLE signals are

Figure 7 • Custom Memory Timing Diagram for Pipelined Mode

address

data_in

wr_en

rd_en

clk

data_out

Address

Data

Data

Figure 8 • RTL View for the APB3 Slave Wrapper with No Wait State

clk

nreset

data_in[7:0]

addr[3:0]

rd_en

wr_en

data_out[7:0]

reg 16x8

reg 16x8_0

PADDR[7:0]

PCLK

PSEL
PENABLE

PRESERN

PWDATA[7:0]

PWRITE

rd_enable

wr_enable

[7:6]

[5:2]

[1:0]

[7:0]

[7:0]

[5:2] [7:0]

[7:0]
0

1

PRDATA[7:0]
PSLVERR

PREADY
7

Connecting User Logic to the SmartFusion Microcontroller Subsystem
active. For read enable, user logic must generate the signal during the first cycle; however, an extra cycle
must be added due to the pipeline option. Figure 9 on page 8 shows the state diagram.

Sample Verilog Code for APB3 Slave Wrapper with Wait State
case (fsm)

2'b00 : begin
if (~PSEL)

begin
fsm <= 2'b00;
end

else
begin
fsm <= 2'b01;
if (PWRITE)

begin
rd_enable <= 1'b0;
wr_enable <= 1'b1;
PREADY <= 1'b1;

end
else

begin
rd_enable <= 1'b1;
wr_enable <= 1'b0;
PREADY <= 1'b0;

end
end

end
2'b01 : begin

if (PWRITE)
begin

rd_enable <= 1'b0;
wr_enable <= 1'b0;
PREADY <= 1'b1;
fsm <= 2'b00;

end
else

begin
rd_enable <= 1'b0;
wr_enable <= 1'b0;
PREADY <= 1'b0;
fsm <= 2'b10;

end

Figure 9 • State Diagram for APB3 Slave Wrapper with Wait State

!PSEL

PWRITE

00

01

!PWRITE

10

PSEL
8

Implementing a Custom APB3 or AHB-Lite Interface
end
2'b10 : begin

fsm <= 2'b00;
PREADY <= 1'b1;

end
default : fsm <= 2'b00;

The sample RTL source code for a custom APB3 slave with and without wait state is available for
download on the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF.
The sample code is in the apb_slave_fabric_nw and apb_with_wait folders within the zip file.

Custom AHB-Lite Slave
This section shows a design example for creating a custom AHB-Lite wrapper on a register/memory
block. You can follow the same technique and create an AHB-Lite interface on counters, registers, or any
other custom logic blocks. Note that the HSIZE signal in AHB-Lite transfer indicates the size of the
transfer, which is typically byte (HSIZE = 000), halfword (HSIZE = 001), or word (HSIZE = 010). The
design example uses four memory blocks of 8 bits wide by 16 bits deep as an AHB-Lite slave to show a
byte-controlled transaction.

Figure 10 shows the byte alignment of the AHB-Lite data bus based on the HSIZE signal.

To create an AHB-Lite slave, the user logic block must check the address and control signals and
generate appropriate read or write enable signals. Depending on HSIZE signal, it will generate only read
or write enable signals for the appropriate bytes. During the data read, HREADY_out is used to add an
extra cycle. Figure 11 on page 10 shows the state diagram for the AHB-Lite slave wrapper.

Figure 10 • Alignment of the APB Bus Data

HADDR[1:0] = 00

HADDR[1:0] = 01

HADDR[1:0] = 10

HADDR[1:0] = 11

HADDR[1:0] = 00

HADDR[1:0] = 10

HSIZE = 01

HSIZE = 00

HSIZE = 10

8-Bit 8-Bit 8-Bit 8-Bit
9

www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF
www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Sample Verilog Code for AHB-Lite Slave Wrapper
case (FSM)

2'b00 : begin
if(HTRANS[1] && HREADY && HSEL)

begin
fsm <= 2'b01; //move to next state
mem_addr <= HADDR[5:0]; //store the address value
hwrite_r <= HWRITE; //store write signal internally

if(HWRITE)
begin

case(HSIZE)
3'b000 :

begin
if (HADDR[1:0] == 2'b00)

mem_wen00 <= 1'b1;
else if (HADDR[1:0] == 2'b01)

mem_wen01 <= 1'b1;
else if (HADDR[1:0] == 2'b10)

mem_wen10 <= 1'b1;
else

mem_wen11 <= 1'b1;
end

3'b001 :
begin
if (HADDR[1:0] == 2'b00)

begin
mem_wen00 <= 1'b1;
mem_wen01 <= 1'b1;
end

else
begin
mem_wen10 <= 1'b1;
mem_wen11 <= 1'b1;
end

end
3'b010 :

begin
mem_wen00 <= 1'b1;
mem_wen01 <= 1'b1;

Figure 11 • State Diagram for AHB-Lite Slave Wrapper

!fsm5

hwrite_r

00

01

!hwrite_r

10

fsm5
10

Implementing a Custom APB3 or AHB-Lite Interface
mem_wen10 <= 1'b1;
mem_wen11 <= 1'b1;
end

default :
begin
mem_wen00 <= 1'b0;
mem_wen01 <= 1'b0;
mem_wen10 <= 1'b0;
mem_wen11 <= 1'b0;
end

endcase
end

else
begin

HREADYOUT_int <= 1'b0; // insert wait-state
case(HSIZE)

3'b000 :
begin
if (HADDR[1:0] == 2'b00)

mem_ren00 <= 1'b1;
else if (HADDR[1:0] == 2'b01)

mem_ren01 <= 1'b1;
else if (HADDR[1:0] == 2'b10)

mem_ren10 <= 1'b1;
else

mem_ren11 <= 1'b1;
end

3'b001 :
begin
if (HADDR[1:0] == 2'b00)

begin
mem_ren00 <= 1'b1;
mem_ren01 <= 1'b1;
end

else
begin
mem_ren10 <= 1'b1;
mem_ren11 <= 1'b1;
end

end
3'b010 :

begin
mem_ren00 <= 1'b1;
mem_ren01 <= 1'b1;
mem_ren10 <= 1'b1;
mem_ren11 <= 1'b1;
end

default :
begin
mem_ren00 <= 1'b0;
mem_ren01 <= 1'b0;
mem_ren10 <= 1'b0;
mem_ren11 <= 1'b0;
end

endcase
end

end
end

2'b01 : begin
if (hwrite_r)

begin
fsm <= 2'b00; //done
mem_wen00 <= 1'b0;
mem_wen01 <= 1'b0;
11

Connecting User Logic to the SmartFusion Microcontroller Subsystem
mem_wen10 <= 1'b0;
mem_wen11 <= 1'b0;
end

else
begin
fsm <= 2'b10; //de-assert read+move to next state
HREADYOUT_int <= 1'b1;
mem_ren00 <= 1'b0;
mem_ren01 <= 1'b0;
mem_ren10 <= 1'b0;
mem_ren11 <= 1'b0;
end

end

2'b10 : begin
fsm <= 2'b00; //change to state 00
end

default : fsm <= 2'b00;
endcase

Sample RTL for the custom AHB-Lite slave is available for download on the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF. The sample RTL is placed
under the folder labeled AHB_slave_fabric in the zip file.

Custom APB3 Master
This section explains how to hook up a custom APB3 master to the MSS using SmartDesign. It is less
likely that a user will write custom logic to create an APB3 master. Instead, Microsemi recommends you
use an Microsemi IP core—Core8051s or CoreABC—as an APB master. The state diagram for the
custom APB3 master is shown here. Figure 12 shows the block diagram for the CoreABC connected to
MSS via CoreAPB3.

Figure 12 • CoreABC Connected to MSS via CoreAPB3
12

www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF

Implementing a Custom APB3 or AHB-Lite Interface
CoreAPB3 has two adding modes: direct addressing mode and indirect addressing mode. To connect
CoreABC to MSS via CoreAPB3 requires you to select the indirect addressing mode. In the indirect
addressing mode, slot 1 is used to store an address register, and slot 0 uses the indirect address register
to set the upper bits of a 32-bit PADDR bus to allow a full 32-bit address range for slot 0. Refer to the
CoreAPB3 Handbook for details. Also, when CoreABC is used as a master in CoreAPB3, the APB Slot
Size configuration option settings should match for both of these cores.

Assume you want to write to the MSS GPIO using CoreABC. To write to the MSS GPIO, you need to
write to the GPIO_OUT register. The memory map for GPIO_OUT is 0x40013088. In order to do that,
you need to configure CoreAPB3 with the indirect addressing mode and set the slot size for both
CoreABC and CoreAPB3 to 64k. Then use the following steps in CoreABC:

1. Write 0x40010000 to Slot1 to set IADDR[31:16] = 0x4001. Note that writes to IADDR[15:0] will be
ignored since the lower log2(RANGESIZE) = 16 bits of the IADDR register are ignored.

2. Write data word to PADDR[19:0] = 0x03088 (slave 0 address 0x8000), which CoreAPB3 passes
to PADDRS0[31:0] = (IADDR[31:16] concatenated with PADDR[15:0]) = 0x40013088.

Here is the sample CoreABc program:

APBWRT DAT 1 0x0000 0x40010000
JUMP $MAIN
//-------------------------
// Main loop
//-------------------------
$MAIN
 $LOOP
 APBWRT DAT 0 0x3088 0x00000000

A sample design showing CoreABC connected to the FIC is available for download on the Microsemi
SoC Products Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF. The sample
design is placed under the folder labeled APB_master_fabric in the zip file.

Custom AHB-Lite Master
This section gives a design example for creating a custom AHB-Lite master in the user logic block. To
create an AHB-Lite master, the user logic block must drive the address and control signals onto the bus
after the rising edge of HCLK. The user logic must also wait if HREADY is Low. Once HREADY is High,
go to the data phase. During the data phase, if HREADY is Low, user logic must hold the data stable
throughout the extended cycles for a write operation, or read the data only after HREADY is High.
13

www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF
http://www.microsemi.com/soc/ipdocs/CoreAPB3_HB.pdf
http://www.microsemi.com/soc/ipdocs/CoreAPB3_HB.pdf

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Figure 13 shows the state diagram for the AHB-Lite master. Sample verilog code is shown in the
"Sample Verilog Code for AHB-Lite Master" section on page 14.

Sample Verilog Code for AHB-Lite Master
case (ahb_fsm_current_state)

Idle: //0x00
begin

if (WRITE == 1'b1)
begin
ahb_fsm_current_state <= Write_FIC_0;
HADDR <= ADDR;
HADDR_int <= ADDR;
HWDATA_int <= DATAIN;
ahb_busy <= 1'b1;
end

else if (READ == 1'b1)
 begin

ahb_fsm_current_state <= Read_FIC_0;
HADDR <= ADDR;
HADDR_int <= ADDR;
ahb_busy <= 1'b1;
end

else
begin
ahb_fsm_current_state <= Idle;
end

end

Figure 13 • AHB-Lite Master State Diagram

Idle

!READ & !WRITE !READ & WRITE

Read_FIC_0

Read_FIC_2

Read_FIC_1Write_FIC_0

Write_FIC_1
Write_FIC_2

HREADY

HREADY

HREADY

!HREADY

!HREADY

!HREADY
!HREADY

WRITE
14

Implementing a Custom APB3 or AHB-Lite Interface
Write_FIC_0: //0x01 store the address+control signals and apply to coreahblite
begin

HTRANS <= 2'b10;
HSIZE <= HSIZE_int;
HWRITE <= 1'b1;
ahb_fsm_current_state <= Write_FIC_1;
ahb_busy <= 1'b1;

end

Write_FIC_1: //0x02
begin

if (HREADY == 1'b0) //keep the address+control signals when slave is not ready
 yet

begin
HTRANS <= 2'b10;
HSIZE <= HSIZE_int;
HWRITE <= 1'b1;
HADDR <= HADDR_int;
ahb_fsm_current_state <= Write_FIC_1;
ahb_busy <= 1'b1;
end

else //send the data+go to next state, doesn't need to keep the address+other
 controls active

begin
HWDATA <= HWDATA_int;
HADDR <= 32'h00000000;
HTRANS <= 2'b00;
HWRITE <= 1'b0;
ahb_fsm_current_state <= Write_FIC_2;
ahb_busy <= 1'b1;
end

end
Write_FIC_2: //0x03

begin
if (HREADY == 1'b0) //keep the data when slave is not ready yet

begin
ahb_fsm_current_state <= Write_FIC_2;
ahb_busy <= 1'b1;
end

else //finish the write transfer
begin
ahb_fsm_current_state <= Idle;
ahb_busy <= 1'b0;
end

 end

Read_FIC_0: //0x04 store the address+control signals and apply to coreahblite
begin

HTRANS <= 2'b10;
HSIZE <= HSIZE_int;
HWRITE <= 1'b0;
ahb_fsm_current_state <= Read_FIC_1;
ahb_busy <= 1'b1;

end
Read_FIC_1: //0x05

begin
if (HREADY == 1'b1) // go to next state

begin
ahb_fsm_current_state <= Read_FIC_2;
end

else //keep the address+control signals when slave is not ready yet
begin
HTRANS <= 2'b10;
HSIZE <= HSIZE_int;
15

Connecting User Logic to the SmartFusion Microcontroller Subsystem
HWRITE <= 1'b0;
HADDR <= HADDR_int;
ahb_fsm_current_state <= Read_FIC_1;
ahb_busy <= 1'b1;
end

end
Read_FIC_2: //0x06

begin
if (HREADY == 1'b1) //read the data+finish the read transfer

begin
DATAOUT <= HRDATA;
ahb_fsm_current_state <= Idle;
ahb_busy <= 1'b0;
end

else //waiting slave to be ready
begin
ahb_fsm_current_state <= Read_FIC_2;
ahb_busy <= 1'b1;
end

HADDR <= 32'h00000000; //doesn't need to keep the address +
 other controls any more

HTRANS <= 2'b00;

end
endcase

Sample RTL for the custom AHB-Lite master is available for download on the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF.
The sample RTL is in the AHB_master_fabric folder in the zip file.

Conclusion
The SmartFusion cSoC device contains a hard MSS, programmable analog circuitry, and FPGA fabric.
The MSS consists of an ARM Cortex-M3 processor, AHB matrix, system registers, Ethernet MAC,
several peripherals, DMA engine, RTC, eNVM, eSRAM, and FIC. The FIC performs an AMBA bus
bridging function between the MSS and FPGA fabric. In order to connect the FPGA fabric to the MSS
through the FIC, the AHB-Lite or APB3 interface must be added to custom user logic. This application
note explains how to create the AHB-Lite or APB3 wrapper on custom logic. Instructions for setting up
simulation and checking the custom logic using the bus functional model (BFM) flow are included as well.

Appendix A: Creating a Subsystem Design with a Custom
APB3 or AHB-Lite to MSS

This appendix describes how to connect a custom APB3 slave or AHB-Lite slave interface to the MSS.
For additional information refer to:

http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_FIC/mss_fic_ext_apb3_ug_1.pdf

http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_FIC/mss_fic_ext_ahb_apb3_ug_1.pdf
16

www.microsemi.com/soc/download/rsc/?f=A2F_AC333_DF
http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_FIC/mss_fic_ext_apb3_ug_1.pdf
http://coredocs.actel-ip.com/Actel/SmartFusionMSS/MSS_FIC/mss_fic_ext_ahb_apb3_ug_1.pdf

Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS
Step 1
Once the Libero SoC project is created, double-click on MSS. The MSS will open, as shown in Figure 14.

Step 2
Using the MSS configurator, double-click the Fabric Interface sub-configurator (Figure 15) and
configure the FIC with an APB3 or AHB-Lite interface. For an APB3 slave, select AMBA APB3 and for
an AHB slave, select AHB-Lite. Also, select the master or slave as needed and then promote the
interface to the top level.

Figure 14 • Add Microcontroller Subsystem Dialog in New Project

Figure 15 • Configuring the Fabric Interface Controller
17

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Step 3
Double-click the clock management block and configure the Clock management dialog as needed
(Figure 16). Then enable and promote FAB_CLK.

Step 4
Enable M2F_RESET_N from the Reset Management block and promote it to the top level.

Step 5
Configure other MSS blocks as needed for your design and generate the MSS block.

Step 6
Add/create the RTL source code for the custom APB3/AHB-Lite block in Libero SoC.

Figure 16 • Configuring Clock Configurator
18

Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS
Step 7
For adding a bus definition to the APB3/AHB-Lite wrapper logic, right-click the RTL source code for the
custom APB3/AHB-Lite wrapper in the Design Hierarchy tab and select Create Core from HDL, as
shown in Figure 17.

Click Yes to the prompt, as shown in Figure 18.

Figure 17 • Adding Bus Definition to the APB3/AHB-Lite Wrapper Logic

Figure 18 • Message Pop-up Window
19

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Step 8
Select Add Bus Interface in the Edit Core Definition window, as shown in Figure 19.

Step 9
Select a bus definition from the Select Bus Definition window, as shown in Figure 20.

Figure 19 • Edit Core Definition Window

Figure 20 • Bus Definition Window
20

Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS
Click Map by Name to map the signals automatically and the configurator will attempt to map any similar
signal names between the bus definition and pin names on the instance.

Map other signals manually which are are not mapped with Map by Name.

Step 10
Select the RTL source code for the custom APB3/AHB-Lite wrapper in the Design Hierarchy tab and
drag it onto the canvas.

Step 11
Expand the Bus Interfaces section in the Catalog. Select the appropriate bus interface and drag it onto
the canvas. For an AHB-Lite slave, select CoreAHBLite 3.1.102 and drag it onto the canvas. For an
APB3 slave, select CoreAPB3 3.0.103 and drag it onto the canvas. If you have both APB3 slave and
AHB-Lite slave, select CoreAHBLite 3.1.102, CoreAHBtoAPB3 2.0.116, and CoreAPB3 3.0.103 and
drag them onto the canvas. Make sure to choose the right slot or slots for them when configuring
CoreAHBLite or CoreAPB3.

Figure 21 • Edit Core Definition Window
21

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Step 12
Connect all subsystem signals to the FIC bus interface(s) using the SmartDesign auto-connect feature or
manually build the AMBA subsystem, as shown in Figure 22.

Step 13
Connect the FAB_CLK clock signal from the MSS block to the clock signals of the fabric AMBA
subsystem.

Step 14
Connect the M2F_RESET_N signal from the MSS block to the reset signals of the fabric AMBA
subsystem.

Step 15
Connect other signals present on the fabric AMBA subsystem as needed. Then generate the
SmartDesign block.

Appendix B: Simulating the User Logic Block
This section describes how to simulate your user logic block with a BFM. Three BFM files are generated
when the top-level SmartDesign block is created: Test.bfm, User.bfm, and Subysystem.bfm. You must
customize the User.bfm file to emulate Cortex-M3 processor transactions in your system. This file
contains an include command to subsystem.bfm that needs to be untenanted if you have any fabric
peripherals that you wish to simulate. The memory map of the fabric peripherals is specified inside
subsystem.bfm. You can refer to those definitions inside this *.bfm file.

The following section describes the simulation setup using a custom APB interface. You can follow the
same for a user AHB interface.

Figure 22 • Connection to MSS

MSS
(APB Interface)

CoreAPB3

Custom APB
Master or Slave

with Bus Interface

MSS
(AHB Interface)

CoreAHBLite

Bridge
CoreAHB2APB3

CoreAPB3

Custom AHB
Wrapper with
Bus Interface

Custom APB3
Wrapper with
Bus Interface
22

Appendix B: Simulating the User Logic Block
Step 1
Open the User.bfm script file from the Simulation folder. Add or modify the lines shown in bold font below
to User.bfm. This BFM exercises only the register block. You need to add BFM for the other blocks in
order to see the simulation activity on those blocks.

#===
Enter your BFM commands in this file.
#
Syntax:

#
memmap resource_name base_address;
#
write width resource_name byte_offset data;
read width resource_name byte_offset;
readcheck width resource_name byte_offset data;
#
#===

int i;
int j;
procedure user_main;

uncomment the following include if you have soft peripherals in the fabric
that you want to simulate. The subsystem.bfm file contains the memory map
of the soft peripherals.
include "subsystem.bfm"

add your BFM commands below:
wait 5;
print "**";
print "Testing Custom APB slave block";
print "**";

write b reg_apb_wrp_0 0x00 0x01;
write b reg_apb_wrp_0 0x04 0x05;
write b reg_apb_wrp_0 0x08 0x09;
wait 5;
readcheck b reg_apb_wrp_0 0x00 0x01; # Expect value 01
readcheck b reg_apb_wrp_0 0x04 0x05; # Expect value 05
readcheck b reg_apb_wrp_0 0x08 0x09; # Expect value 09
wait 10;

header "Testing reg_apb_wrp_0 in loop mode";
loop j 0 16 4

loop i 0 16
write b reg_apb_wrp_0 j i;
readcheck b reg_apb_wrp_0 j i; # Expect value i

endloop
endloop

header "Testing reg_apb_wrp_0 0x40050004 address in loop mode";
loop i 0 16
write b reg_apb_wrp_0 0x04 i;
readcheck b reg_apb_wrp_0 00x04 i; # Expect value i
endloop

header " Current Time is:%0d", $TIME;
waitns 50;
stop 1;
return

The BFM test script will be overwritten if the core is regenerated. You can copy and paste the edits in
user_test.bfm to avoid having to make the edits each time the core is generated.
23

Connecting User Logic to the SmartFusion Microcontroller Subsystem
Step 2
Set up the simulation setting and right-click Simulate under Verify Pre-Synthesized Design in the Libero
SoC design flow window. Select open interactively to run pre-synthesis simulation. Run simulation until
all the BFM commands are executed (Figure 23).

You need to add the proper signal in the waveform window to see the simulation activity. Also, note that
you can type bfmtovec in the ModelSim® Transcript window at the VSIM prompt to get information
related to any errors in the BFM script.

Figure 23 • ModelSim Transcript Window
24

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision Changes Page

Revision 5
(February 2012)

Removed ".zip" extension in the Design files link (SAR 36763). 9, 12, 13,
and 16

Revision 4
(January 2012)

Updated the design files for Libero SoC v10.0 (SAR 35781).

Modified "Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-
Lite to MSS" and added two new steps (SAR 35781).

16 to 22

Modified text placed under "Step 2" in "Appendix B: Simulating the User Logic
Block" (SAR 35781).

24

Removed old images and placed new images for Figure 12, Figure 14, Figure 15,
Figure 17, and Figure 18 (SAR 35781).

16 to 19

Revision 3
(June 2010)

Figure 4 modified to reflect what is described. 4

Revision 1
(February 2010)

Links to other SmartFusion documents were corrected and some terminology
changes made; AMBA-Lite was changed to AMBA, APB V3 was changed to APB3,
and AHB-L was changed to AHB-Lite.

N/A

The "AMBA Interface in the FIC" section was revised to exclude 16-bit APB as a
type of interface to the fabric.

4

"Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to
MSS" was revised.

16

"Appendix B: Simulating the User Logic Block", formerly Appendix C, was revised. 22

"Creating a Subsystem Design with a Custom APB Master (Core8051s)," formerly
Appendix B, was removed.

N/A

Note: *The part number is located on the last page of the document. The digits following the slash indicate the month
and year of publication.
25

s of

ctor
trial
and
and
 at

Microsemi C
One Enterpris
Within the US
Sales: +1 (94
Fax: +1 (949)
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademark

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semicondu
solutions for: aerospace, defense and security; enterprise and communications; and indus
and alternative energy markets. Products include high-performance, high-reliability analog
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs,
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more
www.microsemi.com.

orporate Headquarters
e, Aliso Viejo CA 92656 USA
51900201-5/02.12

Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.A: +1 (949) 380-6100
9) 380-6136
 215-4996

http://www.microsemi.com
http://www.microsemi.com

	Connecting User Logic to the SmartFusion Microcontroller Subsystem
	Introduction
	Overview of AMBA
	AMBA Interface in the FIC
	Implementing a Custom APB3 or AHB-Lite Interface
	Custom APB3 Slave
	Custom AHB-Lite Slave
	Custom APB3 Master
	Custom AHB-Lite Master

	Conclusion
	Appendix A: Creating a Subsystem Design with a Custom APB3 or AHB-Lite to MSS
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Step 8
	Step 9
	Step 10
	Step 11
	Step 12
	Step 13
	Step 14
	Step 15

	Appendix B: Simulating the User Logic Block
	Step 1
	Step 2

	List of Changes

