
Application Note AC139

Using Synplify to Design in Microsemi
Radiation-Hardened FPGAs

Table of Contents

Introduction
Microsemi’s RadHard and RadTolerant FPGAs offer advantages for applications in commercial and
military satellites, deep space probes, and all types of military, and high reliability equipment.

Synplify version 5.31 and later provides designers of radiation-hardened FPGAs an automatic means of
steering synthesis away from standard commercial sequential elements (flip-flops). Synplify
automatically infers either C-C, TMR, or TMR_CC implementations in place of the normal flip-flops,
instead of post-processing the netlist for flip-flop substitution.

This application note is intended to help designers understand the design flow required when using
Synplify to design in Microsemi’s radiation-hardened FPGAs.

Microsemi Register Implementation Techniques
Microsemi recommends three techniques for implementing the logic of the sequential elements in
radiation-hardened FPGAs (C-C, TMR, and TMR_CC).

The C-C technique uses combinatorial cells with feedback (instead of flip-flop or latch primitives) to
implement storage. For example, a DFP1 (comprised of two combinational modules) will be used in
place of a DF1.

TMR is an acronym for triple-module-redundancy (or triple voting). It is a register implementation
technique; each register is implemented by three flip-flops (or latches) that “vote” to determine the state
of the register.

TMR_CC is also a triple-module-redundancy technique. Each voting register is composed of
combinatorial cells with feedback (instead of flip-flop or latch primitives).

Note that in Microsemi’s RTAX-S device family, better TMR support for the sequential flip-flops is
available through hardware itself. For Axcelerator RT devices, the TMR is built into the silicon making
soft TMR via the Synthesis tool unnecessary for sequential logic. Microsemi does not recommend using
tmr_cc to make TMR register with combinatorial cells.

Some techniques are not available or appropriate for all Microsemi families. Contact Microsemi technical
support for more information.

Introduction . 1
Microsemi Register Implementation Techniques . 1
Synplify Attribute syn_radhardlevel . 2
Using Attributes . 2
Design Example . 3
Summary . 4

Appendix . 5

List of Changes . 7
May 2012 1

© 2012 Microsemi Corporation

Using Synplify to Design in Microsemi Radiation-Hardened FPGAs
Synplify Attribute syn_radhardlevel
Synplify provides an attribute called “syn_radhardlevel” to specify the register implementation technique
for designs that use Microsemi’s radiation-hardened FPGAs. You can apply this attribute to a module,
architecture, or a register output signal (inferred register in VHDL). If necessary, you can apply it globally
to the top-level module or architecture of your design and then selectively override it for different portions.
You can also control the design technique you apply on a register by register basis.

The values for “syn_radhardlevel” are:

• “none” - Use standard design techniques

• “cc” - Use C-C implementation

• “tmr” - Use TMR implementation

• “tmr_cc” Use TMR_CC implementation

SEU Resistant Design Techniques
You can influence a device’s resistance to SEU (single event upset) effects by using certain logic design
techniques. The default technique, using S-FFs, produces designs that are the most susceptible to SEU
effects. Because ACT 1 and 40 MX devices do not have S-modules, S-FFs cannot be implemented in
these devices.

There are two SEU resistant design techniques (in addition to the default) that can be used in Actel
devices with Synplicity. The techniques are, in order of increasing resistance to SEU effects, CC-FFs,
and triple voting. Synplicity also enables custom implementations. A single design may incorporate any
or all of these design techniques.

Using CC-FFs
CC-FFs produce designs that are more resistant to SEU effects than designs that use S-FFs. ACT 1 and
40MX devices use CC-FFs by default. CC-FFs cannot be implemented in 54SX devices at this time.
CC-FFs typically use twice the area resources of S-FFs.

Using Triple Voting
TMR produces designs that are most resistant to SEU effects. Instead of a single flip-flop, triple voting
uses three flip-flops leading to a majority gate voting circuit. This way, if one flip-flop is flipped to the
wrong state, the other two override it and the correct value is propagated to the rest of the circuit.
Because of the cost (three to four times the area and two times the delay required for S-FF
implementations), triple voting is usually implemented using S-FFs. However, you can implement triple
voting using only CC-FFs in Synplicity.

Figure 1 on page 3 displays some examples of the register implementation described above after using
the “syn_radhardlevel” attribute.

The attribute is only effective, if the corresponding Microsemi Verilog (*.v) or VHDL (*.vhd) macro file(s)
for the design technique(s) you use is included in the Source Files list of your Synplify Project. The first
Microsemi file specified in the list determines the default (global) design technique. Then you can use
“syn_radhardlevel” to override your defaults on a register by register basis or at the sub-module level.

Using Attributes
You can use the “syn_radhardlevel” attribute in different ways. The following “syn_radhardlevel”
examples describe its use in a design constraint, Verilog, and VHDL file.

Constraints File
define_attribute {dataout[3:0]}
syn_radhardlevel {“cc”}

Veri log
module top (clk, dataout, a, b);
2

Design Example
input clk;
input a;
input b;
output dataout [3:0];
reg [3:0] dataout

/* synthesis syn_radhardlevel="tmr" */ ;
/* Other coding */

VHDL
library synplify;
use synplify.attributes.all;
architecture top of top isattribute
syn_radhardlevel of top: architecture is
“tmr_cc”;
-- Other coding

Design Example
The design example is not an actual design. It illustrates and example flow for Microsemi
radiation-hardened design and the use of the attribute “syn_radhardlevel”. The design is written in
Verilog. All source code files are listed in the "Appendix" on page 5. The design has two hierarchies, as
shown in Figure 2 on page 4.

The design requirements for the radiation hardened example design are as follows:

1. Default (global) implementation for the registers must be “tmr”.

2. Register “b1_int” in “top” module must be implemented as “tmr_cc”.

3. All registers in “module_b” module must be implemented as “cc”.

4. All registers in “module_d” module must be implemented as “tmr_cc”

Use the following steps to complete the design and satisfy the requirements:

1. Bring “top.v” to your favorite editor and make the following edit:

reg [15:0] a1_int, b1_int /* synthesis

Figure 1 • Logic Implementations of Radiation-Hardened Register

dfpc

TMR TMR_CC

CC

sum\[6\].u1

dfc1b

dfc1b

dfc1b

dfp1

dfp1

dfp1

cm8cm8

y.q3

y.u2

y.u3

y.u1y.q1

y.q2

I_3.G_8 I_3.G_8

d

d

clk

clk

clr

d
clk

d
clk
clr

d
clk
clr

clr

pre

d
clk
pre

d
clk
pre

pre

q

q

q

q

q

q

q

d0

d3

d1
d2

s00
s01
s10
s11

d0

d3

d1
d2

s00
s01
s10
s110

0

0

0

0

0

0

1 1

11

y y
3

Using Synplify to Design in Microsemi Radiation-Hardened FPGAs
syn_radhardlevel="tmr_cc" */;

Note: Step 1 is for design requirement B.

2. Edit “module_b.v” to the following:

module module_b (a, b, sub, clk, rst) /*synthesis
syn_radhardlevel=”cc” */;

Note: Step 2 is for design requirement C.

3. Edit “module_d.v” to the following:

module module_d (a, b, sum, clk, rst) /*synthesis
syn_radhardlevel="tmr_cc" */;

Note: Step 3 is for design requirement D.

4. Bring up Synplify and create a new project.

5. In the Synplify “Set Device Options” window, select an Microsemi device that is RadHard or
RadTolerant.

6. Add the Microsemi Verilog macro files (“cc.v,” “tmr.v,” and “tmr_cc.v”) to the project, with “tmr.v”
listed as the first file.

Note: Since you use all three register implementations, all three Verilog macro files need to be included in
the project. With “tmr.v” listed as the first file, it ensures that the global register implementation is
“tmr” (requirement A).

7. Add all design modules to the project.

8. Click RUN.

9. Click Technology View to confirm the implementations.

Summary
By using the Synplify attribute “syn_radhardlevel” in conjunction with Microsemi macro files, Synplify
enables you to design in Microsemi’s radiation-hardened FPGAs with little effort. However, it allows you
precise control of the register implementation. You only need to focus on controlling designs, not on
controlling the tool. The easy and clean flow helps you reduce design cycle and improve productivity.

Figure 2 • Logic Implementations of Radiation-Hardened Register

top

module_a

module_b

module_d

module_c
4

Appendix
Appendix
This appendix lists all five modules used in the Design Example section of the application note.

/*********************************** top.v*********************************/
module top (a1, b1, sel_byte0, clk, sum_out, sum_carry, sub_out, sub_carry, shft_out,
rst);
input [15:0] a1, b1;
input clk,rst,sel_byte0;

output [7:0] sum_out, sub_out;
output sum_carry, sub_carry;

output [8:0] shft_out;

wire [7:0] sum_out, sub_out;
wire sum_carry, sub_carry;

wire [8:0] sum_out_int, sub_out_int, shft_out_int;

reg [15:0] a1_int, b1_int /* synthesis syn_radhardlevel="tmr_cc" */;
reg [7:0] a_byte, b_byte;
regsel_byte0_int;

always @ (posedge clk or posedge rst)
begin

if (rst) begin
a1_int <= 0;
b1_int <= 0;
sel_byte0_int <= 0;

end
else begin

a1_int <= a1;
b1_int <= b1;
sel_byte0_int <= sel_byte0;

end
end

always @ (a1_int or b1_int or sel_byte0_int)
begin

if (sel_byte0_int) begin
a_byte <= a1_int [7:0];
b_byte <= b1_int [7:0];

end
else begin

a_byte <= a1_int [15:8];
b_byte <= b1_int [15:8];

end
end
module_a i1 (a_byte, b_byte, sub_out_int, shft_out, clk, rst);
module_d i2 (a_byte, b_byte, sum_out_int, clk, rst);

assign sum_out = sum_out_int[7:0];
assign sum_carry = sum_out_int[8];

assign sub_out = sub_out_int[7:0];
assign sub_carry = sub_out_int[8];

assign shft_out = shft_out_int;
endmodule
/*********************************** module_a.v*********************************/
module module_a (a, b, sub, shft, clk, rst);

input [7:0] a, b;
input clk, rst;
5

Using Synplify to Design in Microsemi Radiation-Hardened FPGAs
output [8:0] sub, shft;

module_b i2 (a, b, sub, clk, rst);
module_c i3 (a, shft, clk, rst);

endmodule

/*********************************** module_b.v*********************************/
module module_b (a, b, sub, clk, rst) /*synthesis syn_radhardlevel="cc" */;

input [7:0] a, b;
input clk, rst;

output [8:0] sub;
reg [8:0] sub;

reg [7:0] a_int, b_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
b_int <= 0;
sub <= 0;
end

else begin
a_int <= a;
b_int <= b;
sub <= a_int - b_int;
end

endmodule

/*********************************** module_c.v*********************************/
module module_c (a, shft, clk, rst);

input [7:0] a;
input clk, rst;

output [8:0] shft;
reg [8:0] shft;

reg [7:0] a_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
shft <= 0;
end

else begin
a_int <= a;
shft <= a_int >> 2;
end

endmodule

/*********************************** module_d.v*********************************/
module module_d (a, b, sum, clk, rst) /*synthesis syn_radhardlevel="tmr_cc" */;

input [7:0] a, b;
input clk, rst;

output [8:0] sum;
reg [8:0] sum;
6

List of Changes
reg [7:0] a_int, b_int;

always @ (posedge clk or posedge rst)

if (rst) begin
a_int <= 0;
b_int <= 0;
sum <= 0;
end

else begin
a_int <= a;
b_int <= b;
sum <= a_int + b_int;
end

endmodule

List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 1
(May 2012)

The "Microsemi Register Implementation Techniques" section was revised (SAR 37635). 1

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
7

5192665-1/5.12

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Using Synplify to Design in Microsemi Radiation-Hardened FPGAs
	Introduction
	Microsemi Register Implementation Techniques
	Synplify Attribute syn_radhardlevel
	SEU Resistant Design Techniques

	Using Attributes
	Constraints File
	Veri log
	VHDL

	Design Example
	Summary
	Appendix
	List of Changes

