
Application Note AC336

Designing a High-Speed Timer in SmartFusion
Fabric

Table of Contents

Introduction
This document explains how to implement an independent timer in SmartFusion® customizable system-
on-chip (cSoC) devices using FPGA fabric. The design example uses a timer with an advanced high-
performance bus lite (AHB-Lite) interface. This has been implemented so that the timer can be run with
an independent clock that is asynchronous to the microcontroller subsystem (MSS) clock. The
independent clock can run at a much higher speed than the MSS clock, allowing applications in which an
event must be captured that has a much higher resolution than the MSS clock. This timer can be started
with a programmable FPGA I/O. The MSS can initialize the timer, load the timer value, and also start the
timer. The fabric logic is used to customize the external interface. The logic that interfaces the timer with
the MSS takes care of synchronization so that this timer can act as a standard slave to the MSS; running
with an independent clock.

Design Example Overview
The design example shows a 24-bit timer module with an AHB-Lite interface. It acts as a slave to the
MSS and can be connected to the MSS via the fabric interface controller (FIC). Figure 1 on page 2 shows
how the timer can be connected to the MSS.

Introduction . 1
Design Example Overview . 1
Description of the Timer Block . 2
Interface and Register Description . 4
Hardware Implementation . 6
Running the Design . 7
Conclusion . 8
Appendix A – Design Files . 9
List of Changes . 9
January 2013 1

© 2013 Microsemi Corporation

Designing a High-Speed Timer in SmartFusion Fabric
Description of the Timer Block
The timer has a decrementing counter and its count value is loaded from the MSS. It has several
registers that can be accessed through the AHB-Lite interface. The timer can be started by the MSS or
the FPGA I/O. The counter uses FABTIMER_CLK, which can run at a separate frequency than the MSS
clock. The maximum MSS clock frequency is 100 MHz. However, this design example allows running
FABTIMER_CLK at a much higher speed than the MSS clock. Figure 2 shows the top-level block
diagram of the timer. It has several unit/components: sync block, prescale, interrupt, sampling, and
decrementing counter.

Sync Block
This block performs the clock synchronization. It monitors AHB-Lite bus signals and passes various
register settings from the MSS clock to the FABTIMER_CLK clock. It also allows reading the register
settings from the FABTIMER_CLK clock domain and passing it to the MSS clock domain. This block
decodes the AHB-Lite address and depending on the HWRITE signal, performs a read or write
operation. The design example assumes that the MSS clock and the FABTIMER_CLK are asynchronous
to each other. It uses the handshake protocol to transfer data between these two asynchronous clock
domains.

Figure 1 • Fabric Timer Connected to MSS via FIC

FIC
(AHB Interface)

Fabric Timer

MSS

FABTIMER_CLK

Pulse_in

Figure 2 • Fabric Timer Top-Level Block Diagram

Decrementing
Counter

Prescale

Sampling

Sync Block Interrupt

AHB

HCLK

HRESETn

FABTIMER_CLK

Pulse_in

TIMINT

TIMINT_pending
2

Description of the Timer Block
A handshake protocol circuit uses less logic and guarantees that all bits of a data bus crossing an
asynchronous clock domain are registered by the same clock edge in the receiving clock domain. The
two domains exchange data via the reg_load_en signal, which is the request signal from HCLK to the
FABTIMER_CLK domain, and the reg_load_ack signal, which is the acknowledge signal from
FABTIMER_CLK to the HCLK domain. Figure 3 shows this state simplified. The basic operation
sequence has the following steps:

1. The HCLK domain sends a reg_load_en0 signal to the FABTIMER_CLK domain, which is
registered at FABTIMER_CLK domain, to generate reg_load_en2.

2. The FABTIMER_CLK domain at this point reads the AHB_lite bus signals from the HCLK domain
and updates the appropriate registers.

3. After this read operation has finished, the FABTIMER_CLK domain sends a reg_load_ack0
signal, which gets registered by HCLK domain, to generate reg_load_ack2.

4. The HCLK domain turns off the reg_load_en0, which eventually turns off the reg_load_en2.

5. Once the FABTIMER_CLK domain sees a low reg_load_en2 signal, it turns off the reg_load_ack0
signal to the FABTIMER_CLK domain.

6. Once the HCLK domain sees the low reg_load_ack2 signal, the data transfer between the two
asynchronous domains is complete.

Figure 3 • Handshaking Protocol Between HCLK and FABTIMER_CLK Domain

reg_load_en0 <= 0;

reg_load_en0 <= 0;

reg_load_en2 = 1

reg_load_en2 = 0

reg_load_ack2 = 1

reg_load_ack0 <= 1;

reg_load_ack0 <= 0;

reg_load_ack2 = 0

reg_load_en0 <= 1;
HREADYOUT <= 0;

HREADYOUT <= 1;

HSEL = 1 and
HREADY = 1

ST 0

F

ST 1

ST 2

ST 3

FST 0

F

FST 1

F

F

F

3

Designing a High-Speed Timer in SmartFusion Fabric
Prescale
The prescale component is used to provide a clock enable pulse for the decrementing counter. It allows
dividing the counter clock (FABTIMER_CLK) by 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, or 1,024. Note that
the FABTIMER_CLK can be driven for the clock condition circuit (CCC) or it can be driven by the FPGA
I/O.

Decrementing Counter
The decrementing counter is a 24-bit down counter. The counter can operate in two modes: Continuous
mode and One-shot Timer mode. In Continuous mode, when the counter reaches zero, the counter is
reloaded with the start value, which is stored in a programmable register, and continues to count down. In
One-shot Timer mode, the counter decrements from its high value and halts on reaching zero. The timer
must be reprogrammed from the MSS to begin counting down again.

Interrupt
The interrupt unit handles the interrupt generation. Two output ports, TIMINT and TIMINT_pending, show
two types of interrupts. TIMINT is generated every time the counter reaches zero. TIMINT_pending holds
the interrupt and is only cleared when the interrupt clears the register to which TIMERINTCLRA is
written. Since the counter is running in the FABTIMER_CLK domain, this block stretches the interrupt
pulse so it can be captured by HCLK and also synchronizes the interrupt signals with HCLK.

Sampling
The sampling block samples Pulse_in input and detects the rise and fall condition. The counter starts
when Pulse_in has a falling edge.

Interface and Register Description
Table 1 gives the port descriptions for the design example.

Table 1 • Interface Description

Signal Direction Description

HCLK Input AHB bus clock. This clock times all bus transfers.

HRESETn Input Reset. The bus reset signal is active Low and is used to reset the system and the bus.
This is the only active Low AHB signal.

HADDR[4:0] Input AHB address.

HWRITE Input Transfer direction. When High, this signal indicates a write transfer and when Low, a
read transfer.

HSIZE[2:0] Input Transfer size. Indicates the size of the transfer, which can be byte (8-bit), half-word
(16-bit), or word (32-bit). 000 – Byte, 001 – Half-word, and 010 – Word. Only word size
transfer is used in the design example.

HWDATA[31:0] Input 32-bit data from the master

HREADY Input Ready signal from all other AHB slaves.

HSEL Input Combinatorial decode of HADDR, which indicates that this slave is currently selected.

HRDATA[31:0] Output 32-bit data written back to the master.

HREADYOUT Output Transfer done. When High, the HREADY signal indicates that a transfer has finished
on the bus. This signal can be driven Low to extend a transfer.
4

Interface and Register Description
Several registers are available to dynamically control the operation of the timer. Table 2 shows the
register settings.

HRESP[1:0] Output Transfer response, which has the following meanings:
00 = Okay
01 = Error
10 = Retry
11 = Split

HTRANS[1:0] Input Types of transfer:
00 = Idle
01 = Busy
10 = Non-sequential
11 = Sequential

TIMINT Output Interrupt output for timer. This signal indicates that an interrupt has been generated by
the counter having decremented to zero.

TIMINT_pending Output Pending interrupt output for timer. This signal indicates that a pending interrupt has
been generated by the counter having decremented to zero.

Pulse_in Input Input pulse.

FABTIMER_CLK Input Fabric clock, can come from Fabric I/O or clock conditioning circuit.

FAB_RESETn Input Fabric reset, can be driven from the MSS.

Table 1 • Interface Description (continued)

Table 2 • Register Map

Offsets Type Reset Values Name Description

0x00 W 0x0000 TIMERLOADA Load address

0x04 R 0x0000 TIMERVALUEA Timer load value

0x08 R/W 0x0000 TIMERCONTROLA Control register

Bit 2: Timer operation mode

0 = Continuous operation
1 = One-shot count

Bit 1: Interrupt enable

0 = Interrupt disabled
1 = Interrupt enabled

Bit 0: Enable bit for timer

0 = Timer disabled
1 = Timer enabled

0x0C R/W 0x0000 TIMERPRESCALEA Prescale setting

Bit 3: 0 Prescale field, based on FAB_CLK

0000 = Divide by 1 (default)
0001 = Divide by 2

0x10 R/W 0x0000 TIMERINTCLRA Interrupt clear register. Any write to this register will clear
(deassert) the TIMINT_pending interrupt output.

0x14 R 0x0000 TIMERTIMINT1 Input pulse start value

0x18 R 0x0000 TIMERTIMINT2 Input pulse stop value
5

Designing a High-Speed Timer in SmartFusion Fabric
Hardware Implementation
The design example is available as a VHDL source file (refer to "Appendix A – Design Files" on page 9).
This HDL file can be imported to any existing SmartFusion cSoC project or any new project. Here are the
important steps for using the HDL file in a Libero® System-on-Chip (SoC) software:

1. Import the HDL files (AHB_timer.vhd and Decrementor.vhd) into the Libero SoC project.

2. Configure the fabric interface inside the MSS configurator by double-clicking the Fabric Interface
sub-configurator.

3. Configure the FIC with an AHB-Lite interface (Figure 4), and check Use Master Interface.

4. Select MSS_Master_AHB bus interface on the fabric interface and promote to top level.

5. Configure the other block inside the MSS configurator as needed and generate the MSS.

Figure 4 • Configuring the Fabric Interface Controller
6

Running the Design
6. Add a bus interface to AHB_timer logic. Right-click on the AHB timer HDL file in the Design
Hierarchy and select Create Core from HDL. Click on Add Bus Interface and select AHB slave.
The Edit Core Definition widow is displayed as shown in Figure 5. Click Map by Name to map
the signals automatically and the configurator attempts to map any similar signal names between
the bus definition and pin names on the instance. Map other signals manually that are not
mapped by Map by Name and click OK.

7. Instantiate the AHB_timer.vhd in SmartDesign.

8. Connect all other subsystem signals as needed and generate a top-level HDL file.

9. Run BFM simulation. Use the user.bfm to add BFM to exercise the AHB timer block.

10. Run synthesis with appropriate Synopsys Design Constraint (*.sdc) file during synthesis.

11. Run place-and-route with appropriate pin assignment.

Running the Design

Board Settings
The design example works on the SmartFusion Development Kit Board and the SmartFusion Evaluation
Kit Board with default board settings. Refer to the following user’s guides for default board settings:

• SmartFusion Development Kit User’s Guide

• SmartFusion Evaluation Kit User’s Guide

Figure 5 • Add Bus Interface Dialog Box
7

http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.PDF
http://www.microsemi.com/soc/documents/A2F_EVAL_KIT_UG.pdf

Designing a High-Speed Timer in SmartFusion Fabric
Program the Design and Running the Application
Program the SmartFusion Evaluation Kit Board or the SmartFusion Development Kit Board with the
generated/provided STP file (refer to "Appendix A – Design Files" section on page 9) using FlashPro and
then power cycle the board. Invoke the SoftConsole IDE from the Libero SoC project (refer to "Appendix
A – Design Files" section on page 9) and launch the debugger.

Start a HyperTerminal with a baud rate of 57600, 8 data bits, 1 stop bit, no parity, and no flow control. If
your computer does not have the HyperTerminal program, use any free serial terminal emulation
program such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs
tutorial for configuring the HyperTerminal, Tera Term, and PuTTY.

When you run the debugger in SoftConsole, the PuTTy window provides the user interface to select
Timer mode. Figure 6 shows the screenshot of the PuTTy.

Release mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming zip file for more information.

Refer to Building Executable Image in Release Mode and Loading into eNVM tutorial for more
information on building an application in release mode.

Conclusion
SmartFusion cSoC FPGA devices have a programmable high-performance analog block, FPGA fabric,
and a hardened ARM® Cortex™-M3 processor microcontroller block. The microcontroller block is
composed of a 100 MHz Cortex-M3 processor and standard microcontroller peripherals, including two
timers. Similar to a standard microcontroller, these timers are clocked with the PCLK0 that is generated
from a microcontroller clock, also called MSS clock. This maximum PCLK0 frequency is 100 MHz.

Figure 6 • PuTTy Window
8

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
http://www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf

Appendix A – Design Files
However, the FPGA fabric allows creating a custom timer with an independent clock that can be
asynchronous to the MSS clock. This clock can run at a much higher speed than the MSS clock and help
applications, where an event with higher resolution than the MSS clock is needed, to be captured. This
application note shows the design example for that timer.

Appendix A – Design Files
You can download the design files from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=A2F_AC336_DF. The design zip file consists of Libero SoC
projects, programming file (*.stp) for A2F500, and A2F200. Refer to the Readme.txt file included in the
design file for directory structure and description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC336_PF. The programming zip file
consists of STAPL programming files (*.stp) for A2F500, A2F200, and a Readme.txt file.

List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 4
(January 2013)

Added "Board Settings" section and modified "Running the Design" section
(SAR 43469).

7

Revision 3
(February 2012)

Removed ".zip" extension in the links (SAR 36763). 9

Revision 2
(January 2012)

Modified point 5 and 6 listed under "Hardware Implementation" section
(SAR 35817).

6

Added new Figure 5 and Figure 6 (SAR 35817). 7, 8

Added new sections - "Running the Design" and "Release mode"
(SAR 35817).

7, 8

Modified "Appendix A – Design Files" section (SAR 35817). 9

Revision 1
(September 2010)

Modified Table 2 (SAR 27468). 5

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
9

www.microsemi.com/soc/download/rsc/?f=A2F_AC336_DF
www.microsemi.com/soc/download/rsc/?f=A2F_AC336_PF

s of

ctor
trial
and
and
 at

Microse
One Ent
Within th
Sales: +
Fax: +1
© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademark

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semicondu
solutions for: aerospace, defense and security; enterprise and communications; and indus
and alternative energy markets. Products include high-performance, high-reliability analog
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs,
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more
www.microsemi.com.

mi Corporate Headquarters
erprise, Aliso Viejo CA 92656 USA
51900204-4/01.13

Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.e USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

http://www.microsemi.com

	Designing a High-Speed Timer in SmartFusion Fabric
	Introduction
	Design Example Overview
	Description of the Timer Block
	Sync Block
	Prescale
	Decrementing Counter
	Interrupt
	Sampling

	Interface and Register Description
	Hardware Implementation
	Running the Design
	Board Settings
	Program the Design and Running the Application
	Release mode

	Conclusion
	Appendix A – Design Files
	List of Changes

