
Application Note AC304
Simulating SEU Events in EDAC RAM

Introduction
The Actel RTAX-S Field Programmable Gate Array (FPGA) provides embedded user static RAM in addition
to single-event-upset (SEU)-enhanced logic, including embedded triple-module redundancy (TMR)
registers. The embedded user SRAM coupled with the error detection and correction (EDAC) core,
included in the Actel SmartGen core generator, provides mitigation of soft errors within the SRAM blocks
for data-critical applications. The Actel Axcelerator® family of FPGAs is the commercially-available version,
and does not contain the SEU-enhanced logic. It can be used in high-reliability applications such as
avionics, where the use of EDAC to mitigate SEU events in user SRAM may be required.

The Actel EDAC core uses a shortened Hamming code and is capable of detecting up to two errors or
automatically correcting a single error within a single address location. This EDAC core, which includes a
background scrubber that can be used to continually read and correct any single-bit errors found,
provides a very reliable method for mitigating SEU effects in the embedded SRAMs, resulting in error rates
better than 10-10 errors/bit-day. For more information on implementing the EDAC core in Actel RTAX-S or
Axcelerator FPGAs, refer to the Using EDAC RAM for RadTolerant RTAX-S FPGAs and Axcelerator FPGAs
application note.

Although the Actel EDAC core provides mitigation and/or notification of SEU-induced errors within the
embedded SRAMs, the ability to test the user control logic associated with an SEU-induced error is a bit
problematic, as the user must induce an error that simulates a cosmic event. This application note shows
how to accomplish such a feat by using the capabilities of the ModelSim® AE simulator included in the
Actel Libero® Integrated Design Environment (IDE) tool suite.

EDAC Background
The integrity requirement of the data contained within the embedded SRAM is determined by the
particular application and may range from noncritical (such as the as pixel data for an image) to very
critical (such as a header for a communication packet or a data word for a control application). The
designer will need to determine whether the EDAC core is required in the application. If required, the
EDAC core must be configured and the remainder of the design must react to the notification of SEU
events by the EDAC core.

The Actel EDAC core within the Actel SmartGen core generator is configurable for various memory sizes
and has the ability to add optional Error Flags and Test Ports. Table 1 on page 2 gives descriptions for the
Error Flags and Test Ports.

Note that the ability to change the "detect 2 / correct 1" capability of the EDAC core is not
user-configurable, nor is the ability to remove the background scrubber feature. The optional Test Ports
are used to directly access the EDAC SRAM locations and change the coded parity bits directly via the wp
and rp ports. To induce an SEU event using these ports, however, would require calculating the syndrome
bits for a given data word. For an 8-bit data word, this requires padding the data word to 12 bits and
doing matrix multiplication of this word with the generator matrix for the shortened Hamming code (18,
12), which is found in the Using EDAC RAM for RadTolerant RTAX-S FPGAs and Axcelerator FPGAs
application note. Then the syndrome bits must be changed so that on the next read of that location, when
the 18-bit encoded data word is presented to the EDAC decoder, either a CORRECTABLE Flag and the
corrected data is put out from the EDAC block or an Error Flag and the errant data is put out from the
EDAC block.

Additionally, adding Test Ports to the EDAC SRAMs and modifying the stimulus may add excessive
complexity to the user design and testbench in order to verify correct functionality of the user control
logic when an SEU event occurs in the embedded user SRAM.
August 2007 1
© 2007 Actel Corporation

http://www.actel.com/documents/EDAC_71_AN.pdf
http://www.actel.com/documents/EDAC_71_AN.pdf

Simulating SEU Events in EDAC RAM
Creating SEU Events in EDAC SRAMs
Depending upon the selected configuration of the EDAC core in a design, a few possibilities may need to
be tested:

• EDAC memories with no Error Flags or Test Ports

• EDAC memories with Error Flags

• EDAC memories with Error Flags and Test Ports

For the purpose of this application note, the case of EDAC memories with Error Flags will be used in the
example design. Comments will be made to distinguish what would be done in the other cases where
applicable. When simulating EDAC errors in the above three cases, the following is generally true:

• EDAC memories with no Error Flags or Test Ports
SEU events can be simulated, but observability is limited to verifying that the read data in the
simulation is correct for one induced SEU event and is incorrect for two induced SEU events.

• EDAC memories with only Error Flags
SEU events can be simulated. In addition to observing the correct data for one induced SEU event,
the corrected signal will indicate that the EDAC core found and corrected an error in the SRAM
data. In the case of two induced SEU events, not only will the read data be incorrect, but the ERROR
signal will also indicate that the EDAC core found an uncorrectable error.

• EDAC memories with Error Flags and Test Ports
As with the case above, SEU events can be simulated and observed at the data word as well as the
Error or corrected signals. Additionally, the Test Ports are available if the user wishes to add
simulation vectors to manipulate the parity bits of the coded word.

Table 1 • Error Flags and Test Ports

Name Type Polarity
Bit

Width Description

Test Ports

BYPASS In N/A 1 Bypass mode

WP In N/A 6, 7, 7 Write ports for parity bits in Bypass mode

RP Out N/A 6, 7, 7 Read ports for parity bits in Bypass mode

Error Ports

SLOWDOWN Out HIGH 1 Optional flag when scrubbing cannot finish within designated period

ERROR Out HIGH 1 HIGH when two or more errors occurred during one read. Sample
with read data.

CORRECTABLE Out HIGH 1 LOW when two or more errors occurred during one read. HIGH when
one correctable error occurred. Sample with read data.

SCRUB_CORRECTED Out HIGH 1 HIGH indicates scrubbing logic has corrected one error sample with
the write clock.

CADDR Out N/A 12 The address being corrected. Sample with write clock.

SCRUB_DONE Out HIGH 1 HIGH indicates scrub is done. Wait for timer timeout, or user can turn
off scrubbing. Sample with read clock.

TMOUTFLG Out HIGH 1 HIGH indicates timer is timed out.
2

Simulating SEU Events in EDAC RAM
General Description
SEU events are typically initiated by cosmic events that cause heavy ions from galactic rays to collide with
the silicon lattice of a RAM cell. If the heavy ions have sufficient photovoltaic energy, they can produce a
state change in a stored bit, resulting in errors in the stored data. These unpredictable events have been
proven capable of affecting state-of-the-art geometry devices, even in terrestrial applications. If the
stored data in the SRAMs is sensitive to SEU events, mitigation techniques such as the Actel EDAC SRAM
blocks should be employed.

The Actel SmartGen macro generator generates EDAC SRAM blocks for the Axcelerator and RTAX-S FPGA
memories with various configurations such as width, depth, error flags, and test ports. The EDAC SRAM
contains an EDACI (EDAC core) block and an SRAM block instantiated within a top-level wrapper. SRAM
data is written to and read from the SRAMs in the same fashion as with the non-EDAC SRAMs; however,
the EDAC block manages implementation of the shortened Hamming codes—(18, 12), (36, 29), or (54, 47),
depending upon the memory data width (8-, 16-, or 32-bits)—and the background scrubber.

Although the Actel EDAC SRAM block with its detect 2 / correct 1 error capability and the background
scrubber should be sufficient to mitigate most SEU events within the SRAM data, the designer may want
to be notified about an SEU event and have the system take subsequent action, depending upon whether
the EDAC block was able to correct the errors or not.

The Actel Libero IDE tool suite includes the Actel Edition of the Mentor Graphics® ModelSim HDL
simulator. One of the capabilities included in the ModelSim simulator is the ability to force a value onto a
node within the design until a new event triggers a new value to be driven onto that same node. This
application note describes how to use this ModelSim feature to force a node within the EDAC SRAM block
to simulate an SEU event during the writing of the data to the actual SRAM. This error will be detected
either during a read from the EDAC SRAM or during the background scrubbing operation if it is enabled.
The same technique is used to generate either a single SEU event or multiple SEU events in a single
memory location. These would then generate a CORRECTABLE Flag or ERROR Flag, respectively, out of the
EDAC RAM block. The portion of the user circuitry dedicated to these flags is verified in simulation.

EDAC SRAM Design
Figure 1 shows a simplified circuit including the EDAC SRAM block. This simple circuit is sufficient to
demonstrate the ability to simulate SEU events using the ModelSim simulator. The Libero IDE project
containing this design is available from the Actel website for those who would like to have a working
example to test with.

Figure 1 • Axcelerator EDAC SRAM Example Design

STOP_SCRUB

RE

WE

SRAM_RADDR

SRAM_WADDR

SRAM_WDATA

EDACI

RTAX-S
 SRAM

TMOUTFLG

SLOWDOWN

SCRUB_DONE

SCRUB_CORRECTED

CORRECTABLE

ERROR

EDAC RAM

SRAM_RDATA

RAM_RADDR

RAM_RDATA

RAM_WADDR

RAM_WDATA
3

http://www.actel.com

Simulating SEU Events in EDAC RAM
The EDAC block was created with the Actel SmartGen tool. The EDAC SRAM block was configured with
the options shown in Figure 2.

Notice that the Error Flags box is checked and the Test Ports box is not. Despite the fact that the Test Ports
provide access to the coded parity bits, they are not needed for this method of implementing SEU events
in the design. The SRAM configuration was chosen to be 256 locations deep by 8 bits wide, which, with
the additional EDAC coded bits and coded parity bits, will still fit in a single RTAX-S memory block.
Remember, for each of the allowed bit width configurations a different shortened Hamming code is used.
In this method for generating SEU events, the user need not be concerned with the different Hamming
codes used for each width configuration. The EDAC core generated by the SmartGen macro generator is
instantiated into a top-level block with additional logic to register the SRAM write address, SRAM write
data, SRAM read address, and SRAM read data. The stimulus is generated providing a reset and clocks.
This disables the background scrubbing circuitry and writes data to the first 8 locations. This stimulus then
reads those locations back. A snapshot of the simulation is shown in Figure 3 on page 5. There are small
glitches on the CORRECTABLE Flag and the ERROR Flag; however, they are too small to be captured.

Figure 2 • SmartGen EDAC SRAM Block
4

Simulating SEU Events in EDAC RAM
Two items are noteworthy in this simulation. First, the STOP_SCRUB line is set active (HIGH), which stops
the operation of the background scrubber. This allows the user to verify the operation of the user-
designed circuitry in response to the EDAC core without the background scrubber running. The operation
of the background scrubber is tested separately, either after the SRAM locations have been initialized or
using the SRAM initialization for simulation. Also in this particular case, the SRAM is initialized for
simulation with all zeroes, using the meminit.dat file to initialize the contents of the SRAM for simulation.
This initialization is done for the Axcelerator and RTAX-S SRAMs including those configurations with the
EDAC core surrounding the embedded SRAM. In simulation, this will prevent unknown SRAM contents
from creating unknown signal values until the SRAM is loaded with known values. The idea behind this is
that initializing the contents of the SRAM can save considerable simulation time that would normally be
used to initialize these SRAMs before using them. Though this initialization is done in simulation, the
Actel Axcelerator and RTAX-S embedded SRAMs do not have a global reset or preset that can drive the
contents of the SRAMs to a known state. In actual silicon, the SRAM contents should be considered
unknown until the user has initialized them. If the background scrubber is enabled and begins scrubbing
the contents of the SRAM prior to the user initialization of the EDAC SRAM block, the scrubber circuitry
could very well generate SCRUB_CORRECTED or ERROR Flags in response to random data in the SRAMs
prior to initializing those SRAMs.

Figure 3 • EDAC SRAM Write/Read Operations
5

Simulating SEU Events in EDAC RAM
Implementing SEU Events in an EDAC SRAM Design Simulation
To avoid the extra work involved in trying to calculate the syndrome bits and using the Test Ports to
implement SEU events in the user’s simulation, we will use the capabilities of the ModelSim simulator to
change the state of a data line after the EDAC circuitry, just before it is written to the SRAM block in the
Actel device. This ensures that the data in the SRAM now holds a value that simulates an SEU in which a
single bit within the SRAM has been changed. This is accomplished by adding the signals that connect
directly to the Actel SRAM block after the EDAC circuitry in the simulation. The user will need to work
through the hierarchy of the instantiated EDAC blocks in the design until the Actel SRAM primitive is
found instantiated in the EDAC RAM block. In this case, ram64K36 is the Actel SRAM primitive used. Add
the signals of interest (write address, wradx, and write data, wdx) to the simulation. Note that once the
signals in the object window are selected, you can use View > Filter and clear the check box for Internal
Signals to remove the internal signals from the object window. Run the simulation past the point where
some or all data is written to the SRAMs.

Figure 4 shows that the write address, wradx, at the Actel SRAM primitive block is consistent with the
write address applied to the EDAC module. This is useful for keeping track of the location in the SRAM
where the SEU will be located. Note that the write data has been increased to 18 bits, which are used by
the EDAC circuitry to include the extra data bits as well as the Syndrome bits for implementing the (18, 12)
shortened Hamming code for an 8-bit data width, as described in the Using EDAC RAM for RadTolerant
RTAX-S FPGAs and Axcelerator FPGAs application note.

The next step is to add a cursor to the Simulation Results window and determine the time in the
simulation where one or more SRAM write data lines will be manipulated. To add a cursor in the
ModelSim Wave window, select the wave window and choose Add > Cursor. Once the cursor has been
added to the waveform window, select the write data signal that transitions during write operation and
use the Find Next Transition buttons to accurately position the cursor on the transition and read the
simulation time at the bottom of the cursor.

Figure 4 • EDAC SRAM Write Operations

ModelSim Cursor Find Next Transition ButtonsInstantiated Actel SRAM Primitive

Simulation Time
6

http://www.actel.com/documents/EDAC_71_AN.pdf
http://www.actel.com/documents/EDAC_71_AN.pdf

Simulating SEU Events in EDAC RAM
The next operation is to restart the simulation; this is done by clicking the Restart button on the
ModelSim toolbar and accepting the defaults in the Restart dialog box. Now the simulation is ready to run
again. In the ModelSim Transcript window, use the Run command to run the simulation to the time found
earlier, where the write data signal would normally begin to transition. It is critical that the simulation be
run to the exact point of the write data transition. If the simulation is stopped too early, even by 0.3 ns,
the force –deposit command, which forces a signal to the designated value and is valid only from the time
forced until the next transition, is applied too early and the transition we are attempting to modify will
occur as normal.

In this example, the following command was issued in the ModelSim transcript window:

run 460.3 ns

Now the simulation is at the point where we can issue the force -deposit command to suppress the
normally high transition on the write data wd4 signal using the following command in the ModelSim
transcript window. Notice that the force -deposit command requires the full hierarchical path to the
signal, which is found in the ModelSim wave window. The value of 0 is applied to this signal at the current
simulation time.

force –deposit /testbench/top_level_0/testram/uaxram/ramblock_0_inst/wd4 0

The force -deposit command can also be run using the GUI. Select wd4 in the object window, right-click,
and select Force. The Force Selected Signal window appears. Use Value = 0 and Kind = Deposit, and click
OK, as shown in Figure 5.

The Run command can now be issued to run the simulation past the point where data is read from this
SRAM location.

run 540 ns

Figure 5 • Force Selected Signal
7

Simulating SEU Events in EDAC RAM
Now the simulation appears as shown in Figure 6.

In comparing Figure 6 with Figure 4 on page 6, note that the active high data bit on write data wd4 has
been forced to a LOW data bit for the one write cycle at the 460.3 ns point in the simulation. For
reference, look at the write address lines. We have now effectively generated an SEU event at address
0x02 by causing the data written into the SRAM to be one bit different from what the EDAC core expects
to be in this location. Also note that the force -deposit command is only active until the next point where
write data wd4 would normally transition; in this case, only for the single write cycle we are interested in.
Although the simulation shows write data wd4 LOW for two write cycles, the force -deposit is only active
for the single write cycle that the wd4 signal should have been HIGH. The second cycle is the valid 0 level,
shown in Figure 4 on page 6 for the write to write address location 0x03.

Validating SEU Events in an EDAC SRAM Design Simulation
In the simulation shown in Figure 7, the EDAC core indicates a CORRECTABLE Flag at the point in the
simulation where the data is read back from the EDAC SRAM at address 0x02. If the read address signals
have been added to the simulation, the CORRECTABLE Flag occurs at the end of the 0x02 read cycle and
the correct data is transmitted from the EDAC core to the SRAM read data port. Remember that the actual
signals shown at the Testbench level of the simulation include a user register delay from the actual SRAM
block read data; however, the correct data, 0x80, which was written to address 0x02, was read back from

Figure 6 • EDAC SRAM Simulation with SEU

Suppressed Data Signal = SEU Event
8

Simulating SEU Events in EDAC RAM
address 0x02, indicating that the EDAC core is functioning correctly and any user logic associated with
reacting or logging a CORRECTABLE Flag is validated as well.

The same methodology is used to generate the equivalent of multiple-bit errors so an Error Flag can be
generated. This would be done with exactly the same method; however, rather than using the
force -deposit command to change the value on a single write data bit, it can be used to change the value
on two write data lines. Now the operation of the Error Flag and appropriate logic can be validated as
well.

In the example shown in Figure 7, click Restart on the ModelSim toolbar, accept the default settings in
the ModelSim Restart popup window, and run the simulation to 460.3 ns. The two commands shown
below will be issued:

force -deposit /testbench/top_level_0/testram/uaxram/ramblock_0_inst/wd4 0

force -deposit /testbench/top_level_0/testram/uaxram/ramblock_0_inst/wd3 0

Figure 7 • EDAC SRAM Simulation with Correctable SEU Event Flagged

Correctable SEU Event Flagged
9

Simulating SEU Events in EDAC RAM
The results are shown in Figure 8 and Figure 9.

Figure 8 • EDAC SRAM Simulation with Two Induced SEU Events

Figure 9 • EDAC SRAM Simulation with ERROR SEU Event Flagged

Two Induced SEU Events in the Simulation

Error SEU Event Flagged
10

Simulating SEU Events in EDAC RAM
In summary, the force -deposit command supported by the ModelSim simulator is utilized to simulate SEU
events by modifying the write data to the EDAC SRAM block after the EDAC circuitry but prior to the
actual SRAM write. The read data appears to have undergone an SEU event in the SRAM when read back
from the EDAC core. The appropriate EDAC core flag is generated, depending upon the number of SEU
events the EDAC core sees in the data word. Validation of the user’s logic to these SEU flags is then
completed. The advantage is that the user does not need to understand and predict the proper data to
write into the EDAC SRAMs via the Test Ports, nor is a separate routine in the testbench required to
validate the operation of the system when one of the EDAC core flags appears.

The operation of the EDAC background scrubber is also validated using this method of inducing single- or
multiple-SEU events in the SRAM. As shown in Figure 10, the testbench has been changed to suppress the
SRAM reads but to enable the STOP_SCRUB signal after the completion of the data writes to the SRAM
core. Figure 10 shows STOP_SCRUB being enabled halfway through the seven write cycles. The RE signal is
inactive and the read address is held at 0x00. Once the STOP_SCRUB signal to the EDAC core is
deactivated, the background scrubber within the EDAC core begins supplying read addresses and
validating the data from the SRAM within the EDAC core. In this case, the data read from the SRAM by the
EDAC background scrubber is clocked by the registers in the top-level design and brought out on the read
data ports.

The same methodology is used to invoke single or multiple SEU events in the SRAM simulation using the
force -deposit command in ModelSim. For consistency, the same data lines in the same memory location
are used to cause the same SEU event in the SRAM that was flagged by the EDAC core as a correctable
error when reading that SRAM location. In this case, the background scrubber within the EDAC core is
tested to find and correct this SEU error on its own. Figure 11 on page 12 shows the results after applying
the force –deposit command on the wd4 line at 460.3 ns exactly, as done in Figure 10, and then running
the simulation to a point where the background scrubber encounters the errant data in the SRAM
location. At this point, the background scrubber issues a SCRUB_CORRECTED signal to indicate that the
error was found and corrected. Notice that the timing is delayed to accommodate the EDAC core’s
rewriting the corrected data back to the SRAM location. This refreshed data is now error-free and reduces
the possibility of that memory location experiencing another SEU event, which becomes an error when

Figure 10 • EDAC Background Scrubber Working
11

Simulating SEU Events in EDAC RAM
two SEU events are found in the same location and the EDAC core can no longer automatically correct the
data based on the shortened Hamming code used.

Using SRAM Initialization Files with EDAC SRAM Designs
Actel SRAM blocks are not initialized at power-up in either the Axcelerator or RTAX-S families of FPGAs. It
is imperative to initialize the SRAM blocks as part of the system initialization and to be aware of the
potential issues that can occur, especially with an EDAC core and a running background scrubber prior to
loading the SRAMs. All of the above simulation has used the memory initialization capability of the SRAM
simulation models to call out an initialization file containing memory values that are loaded into the
simulation model for the SRAMs. The benefit of this is that long simulations are not required to load up
the SRAM blocks before system functionality is observed. However, if these models are used, a simulation
should be run to verify the loading of the SRAMs and the operation of the EDAC circuitry, including the
background scrubber during the loading of the SRAMs. Careful consideration given to the configuration
of the EDAC circuitry during initialization of the SRAMs could prevent errant system operation prior to or
during the loading of the SRAMs. Consider the simulation in Figure 12 on page 13, which shows the EDAC
circuitry with the background scrubber enabled and an SRAM initialization file with some random bits in
it, possibly representing a random data word in the SRAM block after power-up but prior to initialization.
In this case, the EDAC background scrubber issues a SCRUB_CORRECTED message before the system starts
initializing the SRAMs. This could cause the system to react incorrectly based on irrelevant data in the
SRAMs, likely a residual effect of power-up. This is avoided by disabling the background scrubber until the
initialization of the SRAMs is complete. This should be considered carefully in controlling the system
operation at power-up.

Figure 11 • EDAC Background Scrubber Finding and Correcting a Single Bit Error

SEU Event Corrected by the EDAC Background Scrubber
12

Simulating SEU Events in EDAC RAM
The EDAC SRAM core allows depths in increments of 256 only, which may be larger than the application
requires; however, the background scrubber is assigned to scrub the full depth of the EDAC SRAM block.
In some cases, the application may only be using a portion of the SRAM block, such as 64 or 128 locations.
Careful consideration should also be given to properly initialize the unused portion of the SRAM block so
the background scrubber does not generate flags when it moves beyond the user data in the SRAM block.
Consider a simulation (Figure 13 on page 14) in which the memory initialization file contains a single bit in
the last memory location. As the EDAC scrubber runs the full depth of the EDAC SRAM block, it encounters
what it considers to be an SEU event in the last location prior to beginning again. This might not have
been an SEU event, but an SRAM location that was not properly initialized because the user only expected
to use a certain number of locations in the EDAC SRAM.

Figure 12 • EDAC Background Scrubber Finding an Error Prior to Initialization

Initialization Error Corrected by the EDAC Scrubber Prior to System Initialization
13

Simulating SEU Events in EDAC RAM
Summary
Semiconductor memories can exhibit SEU errors when exposed to radiation. The use of error-correcting
codes such as the Actel EDAC module can improve memory reliability by correcting single-bit errors
automatically and flagging uncorrectable errors so that overall system reliability is improved. Verifying
that the overall system is reacting properly to such SEU events is not easily accomplished except with the
use of a simulator. This application note has presented a simple method for implementing SEU events in a
user design to verify the operation of a design when one or more SEU events are injected into the
simulation.

Figure 13 • EDAC Background Scrubber Generating Flag at the Last Memory Location

Uninitialized SRAM Location Causing a Flag from the EDAC Scrubbing Circuit
14

51900165-0/8.07

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

River Court, Meadows Business Park
Station Approach, Blackwater
Camberley Surrey GU17 9AB
United Kingdom
Phone +44 (0) 1276 609 300
Fax +44 (0) 1276 607 540

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
www.jp.actel.com

Actel Hong Kong

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488
www.actel.com.cn

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.jp.actel.com
http://www.actel.com.cn
http://www.actel.com

	Introduction
	EDAC Background
	Table 1 . Error Flags and Test Ports

	Creating SEU Events in EDAC SRAMs
	General Description
	EDAC SRAM Design
	Figure 1 . Axcelerator EDAC SRAM Example Design
	Figure 2 . SmartGen EDAC SRAM Block
	Figure 3 . EDAC SRAM Write/Read Operations
	Implementing SEU Events in an EDAC SRAM Design Simulation
	Figure 4 . EDAC SRAM Write Operations
	Figure 5 . Force Selected Signal
	Figure 6 . EDAC SRAM Simulation with SEU

	Validating SEU Events in an EDAC SRAM Design Simulation
	Figure 7 . EDAC SRAM Simulation with Correctable SEU Event Flagged
	Figure 8 . EDAC SRAM Simulation with Two Induced SEU Events
	Figure 9 . EDAC SRAM Simulation with ERROR SEU Event Flagged
	Figure 10 . EDAC Background Scrubber Working
	Figure 11 . EDAC Background Scrubber Finding and Correcting a Single Bit Error

	Using SRAM Initialization Files with EDAC SRAM Designs
	Figure 12 . EDAC Background Scrubber Finding an Error Prior to Initialization
	Figure 13 . EDAC Background Scrubber Generating Flag at the Last Memory Location

	Summary

