AC391
Application Note
SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a A8\ MicrocHIP company

& Microsemi

a G\MICHOCHIP company

Microsemi Headquarters

One Enterprise, Aliso Viejo,

CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136

Fax: +1 (949) 215-4996

Email: sales.support@microsemi.com
Www.microsemi.com

©2021 Microsemi, a wholly owned
subsidiary of Microchip Technology Inc. All
rights reserved. Microsemi and the
Microsemi logo are registered trademarks of
Microsemi Corporation. All other trademarks
and service marks are the property of their
respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi, a wholly owned subsidiary of Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of
semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets.
Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and
ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's
standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication
solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and
midspans; as well as custom design capabilities and services. Learn more at www.microsemi.com.

51900391. 10.0 6/21

mailto:sales.support@microsemi.com
http://www.microsemi.com

& Microsemi

a @MI:HGCHIP company

Contents

1 Revision History e 1
1.1 ReviSion 10.0 1

1.2 ReVISION 0.0 e e e 1

1.3 ReVISION 8.0 . ..o 1

14 ReVISION 7.0 . .o e 1

15 ReVISION 6.0 e 1

1.6 ReVISION 5.0 e 1

1.7 ReVISION 4.0 . .. 1

1.8 ReVISION 3.0 . ..o e e 1

1.9 ReVISION 2.0o 1
1.10 ReVISION 1.0 . .o e 1

2 PUIPOSE . . 2
3 SmartFusion2 SoC FPGA - eNVM Initialization 3
3.1 INtrodUCH ON . . o 3

3.2 REfErENCES o e e 3

3.3 Design Requirements e 3

34 PrerEqUISIEES . . . 4

3.5 Initializing the eNVM Using the Libero eNVM Client i 4

3.6 Initializing the eNVM Using the Cortex-M3 Processort 5

3.7 Design DesCriplion e e 5

3.8 Hardware Implementation e 6

3.9 Software Implementation e 7
3.9.1 Write Operation 7

3.9.2 Read Operation e e 8

3.9.3 Verify Operationo 9

3.10 Setting Up the Design e 10
3.1 Running the Design e 10
3.12 CONCIUSION .. e 12

4 Appendix 1: Programming the Device Using FlashPro Express 13
5 Appendix 2: eNVM Driver APIS 16
5.1 WG VM) . .ttt e 16

5.2 MSS _NVM _read()vi et e e e e e e e 17

53 VEIITY VM) .« oo e e 18

Microsemi Proprietary AC391 Revision 10.0 iii

Figures

& Microsemi

a AS\MicrocHip company

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Adding the Client Type 4
Add Data Storage Client 5
Top-Level SmartDesign e 6
Clock Configurations 6
MMUART_1 Configuration e e 7
USB to UART Bridge Drivers e e e e e 10
Write Operation e 11
Verify Operation e e e 12
Read Operation 12
FlashPro Express Job Project 13
New Job Project from FlashPro Express Job 14
Programming the Device 14
FlashPro Express—RUN PASSED e 15

Microsemi Proprietary AC391 Revision 10.0 iv

& Microsemi

a AS\MicrocHip company

Tables

Table 1 Design Requirements e 3
Table 2 SmartFusion2 Security Evaluation Kit Jumper Settings 10

Microsemi Proprietary AC391 Revision 10.0 v

Revision History

& Microsemi

a @MI:HGCHIP company

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 10.0

The following is a summary of the changes made in this revision.

* Updated the document for Libero SoC v2021.1.
. Removed the references to Libero version numbers.

1.2 Revision 9.0

Updated the document for Libero SoC v11.7 software release (SAR 77068).

1.3 Revision 8.0

Updated the document for Libero SoC v11.6 software release (SAR 71726).

1.4 Revision 7.0

Updated the document for Libero SoC v11.5 software release (SAR 64416).

1.5 Revision 6.0

The following are the changes made in revision 6.0 of this document.

* Updated the document for Libero SoC v11.4 software release (SAR 59913).
* Updated the document for SmartFusion2 Evaluation Kit details (SAR 59913).

1.6 Revision 5.0

Updated the document for Libero SoC v11.3 software release (SAR 57098).

1.7 Revision 4.0

Updated the document for Libero SoC v11.2 software release (SAR 52884).

1.8 Revision 3.0

Updated the document for Libero SoC v11.0 software release (SAR 47576).

1.9 Revision 2.0

Updated the document for Libero SoC v11.0 beta SP1 software release (SAR 44871).

110 Revision 1.0

Updated the document for Libero SoC v11.0 beta SPA software release (SAR 42847).

Microsemi Proprietary AC391 Revision 10.0 1

Purpose

& Microsemi

a @MI:HGCHIP company

2 Purpose

This application note describes the different methods to initialize the embedded Non-Volatile Memory
(eNVM) in the SmartFusion®2 System-on-Chip (SoC) Field Programmable Gate Array (FPGA) devices.

Microsemi Proprietary AC391 Revision 10.0 2

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a AS\MicrocHip company

3 SmartFusion2 SoC FPGA - eNVM
Initialization

3.1 Introduction

The SmartFusion2 SoC FPGA devices have a maximum of two on-chip 256 KB eNVM flash memories.
The eNVM is used to store the application code image or used to store data, which can be used by the
end application. The eNVM can be initialized by these methods:

« Using the eNVM client of the eNVM configurator in the Libero® System-on-Chip (SoC)
* Writing into the eNVM using ARM® Cortex®-M3 processor

* In-application programming (IAP)

* Writing into the eNVM using custom logic in the FPGA fabric

For more information about how to initialize the eNVM using the eNVM client in Libero and the ARM
Cortex-M3 processor, refer to the AC429: SmartFusion2 and IGLOO2 - Accessing eNVM and eSRAM
from FPGA Fabric Application Note.

For detailed description about eNVM, refer to the “eNVM” chapter in UG0331: SmartFusion2
Microcontroller Subsystem User Guide.

3.2 References

The list of references used are:

* UGO0331: SmartFusion2 Microcontroller Subsystem User Guide
* SmartFusion2 System Builder User Guide

3.3 Design Requirements

Table 1 lists the hardware and software requirements for this demo design.

Table 1+ Design Requirements

Requirement Version

Operating system 64 bit Windows 7 and 10
Hardware

SmartFusion2 Security Evaluation Kit: Rev D or later

+ FlashPro4 programmer
* 12V adapter
+ USB Ato Mini-B cable

Host PC or Laptop Windows 64-bit Operating System

Software

FlashPro Express Refer to the readme . txt file provided in the design files for the
Libero SoC for viewing the design files software versions used with this reference design.
SoftConsole

Host PC Drivers USB to UART drivers

Note: Libero SmartDesign and configuration screen shots shown in this guide are for illustration purpose only.
Open the Libero design to see the latest updates.

Microsemi Proprietary AC391 Revision 10.0 3

http://coredocs.s3.amazonaws.com/Actel/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134388
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=134388
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130918

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a @MI:HGCHIP company

3.4 Prerequisites

Before you begin:

1. Download and install Libero SoC (as indicated in the website for this design) on the host PC from the
following location.
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc

2. For demo design files download link:
http://soc.microsemi.com/download/rsc/?f=m2s_ac391_df

3.5 Initializing the eNVM Using the Libero eNVM Client

The Libero eNVM client creates the necessary programming information that FlashPro uses to initialize
the eNVM during the programming. The following steps describe how to generate a programming file
with the eNVM client:

1. In SmartFusion2 SoC FPGA Libero project, double-click ENVM_INIT_M3_0 in the Libero
SmartDesign window to open the System Builder Configuration window.
2. Go to the Memories tab to open the ENVM window.
3. Select Data Storage under Available Client types and click Add to System, as shown in Figure 1.
Figure 1+ Adding the Client Type

Q]

Device Features Memories Perpherals

d

Wicrocont raller SECDED > Seaurity > Tntermupts Tiemory Ve

Configure your external and embedded memories

User dients in eNVM

=
i
H

The Add Data Storage Client window is displayed, as shown in Figure 2, page 5. It supports four types
of memory file formats:

. Intel-Hex

* Motorola-S

. Microsemi-Hex

* Microsemi-Binary

Create the memory file in any one of the above formats with your code or data. You can create the
memory file for your code using the SoftConsole v(x.x) with the linker script
debug-in-microsemi-smartfusion2-esram. ld.

Microsemi Proprietary AC391 Revision 10.0 4

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
http://soc.microsemi.com/download/rsc/?f=m2s_ac391_df

SmartFusion2 SoC FPGA - eNVM Initialization

Figure 2 »

3.6

3.7

Add Data Storage Client

ok

N o

r B

Client name:
elVM
Content:

@ Memory file:

Format:

[T use absclute addressing o
(©) Content filed with 0s

(7 Mo Content (Client is a placeholder)

Start address: 0x 0 =

Size of word: bits

Mumber of Words: 1 (dedmal)
|:| Use as ROM o

[Use Content for Simulation

Enter the Client name.
Browse to the created Memory file, and click Ok to add the eNVM client.

& Microsemi

a @MI:HGCHIP company

The Modify core - ENVM window (displayed next) shows the client and its size. You can also add
more than one client with a different start address.

After adding the eNVM clients, click Next and Generate System Builder Component.
Save and generate the SmartDesign in Libero using the Generate Component.
Double-click the Run Program Action in the Libero Design Flow window to program the
SmartFusion2 Security Evaluation Kit to initialize the eNVM with the memory file.

Initializing the eNVM Using the Cortex-M3 Processor

The following sections describe how to initialize eNVM using the Cortex-M3 processor with an example
design. The design example describes how to write, read, and verify the data to or from different

locations within the eNVM using the Cortex-M3 processor.

Design Description

The design example included with this application note uses RC oscillator and Fabric CCC to generate
the base clock to MSS CCC. In the design example, the MSS CCC is configured to run the M3_CLK at
100 MHz, which drives the clock to the Cortex-M3 processor. The MMUART _1 is routed for
communicating with the serial terminal program. The design receives the user given commands for read,
write, and verify operations and a corresponding address, length, and data through the serial terminal
program. After completing every operation, it displays the status (success/fail) of operation on the serial
terminal program.

Microsemi Proprietary AC391 Revision 10.0

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a @Mlcno:mn company

3.8 Hardware Implementation

The hardware implementation involves configuring System Builder. Figure 3 shows the top-level
hardware design in SmartDesign.

Figure 3+ Top-Level SmartDesign

ENVM_INIT_M3_0
4P FAB RESET_ N POWER ON RESET Np¥X

DEVRST_N MSS_READY X
MMUART 1_PADSEH@--------- -@EMMUART _1_FADS |
FAB_CCC _PINSH
INT_PINSEH

g

The MSS_CCC clock source is sourced from the FCCC through the On-Chip Oscillator. The FCCC is
configured to provide the 100 MHz clock using GLO. Figure 4 shows the system clock configurations for
the M3_CLK and APB_0_CLK clock settings.

Figure 4+ Clock Configurations

> Device Features » Memories » » Peripherals » 7 Clocks) »
Configure
Clock Fabric CCC Chip Oscillators -
]
]
System Clock :
]
50.0 MHz :
]
[On-d'1i|:| 25/50 MHz RC Oscillator - :
|
]
Cortex-M3 and M35 Main Clock :
]
M3_CLK = 100,00 MHz 100.000 |
]
MDDR Clocks |
]
]
MDDR_CLK =M3_CK* |1 :
]
1
DDR,/SMC_FIC_CLK =MDDR_CLK / |1 :
1
M55 APE_0/1 Clocks |
1
APB_0_CLK =M3_CLK/ 100,000 i
1
]
APB_1_CLK =M3_CLK/ 100,000 |
]
]

The MMUART_1 is used for reading and writing to the HyperTerminal window. On the SmartFusion2
Security Evaluation Kit board, the MMUART _1 TX and RX are connected to the mini-B USB through
I/Os. Figure 5, page 7 shows the MMUART_1 configuration.

Microsemi Proprietary AC391 Revision 10.0 6

SmartFusion2 SoC FPGA - eNVM Initialization

Figure 5+ MMUART_1 Configuration

Transmit-Receive

Duplex Mode

Connect To

Modem

Configuration ‘

Use Modem |

Connect To |IO

Full Duplex =

Transmission Mode |Asynchronous ~

IO M

Help

o |

3.9 Software Implementation

The software design example performs the write, read, and verify tasks on receiving commands from

user through HyperTerminal.

& Microsemi

a AS\MicrocHip company

The design uses the SmartFusion2 MSS MMUART driver to communicate with the serial terminal

program running on the host PC.

The design implements APIs to read, write, and verify the data. The APl implementation and usage are
described in the following sections. For the API code, refer to Appendix 2: eNVM Driver APls, page 16.

3.9.1 Write Operation

The design uses the NVM_write() AP to write or program the data to eNVM over any memory range
within the limits of 256 KB. This function supports programming data that spans across multiple pages.

The following is the function prototype:

nvm_status_t

NVM write

(
uint32 t start addr,
const uint8 t * pidata,
uint32 t length,

uint32 t lock page

Microsemi Proprietary AC391 Revision 10.0

SmartFusion2 SoC FPGA - eNVM Initialization

3.9.1.1

Note:

3.9.2

& Microsemi

a A8\ MicrocHiP company

The data is written from the memory location specified by the first parameter start_addr. This address is
the relative address, which is added to the eNVM base address 0x60000000. The pidata parameter is
the byte aligned starting address of the input data. The length parameter is the number of data bytes that
are to be programmed. On successful execution, this function returns SUCCESS, otherwise it returns
INVALID_PARAMETER.

Example:
uint8 t idata[815] = {"z"};

nvm_status_t status = NVM write((0x0, idata, sizeof (idata),
NVM DO _NOT LOCK_PAGE) ;

The NVM_write() API calls the write_nvm() API to perform the page write into eNVM after aligning the
input data into pages. The write_nvm() AP| uses the eNVM controller's page-wise write command. It
uses the following sequence to write or program the eNVM page:

Request access to eNVM by writing the 0x1 to the controller register REQ_ACCESS of eNVM.

Poll to the REQ_ACCESS for 0x5 (Cortex-M3 processor access to eNVM is granted).

Fill the WDBUFFER with the data that needs to be written into eNVM.

To write the data to the eNVM array, write the CMD control register with the page program and the

address of the page.

5. Poll for eNVM busy bit in the STATUS control register of eNVM for 1. The 0 for this bit indicates that
eNVM is busy in programming the data to the eNVM array. On programming, the eNVM controller
makes busy bit to '0".

6. Release the Cortex-M3 processor access to eNVM by writing 0x0 to the controller register

REQ_ACCESS of eNVM.

The page program command programs the entire page with the data in the WDBUFFER.

The eNVM frequency range (NV_FREQRNG field of ENVM_CR System Register) value must be set to
the maximum value 15 to ensure the correct programming of the eNVM. After programming eNVM,
restore the original frequency range value for eNVM read or verify operations.

Read Operation

The design uses the MSS_NVM_read() API to read the data from eNVM over any memory range within
the limits of 256 KB. The following is the function prototype:

PoON~

nvm_status_t

MSS NVM_ read

(

uint8 t * addr,
uint8 t * podata,
uint32 t len

)

The data is read from the memory location specified by the first parameter addr. This address is the
relative address which is added to the eNVM base address 0x60000000. The addr parameter is the byte
aligned address of eNVM from which the data is read. The podata parameter is the byte aligned address
of the output buffer in which the read data is stored. The len parameter is the number of data bytes that
are to be read. On successful execution, this function returns SUCCESS, otherwise it returns
INVALID_PARAMETER.

Microsemi Proprietary AC391 Revision 10.0 8

3.9.2.1

SmartFusion2 SoC FPGA - eNVM Initialization = .
& Microsemi
a A8\ MicrocHiP company
Example:
uint8 t outbuf[815] = {0};

3.9.3

3.9.3.1

nvm status t status = MSS NVM read (0, outbuf, sizeof (outbuf));

The read API reads the data from eNVM similar to that of reading from any other memory location
because the eNVM controller supports RAM type of accessing for the read operation. This API also
checks for the 2-bit error while reading eNVM.

Verify Operation

The design uses the NVM_verify API to verify the eNVM memory against the reference data provided.
This function supports verification that spans across multiple pages. The following is the function
prototype:

nvm_ status_ t
NVM verify
(
uint32 t addr,
const uint8 t * pidata,

uint32 t length

The data is verified from the memory location specified by the first parameter addr. This address is the
relative address which is added to the eNVM base address 0x60000000. The addr parameter is the byte
aligned address of eNVM from which the data is to be verified. The pidata parameter is the byte aligned
starting address of the reference input data against which the verification should be performed. The
length parameter is the number of data bytes that are to be verified. On successful execution, this
function returns SUCCESS, otherwise it returns INVALID_PARAMETER.

Example:
uint8 t idata[815] = {“2"};

nvm status_t status = NVM write((0x0, idata, sizeof (idata),
NVM DO _NOT LOCK_ PAGE) ;

status = NVM verify(0x0, idata, sizeof (idata));

The NVM_verify() API calls the verify_nvm() API to perform the page verify to eNVM after aligning the
input data into pages. The verify_nvm() API uses the eNVM controller's page-wise verify command. It
uses the following sequence to verify the data on the eNVM page:

Request access to eNVM by writing the 0x1 to the controller register REQ_ACCESS of eNVM.

Poll to the REQ_ACCESS for 0x5 (Cortex-M3 processor access to eNVM is granted).

Fill the WDBUFFER with the data to verify the data in the eNVM array.

To verify the data in the eNVM array, write the CMD control register to verify the page program and

the address of the page.

5. Poll for eNVM busy bit in the STATUS control register of eNVM for '1'. The '0' for this bit indicated
eNVM is busy in programming the data to eNVM array. On programming, the eNVM controller
makes busy bit to '0".

6. Check the bit[1] of the STATUS register for '0' which indicates verify success. Itis '1' in case of verify
failure.

7. Release the Cortex-M3 processor access to eNVM by writing 0x0 to the controller register

REQ_ACCESS of eNVM.

PoON~

Microsemi Proprietary AC391 Revision 10.0 9

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a AS\MicrocHip company

3.10 Setting Up the Design

Connect the following jumpers on the SmartFusion2 Security Evaluation Kit, as described in Table 2.
Switch OFF the power supply switch SW7 while connecting the jumpers.

Table 2+ SmartFusion2 Security Evaluation Kit Jumper Settings

Jumper Pin (From) Pin (To) Comments

J22, J23, J24, J8, J3 1 2 These are the default jumper settings of the Evaluation Kit
board. Make sure these jumpers are set accordingly.

3.11 Running the Design
The following steps describe how to run the design:

1. Connect the FlashPro4 programmer to the J5 connector of the SmartFusion2 Security Evaluation
Kit.
2. Connect the J18 connector on the SmartFusion2 Security Evaluation Kit to the host PC using the
USB mini-B cable. Ensure that the USB to UART bridge drivers are automatically detected by
verifying the Device Manager, as shown in Figure 6.
Note: Copy the COM port number for serial port configuration. Ensure that the COM port location is specified
as on USB Serial Converter D, as shown in Figure 6.

Figure 6 » USB to UART Bridge Drivers

File Action View Help |

&= | T E HE & B xS ("USE Serial Port (COM20) Properties |
4 wi-Denthus

.18 Computer General | Port Settings I Driver I Detail5|

b g Disk drives USB Serl PortfiCOM20) |
- B Display adapters =

> -c4} DVD/CD-ROM drives
. E\Ei Hurnan Interface Devices Device type: Ports {COM & LPT)

b g IDE ATA/ATAPI controllers Manufacturer: FTDI

> i Keyboards
b ﬂ Mice and other pointing devices Device status
» I Monitors

b ¥ Metwork adapters

JZ Ports (COM &LLPT)

----- =" USB Serial Port (COM17)

=" USB Serial Port (COM18)

=" USB Serial Port (COM19)

; =" USB Serial Port (COM20)

b 2 Processors Update Driver Software...
b -8 Sound, vide Disable

b M System deviy

[This device is working propery. -

[

: R Uninstall
>~ g Universal Sel

Scan for hardware changes

oK | [Cancel

Properties

Opens property sheet for the current selectio

3. If USB to UART bridge drivers are not installed, download and install the drivers from
www.microsemi.com/soc/documents/CDM_2.08.24 _WHQL_ Certified.zip.

Connect the power supply to the J6 connector and change the power supply switch SW7 to ON.
Program the SmartFusion2 Security Evaluation Kit board with the job file provided as part of the
design files using FlashPro Express software, refer to Appendix 1: Programming the Device Using
FlashPro Express, page 13.

Invoke the standalone SoftConsole v(x.x) Integrated Design Environment (IDE).

Load the SoftConsole project from the provided design files.

8. Launch the debugger in SoftConsole.

ok

No

Microsemi Proprietary AC391 Revision 10.0 10

www.microsemi.com/soc/documents/CDM_2.08.24_WHQL_Certified.zip

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a A8\ MicrocHiP company

9. Start a HyperTerminal with the baud rate set to 57600, 8 data bits, 1 stop bit, no parity, and no flow
control.

If your PC does not have a HyperTerminal program, use any free serial terminal emulation program
such as PuTTY or TeraTerm. For configuring HyperTerminal, TeraTerm, and PuTTY, refer to the
Configuring Serial Terminal Emulation Programs Tutorial.

When you run the debugger in SoftConsole, the HyperTerminal window shows a message to enter
your choice.

10. Enter the choice to write. It prompts for address, length, and data consequently. Enter the values, as
shown in Figure 7.

On writing, the message write operation successful is displayed.

Figure 7 = Write Operation

B " 5F2_57600 - HyperTerminal =hpen X |

File Edit View Call Transfer Help

Enter your choice and press Enter F-

1. Read
2. Write

3. Uerify

2
Enter the address (@ to 3BABA> to write and press Enter

188
Enter the length <1 to 1824) of data to write and press Enter

18
Select the data type to write and press entep:

1. Incremental pattern
2. Even numbers
3. User specific (two digit numbers)>

1
Write operation successful for

m

address = 188
length = 18

Connected 0:03:54 Auto detect 57600 8-N-1

Microsemi Proprietary AC391 Revision 10.0 11

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130815

SmartFusion2 SoC FPGA - eNVM Initialization

& Microsemi

a A8\ MicrocHiP company

11. Enter the choice to verify. It prompts for address, length, and data consequently. Enter the values, as

shown in Figure 8.
On writing, the message verify operation successful is displayed.

Figure 8 « Verify Operation

B ' SF2_57600 - HyperTerminal

File Edit View Call Transfer Help

Enter your choice and press Enter
1. Read

2. Write

3. Uerify

3

Enter the address (@ to 38888 to verify and press Enter

188

Enter the length (1 to 1824> of data to verify and press Enter
18

Select the data to verify:

1. Incremental pattern

2. Even numbers

3. User specific (two digit numbers)>

1

Verify operation successful for
address = 188
length = 18

Connected 0:04:23 Auto detect 57600 8-N-1

m

%

12. Enter the choice to read. It prompts for address and length consequently. Enter the values as shown

in Figure 9.
On reading, the read values are displayed.

Figure 9+ Read Operation

B ' SF2_57600 - HyperTerminal

File Edit Wiew Cal

Transfer Help

Enter your choice and press Enter
1. Read
2. Write

3. Uerify

1
Enter the address (@ to 3BABA> to read and press Enter

188
Enter the length {1 to 1824)> of data to read and press Enter

18
Read operation successful for

address = 188
length = 18
Data:

a

1

2

3
Connected 0:04:50

Auto detect 57600 8-N-1

m

%

3.12 Conclusion

This application note describes how to initialize eNVM using the eNVM client of the eNVM configurator in

the Libero SoC and using the Cortex-M3 processor.

Microsemi Proprietary AC391 Revision 10.0

12

Appendix 1: Programming the Device Using FlashPro Express

& Microsemi

a @Mlcno:mn company

4 Appendix 1: Programming the Device Using

FlashPro Express

This section describes how to program the SmartFusion2 device with the programming job file using

FlashPro Express.

To program the device, perform the following steps:

1. Ensure that the jumper settings on the board are the same as those listed in Table 2, page 10.
Note: The power supply switch must be switched off while making the jumper connections.

aobrwd

new job project, as shown in Figure 10.

Figure 10 « FlashPro Express Job Project

@ FlashPro Express

Project Edit View Programmer Help

Job Projects

New...
Open...

Recent Projects

or

Connect the power supply cable to the J6 connector on the board.
Power ON the power supply switch SW7.

On the host PC, launch the FlashPro Express software.
Click New or select New Job Project from FlashPro Express Job from Project menu to create a

[Z2 FlashPro Express

Project | Edit View

I = Open Job Project
¥ Close Job Project

I SaveJob Project

Set Log File

Export Log File
Preferences...

Execute Script
Export Script File...

Recent Projects

Exit

Mew Job Project from FlashPro Express Job

Programmer Help

Ctr+N
Ctrl+0

Ctrl+Shift+A

Ctri+U

Ctrl+Q

6. Enter the following in the New Job Project from FlashPro Express Job dialog box:

<download folder>\m2s_ac391 df\Programming Job
* FlashPro Express job project name: Click Browse and navigate to the location where you want to

save the project.

Programming job file: Click Browse, and navigate to the location where the .job file is located and
select the file. The default location is:

Microsemi Proprietary AC391 Revision 10.0

13

Appendix 1: Programming the Device Using FlashPro Express

& Microsemi

a AS\MicrocHip company

Figure 11 « New Job Project from FlashPro Express Job

IProgramming job file: I

Browse...

FlashPro Express job project name:
i
IFIashPro Express job project location: I
] Browse...

Help OK | Cancel]

-

Click OK. The required programming file is selected and ready to be programmed in the device.

8. The FlashPro Express window appears as shown in Figure 12. Confirm that a programmer number
appears in the Programmer field. If it does not, confirm the board connections and click
Refresh/Rescan Programmers.

~

Figure 12 » Programming the Device

Project View Took Help

| RefreshRescan Programmers |

o | @ MmsTs @ |
rogrammer
T -
J e g [oest IDLE LE
o
PROGEAM =
IDLE
RUN

9. Click RUN. When the device is programmed successfully, a RUN PASSED status is displayed as
shown in Figure 13.

Microsemi Proprietary AC391 Revision 10.0 14

Appendix 1: Programming the Device Using FlashPro Express c M. .
Icrosemi

a A\ MicrocHIR company

Figure 13 »+ FlashPro Express—RUN PASSED

Praject Wiew Took Help

Reefessh Fiesscan Proqramimers

Erogrammer

B masoTs W

100 wa

jiﬂ’ﬂlm_ [eassep]

[PROGRAM]
R ieocRAMMER@PASSED

Log £ x
e - bt
programmer '2326l' : device 'MZS0R0TS' : EXPORT Fabric component digest[256] = $3621%ecceli3fE52308c0d051d024145d3aTT1605ehT33aT735h5hd2610cdETe =
programmer '28E61' 1 device
programmer '2BEEL' 1 devioe EXPORT DSM[12%] = b5acebe3li360d4d601T7afabdR?liebend
programmer '28E61' 1 device
programmer ‘334l 1 device Finished: Mon May 24 15:27:05 2021 (Elapsed time 00:01:14)

programmer '2PEE1' ¢ device 'M2Z5090TS' : Executing action PROGRAM PASSED.
programmer '28861' 1 Chain programming PASSED.
Chain Programming Finished: Mon May 24 15:27:05 Z0Z1 (Elapsed times 00:01:14)

KN

10. Close FlashPro Express or in the Project tab, click Exit.

Microsemi Proprietary AC391 Revision 10.0 15

Appendix 2: eNVM Driver APIs O M. em’.

a AS\MicrocHip company

5 Appendix 2: eNVM Driver APIs

5.1 write_nvm()
static uint32 t
write nvm
(
uint32 t addr,
const uint8 t * pidata,
uint32 t length,
uint32 t lock page,
uint32 t * p status
)
uint32 t length written;
uint32 t offset;
*p status = Ou;
offset = addr & NVM OFFSET SIGNIFICANT BITS; /* Ignore remapping. */
ASSERT (offset <= NVM1 TOP OFFSET) ;
/* Adjust length to fit within one page. */
length written = get remaining page length(offset, length);
if (offset <= NVM1 TOP OFFSET)
{
uint32 t block;
volatile uint32 t ctrl status;
uint32 t errors;
if (offset < NVM1 BOTTOM OFFSET)

{

block = NVM BLOCK 0;
}

else

{

block = NVM BLOCK 1;

offset = offset - NVM1 BOTTOM OFFSET;

}

fill wd buffer(pidata, length written, block, offset);
/* Set requested locking option. */

g nvm[block]->PAGE LOCK = lock page;

/* Issue program command */

Microsemi Proprietary AC391 Revision 10.0 16

Appendix 2: eNVM Driver APIs C Mic em’.

5.2

a AS\MicrocHip company
g _nvm[block]->CMD = PROG ADS | (offset & PAGE ADDR MASK);
/* Wait for NVM to become ready. */
ctrl status = wait_nvm_ready(block);
/* Check for errors. */
errors = ctrl_status & WRITE_ERROR_MASK;
if (errors)
{
/* Signal that an error occured by returning 0 a a number of bytes written. */
length written = Ou;
*p status = g nvm[block]->STATUS;
}
else
{
/* Perform a verify. */
g _nvm[block]->CMD = VERIFY ADS | (offset & PAGE ADDR MASK) ;
/* Wait for NVM to become ready. */
ctrl status = wait nvm ready (block);
/* Check for errors. */
errors = ctrl status & WRITE ERROR MASK;
if (errors)
{
/* Signal that an error occured by returning 0 a a number of bytes written. */
length written = Ou;
*p status = g nvm[block]->STATUS;
}
}
}
return length written;

}

MSS_NVM_read()

nvm_status_t

MSS NVM read

(

uint8 t * addr,
uint8 t * podata,
uint32 t len

) {

nvm_status t status = NVM SUCCESS;

Microsemi Proprietary AC391 Revision 10.0 17

Appendix 2: eNVM Driver APIs

& Microsemi

a @Mlcno:mn company

uint8 t * nvmaddr = Ou;

/* add read offset to read the data */

nvmaddr = ((uint8 t *) (NVM BASE ADDRESS + addr));
while((len > 0) && (NVM _SUCCESS == status))

{

len--;

podata[len] = nvmaddr([len];

if ((g_nvm[NVM BLOCK 0]->STATUS & MSS NVM ECC2))
status = FAILED;

}

return status;

}

5.3 verify_nvm()

static uint32 t

verify nvm

(

uint32 t addr,

const uint8 t * pidata,

uint32 t length,

uint32 t * p status

) {

uint32 t length verified;

uint32 t offset;

*p status = Ou;

offset = addr & NVM _OFFSET SIGNIFICANT BITS; /* Ignore remapping. */
ASSERT (offset <= NVM1 TOP OFFSET);

/* Adjust length to fit within one page. */
length verified = get remaining page length (offset, length);
if (offset <= NVM1 TOP_ OFFSET)

{

uint32 t block;

volatile uint32 t ctrl status;

uint32 t errors;

if (offset < NVM1 BOTTOM OFFSET)

{

block = NVM BLOCK 0;

}

else

Microsemi Proprietary AC391 Revision 10.0 18

Appendix 2: eNVM Driver APIs

& Microsemi

a @Mlcno:mn company

{

block = NVM BLOCK 1;

offset = offset - NVM1 BOTTOM OFFSET;

}

fill wd buffer(pidata, length verified, block, offset);

/* Perform a verify. */

g _nvm[block]->CMD = VERIFY ADS | (offset & PAGE ADDR MASK);
/* Wait for NVM to become ready. */

ctrl status = wait_nvm_ready(block);

/* Check for errors. */

errors = ctrl_status & WRITE_ERROR_MASK;

if (errors)

{

/* Signal that an error occured by returning 0 a a number of bytes written. */
length verified = Ou;

*p status = g nvm[block]->STATUS;

}

}

return length verified;

}

Microsemi Proprietary AC391 Revision 10.0 19

	1 Revision History
	1.1 Revision 10.0
	1.2 Revision 9.0
	1.3 Revision 8.0
	1.4 Revision 7.0
	1.5 Revision 6.0
	1.6 Revision 5.0
	1.7 Revision 4.0
	1.8 Revision 3.0
	1.9 Revision 2.0
	1.10 Revision 1.0

	2 Purpose
	3 SmartFusion2 SoC FPGA - eNVM Initialization
	3.1 Introduction
	3.2 References
	3.3 Design Requirements
	3.4 Prerequisites
	3.5 Initializing the eNVM Using the Libero eNVM Client
	3.6 Initializing the eNVM Using the Cortex-M3 Processor
	3.7 Design Description
	3.8 Hardware Implementation
	3.9 Software Implementation
	3.9.1 Write Operation
	3.9.1.1 Example:

	3.9.2 Read Operation
	3.9.2.1 Example:

	3.9.3 Verify Operation
	3.9.3.1 Example:

	3.10 Setting Up the Design
	3.11 Running the Design
	3.12 Conclusion

	4 Appendix 1: Programming the Device Using FlashPro Express
	5 Appendix 2: eNVM Driver APIs
	5.1 write_nvm()
	5.2 MSS_NVM_read()
	5.3 verify_nvm()

