ctel

Application Note AC171

ISP and STAPL

The ability to reprogram a device that has already been
mounted onto a system board is referred to as In-System
Programming (ISP). Although there are two types of ISP,
microprocessor and external, this application note focuses
entirely on microprocessor ISP — the technique used to
configure Actel’s ProASICPLYS devices. The microprocessor
ISP method uses no outside programmer to configure the
FPGA and requires programming control as well as the data
for configuring the device. Programming control comes
from the system itself, using the native processor, the
operating system, and memory. The data could be resident
in ROM (as in the case of predesigned configuration
alternatives), arrive via some other media (such as a floppy
disk), or transfer a communication channel like a network
connection.

Details of the implementation vary according to the
system’s processor, operating system, bus structure, and
memory architecture. This method of ISP works because the
system processor has access to the IEEE 1149.1 (JTAG) port
of the device. A software program then uses a data file to
configure the FPGA.

Microprocessor ISP uses its own system for reconfiguration,
and the details of the implementation vary according to the
system's processor, operating system, bus structure, and
memory architecture. This method of ISP works because the
system processor has access to the IEEE 1149.1 (JTAG) port
of the device. A software program then uses a data file to
configure the FPGA.

The data file is generated by a program called the Standard
Test and Programming Language (STAPL) Composer. The
Actel Composer uses information about the programming of
Actel ProASICPLUS devices as well as the JTAG scan chain
information for a single device to generate a STAPL file for
that device. The program that interprets the contents of the
STAPL file is called a STAPL Player. The data format used
for programming ProASICELUS devices is a JEDEC standard
known as the STAPL format. (The JEDEC STAPL standard,
JESDT71, can be obtained at: www.jedec.org).

The STAPL Player reads the STAPL file and executes the
file's programming instructions. Because all programming
details are in the STAPL file, the STAPL Player itself is
completely device-independent. In other words, the system
does not need to implement any programming algorithm
details; the STAPL file provides all of the details.

Because ProASICELUS gevices are programmed through a
JTAG port, it is possible to program multiple devices on a
JTAG chain. Some considerations for chain programming
are addressed in the “Chain Programming” section on
page 7.

The operation of the STAPL Composer is of no interest to
customers once they have received a STAPL file, so this
application note concentrates on the software requirements
for the STAPL Player and the STAPL file. The hardware
issues for ProASIC and ProASICPLYS devices are described
in more detail in Actel’s application note, Performing
Internal In-System Programming Using Actel's
ProASICTLUS Devices.

Figure 1 on page 2 illustrates the procedure.

STAPL Player

Overview
The STAPL Player consists of two basic portions:

¢ High-level generic source code that executes the main
program

¢ Low-level system-specific routines

STAPL Players can be implemented in either interpreted or
compiled form. Altera supplies an interpreted version of the
STAPL Player, which consists of high-level C code and
low-level API routines. The code from Altera is supplied in
the public domain. The Actel STAPL Player modifies the
Altera code to work with Actel's FlashPro. Code for the
Actel STAPL Player is on Actel's web site at
http://www.actel.com/products/proasicplus/info.html

Note that executing STAPL statements based on the IEEE
1149.1 interface requires information on the location of the
target device(s) along the serial chain. The method for
conveying this chain information is platform-dependent - it
may be specified via a user interface, in the STAPL file
using the POSTDR, POSTIR, PREDR, and PREIR
instructions, or read from a chain file (see the “Chain
Programming” section on page 7). FlashPro uses a fourth
method — automatic detection of all devices in the chain.

In addition to processing the STAPL file, the STAPL Player
has the following functions:

e Check the CRC of a STAPL file (without executing the
STAPL file)

e Access to the signals of an IEEE 1149.1 interface

April 2003
© 2003 Actel Corporation

http://www.actel.com/documents/APA_Microprocessor_AN.pdf
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
http://www.actel.com/documents/APA_Microprocessor_AN.pdf

=Acftel

ISP and STAPL

Actel

Programming
Algorithm

- :.‘ “v‘A - .:.‘ ‘ “,‘A 000000000
o DI o
I STAPL =i H STAPL | > ° °
Data 1 STAPL |=p» = °
File H Composer [—H File K Player =H ngs °
= * orck] o
1 11 [gl S
o TDO o
000000000
Actel ‘
.bsd File 000000000
(JTAG Chain o DI
Information)

R

o

= ngs g
> §TCK §
o

o TDO o
00000000

000000000
o TDI

o
o o

=P orus o
o o

P o1cK o

o o

o

o

o TDO
00000000

Figure 1 » Microprocessor ISP of Actel ProASICTLYS Devices

¢ Access to the signals specified by VECTOR/VMAP
instructions as supported by the platform (this feature is
not used in Actel STAPL files)

¢ Reliable mechanism for creating accurate real-time delays

e Reports exit status information following the execution of
a STAPL file (e.g., an exit code)

Command-Line Interface

Actel's STAPL Player can be run in command-line mode in a
DOS or Windows system. The command has the form

COMMAND? [optional switches]
The options are summarized as follows:

® a <action> — Specify a specific action (programming,
verification, etc.) as defined in the STAPL file.

d <variable=value> — Initialize a variable

h — Show help messages

v— Verbose option (show all messages)

The STAPL Player API

The Application Specific Interface (API) contains a series of
low-level functions that interact with the processor used for
system control as well as its operating system. The API
function set used with Actel's STAPL Player is shown below.
Note that the exact low-level code changes depending on the
processor. The process consists of modifying one of the
generic C-source files in the STAPL Player (jamjtag.c in
Version 2.2) and adding device-specific files.

The key file in the generic STAPL Player collection is the file
jamjtag.c. This file can be edited to replace the generic,
device-independent routines with device-specific ones. If a
microprocessor 1/0 port is used to drive the JTAG port, only
one generic JTAG function, jam_jtag_io, is needed.

On the other hand, a more-complicated sequence is
required if a custom JTAG controller is used. A short
example of the jam_jtag reset_idle sequence is given
below. The intent of the routine is to perform a Test Logic
Reset followed by stepping the state machine to the Run
Test/Idle state. Note that the definition of a variable, in this

ISP and STAPL

case HW_SPECIFIC, causes the device-specific routines
JtagReset and Jtagldle to be called.

Vs N *
ER— /
/* */

void jam_jtag_reset_idle(void)

/> */
/nnnn

ok e it /
{

#ifdef HW_SPECIFIC

JtagReset();
Jtagldle();

#else

/*

* Go to Test Logic Reset (no matter what the
starting state may be)

*/
for (i = 0; 1 < 5; ++i)
{

jam_jtag_io(TMS_HIGH, TDI_LOW,
IGNORE_TDO) ;

}

/*

* Now step to Run Test / Idle

*/

Jam_jtag_io(TMS_LOW, TDI_LOW, IGNORE_TDO);

#endif

jam_jtag state = IDLE;

There are two categories of functions. One set, listed in
Table 1 includes those that manipulate the JTAG port
(these routines are specific to Actel's FlashPro), while the
other set provides operating system services (Table 2).

Table 1 o JTAG API Functions

Function Description
Send TMS=1,1,1,1,1 to go to Test
JtagReset Logic Reset State, or send
TRST=1 if TRST is implemented
Traverse the state machine from
Jtagldle

Pause to Idle

Traverse the state machine from
Idle or Reset to Shift-IR or
Pause-IR

JtagirEnter

Traverse the state machine from

JtagDrEnter Idle or Reset to Shift-DR or
Pause-DR
. Shift N data bits starting at bit 0 of
JtageShift data[o].
JtagRead RetL{rn datg output on TDO from
previous shift sequence
JtagWait Pause until M TCK cycles have

been output

Table 2 o 0S API Functions for FlashPro

Function Description

stp_getc Returns a single character from the
STAPL file

stp_seek Moves the pointer within the STAPL file

stp_jtag_io Low-level JTAG I/O function

stp_message |Returns a message to the STAPL Player

stp_delay Generates a delay loop for n seconds
stp_malloc Allocates memory
stp_free Frees up memory

After the API has been written, it is compiled and linked
with the C-based STAPL Player, and the final executable
can then be run in the system. The next two sections
describe the general STAPL file format and the specific
details of an Actel STAPL file.

=Acftel

ISP and STAPL

STAPL File Overview

The STAPL Player operates on a STAPL file which consists
of a sequence of the following program elements:

¢ NOTE statements are comments indicating the contents
and features of the file. The key strings, or NOTE contents,
are given in quotation marks.

¢ ACTION statements describe the sequences of steps
required to implement a complete operation. An example
is PROGRAM for programming a device.

¢ PROCEDURE blocks contain STAPL statements
describing computations as well as interactions with
JTAG-compliant devices.

e DATA blocks declare variables and their values (variables
MUST be declared).

¢ A single CRC statement contains the cyclic redundancy
code that verifies the data integrity of the file.

Note that there must be at least one ACTION statement
and at least one PROCEDURE or DATA block. Variables
declared inside a PROCEDURE block are only available
inside that block. Variables declared inside a DATA block
are available in and shared by any PROCEDURE block that
uses that DATA block. The PROCEDURE and DATA blocks
end with ENDPROC and ENDDATA, respectively. STAPL
files have variables of two types: INTEGER (32-bit signed)
and BOOLEAN (SIMILAR to single-bit unsigned).
One-dimensional Boolean or integer arrays are also
supported, but multidimensional arrays are not. String
variables are NOT supported other than a simple messaging
facility.

Arithmetic, logical, and relational operators are provided for
integers as well as logical operators for Boolean expressions.
However, there are no array operators for either integer or
Boolean arrays. Case sensitivity is not required (with one
exception not discussed in this application note). Like the
JEDEC spec, this document will use upper-case instruction
and keyword names and lower-case label and variable
names, but this is NOT required in the language.

Statements and Keywords

Each statement in a STAPL file contains up to three
elements: a label (optional), an instruction, and arguments.
The number and type of arguments depends on the
instruction. A semicolon (;) terminates the statement.
Labels, as in many programming languages, provide a
method of branching.

ACTION EXIT NEXT PUSH
BOOLEAN EXPORT NOTE STATE
CALL FOR POP TRST
CRC FREQUENCY POSTDR WAIT
DATA GOTO POSTIR VECTOR
DRSCAN IF PREDR VMAP
DRSTOP INTEGER PREIR

ENDDATA IRSCAN PRINT

ENDPROC IRSTOP PROCEDURE

In addition, the sixteen state names shown in the IEEE
1149.1 state diagram in Figure 2 are also reserved.

Test_Logic_Reset

0
Run_Test/
Idle

Select_
IR_Scan

Figure 2 o State Diagram (Showing Reserve STAPL State Names)

ISP and STAPL

A small number of other strings are also reserved; several of
these will be discussed in the command explanations that
follow.

BOOL CYCLES RECOMMENDED USEC
CAPTURE INT STEP USES
CHR$ MAX THEN

COMPARE OPTIONAL TO

Program Flow and Important
Commands

A STAPLE file, such as Actel’s example in “Appendix A” on
page 10, may include multiple ACT ION statements. When
the STAPL Player executes a STAPL file, only one of those
actions will be performed. Execution continues with calls to
the list of PROCEDURE blocks listed in the ACTION
statement. Each PROCEDURE block name may be followed
by one of the keywords RECOMMENDED or OPT 10NAL.
The RECOMMENDED keyword indicates that the
PROCEDURE block will be called unless explicitly declined
by the user, while the OPT IONAL keyword indicates that
the PROCEDURE block will not be called unless explicitly
requested by the user.

Execution terminates either when the end of the ACT 10N
statement is reached or when an EXIT statement is
processed. The flow of execution within each of the called
PROCEDURE blocks is controlled using three methods —
branches, calls to other PROCEDURE blocks, and loops.

STAPL uses a stack scheme for managing subroutine calls
and loops. Nested activities, included in the stack, are
ACTIONs, CALL /7 ENDPROC, FOR / NEXT, and
PUSH / POP. When an ACTION, CALL, FOR, or
PUSH statement is encountered, information about the
operation is added to the stack. When the corresponding
ENDPROC, NEXT, or POP statement is encountered,
the record is removed from the stack. (For the NEXT
statement, the stack record is removed only when the loop
has run to completion.)

A PROCEDURE block may call itself. To make a
PROCEDURE block re-entrant, the PUSH and POP
statements may be used to save and restore the values of
data variables on the stack. The PUSH statement is used to
save data variables before the call, and the POP statement
is used to restore values after the return. In that case, the
PROCEDURE block may call itself to implement recursion.
If this form of recursion is employed, the resulting stack
depth must be determinate.

The branch is executed with a GOTO statement that causes
execution to jump to the statement that corresponds to the
label. This label must be located within the same
PROCEDURE block as the GOTO statement and may or may
not have been encountered already in that PROCEDURE

block. The IF statement can be used with the GOTO
statement to create a conditional branch.

The CALL statement causes execution to jump to a
PROCEDURE and the location of the CALL statement is
saved on the stack. When execution of the called
PROCEDURE block has reached completion by
encountering an ENDPROC statement, execution jumps to
the statement following the CALL statement, and the
record is deleted from the stack.

The IF statement can be used with the CALL statements to
call a subroutine conditionally.

The FOR statement is used for iteration or "looping." Each
FOR statement has an "iterator," an associated integer
variable that maintains the iteration count. When a NEXT
statement using the same iterator variable is encountered,
the iterator is compared to its terminal value. If the iterator
has reached its terminal value and the body of the loop has
been executed for the last time, the FOR loop is complete
and control is passed to the statement following the NEXT
statement. Otherwise, the iterator is incremented (or
stepped, if the STEP keyword is used with the FOR
statement) and control jumps back to the statement
following the FOR statement. FOR statements can be
nested.

The IF/THEN construct, as in many programming
languages, allows conditional operations. The 1F statement
evaluates a Boolean expression, and if the expression is
true, executes a statement. The THEN statement can be any
statement type except ACTION, BOOLEAN, CRC,
DATA, ENDDATA, ENDPROC, INTEGER, NOTE,
and PROCEDURE statements). All 1F statements must be
located within PROCEDURE blocks.

The DRSCAN statement specifies an IEEE 1149.1 data
register scan pattern to be loaded into the target data
register. The scan data shifted out of the target data register
may be captured in a Boolean array variable, compared to a
Boolean array expression, a combination of the two, or it
may be ignored. The data register length is a nonzero
integer expression specifying the number of data bits to be
shifted. The scan data array is a Boolean array expression,
specifying the data to be loaded into the data register. The
data is shifted in increasing order of the array index, i.e.,
beginning with the lowest index. The capture array is a
Boolean array variable. The compare array and mask array
are Boolean array expressions, and the result, is a Boolean
variable or a single element of a Boolean array variable that
receives the result of the comparison. Mask array bit values
of "1" represent bits to be compared, and bit values of "0"
represent bits not to be compared. A successful comparison
will cause a one (or TRUE) value to be stored in the result
variable. An unsuccessful comparison will cause a zero (or
FALSE) value to be stored in the result variable but will not

=Acftel

ISP and STAPL

interrupt the STAPL file execution. To abort in the case of
an error, a conditional (IF) statement must be used to test
the result value, and the EXIT statement called to stop the
program. All DRSCAN statements must be located within
PROCEDURE blocks. The DRSTOP statement, if used in
conjunction with the DRSCAN statement, specifies the
IEEE 1149.1 end state for data register scan operations. This
end state must be one of the IEEE 1149.1 states: RESET,
IDLE, [IRPAUSE, or DRPAUSE. The default state is
IDLE. An example of the use of the DRSCAN and DRSTOP
statements is given in the sample file in “Appendix A” on
page 10.

The Instruction Register equivalents to DRSCAN and
DRSTOP are IRSCAN and IRSTOP.

The STATE statement causes the IEEE 1149.1 state machine
to go to the specified state. The path can specify any state,
but the last state must be one of the following: RESET,
IDLE, DRPAUSE, or IRPAUSE.

The TRST statement enables the optional IEEE 1149.1 TRST
pin for the specified number of TCK clock cycles and/or for a
minimum number of microseconds. A TRST statement may
specify a clock cycle count, a time delay, or both. When both
are specified, the clock cycles and time delay occur
simultaneously until both are satisfied. When a USEC time
delay is specified, the delay implemented is not related to
the clock rate of TCK. TCK may continue to run during the
USEC delay, or it may be stopped in the low state. Since
many IEEE 1149.1 compliant devices do not offer this
optional TRST pin, this statement will not ensure that all
devices on the chain are reset to the TEST-LOGIC-RESET
state. To ensure reset of all devices to this state, use the
STATE RESET statement.

The WAIT statement causes the IEEE 1149.1 state machine
to go to the specified wait state for the specified number of
TCK clock cycles, and/or for a minimum number of
microseconds. A WAIT statement must specify a clock cycle
count, a time delay, or both. When both are specified, the
clock cycles and time delay occur simultaneously until both
are satisfied. When a USEC time delay is specified, the
delay implemented is not related to the clock rate of TCK.
TCK may continue to run during the USEC delay, or it may
be stopped in the low state. A maximum number of TCK
clock cycles and/or a maximum number of microseconds
may also be specified. If either the wait state or the end
state is not specified, IDLE is assumed. If an ENDSTATE is
specified, the IEEE 1149.1 state machine will go to that
state immediately after the specified number of clock cycles
and the specified amount of real time has elapsed. The valid
wait state and end states are IRPAUSE, DRPAUSE, RESET,
and IDLE.

The FREQUENCY statement is an extension to the STAPL
specification. It defines the maximum frequency at which
the IEEE 1149.1 TCK signal should operate following
execution of this statement. The specified frequency
remains in effect until a subsequent FREQUENCY statement
is executed or STAPL file execution terminates. Using an
integer expression sets the frequency to a new value.
Omitting this integer expression restores the operating
frequency to the value operating prior to the execution of
the first FREQUENCY statement encountered during the
STAPL session. The player can choose to run at or below this
frequency for the entire operation of the STAPL file, if no
dynamic frequency change is possible. If the underlying
hardware cannot dynamically change the clock frequency
and cannot support a frequency less than or equal to this
setting, an error occurs.

The execution evaluates to an integer representing a
frequency in Hertz and must be greater than or equal to
zero, although the result when the clock frequency is zero is
undefined. If this statement is employed, an accompanying
FREQUENCY_MIN note field is mandatory using the slowest
value of all FREQUENCY statements in the STAPL file. The
Actel STAPL files are set up to use TCK as a free-running
clock source. TCK is intended to indicate exactly the
frequency desired, although the specification allows any
frequency below the requested frequency. Note that in the
example of “Appendix A” on page 10, the 'freq' variable is
set to 4 (later it is multiplied by 106 to give a TCK frequency
of 4 MHz). Many users will probably use RCK as the clock
source. This will require either modification of the STAPL
file or. First, Boolean variable USE_RCK needs to be set to
'l'. In addition, the 'freq' variable should be changed to
reflect the actual RCK frequency in use. Both of these
changes can be made via the command line using the -d
switch described above for setting variable values.

The single CRC statement should always be the last
statement in a STAPL file; any characters located after the
CRC statement will not be included in the CRC
computation. The CRC is a 16-bit convolution code based on
a generator polynomial. CRCs for STAPL files are calculated
using the generator polynomial employed by the CCITT for
16-bit CRCs:

GX) =X6+X24+%X0+1

The CRC is calculated on all characters in the file, including
comments and white-space characters but excluding
carriage-return (CR) characters. The value obtained is then
compared to the value found in the CRC statement. If the
CRC values agree, the data integrity of the STAPL file is
verified. A CRC value in the code font file of "0" indicates
that CRC should not be compared.

ISP and STAPL

Handling Errors

There are two kinds of errors that must be addressed. The
STAPL file itself creates the first type of error. After the
STAPL file has been executed, it returns an exit code that
indicates the result of the programming. Actel's STAPL
Player supports the exit codes shown in Table 3.

Table 3 o STAPL File Exit Codes

Exit code |Description

0 Success

5 Entering ISP failure

6 Unrecognized device ID

7 Unsupported device version
8 Erase failure

11 Verify failure

12 Read failure

90 Unexpected RCK detected
91 Calibration data parity error

Unlike the first error type, the STAPL Player finds the
second error type. For example, if the STAPL Player reads a
STAPL file and finds a syntax error, the Player will generate
an exit code indicating an error. Table 4 lists the error
codes that the STAPL Player can return.

Table 4 o STAPL Player Exit Codes

Exit code |Description

0 Success

1 Out of memory

2 I/O error

3 Syntax error

4 Unexpected end
5 Undefined symbol
6 Redefined symbol
7 Integer overflow

8 Divide by zero

9 CRC error

10 Internal error

11 Bounds error

12 Type mismatch
13 Assign to const
14 Next unexpected
15 Pop unexpected
16 Return unexpected
17 lllegal symbol

18 Vector map failed
19 User abort

20 Stack overflow

21 lllegal opcode

22 Phase error

23 Scope error

24 Action not found

Chain Programming

Chain programming is defined as programming several
devices that are on the same JTAG chain. Two primary
device configurations for this chain are as follows:

e ProASICPLUS devices ONLY, programmed one at a time
o ProASICELS gevices ONLY, programmed concurrently

o ProASICELUS devices and other JTAG devices, either
programmable or nonprogrammable

Actel’s STAPL file currently supports the first type of chain
programming. When a file is used to store this chain
information, the STAPL Player must support chain files as
specified in the EIA/JEDEC Standard JESD32, "Standard
for Chain Description File." If a chain has multiple
programmable devices, they can successfully be
programmed one at a time by bypassing the devices not
being programmed. Concurrent programming will be
supported in a future release.

In the case where nonprogrammable devices are in the
chain, they must be bypassed and then the programmable
device(s) can be programmed. If there are multiple
ProASICELUS devices, then they should be programmed
individually.

It is not possible to concurrently program devices from
different vendors. If non-ProASICPLUS programmable
devices coexist on the same chain, then the non-
ProASICPMS devices should be treated just like
nonprogrammable devices when programming the
ProASICPYS gevices.

All JTAG-compliant devices have a bypass mode that
bypasses the data register. Any device in bypass mode will
have a data register length of 1. If an entire chain is in
bypass mode, then the apparent length of the entire chain's
data register is equal to the number of devices in the chain.
When programming a single device, bypass all other devices.
In this case, the complete length of the chain data register
will be the length of the programmable device's data
register plus one bit (corresponding to bypass mode) for
other devices in the chain. This means that the bitstream
intended for the data register of the programmable device
must be padded on the front and back end by as many bits
as there are devices before and after the programmable
device (Figure 3 on page 8).

A device can be placed into bypass mode by loading an
instruction of all 1s. This will vary from device to device only
because different devices have different instruction
registers lengths. Therefore, it is important to know the
length of the instruction register for each device in the
JTAG chain. Figure 4 on page 8 illustrates this concept.

Actel

ISP and STAPL

N\

Other "] Othe%_I
Devigeg Device \
Bypass

Other :
Register
Device < g

I

Total data register
length is n+8;
padding is 3 bits
before, 5 bits after

Other

:

Other
Device

Device
being
programmed

T~ Data register
of length "n"

Otheré
Device

Other}q
Device

Other
Devi

e

Figure 3 ¢ Data Register Padding

Other
Device

13 instruction bits before;
16 instruction bts after

Other é
Device 3

Other
Device q 2

Other
Device

Other
° DeviceE °
\

Device
bein ~
9 d ™~ Instruction
programme Register

Other é 4
Device

.

Other
Device

4 Other 3
Devic&

N

Figure 4 * Pulting Devices into Bypass Mode

ISP and STAPL

In order to account for more than one device on a chain,
there are some instructions in the STAPL language that
allow for the necessary padding of the bitstreams. The
instructions can be added to the STAPL file, as described in
Table 5. Note when configuring a bitstream, the first bits
end up in the last device of the chain, so the padding at the
front end of the bitstream is for the devices at the end of the
chain.

These instructions must be added to the PROCEDURE
INITTALIZE section of the STAPL file.

Table 5 Register-Padding Instructions

Instruction |Purpose

Used to put the devices after the device
being programmed into Bypass mode; n is
the number of instruction bits after the
device being programmed.

PREIR n

Used to put the devices before the device
being programmed into Bypass mode; n is
the number of instruction bits before the
programmable device

POSTIR n

Used to pad the data by the number of
bypassed devices after the device being
programmed; n is the number of devices
after the device being programmed.

PREDR n

Used to pad the data by the number of
bypassed devices before the device being
programmed; n is the number of devices
before the device being programmed.

POSTDR n

Related Documents

Application Notes
Performing Internal In-System Programming Using
Actel's ProASICPEUS Devices

http://www.actel.com/documents/APA_Microprocessor_AN.
pdf

http://www.actel.com/documents/APA_Microprocessor_AN.pdf
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
http://www.actel.com/documents/APA_Microprocessor_AN.pdf
http://www.actel.com/documents/APA_Microprocessor_AN.pdf

QCfel ISP and STAPL

Appendix A

Sample STAPL File (Abridged)

NOTE "CREATOR" "map2bitstream 6b2.36";
NOTE "DEVICE'™ "APA750"; Notes
NOTE "DATE™ '2002/05/06"; /
NOTE *"STAPL_VERSION'" "JESD71";

NOTE "IDCODE'™ "014101CF";

NOTE "DESIGN™ "C:\Actelprj\apa_r2Test\designer\toptest";
NOTE "CHECKSUM™ "B4F4';

NOTE "SAVE_DATA"™ "BITSTREAM";

NOTE *"AMHOME™ **C:\Des_r2_2001/am™;

NOTE "ALG_VERSION™ "'6"; Recommnded Indicates Called Procedure
NOTE ""MAX_FREQ'™ "10000000";

ACTION PROGRAM = FIX_INT_ARRAYS RECOMMENDED, INITIALIZE,
DO_ERASE,
CHECK_SECURITY RECOMMENDED,
DO_PROGRAM,
DO_VERIFY_BOL RECOMMENDED,
PROGRAM_UROW,
POWER_DOWN;
ACTION ERASE = FIX_INT_ARRAYS RECOMMENDED, INITIALIZE,
DO_ERASE, POWER_DOWN ;
ACTION READ_IDCODE = DO_READ_IDCODE;

Action Statements

ACTION VERIFY = FIX_INT_ARRAYS RECOMMENDED, INITIALIZE,
DO_VERIFY_EOL, POWER_DOWN;

ACTION QUERY_SECURITY = FIX_INT_ARRAYS RECOMMENDED, INITIALIZE, DO_QUERY_SECURITY,POWER_DOWN;

DATA PARAMETERS; \

BOOLEAN ULOP=1;

INTEGER freq = 4; " TCK frequency 4 MHz
BOOLEAN USE_RCK=0;
ENDDATA;

Named Data Blocks

DATA GV;
BOOLEAN ID[32];
BOOLEAN z[195];
o
(0]

(0]

10

ISP and STAPL

INTEGER hex[16]= 70,69,68,67,66,65,57,56,55,54,53,52,51,50,49,48;
ENDDATA;

DATA DEVICE;
INTEGER tileSize[3]=12,32,32;
(0]

(0}

(0]
ENDDATA: Boolean Data in Compressed Form

DATA BITSTREAM;
BOOLEAN DESIGN[84]= $B9AB970D997A638371D43;
BOOLEAN sw[763895]= @@JNOOey@@t@@@1@0@VeaAEaL2y10000008POLV@@rE0000UMIinmgggKiHgILj
HILLjXKLLDZKLLQZKLFQZKFgQZagwDLE3mRgg ILL_@h7ux@@V02y7004h10ZKv7t1@@10bp00ho@Ng1@
)
o)
o)
t27Rqa6j K5EN9dXUEFdR_Tmx@Fmp@70p@@AEAV3yJ @@x@@zwzaTGv@@VKiBhk@ms1AmdJOO;
INTEGER CHECKSUM=46324;
ENDDATA;

* JESD71 (Aug 99) specification is ambiguous about ordering of integer

array initializers.

* Until the specification is clarified, we will allow both orderings

PROCEDURE FIX_INT_ARRAYS USES GV,DEVICE;

INTEGER ocheck[2] = 1,0; \

IF ocheck[0]==0 THEN GOTO intok;

FOR i=0 TO 7: Procedure Blocks
PUSH hex[i];
hex[i]=hex[15-i]; <-§———— | Stack Usage
POP hex[15-i];

NEXT 1i;

PUSH tileSize[0];

tileSize[O]=tileSize[2];

POP tileSize[2];

FOR i=0 TO 87;
PUSH tileType[i];
tileType[i]=tileType[176-i];
POP tileType[l1l76-i];

NEXT 1;

11

50’9’ ISP and STAPL

intok:
ENDPROC;

PROCEDURE INITIALIZE USES GV,PARAMETERS,GP,POWER_DOWN; Loading Instruction Register
IF YTUSE_RCK THEN FREQUENCY freq*1000000 ;
WAIT RESET, 5 CYCLES;
IRSCAN 8,$0F;
DRSCAN 32,$000000FF ,COMPARE $014101cF,$0BFFFFFF,PASS;
IF PASS==1 THEN GOTO idok;

STATUS=6;

CALL POWER_DOWN;

idok: Loading Data Register
IRSCAN 8,%$09;

IRSCAN 8,%0a;

IRSCAN 8,%$92;

IF USE_RCK THEN DRSCAN 8,BOOL(freg-1);
IF TUSE_RCK THEN DRSCAN 8,BOOL(128+freqg-1);
CALL GP;

IRSCAN 8,%$d3;

IRSCAN 8,%$d8;

IRSCAN 8,%e5;

IRSCAN 8,%c8;

DRSCAN 1,#0,CAPTURE PS[];

ENDPROC;

CRC 8772;

12

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA

Tel: (408) 739-1010
Fax: (408) 739-1540

Scftel

http://www.actel.com

Actel Europe Ltd.
Dunlop House, Riverside Way

Camberley, Surrey GU15 3YL

United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Tel: +81 03-3445-7671
Fax: +81 03-3445-7668

Actel Hong Kong
39th Floor

One Pacific Place

88 Queensway
Admiralty, Hong Kong
Tel: 852-22735712

51900030-0/4.03

	Figure 1 . Microprocessor ISP of Actel ProASICPLUS Devices
	STAPL Player
	Overview

	Command-Line Interface
	The STAPL Player API
	Table 1 . JTAG API Functions
	Table 2 . OS API Functions for FlashPro

	STAPL File Overview
	Statements and Keywords
	Figure 2 . State Diagram (Showing Reserve STAPL State Names)

	Program Flow and Important Commands
	Handling Errors
	Table 3 . STAPL File Exit Codes
	Table 4 . STAPL Player Exit Codes

	Chain Programming
	Figure 3 . Data Register Padding
	Figure 4 . Putting Devices into Bypass Mode
	Table 5 . Register-Padding Instructions

	Related Documents
	Application Notes

	Appendix A
	Sample STAPL File (Abridged)

