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Introduction
Multiplication is one of the more area intensive functions in FPGAs. Traditional multiplication techniques
use the digital equivalent of longhand multiplication. These techniques are basically shift-and-add
procedures, which usually result in many levels of logic and limit performance. Pipelining can help to
improve the clock performance of the multipliers in this case, at the cost of more area.

Most people multiply by individually multiplying digits and referring back to memorized multiplication
tables. A similar technique can be employed using the embedded memory on an FPGA. The result of
using the RAM as a lookup table multiplier incurs only the delay of the memory access and has the
advantage of not consuming a large number of user gates on the FPGA.

This document describes the three ways to use RAM blocks as multipliers: 

• Basic single lookup table multiplier

• Partial product multiplier

• RAM-based constant coefficient multiplier

For the Fusion, IGLOO®, and ProASIC®3 families of devices, the single lookup table approach can
create a very fast but narrow, four-bit multiplier. The partial product multiplier approach uses logic to
reduce the amount of memory required, but is slower than a pure lookup table. In fact, the pure logic
multiplier implementation for these devices available in the Microsemi® SmartGen core generator can
produce a multiplier that runs at a frequency comparable to the partial product implementation, though
the pure logic approach uses more core tiles. The constant coefficient multiplier is the most efficient
implementation, since it uses a minimum of additional logic gates and still maintains the performance of
the basic lookup table multiplier.

Basic Lookup Table (LUT) Based Multipliers
A basic LUT-based multiplier is simply a lookup table with the addresses arranged so that part of the
address is the multiplicand and the other part is the multiplier. The data width should be set to the sum of
the address width to accommodate the product. 
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Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers 
Implementing a Basic LUT-Based Multiplier
In the case where a four-bit value is multiplied by a four-bit value, you will need a memory block that is
eight bits wide and 256 words deep. The first four bits of the address can be configured as the
multiplicand and the second four bits can be configured as the multiplier. The memory will store the
appropriate product values. To multiply the upper four bits by the lower four bits, feed both values into the
address and clock the memory. The appropriate product value will appear on the RAM output. A diagram
of this LUT-based multiplier implementation is shown in Figure 1.

Since the memory block is synchronous, this configuration will result in a synchronous multiplier, whose
clock frequency is only limited by the data access time of the memory. 

While this approach is more efficient than implementing multipliers in gates, it can consume a large
amount of memory. The amount of memory required increases with the square of the bit width. The
example above demonstrates a 4 x 4 bit multiplier with 256 eight-bit words of storage required. For an 8
x 8 bit multiplier, 65,536 16-bit words must be stored using this technique.

Partial Product Multipliers
One way to mitigate the amount of memory required is to use partial product multiplication. This
technique combines the lookup table approach with elements of longhand multiplication. For example, to
multiply 24 x 43 = 1,032 using longhand, simplify the problem into the sum of four multiply functions and
three add functions (Figure 2). 

(4 × 3 + ((2 × 3) × 10)) + (((4 × 4) + ((2 × 4) × 10)) × 10) = 1,032

EQ 1

Figure 1 • Basic Single LUT-Based Multiplier
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Figure 2 • Partial Product Multiplier Techniques
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Constant Coefficient Multiplier
Implementing a Partial Product Multiplier
In logic, this same technique can be used to reduce the amount of memory required to perform a multiply
function. Using a basic lookup table technique, an eight-bit by eight-bit multiply would require 128 kb of
storage. As shown in Figure 3, using partial product multipliers, the same procedure can be
accomplished using 1 kb of storage.

In order to accomplish this in logic, using A as the multiplicand and B as the multiplier, take the lower four
bits of A and multiply it by the lower four bits of B using the lookup table technique. Then take the upper
four bits of A and multiply it by the lower four bits of B and shift the partial product result to the left by four.
Then add the two results together for the first part of the product. 

For the second part of the product, multiply the lower four bits of A by the upper four bits of B. Then do
the same with the upper four bits of both A and B and shift this partial product value to the left by four.
Add the two values of the previous calculation and shift the whole result to the left by four. 

Then add the first part of the product to the second part of the product for the final result.

While this technique is not as fast as implementing the entire multiply as a single memory element, it
does greatly reduce the amount of memory required at the expense of using more core tiles. 

Constant Coefficient Multiplier
A third approach to using memory blocks as multipliers is employing a constant coefficient multiplier. In
many cases, especially in DSP applications, the multiplicand remains constant and only the multiplier
varies. 

Implementing a Constant Coefficient Multiplier
In this approach, only the multiplier must be assigned to the address lines of the memory block. The
multiplicand is predetermined and the memory block is loaded with the appropriate product values
(Figure 4 on page 4). For example, given that the multiplicand is always 4/h, if the multiplier is B/h, when
that value is sent to the address of the memory block, it will return the stored value 2C/h. 

This type of multiplier scales linearly with the width of the values being multiplied. While a basic lookup
table 8 x 8 multiplier uses one block of 65,536 x 16 bit words (128 kb) of storage, and the partial product
lookup table multiplier uses four blocks of 256 x 8 bit words (1 kb) the constant coefficient multiplier

Figure 3 • Partial Product Multiplier Logic Implementation
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Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers 
requires one block of 256 x 16 bit words (0.5 kb) and does not incur the cost of the additional logic and
delay incurred by using the partial product multiplier.

Performance and Utilization
Because of architectural variations, the effectiveness of each approach varies between device families.
Table 1 shows, for a 4 x 4 multiplier, the RAM-based multiplier is much faster than the equivalent Booth
multiplier provided by the SmartGen core generator. The Booth multiplier is an optimized multiplier that
reduces the number of stages required to perform the multiplication function. However, as we expand to
an 8 x 8 multiplier, the amount of memory required to implement the 8 x 8 multiplier in RAM is too large to
be practical, and the Booth multiplier provided by SmartGen performs as well as implementing a partial
product RAM multiplier. Also, as shown in Table 1, pipelining either the Booth multiplier or the partial
product multiplier increases the performance of both, and both implementations run at similar speeds.
However, a constant coefficient multiplier is clearly much faster than either implementation.

Utilization is another consideration for choosing a multiplier. If your design leaves you with unused RAM
cells, employing the unused RAM as multipliers can save core tiles. Table 1 shows the number of core
tiles required to implement each of the multipliers. Not counting the logic required to load the RAM cells,
the 4 x 4 RAM multiplier requires only the RAM cell, and the eight-bit constant coefficient multiplier only
requires two cells. The partial product multiplier uses a third fewer tiles to implement than does the Booth
multiplier. 

Figure 4 • Constant Coefficient Multiplier Logic
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Table 1 • Performance and Utilization of Multiplier Variations

Multiplier Used Performance MHz

Utilization

Core Tiles RAM Blocks

4 x 4 RAM multiplier 293 0 1

4 x 4 Booth multiplier 98 79 0

4 x 4 pipelined Booth multiplier 158 92 0

8 x 8 Booth multiplier 68 305 0

8 x 8 Booth multiplier with 1 pipeline stage 102 344 0

8 x 8 Booth multiplier with 2 pipeline stage 123 386 0

8 x 8 Booth multiplier with 3 pipeline stage 120 431 0

8 x 8 partial product multiplier 63 196 4
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Constant Coefficient Multiplier Example
Constant Coefficient Multiplier Example
The constant coefficient multiplier is the most efficient implementation and will be the multiplier used in
this example. The RAM block must first be loaded with data in order to produce the correct product
values. The ProASIC3 RAM makes preloading the memory block very simple. Refer to the ProASIC3
Flash Family FPGAs, ProASIC3E Flash Family FPGAs and ProASIC3L Flash Family FPGAs datasheets
for more information. Since the memory in the IGLOO, Fusion, and ProASIC3 device has two ports, one
port can be dedicated to reading the data for multiply and the other can be dedicated to loading data. The
data can either be loaded from embedded Flash memory or from an external source, such as a
microprocessor, using the logic within the device, or through the JTAG port using the UJTAG feature.

The UJTAG feature allows you to interface with the internal array of the device through the JTAG ports.
This allows you to send signals through the JTAG port to your design. One of the uses of this feature is to
load data into RAM blocks. Refer to the "SRAM and FIFO Memories in Microsemi's Low Power Flash
Devices” chapter of the IGLOO and ProASIC3 FPGA fabric user’s guides for details on how to load a
RAM block using the UJTAG. 

The example in Figure 5 uses logic within the device as a simple memory loader to preload the RAM for
use as a four-bit constant coefficient multiplier with a four-bit multiplicand value of E/h. "Appendix 1" on
page 8 includes the design files and the SmartGen generation screens for this example. The memory
loader is simply a counter that cycles through the addresses available, with an adder that increments the
product values and feeds them into a register file that passes the correct data for each address. Once the
loader is finished, the load signal is deasserted, and the RAM block is ready to be used as a multiplier.
Since the memory in the IGLOO, Fusion and ProASIC3 devices is synchronous, the multiplier acts as a
synchronous multiplier.

8 x 8 partial product multiplier with pipelining 129 311 4

8 x 8 constant coefficient multiplier 281 2 1

Note: Timing numbers are based on worst-case, commercial numbers for an AFS600 in a–2 speed grade.

Table 1 • Performance and Utilization of Multiplier Variations (continued)

Multiplier Used Performance MHz

Utilization

Core Tiles RAM Blocks

Figure 5 • Constant Coefficient Multiplier Logic
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Additional Considerations
While in many cases using RAM blocks as multipliers can save area, there is overhead required in using
this approach. The RAM block must be loaded with the correct values before they can be used as
multipliers.   An interface to load and increment the RAM block can then load the data on power-up.   

A second approach is using a multiplier or adder to generate values in the RAM block to be loaded
without having to have the values prestored. However, using either a multiplier or an adder to generate
the values takes additional logic and does require time to create and store the proper values.

If a microprocessor is available in the system, it can also be used to generate the proper values and load
them into the RAM blocks. This approach avoids the additional storage required by the first approach
and the logic overhead of the additional multiplier or adder in the second approach. 

Conclusion
Using the Fusion, IGLOO, and ProASIC3 device memory as lookup tables can greatly increase the speed
of functions that require multiplication. Several techniques can be used, depending upon the widths and
types of the values to be multiplied. For applications where one of the values being multiplied remains
constant, often found in DSP functions, the constant coefficient multiplier is the fastest and the most
efficient lookup table multiplier.
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Appendix 1

Design Example: 8-Bit Constant Coefficient Multiplier
The design implemented here is the example for the eight-bit constant coefficient multiplier described
above. This design includes a loading module that loads the proper product values into the RAM and
prepares it for use as a multiplier.

After briefly asserting the active low clear signal, bring clear and load signals high. Allow the clk to cycle
for 256 cycles in order to load the memory. When the memory is loaded, bring the load signal low in order
to allow the RAM to start functioning as a multiplier.   

The mclk, used for multiplying, is independent of the clk signal, the loading clock. This allows the
multiplying clock to run at a different rate than the clock used to load the data.

Design Hierarchy
Multiply.vhd

Loader.vhd
Counter.vhd
Adder.vhd
Reg16.vhd

Ram16x8.vhd

Multiply
The multiply module combines the loader module, which loads the proper values for multiplying by E/h,
with the RAM module, which will act as the actual multiplier. 

-- multiply.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity multiply is

   port(load, clr, clk, mclk :  in std_logic;
        multiplier: in std_logic_vector (7 downto 0);
        product : out std_logic_vector (15 downto 0));
end multiply;

architecture structure of multiply is

    component loader
       port(enable, clr, clk :  in std_logic;
            datal : out std_logic_vector (15 downto 0);
            addr : out std_logic_vector (7 downto 0));
    end component;

    component ram16x8
        port( DATA : in std_logic_vector(15 downto 0); PROD : out 
            std_logic_vector(15 downto 0); LOAD_ADDR : in 
            std_logic_vector(7 downto 0); MULT : in std_logic_vector(
            7 downto 0);LOAD_EN, MULT_EN, LOAD_CLK, MULT_CLK, RESET : 
            in std_logic) ;
    end component;

    signal address : std_logic_vector (7 downto 0);
    signal dat :       std_logic_vector (15 downto 0);
    signal mult_en : std_logic;

    begin

    MULT_EN <= load;

    load1 : loader
    port map (enable => load, clr => clr, clk => clk, datal => dat, addr => address);
8



Appendix 1
    ram : ram16x8
    port map (DATA => dat, PROD => product, LOAD_ADDR => address, MULT => multiplier,
            LOAD_EN => load, MULT_EN => mult_en, LOAD_CLK => clk, MULT_CLK => mclk, RESET 
=> clr);

end structure;

Loader
The loader module accepts a clock, a clear, and an enable signal. It ties together the register, counter,
and adder. The adder performs the actual data loading for the RAM.

-- loader
library IEEE;
use IEEE.std_logic_1164.all;

entity loader is

   port(enable, clr, clk :  in std_logic;
        datal : out std_logic_vector (15 downto 0);
        addr : out std_logic_vector (7 downto 0));

end loader;

architecture struct of loader is

    component counter
        port(Enable, Aclr, Clock : in std_logic; Q : out 
            std_logic_vector(7 downto 0)) ;
    end component;

    component reg16
        port( Data : in std_logic_vector(15 downto 0);Enable, Aclr, 
              Clock : in std_logic; Q : out std_logic_vector(15 downto 0
             )) ;
    end component;

    component adder
        port( DataA : in std_logic_vector(15 downto 0); DataB : in 
              std_logic_vector(15 downto 0); Sum : out std_logic_vector(
              15 downto 0)) ;
    end component;

    constant multiplicand : std_logic_vector := "0000000000001110";

    signal data, data2 : std_logic_vector (15 downto 0);

    begin
    
    count : counter
    port map (Enable => enable, Aclr => clr, Clock => clk, Q => addr);

    values : adder
    port map (DataA => data2, DataB => multiplicand, sum => data);
        

    reg : reg16
    port map (Data => data, Enable => enable, Aclr => clr, Clock => clk,
                Q => data2);

    datal <= data2;

    end struct;
9
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Reg16
The reg16 register file is generated using SmartGen. The register file is a 16-bit parallel storage register
and is used to gate the values from the counter. It allows the values to be initially cleared. The register file
is generated using the parameters shown in Table 2.

Adder
The adder component is a 16-bit adder that continually increments the values loaded into the RAM by a
value of E/h, see Table 3.

Counter
The counter is an eight-bit counter that cycles through all the address values for the RAM. This counter is
also generated using SmartGen with the parameters shown in Table 4.

Table 2 • Reg16 Parameters

Parameter IGLOO Fusion ProASIC3

Width 16 16

Async Clear Active low Active low

Async Set Active high None

Output Active high Active high

Load Enable Active high Active high

Clock Rising Rising

Table 3 • Adder Parameters

Parameter IGLOO Fusion ProASIC3

Variations Ripple Ripple

Width 16 16

Carry In None None

Carry Out None None

Table 4 • Counter Parameters

Parameter IGLOO Fusion ProASIC3

Width 8 8

Async Clear Active low Active low

Clock Rising Rising

Async Preset None None

Terminal Count None None

Direction Up Up

Count Enable Active high Active high

Sync Load None None
10
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RAM16x8
The RAM16x8 is the memory block configuration used as the multiplier in this design. The memory block
is 256 words deep with a pair of eight-bit addresses and 16-bit data buses ( Table 5).

Figure 6 shows the port map is used in order to make the signals more meaningful as a multiplier.  

Table 5 • Counter Parameters

Parameter IGLOO Fusion ProASIC3

Write Depth 256 256

Write Width 16 16

Read Depth 256 256

Read Width 16 16

Clocks
Independent read and 
write clocks

Independent read and 
write clocks

Write Clock Rising Rising

Read Clock Rising Rising

RAM Type Two port Two port

Reset Active low Active low

Write Enable Active high Active high

Read Enable Active low Active low

Write Mode A N/A Retain output data

Read Pipeline A – No

Write Mode B N/A –

Read Pipeline B – –

Initialize RAM – N/A

Customize RAM Content – N/A
11
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Figure 6 • Port Mapping Dialog 
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