
Application Note AC222
Using Fusion, IGLOO, and ProASIC3 RAM as
Multipliers

Table of Contents

Introduction
Multiplication is one of the more area intensive functions in FPGAs. Traditional multiplication techniques
use the digital equivalent of longhand multiplication. These techniques are basically shift-and-add
procedures, which usually result in many levels of logic and limit performance. Pipelining can help to
improve the clock performance of the multipliers in this case, at the cost of more area.

Most people multiply by individually multiplying digits and referring back to memorized multiplication
tables. A similar technique can be employed using the embedded memory on an FPGA. The result of
using the RAM as a lookup table multiplier incurs only the delay of the memory access and has the
advantage of not consuming a large number of user gates on the FPGA.

This document describes the three ways to use RAM blocks as multipliers:

• Basic single lookup table multiplier

• Partial product multiplier

• RAM-based constant coefficient multiplier

For the Fusion, IGLOO®, and ProASIC®3 families of devices, the single lookup table approach can
create a very fast but narrow, four-bit multiplier. The partial product multiplier approach uses logic to
reduce the amount of memory required, but is slower than a pure lookup table. In fact, the pure logic
multiplier implementation for these devices available in the Microsemi® SmartGen core generator can
produce a multiplier that runs at a frequency comparable to the partial product implementation, though
the pure logic approach uses more core tiles. The constant coefficient multiplier is the most efficient
implementation, since it uses a minimum of additional logic gates and still maintains the performance of
the basic lookup table multiplier.

Basic Lookup Table (LUT) Based Multipliers
A basic LUT-based multiplier is simply a lookup table with the addresses arranged so that part of the
address is the multiplicand and the other part is the multiplier. The data width should be set to the sum of
the address width to accommodate the product.

Introduction . 1
Basic Lookup Table (LUT) Based Multipliers . 1
Partial Product Multipliers . 2
Constant Coefficient Multiplier . 3
Performance and Utilization . 4
Constant Coefficient Multiplier Example . 5
Conclusion . 6
Related Documents . 6
July 2015 1
© 2015 Microsemi Corporation

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
Implementing a Basic LUT-Based Multiplier
In the case where a four-bit value is multiplied by a four-bit value, you will need a memory block that is
eight bits wide and 256 words deep. The first four bits of the address can be configured as the
multiplicand and the second four bits can be configured as the multiplier. The memory will store the
appropriate product values. To multiply the upper four bits by the lower four bits, feed both values into the
address and clock the memory. The appropriate product value will appear on the RAM output. A diagram
of this LUT-based multiplier implementation is shown in Figure 1.

Since the memory block is synchronous, this configuration will result in a synchronous multiplier, whose
clock frequency is only limited by the data access time of the memory.

While this approach is more efficient than implementing multipliers in gates, it can consume a large
amount of memory. The amount of memory required increases with the square of the bit width. The
example above demonstrates a 4 x 4 bit multiplier with 256 eight-bit words of storage required. For an 8
x 8 bit multiplier, 65,536 16-bit words must be stored using this technique.

Partial Product Multipliers
One way to mitigate the amount of memory required is to use partial product multiplication. This
technique combines the lookup table approach with elements of longhand multiplication. For example, to
multiply 24 x 43 = 1,032 using longhand, simplify the problem into the sum of four multiply functions and
three add functions (Figure 2).

(4 × 3 + ((2 × 3) × 10)) + (((4 × 4) + ((2 × 4) × 10)) × 10) = 1,032

EQ 1

Figure 1 • Basic Single LUT-Based Multiplier

Multiplicand[3:0]

Address[7:0] DataOut[7:0] Product[7:0]

Multiplier[3:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep

Figure 2 • Partial Product Multiplier Techniques

24
X43

12
60

160
800

1,032

<
<

A
B

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 1
decimal place

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 1
decimal place

24
X43

12
60

160
800

1,032

<
<

A
B

< Shifted by 2
decimal places
2

Constant Coefficient Multiplier
Implementing a Partial Product Multiplier
In logic, this same technique can be used to reduce the amount of memory required to perform a multiply
function. Using a basic lookup table technique, an eight-bit by eight-bit multiply would require 128 kb of
storage. As shown in Figure 3, using partial product multipliers, the same procedure can be
accomplished using 1 kb of storage.

In order to accomplish this in logic, using A as the multiplicand and B as the multiplier, take the lower four
bits of A and multiply it by the lower four bits of B using the lookup table technique. Then take the upper
four bits of A and multiply it by the lower four bits of B and shift the partial product result to the left by four.
Then add the two results together for the first part of the product.

For the second part of the product, multiply the lower four bits of A by the upper four bits of B. Then do
the same with the upper four bits of both A and B and shift this partial product value to the left by four.
Add the two values of the previous calculation and shift the whole result to the left by four.

Then add the first part of the product to the second part of the product for the final result.

While this technique is not as fast as implementing the entire multiply as a single memory element, it
does greatly reduce the amount of memory required at the expense of using more core tiles.

Constant Coefficient Multiplier
A third approach to using memory blocks as multipliers is employing a constant coefficient multiplier. In
many cases, especially in DSP applications, the multiplicand remains constant and only the multiplier
varies.

Implementing a Constant Coefficient Multiplier
In this approach, only the multiplier must be assigned to the address lines of the memory block. The
multiplicand is predetermined and the memory block is loaded with the appropriate product values
(Figure 4 on page 4). For example, given that the multiplicand is always 4/h, if the multiplier is B/h, when
that value is sent to the address of the memory block, it will return the stored value 2C/h.

This type of multiplier scales linearly with the width of the values being multiplied. While a basic lookup
table 8 x 8 multiplier uses one block of 65,536 x 16 bit words (128 kb) of storage, and the partial product
lookup table multiplier uses four blocks of 256 x 8 bit words (1 kb) the constant coefficient multiplier

Figure 3 • Partial Product Multiplier Logic Implementation

4 × 4

4 × 4

4 × 4

4 × 4

A[3:0]
4

B[3:0]
4

12

8

8

A[3:0]
4

B[7:4]
4

<<4

A[3:0]
4

B[7:4]
4

12

8

8

12 16

16

A[7:4]
4

B[7:4]
4

<<4

<<4
3

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
requires one block of 256 x 16 bit words (0.5 kb) and does not incur the cost of the additional logic and
delay incurred by using the partial product multiplier.

Performance and Utilization
Because of architectural variations, the effectiveness of each approach varies between device families.
Table 1 shows, for a 4 x 4 multiplier, the RAM-based multiplier is much faster than the equivalent Booth
multiplier provided by the SmartGen core generator. The Booth multiplier is an optimized multiplier that
reduces the number of stages required to perform the multiplication function. However, as we expand to
an 8 x 8 multiplier, the amount of memory required to implement the 8 x 8 multiplier in RAM is too large to
be practical, and the Booth multiplier provided by SmartGen performs as well as implementing a partial
product RAM multiplier. Also, as shown in Table 1, pipelining either the Booth multiplier or the partial
product multiplier increases the performance of both, and both implementations run at similar speeds.
However, a constant coefficient multiplier is clearly much faster than either implementation.

Utilization is another consideration for choosing a multiplier. If your design leaves you with unused RAM
cells, employing the unused RAM as multipliers can save core tiles. Table 1 shows the number of core
tiles required to implement each of the multipliers. Not counting the logic required to load the RAM cells,
the 4 x 4 RAM multiplier requires only the RAM cell, and the eight-bit constant coefficient multiplier only
requires two cells. The partial product multiplier uses a third fewer tiles to implement than does the Booth
multiplier.

Figure 4 • Constant Coefficient Multiplier Logic

Address[7:0]Multiplier[7:0] DataOut[15:0] Product[15:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep

The multiplicand is predetermined.

Table 1 • Performance and Utilization of Multiplier Variations

Multiplier Used Performance MHz

Utilization

Core Tiles RAM Blocks

4 x 4 RAM multiplier 293 0 1

4 x 4 Booth multiplier 98 79 0

4 x 4 pipelined Booth multiplier 158 92 0

8 x 8 Booth multiplier 68 305 0

8 x 8 Booth multiplier with 1 pipeline stage 102 344 0

8 x 8 Booth multiplier with 2 pipeline stage 123 386 0

8 x 8 Booth multiplier with 3 pipeline stage 120 431 0

8 x 8 partial product multiplier 63 196 4
4

Constant Coefficient Multiplier Example
Constant Coefficient Multiplier Example
The constant coefficient multiplier is the most efficient implementation and will be the multiplier used in
this example. The RAM block must first be loaded with data in order to produce the correct product
values. The ProASIC3 RAM makes preloading the memory block very simple. Refer to the ProASIC3
Flash Family FPGAs, ProASIC3E Flash Family FPGAs and ProASIC3L Flash Family FPGAs datasheets
for more information. Since the memory in the IGLOO, Fusion, and ProASIC3 device has two ports, one
port can be dedicated to reading the data for multiply and the other can be dedicated to loading data. The
data can either be loaded from embedded Flash memory or from an external source, such as a
microprocessor, using the logic within the device, or through the JTAG port using the UJTAG feature.

The UJTAG feature allows you to interface with the internal array of the device through the JTAG ports.
This allows you to send signals through the JTAG port to your design. One of the uses of this feature is to
load data into RAM blocks. Refer to the "SRAM and FIFO Memories in Microsemi's Low Power Flash
Devices” chapter of the IGLOO and ProASIC3 FPGA fabric user’s guides for details on how to load a
RAM block using the UJTAG.

The example in Figure 5 uses logic within the device as a simple memory loader to preload the RAM for
use as a four-bit constant coefficient multiplier with a four-bit multiplicand value of E/h. "Appendix 1" on
page 8 includes the design files and the SmartGen generation screens for this example. The memory
loader is simply a counter that cycles through the addresses available, with an adder that increments the
product values and feeds them into a register file that passes the correct data for each address. Once the
loader is finished, the load signal is deasserted, and the RAM block is ready to be used as a multiplier.
Since the memory in the IGLOO, Fusion and ProASIC3 devices is synchronous, the multiplier acts as a
synchronous multiplier.

8 x 8 partial product multiplier with pipelining 129 311 4

8 x 8 constant coefficient multiplier 281 2 1

Note: Timing numbers are based on worst-case, commercial numbers for an AFS600 in a–2 speed grade.

Table 1 • Performance and Utilization of Multiplier Variations (continued)

Multiplier Used Performance MHz

Utilization

Core Tiles RAM Blocks

Figure 5 • Constant Coefficient Multiplier Logic

Load Address

Load Port

Loader
Load Data

Address[7:0]

Multiply Port

Multiplier[7:0]

DataOut[15:0] Product[15:0]

Clock Clock

RAM
8 bits wide

by 256 words
deep
5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130841
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130889
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130704
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130704
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130701
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130702

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
Additional Considerations
While in many cases using RAM blocks as multipliers can save area, there is overhead required in using
this approach. The RAM block must be loaded with the correct values before they can be used as
multipliers. An interface to load and increment the RAM block can then load the data on power-up.

A second approach is using a multiplier or adder to generate values in the RAM block to be loaded
without having to have the values prestored. However, using either a multiplier or an adder to generate
the values takes additional logic and does require time to create and store the proper values.

If a microprocessor is available in the system, it can also be used to generate the proper values and load
them into the RAM blocks. This approach avoids the additional storage required by the first approach
and the logic overhead of the additional multiplier or adder in the second approach.

Conclusion
Using the Fusion, IGLOO, and ProASIC3 device memory as lookup tables can greatly increase the speed
of functions that require multiplication. Several techniques can be used, depending upon the widths and
types of the values to be multiplied. For applications where one of the values being multiplied remains
constant, often found in DSP functions, the constant coefficient multiplier is the fastest and the most
efficient lookup table multiplier.

Related Documents

Datasheets
IGLOO Low Power Flash FPGAs

http://www.microsemi.com/documents/IGLOO_DS.pdf

IGLOOe Low Power Flash FPGAs

http://www.microsemi.com/documents/IGLOOe_DS.pdf

IGLOO PLUS Low Power Flash FPGAs

http://www.microsemi.com/documents/IGLOOPLUS_DS.pdf

Fusion Family of Mixed-Signal FPGAs

http://www.microsemi.com/documents/Fusion_DS.pdf

ProASIC3 Flash Family of FPGAs

http://www.microsemi.com/documents/PA3_DS.pdf

ProASIC3E Flash Family of FPGAs

http://www.microsemi.com/documents/PA3E_DS.pdf

ProASIC3L LowPower Flash FPGAs

http://www.microsemi.com/documents/PA3L_DS.pdf
6

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130694
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130692
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130693
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130688
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130704
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130701
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130702

User Guides
User Guides
IGLOO FPGA Fabric User’s Guide

http://www.microsemi.com/documents/IGLOO_UG.pdf

ProASIC3 FPGA Fabric User’s Guide

http://www.microsemi.com/documents/PA3_UG.pdf

Fusion FPGA Fabric User’s Guide

http://www.microsemi.com/documents/Fusion_UG.pdf
7

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130841
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130889
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130817

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
Appendix 1

Design Example: 8-Bit Constant Coefficient Multiplier
The design implemented here is the example for the eight-bit constant coefficient multiplier described
above. This design includes a loading module that loads the proper product values into the RAM and
prepares it for use as a multiplier.

After briefly asserting the active low clear signal, bring clear and load signals high. Allow the clk to cycle
for 256 cycles in order to load the memory. When the memory is loaded, bring the load signal low in order
to allow the RAM to start functioning as a multiplier.

The mclk, used for multiplying, is independent of the clk signal, the loading clock. This allows the
multiplying clock to run at a different rate than the clock used to load the data.

Design Hierarchy
Multiply.vhd

Loader.vhd
Counter.vhd
Adder.vhd
Reg16.vhd

Ram16x8.vhd

Multiply
The multiply module combines the loader module, which loads the proper values for multiplying by E/h,
with the RAM module, which will act as the actual multiplier.

-- multiply.vhd
library IEEE;
use IEEE.std_logic_1164.all;

entity multiply is

 port(load, clr, clk, mclk : in std_logic;
 multiplier: in std_logic_vector (7 downto 0);
 product : out std_logic_vector (15 downto 0));
end multiply;

architecture structure of multiply is

 component loader
 port(enable, clr, clk : in std_logic;
 datal : out std_logic_vector (15 downto 0);
 addr : out std_logic_vector (7 downto 0));
 end component;

 component ram16x8
 port(DATA : in std_logic_vector(15 downto 0); PROD : out
 std_logic_vector(15 downto 0); LOAD_ADDR : in
 std_logic_vector(7 downto 0); MULT : in std_logic_vector(
 7 downto 0);LOAD_EN, MULT_EN, LOAD_CLK, MULT_CLK, RESET :
 in std_logic) ;
 end component;

 signal address : std_logic_vector (7 downto 0);
 signal dat : std_logic_vector (15 downto 0);
 signal mult_en : std_logic;

 begin

 MULT_EN <= load;

 load1 : loader
 port map (enable => load, clr => clr, clk => clk, datal => dat, addr => address);
8

Appendix 1
 ram : ram16x8
 port map (DATA => dat, PROD => product, LOAD_ADDR => address, MULT => multiplier,
 LOAD_EN => load, MULT_EN => mult_en, LOAD_CLK => clk, MULT_CLK => mclk, RESET
=> clr);

end structure;

Loader
The loader module accepts a clock, a clear, and an enable signal. It ties together the register, counter,
and adder. The adder performs the actual data loading for the RAM.

-- loader
library IEEE;
use IEEE.std_logic_1164.all;

entity loader is

 port(enable, clr, clk : in std_logic;
 datal : out std_logic_vector (15 downto 0);
 addr : out std_logic_vector (7 downto 0));

end loader;

architecture struct of loader is

 component counter
 port(Enable, Aclr, Clock : in std_logic; Q : out
 std_logic_vector(7 downto 0)) ;
 end component;

 component reg16
 port(Data : in std_logic_vector(15 downto 0);Enable, Aclr,
 Clock : in std_logic; Q : out std_logic_vector(15 downto 0
)) ;
 end component;

 component adder
 port(DataA : in std_logic_vector(15 downto 0); DataB : in
 std_logic_vector(15 downto 0); Sum : out std_logic_vector(
 15 downto 0)) ;
 end component;

 constant multiplicand : std_logic_vector := "0000000000001110";

 signal data, data2 : std_logic_vector (15 downto 0);

 begin

 count : counter
 port map (Enable => enable, Aclr => clr, Clock => clk, Q => addr);

 values : adder
 port map (DataA => data2, DataB => multiplicand, sum => data);

 reg : reg16
 port map (Data => data, Enable => enable, Aclr => clr, Clock => clk,
 Q => data2);

 datal <= data2;

 end struct;
9

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
Reg16
The reg16 register file is generated using SmartGen. The register file is a 16-bit parallel storage register
and is used to gate the values from the counter. It allows the values to be initially cleared. The register file
is generated using the parameters shown in Table 2.

Adder
The adder component is a 16-bit adder that continually increments the values loaded into the RAM by a
value of E/h, see Table 3.

Counter
The counter is an eight-bit counter that cycles through all the address values for the RAM. This counter is
also generated using SmartGen with the parameters shown in Table 4.

Table 2 • Reg16 Parameters

Parameter IGLOO Fusion ProASIC3

Width 16 16

Async Clear Active low Active low

Async Set Active high None

Output Active high Active high

Load Enable Active high Active high

Clock Rising Rising

Table 3 • Adder Parameters

Parameter IGLOO Fusion ProASIC3

Variations Ripple Ripple

Width 16 16

Carry In None None

Carry Out None None

Table 4 • Counter Parameters

Parameter IGLOO Fusion ProASIC3

Width 8 8

Async Clear Active low Active low

Clock Rising Rising

Async Preset None None

Terminal Count None None

Direction Up Up

Count Enable Active high Active high

Sync Load None None
10

Appendix 1
RAM16x8
The RAM16x8 is the memory block configuration used as the multiplier in this design. The memory block
is 256 words deep with a pair of eight-bit addresses and 16-bit data buses (Table 5).

Figure 6 shows the port map is used in order to make the signals more meaningful as a multiplier.

Table 5 • Counter Parameters

Parameter IGLOO Fusion ProASIC3

Write Depth 256 256

Write Width 16 16

Read Depth 256 256

Read Width 16 16

Clocks
Independent read and
write clocks

Independent read and
write clocks

Write Clock Rising Rising

Read Clock Rising Rising

RAM Type Two port Two port

Reset Active low Active low

Write Enable Active high Active high

Read Enable Active low Active low

Write Mode A N/A Retain output data

Read Pipeline A – No

Write Mode B N/A –

Read Pipeline B – –

Initialize RAM – N/A

Customize RAM Content – N/A
11

Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
Figure 6 • Port Mapping Dialog
12

List of Changes
List of Changes

Date Changes Page

Revision 2
(July 2015)

Non-technical Updates. NA

Revision 1
(November 2008)

Initial Release. NA

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
13

Microse
One Ent
CA 9265

Within t
Outside
Sales: +
Fax: +1

E-mail:

tem
cts
its,

ces
 RF
cts;
ign

has

© 2015
rights r
Microse
Microse
tradema
property

n or
any
sold
 not
 are
and
 rely
er's
The
ntire
y or
uch
t is

 this
mi Corporate Headquarters
erprise, Aliso Viejo,
6 USA

he USA: +1 (800) 713-4113
 the USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

sales.support@microsemi.com

Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and sys
solutions for communications, defense & security, aerospace and industrial markets. Produ
include high-performance and radiation-hardened analog mixed-signal integrated circu
FPGAs, SoCs and ASICs; power management products; timing and synchronization devi
and precise time solutions, setting the world's standard for time; voice processing devices;
solutions; discrete components; security technologies and scalable anti-tamper produ
Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom des
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and
approximately 3,600 employees globally. Learn more at www.microsemi.com.

 Microsemi Corporation. All
eserved. Microsemi and the
mi logo are trademarks of
mi Corporation. All other
rks and service marks are the

Microsemi makes no warranty, representation, or guarantee regarding the information contained herei
the suitability of its products and services for any particular purpose, nor does Microsemi assume
liability whatsoever arising out of the application or use of any product or circuit. The products
hereunder and any other products sold by Microsemi have been subject to limited testing and should
be used in conjunction with mission-critical equipment or applications. Any performance specifications
believed to be reliable but are not verified, and Buyer must conduct and complete all performance
other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
on any data and performance specifications or parameters provided by Microsemi. It is the Buy
responsibility to independently determine suitability of any products and to test and verify the same.
information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the e
risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitl
implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to s
information itself or anything described by such information. Information provided in this documen
proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in
51900074-2/07.15

 of their respective owners. document or to any products and services at any time without notice.

mailto:sales.support@microsemi.com
www.microsemi.com

	Using Fusion, IGLOO, and ProASIC3 RAM as Multipliers
	Introduction
	Basic Lookup Table (LUT) Based Multipliers
	Implementing a Basic LUT-Based Multiplier

	Partial Product Multipliers
	Implementing a Partial Product Multiplier

	Constant Coefficient Multiplier
	Implementing a Constant Coefficient Multiplier

	Performance and Utilization
	Constant Coefficient Multiplier Example
	Additional Considerations
	Conclusion
	Related Documents
	Datasheets

	User Guides
	Appendix 1
	Design Example: 8-Bit Constant Coefficient Multiplier
	Design Hierarchy
	Multiply
	Loader
	Reg16
	Adder
	Counter
	RAM16x8

	List of Changes

