
Application Note AC284
Configuring CorePWM Using RTL Blocks

Introduction
This application note describes the configuration of CorePWM using custom RTL blocks. A design example
is provided to illustrate how a simple finite state machine (FSM) can be used to control the pulse-width
modulation (PWM) outputs of CorePWM.

The basic architecture of the design example is illustrated in Figure 1. The top-level design is
FSM_CorePWM, which consists of FSM and corepwm instantiations. For both the top-level design and the
custom FSM implementation, HDL code is provided at the end of this application note.

To run the design example, the Actel Libero® Integrated Design Environment (IDE) and CoreConsole
software tools are required. To obtain the necessary RTL directory for the core, a CorePWM IP license used
with CoreConsole is necessary as well.

CorePWM Overview
CorePWM is a PWM core that can be used in a number of embedded applications, including heating and
cooling, motor control, voltage output adjustment, and sound generation.

CorePWM offers a low cost PWM solution with up to eight PWM output channels and 0–100% duty cycle
capability. All PWM outputs are double-edge controlled and based on a configurable 8-bit PWM PERIOD
value and an 8-bit PRESCALE value between PERIOD ticks.

CorePWM has an Advanced Peripheral Bus (APB) interface, which can be used to configure CorePWM with
a microcontroller such as Core8051. For applications that do not require a microcontroller, CorePWM can
be configured in write-only mode using a simple, low-tile-count state machine.

Figure 1 • Example of Custom FSM Application Using CorePWM

Custom FSM

Top Level

CorePWM

FSM.v
FSM.vhd

RESET
State

PRESCALE, PERIOD,
ENABLE, INT REG

Configuration States

POSITIVE
EDGE

Configuration
State

NEGATIVE
EDGE

Configuration
State

FSM_CorePWM.v
FSM_CorePWM.vhd

corepwm.v
corepwm.vhd

PENABLE = 1

PWRITE = 1

PSEL = 1
PWM[1]

PADDR[4:0]

PWDATA[4:0]

DUTY_CYCLE[2:0]

PCLK

PRESET_N
September 2006 1
© 2006 Actel Corporation

Configuring CorePWM Using RTL Blocks
CorePWM is available in Actel Flash and antifuse FPGA devices. For more information, refer to the
CorePWM datasheet.

General Description
As shown in Figure 2, CorePWM consists of the Register Interface, Timebase Generation, and PWM
Waveform Generation blocks. A simple FSM can be used to control the inputs to the Register Interface
block for PWM register configuration and updating.

The port signals for CorePWM, illustrated in Figure 2, are defined in Table 1.

The Timebase Generation block accepts PRESCALE and PERIOD register values and produces a period
count (PERIOD_cnt) from 0 to 255. The number of system clock pulses between period counts is equal to
the PRESCALE value.

Figure 2 • CorePWM Block Diagram

Table 1 • CorePWM I/O Signal Descriptions

Signal Name Description

PRESET_N Active low asynchronous reset

PCLK System clock; all operations and status are synchronous to rising edge.

PSEL Select line for CorePWM

PENABLE Read output enable

PWRITE Write enable

PADDR[4:0] Register address

PWDATA[7:0] Write data input

PRDATA[7:0] Read data output

INT ORed interrupt signal; set to '1' at each PWM output transition.

PWM[PWM_NUM:1] PWM output(s)—up to 8

PWM1

PWM2

PWM3

PWM4

PWM5

PWM6

PWM7

PWM8

PSEL

PENABLE

PWRITE

PADDR[4:0]

PWDATA[7:0]

PRDATA[7:0]

INT

PCLK
PRST_N

CorePWM

Register
Interface

Timebase
Generation

PWM
Waveform
Generation

PRESCALE[7:0] Sync_pulse

PERIOD_cnt[7:0]

INT_MASK[7:0]

PERIOD[7:0]

PWM_ENABLE[7:0]

PWM_TOGGLE[7:0]

PWM1_NEGEDGE[7:0]

PWM1_POSEDGE[7:0]

PWM8_NEGEDGE[7:0]

PWM8_POSEDGE[7:0]

INT_REG[7:0]

INT
2

http://www.actel.com/ipdocs/CorePWM_DS.pdf

Configuring CorePWM Using RTL Blocks
Figure 3 shows an example of PWM waveform configuration. The example uses a PRESCALE register value
of 1 and a PERIOD register value of 14.

The PWM Waveform Generation block takes the input period count value and compares it with the
positive- and negative-edge register values. When the count value is equal to any of these registers, the
respective PWM output waveform is set to the correct value (high, low, or toggle), and the interrupt
register is updated. With the use of PWM Waveform Generation block, PWM waveform updates occur
only at the beginning of a PWM period, preventing erroneous pulse generation.

Duty Cycle Calculator
A Duty Cycle Calculator assists in calculating the PWM POSEDGE and NEGEDGE register values given a
requested duty cycle. The calculator is provided on the Actel website as a Microsoft® Excel spreadsheet:
http://www.actel.com/documents/duty_cycle_calc.zip.

CorePWM Configuration
A simple FSM can be used to configure and control the PWM outputs. The output of the FSM to CorePWM
consists of the address lines (PADDR) and write data (PWDATA). The rest of the CorePWM input signals
(PENABLE, PWRITE, and PSEL) are tied high, as CorePWM is configured in write-only mode.

Table 2 on page 4 gives descriptions and addresses for the CorePWM registers.

Figure 3 • CorePWM Generation Example

CLK

PWM1

12 13 14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

0 1

PRESCALE Value of 1 =
2 System Clock Periods

PERIOD Value of 14 with PRESCALE Value of 1 =
15 × 2 System Clock Periods per PWM Period
3

http://www.actel.com/documents/duty_cycle_calc.zip

Configuring CorePWM Using RTL Blocks
Table 2 • CorePWM Register Definitions

Register Name
Register Address

PADDR[4:0] Description
Default
Value

PRESCALE 0h00 The system clock cycle is multiplied by the PRESCALE value,
resulting in the minimum period count timebase.

0h08

PERIOD 0h01 The PRESCALE value is multiplied by the PERIOD value, yielding
the PWM waveform cycle.

0h08

PWM_ENABLE 0h02 Logic '1' enables each PWM output. 0h00

INT_MASK 0h03 Logic '1' masks the respective bit in the INTERRUPT register. 0h00

INTERRUPT 0h04 Each interrupt bit is set to '1' at either edge of a PWM output. 0h00

PWM1_POSEDGE 0h05 Sets positive edge of each PWM1 output with respect to the
PERIOD resolution.

0h00

PWM1_NEGEDGE 0h06 Sets negative edge of each PWM1 output with respect to the
PERIOD resolution.

0h00

PWM2_POSEDGE 0h07 Sets positive edge of each PWM2 output with respect to the
PERIOD resolution.

0h00

PWM2_NEGEDGE 0h08 Sets negative edge of each PWM2 output with respect to the
PERIOD resolution.

0h00

PWM3_POSEDGE 0h09 Sets positive edge of each PWM3 output with respect to the
PERIOD resolution.

0h00

PWM3_NEGEDGE 0h0A Sets negative edge of each PWM3 output with respect to the
PERIOD resolution.

0h00

PWM4_POSEDGE 0h0B Sets positive edge of each PWM4 output with respect to the
PERIOD resolution.

0h00

PWM4_NEGEDGE 0h0C Sets negative edge of each PWM4 output with respect to the
PERIOD resolution.

0h00

PWM5_POSEDGE 0h0D Sets positive edge of each PWM5 output with respect to the
PERIOD resolution.

0h00

PWM5_NEGEDGE 0h0E Sets negative edge of each PWM5 output with respect to the
PERIOD resolution.

0h00

PWM6_POSEDGE 0h0F Sets positive edge of each PWM6 output with respect to the
PERIOD resolution.

0h00

PWM6_NEGEDGE 0h10 Sets negative edge of each PWM6 output with respect to the
PERIOD resolution.

0h00

PWM7_POSEDGE 0h11 Sets positive edge of each PWM7 output with respect to the
PERIOD resolution.

0h00

PWM7_NEGEDGE 0h12 Sets negative edge of each PWM7 output with respect to the
PERIOD resolution.

0h00

PWM8_POSEDGE 0h13 Sets positive edge of each PWM8 output with respect to the
PERIOD resolution.

0h00

PWM8_NEGEDGE 0h14 Sets negative edge of each PWM8 output with respect to the
PERIOD resolution.

0h00

Note: 0h = hexadecimal; 0b = binary.
4

Configuring CorePWM Using RTL Blocks
As an example used in this application note, the following parameters are set: PERIOD = 14, PRESCALE = 1,
ENABLE = 1. A three-bit input value (DUTY_CYC) determines the duty cycle of the PWM[1] output. As
predefined by the user, each DUTY_CYC value is associated with a specific duty cycle value. Based on this
duty cycle value (Table 3), registers are set for the positive and negative edges of the PWM[1] output with
respect to the PERIOD resolution. These register values can easily be determined using the Duty Cycle
Calculator mentioned in the "Duty Cycle Calculator" section on page 3.

HDL Implementation of Design Example
In the FSM module, the PERIOD, PRESCALE, and ENABLE registers are configured first (Figure 1 on page 1).
This is followed by writing to the PWM[1] POSEDGE and NEGEDGE registers with the data specified in
Table 3.

The CorePWM subsystem (corepwm.v/corepwm.vhd) is generated using CoreConsole, a design entry tool
that enables IP blocks. CoreConsole exports synthesizable and simulatable RTL for CorePWM into Libero
IDE.

The designer then needs to create RTL code for the FSM and connect it to the CoreConsole-created
CorePWM subsystem. In addition to the FSM RTL code, the top-level design (FSM_CorePWM HDL file) is
included with this application note in "Appendix A – Verilog" on page 7 and "Appendix B – VHDL" on
page 10.

The design example has been verified with simulation, as shown in Figure 4.

Table 3 • Duty Cycle Example

Desired Duty Cycle DUTY_CYC Input PWM1_POSEDGE Value PWM1_NEGEDGE Value

0% 3'b000 15 0

20% 3'b001 0 3

40% 3'b010 0 6

60% 3'b011 0 9

80% 3'b100 0 12

100% 3'b101 0 15

Figure 4 • Simulation Waveform for Design Example
5

Configuring CorePWM Using RTL Blocks
Since there is only one PWM output used in the example, the PWM_NUM parameter is set to '1'.
Furthermore, the FIXED_REG_SEL parameter/generic is set to '0' because the CorePWM registers will need
to interface to the FSM.

Note that since this application employs the CorePWM write-only mode, the Register Interface’s read data
bus (PRDATA) and the interrupt line (INT), which are CorePWM outputs, are not used and can be
commented out of the corepwm module.

Conclusion
CorePWM is a general purpose pulse-width modulator that can be used in many different applications.
The CorePWM digital outputs can be configured and controlled with the use of a simple FSM. CorePWM
has been implemented in all of the most popular Flash and antifuse Actel FPGA devices.

List of Changes
The following table lists critical changes that were made in the current version of the document.

Previous Version Changes in Current Version (51900141-1/9.06*) Page

51900141-0/6.06 Parameter "PWM_NUM" was updated in the RTL. Refer to "Appendix A – Verilog"
and "Appendix B – VHDL" to see the updated code.

7 and 10

Note: *The part number is located on the last page of the document.
6

Configuring CorePWM Using RTL Blocks
Appendix A – Verilog

Top-Level Design (integration of FSM with CorePWM): FSM_CorePWM.v
module FSM_CorePWM #(

parameter PWM_NUM = 1)

(PCLK, PRESET_N, PSEL, PENABLE, PWRITE, DUTY_CYC, PWM, PRDATA, INT);

input PCLK, PRESET_N, PSEL, PENABLE, PWRITE;

input [2:0] DUTY_CYC;

output [PWM_NUM:1] PWM;

output [7:0] PRDATA;

output INT;

wire [4:0] PADDR_TOP;

wire [7:0] PWDATA_TOP;

FSM FSM_TOP (.PCLK(PCLK),.PRESET_N(PRESET_N),.DUTY_CYC(DUTY_CYC),

.PADDR(PADDR_TOP[4:0]),.PWDATA(PWDATA_TOP[7:0]));

corepwm #(.PWM_NUM(PWM_NUM))

COREPWM_TOP
(.PCLK(PCLK),.PRESET_N(PRESET_N),.PSEL(PSEL),.PENABLE(PENABLE),.PWRITE(PWRITE),

.PADDR(PADDR_TOP[4:0]),.PWDATA(PWDATA_TOP[7:0]),.PWM(PWM),.PRDATA(PRDATA[7:0]),.INT(IN
T));

endmodule

FSM: FSM.v
module FSM (DUTY_CYC, PRESET_N, PCLK, PADDR, PWDATA);

input PCLK, PRESET_N;

input [2:0] DUTY_CYC;

output [4:0] PADDR;

output [7:0] PWDATA;

reg [4:0] PADDR;

reg [7:0] PWDATA;

parameter /* Configuration States of FSM */

S_RESET = 3'b000,

S_CONFIG_PRE = 3'b001,

S_CONFIG_PER = 3'b010,

S_CONFIG_EN = 3'b011,

S_CONFIG_MASK = 3'b100,

S_RUN_POS = 3'b101,

S_RUN_NEG = 3'b110;

reg [2:0] STATE;

parameter PRESCALE = 8'b0001; /* PRESCALE=1 */

parameter PERIOD = 8'b1110; /* PERIOD=14 */
7

Configuring CorePWM Using RTL Blocks
parameter PWM_ENABLE = 8'b0001;

parameter INT_MASK = 8'b0000;

always @(posedge PCLK)

begin: FSM_CORE

if (!PRESET_N)

STATE = S_RESET;

case (STATE)

S_RESET:

if (PRESET_N)

STATE = S_CONFIG_PRE;

S_CONFIG_PRE: /*PRESCALE Register Configuration*/

begin

PADDR = 5'b000;

PWDATA = PRESCALE;

STATE = S_CONFIG_PER;

end

S_CONFIG_PER: /*PERIOD Register Configuration*/

begin

PADDR = 5'b001;

PWDATA = PERIOD;

STATE = S_CONFIG_EN;

end

S_CONFIG_EN: /*CorePWM Enable Reg Configuration*/

begin

PADDR = 5'b010;

PWDATA = PWM_ENABLE;

STATE = S_CONFIG_MASK;

end

S_CONFIG_MASK: /*INT Register Configuration*/

begin

PADDR = 5'b011;

PWDATA = INT_MASK;

STATE = S_RUN_POS;

end

S_RUN_POS: /*Positive Edge Register Configuration*/

begin

PADDR = 5'b101;

case (DUTY_CYC)

/*For Register Values based on Duty Cycle Input, refer to

Table 3 on page 5*/

3'b000: PWDATA = 8'b1111;

3'b001: PWDATA = 8'b0000;
8

Configuring CorePWM Using RTL Blocks
3'b010: PWDATA = 8'b0000;

3'b011: PWDATA = 8'b0000;

3'b100: PWDATA = 8'b0000;

3'b101: PWDATA = 8'b0000;

endcase

STATE = S_RUN_NEG;

end

S_RUN_NEG: /*Negative Edge Register Configuration*/

begin

PADDR = 5'b110;

case (DUTY_CYC)

/*For Register Values based on Duty Cycle Input, refer to

Table 3 on page 5*/

3'b000: PWDATA = 8'b0000;

3'b001: PWDATA = 8'b0011;

3'b010: PWDATA = 8'b0110;

3'b011: PWDATA = 8'b1001;

3'b100: PWDATA = 8'b1100;

3'b101: PWDATA = 8'b1111;

endcase

STATE = S_RUN_POS;

end

endcase

end

endmodule
9

Configuring CorePWM Using RTL Blocks
Appendix B – VHDL

Top-Level Design (integration of FSM with CorePWM): FSM_CorePWM.vhd
library ieee;

use ieee.std_logic_1164.all;

entity FSM_CorePWM is

 GENERIC (PWM_NUM : integer := 1);

port (PCLK, PRESET_N, PSEL, PENABLE, PWRITE: in std_logic;

 DUTY_CYC: in std_logic_vector (2 downto 0);

 PWM: out std_logic_vector (PWM_NUM downto 1);

 PRDATA: out std_logic_vector (7 downto 0);

 INT: out std_logic);

end entity FSM_CorePWM;

architecture HIERARCHICAL of FSM_CorePWM is

component FSM

port (PCLK, PRESET_N: in std_logic;

DUTY_CYC: in std_logic_vector (2 downto 0);

PADDR: out std_logic_vector (4 downto 0);

PWDATA: out std_logic_vector (7 downto 0));

end component;

component corepwm

GENERIC (PWM_NUM : integer := 8);

 port (PCLK, PRESET_N, PSEL, PENABLE, PWRITE: in std_logic;

 PADDR: in std_logic_vector(4 downto 0);

 PWDATA: in std_logic_vector(7 downto 0);

 PWM: out std_logic_vector(PWM_NUM downto 1);

 PRDATA: out std_logic_vector(7 downto 0);

 INT: out std_logic);

signal PADDR_TOP: std_logic_vector(4 downto 0);

signal PWDATA_TOP: std_logic_vector(7 downto 0);

begin

FSM_TOP: FSM port map (PCLK=>PCLK, PRESET_N=>PRESET_N, DUTY_CYC=>DUTY_CYC,

PADDR=>PADDR_TOP, PWDATA=>PWDATA_TOP);

COREPWM_TOP: corepwm

GENERIC MAP (PWM_NUM =>PWM_NUM)

port map (PCLK=>PCLK,PRESET_N=>PRESET_N,PSEL=>PSEL,PENABLE=>PENABLE,PWRITE=>PWRITE,

PADDR=>PADDR_TOP,PWDATA=>PWDATA_TOP,PWM=>PWM,PRDATA=>PRDATA,INT=>INT);

end HIERARCHICAL;
10

Configuring CorePWM Using RTL Blocks
FSM: FSM.vhd
library IEEE;

use IEEE.STD_Logic_1164.all;

entity FSM is

port (PCLK, PRESET_N: in std_logic;

DUTY_CYC: in std_logic_vector (2 downto 0);

PADDR: out std_logic_vector (4 downto 0);

PWDATA: out std_logic_vector (7 downto 0));

end entity FSM;

architecture RTL of FSM is

--Configuration States of FSM

type CurrentState is (S_RESET, S_CONFIG_PRE, S_CONFIG_PER, S_CONFIG_EN,

S_CONFIG_MASK, S_RUN_POS, S_RUN_NEG);

signal STATE: CurrentState;

--PRESCALE = 1

constant PRESCALE: std_logic_vector(7 downto 0):="00000001";

--PERIOD = 14

constant PERIOD: std_logic_vector(7 downto 0):="00001110";

constant PWM_ENABLE: std_logic_vector(7 downto 0):="00000001";

constant INT_MASK: std_logic_vector(7 downto 0):="00000000";

begin

FSM_CORE: process (PCLK)

begin

if rising_edge (PCLK) then

if (PRESET_N='0') then

STATE <= S_RESET;

end if;

case (STATE) is

when S_RESET => if (PRESET_N='1') then

STATE <= S_CONFIG_PRE;

end if;
11

Configuring CorePWM Using RTL Blocks
--PRESCALE Register Configuration

when S_CONFIG_PRE => PADDR <= "00000";

PWDATA <= PRESCALE;

STATE <= S_CONFIG_PER;

--PERIOD Register Configuration

when S_CONFIG_PER => PADDR <= "00001";

PWDATA <= PERIOD;

STATE <= S_CONFIG_EN;

--CorePWM Enable Reg Configuration

when S_CONFIG_EN => PADDR <= "00010";

PWDATA <= PWM_ENABLE;

STATE <= S_CONFIG_MASK;

--INT Register Configuration

when S_CONFIG_MASK => PADDR <= "00011";

PWDATA <= INT_MASK;

STATE <= S_RUN_POS;

--Positive Edge Register Configuration

when S_RUN_POS => PADDR <= "00101";

case DUTY_CYC is

--For Register Values based on Duty Cycle Input, refer to

Table 3 on page 5

when "000"=>PWDATA(3 downto 0)<="1111";

when "001"=>PWDATA(3 downto 0)<="0000";

when "010"=>PWDATA(3 downto 0)<="0000";

when "011"=>PWDATA(3 downto 0)<="0000";

when "100"=>PWDATA(3 downto 0)<="0000";

when "101"=>PWDATA(3 downto 0)<="0000";

when others=>PWDATA(3 downto 0)<="0000";

end case;

STATE <= S_RUN_NEG;

--Negative Edge Register Configuration

when S_RUN_NEG=>PADDR<="00110";

case (DUTY_CYC) is

--For Register Values based on Duty Cycle Input, refer to

Table 3 on page 5

when "000"=>PWDATA(3 downto 0)<="0000";

when "001"=>PWDATA(3 downto 0)<="0011";

when "010"=>PWDATA(3 downto 0)<="0110";
12

Configuring CorePWM Using RTL Blocks
when "011"=>PWDATA(3 downto 0)<="1001";

when "100"=>PWDATA(3 downto 0)<="1100";

when "101"=>PWDATA(3 downto 0)<="1111";

when others=>PWDATA(3 downto 0)<="0000";

end case;

STATE <= S_RUN_POS;

end case;

end if;

end process;

end RTL;
13

51900141-1/9.06

Actel Corporation

2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0) 1276 401 450
Fax +44 (0) 1276 401 490

Actel Japan
www.jp.actel.com

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn

Suite 2114, Two Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852 2185 6460
Fax +852 2185 6488

www.actel.com

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com
http://www.jp.actel.com
http://www.actel.com.cn

	Configuring CorePWM Using RTL Blocks
	Introduction
	Figure 1 . Example of Custom FSM Application Using CorePWM

	CorePWM Overview
	General Description
	Figure 2 . CorePWM Block Diagram
	Table 1 . CorePWM I/O Signal Descriptions
	Figure 3 . CorePWM Generation Example

	Duty Cycle Calculator
	CorePWM Configuration
	Table 2 . CorePWM Register Definitions
	Table 3 . Duty Cycle Example

	HDL Implementation of Design Example
	Figure 4 . Simulation Waveform for Design Example

	Conclusion
	List of Changes
	Appendix A - Verilog
	Top-Level Design (integration of FSM with CorePWM): FSM_CorePWM.v
	FSM: FSM.v

	Appendix B - VHDL
	Top-Level Design (integration of FSM with CorePWM): FSM_CorePWM.vhd
	FSM: FSM.vhd

