
Application Note AC201

Maximizing Logic Utilization in eX, SX, and SX-A
FPGA Devices Using CC Macros

Table of Contents

Introduction
Typically, designers use logic optimization techniques to minimize logic resources, allowing the design to
fit into a specific field-programmable gate array (FPGA). This application note introduces an optimization
technique where flip-flops are created from combinatorial resources (CC macros).

CC macros were originally developed to allow designers to construct flip-flops to meet radiation-tolerant
design requirements. However, designers can also take advantage of this design technique to utilize
unused combinatorial cell (C-cell) when the design requires more register cell (R-cell) than are available
in the selected device. This can be used to balance the types of logic resources required to allow fitting
the design into eX, SX, and SX-A devices.

SX and Related Architectures
The eX, SX, and SX-A FPGA families use a sea-of-modules architecture. This architecture features two
types of logic modules - the C-cell and the R-cell.

The number of dedicated flip-flops in each family is the total number of R-cells available. The unique CC
macro features in these families also allows building one flip-flop from every two C-cells. Hence, the
maximum number of flip-flops is given by EQ 1:

Max Flip-flops = R-cells + (C-cells/2)

EQ 1

Table 1 lists the available flip-flops in each device for the eX, SX, and SX-A families.

Introduction . 1
SX and Related Architectures . 1
Design Implementation . 4
Layout Considerations . 8
Conclusion . 8

List of Changes . 9
March 2012 1

© 2012 Microsemi Corporation

Maximizing Logic Utilization in eX, SX, and SX-A FPGA Devices Using CC Macros
Consider a design that uses 80 registers and 92 combinatorial cells. Normally, a designer selects the
eX128 device instead of the eX64, since the number of registers used in this design is greater than the
number of available R-cells in the eX64 device. However, in some cases, the goal is to fit the design into
the smallest available device in the family. Since the eX64 has 128 C-cells, this leaves a total of 36
unused C-cells. If the designer uses all 64 R-cells in the eX64 for registers, 16 more flip-flops are still
required for the design.

With the 36 C-cells still available, the designer can create up to 18 additional flip-flops, allowing a
maximum of 82 available flip-flops for the design—enough to accommodate the required 80 registers.
This optimization can be achieved without modifying the functionality of the design.

Another advantage of CC macros is that designs using CC macros in some Microsemi FPGA’s are more
resistant to single-event upset (SEU) than designs using R-cells. For this reason, CC macro design
techniques for ex, SX, and SXA devices are appropriate for space applications and all types of military
and high-reliability equipment.

Note: Although CC macros are available for use in Microsemi's RTSX-SU device, it is not necessary to
use CC macros for SEU purposes. The R-cells in these families are inherently radiation tolerant
because they are implemented with a Triple-Module Redundancy (TMR) voting technique. They
can be used to gain additional flip-flops; however, they do not have the same radiation performance
or features as the dedicated R-cells.

Table 1 • eX, SX, and SX-A FPGA Devices Available Flip-flops

SX-A Family A54SX08A A54SX16A A54SX32A A54SX72A

Dedicated Flip-flops 256 528 1,080 2,012

Combinatorial Cells 512 924 1,800 4,024

Maximum Flip-flops 512 990 1,980 4,024

SX Family A54SX08 A54SX16 A54SX16P A54SX32

Dedicated Flip-flops 256 528 528 1,080

Combinatorial Cells 512 924 924 1,800

Maximum Flip-flops 512 990 990 1,980

eX Family eX64 eX128 eX256

Dedicated Flip-flops 64 128 256

Combinatorial Cells 128 256 512

Maximum Flip-flops 128 256 512
2

SX and Related Architectures
CC Macro Flip-flops
CC macros use two C-cells with feedback to form a storage element. The C-cells are gated D-Latches
connected serially. The input C-cell is the Master and the output C-cell is the Slave. Figure 1 shows a CC
macro flip-flop formed by two C-cells.

Performance of CC Macros Versus R-Cells
This example compares the performance of CC macros compared to R-cells in a 28-bit counter design.

Table 2 shows the cell utilization and performance of a 28-bit counter design when all registers in the
counter are formed by dedicated registers (R-cells) in the eX64 device.

Figure 1 • o DFC1B_CCMacro

D0

D1
Y

D

Q

Q

Y 500 Y

Y

500

D3

510

510

511

GND GND

GND

CLA

CLK

Y

D0

D1
Y

Y

Y

GND

VCC VCC

GND GND

C-Cell C-Cell

Table 2 • eX64 28-bit Counter Design Using Dedicated Registers (R-cells)

Device Utilization Used (% of Total) Total

Sequential 28 (43.75%) 64

Combinatorial 49 (38.28%) 128

Total Logic 77 (40.10%) (seq+comb) 192

I/O with Clocks 31 84

Clock 1 2

HCLK 1 1

Note: Performance: 188 MHz
3

Maximizing Logic Utilization in eX, SX, and SX-A FPGA Devices Using CC Macros
Table 3 shows the corresponding cell utilization and performance of a 28-bit counter design when all
registers in the counter are formed by CC macro flip-flops in the eX64 device.

The performance numbers for both methods show that a design formed by CC macro flip-flops is slower
than a design formed by R-cells. Thus, CC macros should NOT be used in the critical paths of a design.
In addition, after inserting CC macros, designers should perform static and dynamic timing analyses to
verify the performance of the design.

Note: Flip-flops constructed from C-cells can only be driven by a routed clock (RCLK network). They
cannot be driven by a hardwired clock (HCLK network).

Design Implementation
CC macros can be implemented in a design using one of the following methods:

• Schematics

• Source file attributes

• Synthesis directives

The use of CC macros does not change the functionality of the design. Using synthesis directives is
advantageous because it is not necessary to modify or edit the source code.

Note: Microsemi CC macro flip-flops cannot have both clear and preset inputs simultaneously.

Schematics
To implement CC macros in a design using schematics, replace the extra register blocks in the
schematics with the appropriate CC macro modules. The following CC macros are available:

• DF1_CC

• DFC1B_CC

• DFP1B_CC

Table 3 • eX64 28-bit Counter Design Using CC Macro Flip-flops

Device Utilization Used (% of Total) Total

Sequential 0 (0.00%) 64

Combinatorial 97 (75.78%) 128

Total Logic 97 (50.52%) 192

I/O with Clocks 31 84

Clock 2 2

HCLK 0 1

Note: Performance: 121 MHz
4

Design Implementation
These macros correspond with their R-cell equivalents. Figure 2 illustrates the available CC macros in
the eX, SX, and SX-A families.

Adding Attributes to a Source File
Synplify provides a syn_radhardlevel attribute that specifies the implementation technique for designs.
This attribute can be used to create CC macro flip-flops.

It can be applied to a module (Verilog), an architecture (VHDL), or a register.

The syn_radhardlevel attribute can be globally applied to the top-level module or architecture of a design
and can be overridden for specific portions. The flip-flop type can even be controlled on a
register-by-register basis.

Figure 2 • DF1_CC, DFC1B_CC, andDFP1B_CC CC Macros

DF1_CC

D Q

CLK

Special Use Only

DFP1B_CC

Q

CLK

Special Use Only

D PRE

DFC1B_CC

Q

CLK

Special Use Only

CLA

D

5

Maximizing Logic Utilization in eX, SX, and SX-A FPGA Devices Using CC Macros
The syn_radhardlevel attribute is only effective if the corresponding Microsemi Verilog (cc_alt.v) or VHDL
(cc_alt.vhd) macro files for the design technique are included in the source files list of the Synplify
project. These files are located in:

www.microsemi.com/soc/download/rsc/?f=AF_AC201_LF.

The value "cc" for syn_radhardlevel is the instruction for implementing flip-flops as CC macros. This is
illustrated below for VHDL and Verilog.

VHDL
In VHDL, the syn_radhardlevel syntax is:

attribute syn_radhardlevel of object:
object_type is "cc"

where object is an architecture name or a register output signal and object_type is an architecture or a
signal.

Attribute Settings for a Register
This example uses a CC macro to implement the single register (data_b):

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
library synplify;
entity test (

end test;
architecture rtl of top is
signal data_a: std_logic;
signal data_b: std_logic_vector (7 downto 0);
-- using cc macro's
attribute syn_radhardlevel : string;
attribute syn_radhardlevel of data_b : signal
is "cc";
-- Other code

Attribute Settings for an Architecture
This example uses CC macros to implement all registers declared in an architecture:

LIBRARY IEEE;
USE IEEE.std_logic_1164.all;
library synplify;
entity test (

end test;
architecture rtl of top is attribute
syn_radhardlevel : string;
attribute syn_radhardlevel of rtl : architecture
is "cc";
-- Other code

Verilog
In Verilog, the syn_radhardlevel syntax is:

Object/* synthesis syn_radhardlevel="cc"*/;

where object is a module or a register output signal.

Attribute Settings for a Register
This example uses a CC macro to implement the register dataout [3:0]:

module top (clk, dataout, a, b);
input clk;
input a;
input b;
output dataout [3:0];
reg [3:0] dataout /* synthesis
syn_radhardlevel ="cc" */;
// Other code
6

http://www.microsemi.com/soc/download/rsc/?f=AF_AC201_LF

Design Implementation
Attribute Settings for a Module
This example uses CC macros to implement all registers in a module:

module top (clk, dataout, a, b) /* synthesis
syn_radhardlevel ="cc" */;
input clk;
input a;
input b;
output dataout [3:0];
reg [3:0] dataout;
register [7:0] data_a;
// Other code

Adding Attributes during Synthesis
Using synthesis attributes, CC macros can be inferred into a design while synthesizing. In addition to
requiring no source code modification, designers can easily experiment with different
CC-macro/dedicated-register combinations until an optimal solution is found.

The syn_radhardlevel attribute can be set either through a constraint file (.sdc) or through the SCOPE
constraint editor in Synplify.

Constraint File
This example illustrates the use of the syn_radhardlevel attribute in a design constraint file:

define_attribute {dataout[3:0]}

syn_radhardlevel {"cc"}

SCOPE Editor
The Microsemi Libero® Integrated Design Environment (IDE) Platinum package supports the Synplicity
GUI-based constraints editor, SCOPE (this is not supported in Libero IDE Silver and Gold). To set
constraints using SCOPE (Figure 3):

1. Compile the design by selecting Compile Only from the Synplicity Run menu.

2. Start SCOPE in the open project window by clicking the SCOPE icon on the toolbar.

3. Open the Constraint File.

4. Click the Attributes tab at the bottom of the SCOPE window. The spreadsheet displays columns
of attributes. From this tab, set the object and object type values for each attribute.

5. From the Object column, scroll down and select v.work.<top_level_entityname>.

6. Set the Attribute column to syn_radhardlevel and change the value from
v.work.<top_level_entityname> to "none". This prevents all flip-flops in the entire design from
being implemented with CC macros.

7. In the subsequent row(s), select register from the Object Type column.

8. Select the specific register to implement as a CC macro from the Object column.

9. Select syn_radhardlevel in the Attribute column and set the value to "cc". This defines the CC
macro for the object(s) specified in SCOPE.

10. Repeat steps 7-9 for all registers to be implemented with CC macros.

Figure 3 • Example of Setting Constraints in Synplify using the SCOPE Editor
7

Maximizing Logic Utilization in eX, SX, and SX-A FPGA Devices Using CC Macros
To synthesize a design using CC macros, include the family's Synplicity library file (eX.vhd, for example)
and the cc_alt.vhd file along with all HDL design files as shown in Figure 4. In Project View, place
cc_alt.vhd and the package file (ex.vhd) at the top as illustrated in Figure 4.

Layout Considerations
CC macros should use a global clock to ensure low skew between master and slave elements and hence
correct flip-flop functionality. For the eX, SX, and SX-A families, all CC macros should be connected to
the low-skew CLKA/B global resources. The use of the low-skew QCLK network is also acceptable when
using the A54SX72A device.

Note: Ensuring close placement of the master and slave elements is helpful, but does not guarantee
functionality. In an effort to ensure close placement, Microsemi's Designer software produces
warnings similar to the following for unacceptable placement in an SX-A device:

A master-slave flip-flop FC driven by
Z_1I18/U1 could not be established.
If you require better timing, please
unplace the macros and try layout again!

The 'FC' in the above warning refers to the FastConnect routing resource in the SX-A architecture.
FastConnect enables horizontal routing between any two logic modules within a given SuperCluster and
vertical routing with the SuperCluster immediately below it. Refer to the device datasheet at
www.microsemi.com/soc/documents/SXA_DS.pdf for more information.

Conclusion
CC macros are useful when a design runs out of registers and C-cells are still available in the device. In
this situation it is not necessary to use a bigger device in the family—utilizing CC macro flip-flops enables
the design to fit into the same device.

Since the performance of CC macros differs from R-cells, they should not be used in the critical paths of
the design. They are used in the timing critical paths of the design may result in a 30% decline in
performance. Also, CC macros do not support simultaneous CLR/PRE and cannot be routed to the
HCLK network. Finally, you should connect CC macros to low-skew RCLK and QCLK networks to ensure
the correct functionality.

Figure 4 • Importing the Source Files in Synplify
8

http://wwww.microsemi.com/soc/documents/SXA_DS.pdf
http://wwww.microsemi.com/soc/documents/SXA_DS.pdf

List of Changes
List of Changes
Revision * Changes Page

Revision 2
(March 2012)

Removed Axcelerator (SAR 22126).

Table 1 was revised (SAR 22126). 2

The "SX and Related Architectures" section was modified (SAR 22126). 1

The "Layout Considerations" section was modified (SAR 22126). 8

Revision 1
(February 2003)

EQ 1 was updated. 1

Table 1 was updated to include Axcelerator. 2

The "SCOPE Editor" section is new 7

The "Layout Considerations" section is new. 8

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
9

s of

ctor
trial
and
and
 at

Microse
One Ent
Within th
Sales: +
Fax: +1
© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademark

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semicondu
solutions for: aerospace, defense and security; enterprise and communications; and indus
and alternative energy markets. Products include high-performance, high-reliability analog
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs,
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more
www.microsemi.com.

mi Corporate Headquarters
erprise, Aliso Viejo CA 92656 USA
51900011-2/3.12

Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.e USA: +1 (949) 380-6100
1 (949) 380-6136
(949) 215-4996

http://www.microsemi.com

	Maximizing Logic Utilization in eX, SX, and SX-A FPGA Devices Using CC Macros
	Introduction
	SX and Related Architectures
	CC Macro Flip-flops
	Performance of CC Macros Versus R-Cells

	Design Implementation
	Schematics
	Adding Attributes to a Source File
	Adding Attributes during Synthesis

	Layout Considerations
	Conclusion
	List of Changes

