
Application Note AC176

Implementing Multi-Port Memories in ProASICPLUS
Devices

Table of Contents

Introduction
This application note describes a user-configurable VHDL wrapper for implementing dual-port and
quad-port memory structures using a small number of programmable logic tiles and the embedded
memory blocks in Microsemi ProASICPLUS® field programmable gate array (FPGA) devices.

The ProASICPLUS device architecture contains embedded SRAM cells that can be configured as static
memory blocks with independent read and write ports. Each basic memory block has a size of 256 words
by 9 bits with a single data port interface. For additional details on embedded memory blocks in
ProASICPLUS devices, refer to ProASICPLUS Flash Family FPGAs Datasheet or AC281: ProASICPLUS
RAM-FIFO Blocks Application Note.

Introduction . 1
Basics of Multi-Port Memories . 2

Dual-Port Memory .2

Quad-Port Memory . .3

Implementing Multi-Port Memories . 5
Read Ports: Dual-Port Memory .5

Read Ports: Quad-Port Memory .6

Write Ports . .6

Timing Diagrams . .7

Design Considerations . 7
Utilization . .8

Conclusion . 9
Related Documents . 9
Appendix: Design Example . 10
List of Changes . 19
June 2016 1

© 2016 Microsemi Corporation

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130708
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129864
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129864

Implementing Multi-Port Memories in ProASICPLUS Devices
Figure 1 shows a block diagram of the basic memory block.

The embedded memory blocks in ProASICPLUS devices can be used to implement multi-port memories
with the addition of some simple multiplex logic and an extra clock operating at double the read and write
clock frequency.

Basics of Multi-Port Memories
This application note discusses two types of multi-port memories—dual-port and quad-port. In both
configurations, two data access ports (data port A and data port B) are available for simultaneous read
and write operations into the ProASICPLUS embedded SRAM blocks. Each data port has its own data
bus, address bus, read enable, and write enable signals. The basic principle of implementing multi-port
memories in ProASICPLUS devices involve the use of an additional clock operating at double the read
and write frequency to access the memory space through some multiplex logic and arbitrate between the
data access ports. The overall bandwidth of the memory (bit or bits) remains the same, and the only
difference between the single and the multi-port memory is the read/write frequency versus data
width-trade off.

Although more than one data access port is now available, they share the same memory space.
Simultaneous read/write cycles to the same memory address result in reading the pre-existing memory
contents followed by the memory being updated with the new data at the end of the clock cycle.

Dual-Port Memory
The dual-port memory configuration consists of two data access ports (two read/write ports) sharing a
single clock domain (wr_clk). The write address bus from each data access port (a_wadr and b_wadr) is
used for both read and write operations. The read enable (a_rdblk, a_rdb, b_rdblk, and b_rdb) and write
enable (a_wrblk, a_wrb, b_wrblk, and b_wrb) signals are used to select between either read or write
operation for each data access port. Figure 2 on page 3 shows the corresponding ports of a dual-port
memory block.

Figure 1 • Basic Embedded SRAM Memory Block Structure
2 Revision 1

Basics of Multi-Port Memories
Quad-Port Memory
The quad-port memory configuration consists of two data access ports, each with a separate write port
and read port, clocked by separate write (wr_clk), and read (rd_clk) clocks. For each data access port,
there are separate address busses used to perform read (a_radr and b_radr) and write (a_wadr and
b_wadr) operations. The read enable (a_rdblk, a_rdb, b_rdblk, and b_rdb) and write enable (a_wrblk,
a_wrb, b_wrblk, and b_wrb) signals are used to activate the read and write operations for each data
access port.

Figure 2 shows the corresponding ports of a dual-port memory block.

Figure 2 • Dual-Port Memory Block Interface Signals
Revision 1 3

Implementing Multi-Port Memories in ProASICPLUS Devices
Figure 3 shows the corresponding ports of a quad-port memory block.

Table 1 summarizes the interface signals of the memory block.

Figure 3 • Quad-Port Memory Block Interface Signals

Table 1 • Multi-Port Memory Interface Signals

Signal Bits Input/Output Description

a_wdata variable Input Write data bus

a_wadr 8 Input Write/dual-port memory address bus

a_wren 1 Input Active high data enable

a_rdata variable Output Output data bus

a_radr 8 Input Output address bus (quad-port memory mode only)

a_rden 1 Input Output register enable A

b_wdata variable Input Write data bus

b_wadr 8 Input Write / dual-port memory address bus

b_wren 1 Input Active high data enable

b_rdata variable Output Output data bus

b_radr 8 Input Output address bus (quad-port memory mode only)

b_rden 1 Input Output register enable B

wr_2xclk 1 Input 2x write clock

wr_clk 1 Input Write port data clock / multiplexer select

rd_2xclk 1 Input 2x read clock (quad-port memory mode only)

rd_clk 1 Input Read data clock (quad-port memory mode only)

reset_n 1 Input Reset signal (active low)
4 Revision 1

Implementing Multi-Port Memories
Implementing Multi-Port Memories
In the referenced example ("Appendix: Design Example" on page 10), the multi-port memory wrapper
can be implemented in two configurations as described above: dual-port memory (PMODE=0) and
quad-port memory (PMODE = 1). The depth of the implemented multi-port memories is limited to a single
memory block (that is 256 words), but the width is variable up to 72 bits. The ProASICPLUS

RAM256X9SA macro is used as the basic memory block for this wrapper.

Since implementation of multi-port memories relies on the embedded memory block being clocked at
twice the data clock rate, a double frequency clock needs to be generated. The original data clock input
(wr_clk) is easily doubled in frequency to generate the required wr_2xclk signal using the PLLs in
ProASICPLUS architecture. For more information on how to generate a PLL for ProASICPLUS devices,
refer to Microsemi SmartGen, FlashROM, ASB, and Flash Memory System Builder User Guide or
AC306: Using ProASICPLUS Clock Conditioning Circuits Application Note.

Table 2 describes the configurable parameters for the reference design in the "Appendix: Design
Example" on page 10.

Read Ports: Dual-Port Memory
A block diagram of the dual-port memory implementation is shown in Figure 4.

Table 2 • Configurable Parameters for Design Example in Appendix

Parameter Value Description

PMODE 0 (default) Dual-port memory configuration

1 Quad-port memory configuration

PIPE 0 (default) Inputs not registered, just multiplex logic for inputs

1 Register inputs, then multiplex inputs to memory

OREG 0 (default) Transparent output mode

1 Registered output mode

WIDTH 1:72 (default = 9) Number of data + parity bits

Figure 4 • Dual-Port Memory Implementation
Revision 1 5

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130819
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129861

Implementing Multi-Port Memories in ProASICPLUS Devices
In this configuration, the write addresses and write clock are used to read from the memory. The read
address inputs and read clock remain unused in the code. If OREG = 0, the data outputs propagate
directly to both of the data output ports; otherwise, when OREG = 1, the output is pipelined with the
rising-edge of wr_clk. Data for the Read/Write Port A is registered on the falling-edge of wr_clk and then
re-timed to the next rising-edge, while data for Read/Write Port B is registered on the rising-edge of
wr_clk. This resynchronizes the data on Port A and Port B so that the apparent operation of the memory
is to read both ports simultaneously. The memory read operation supported by this wrapper is
asynchronous. The read enable inputs are used as inputs to enable the output registers.

Read Ports: Quad-Port Memory
A block diagram of the quad-port memory implementation is shown in Figure 5.

If PIPE is set to 1, the address and enable inputs for both read ports are registered with the rising edge of
the read clock rd_clk. Then, the read address and read enable inputs for Port A and Port B are
multiplexed to the memory and settle, while the rd_clk signal is high and low, respectively. If PIPE is set
to 0, the read address and enables are not registered and the read address and read enable inputs for
Port A and Port B are simply multiplexed to access the ProASICPLUS memory.

If OREG = 0, the data outputs propagate directly to the data output ports; otherwise when OREG = 1, the
output is resynchronized with the rising-edge of rd_clk. Read data for Read Port A is registered on the
falling-edge of rd_clk and then re-timed to the next rising-edge, and read data for Read Port B is
registered on the rising-edge of rd_clk. This resynchronizes the data on Port A and Port B so that the
apparent operation of the memory is to read both ports simultaneously. The memory read operation
supported by this wrapper is asynchronous. The read enable inputs are used as inputs to enable the
output registers.

Write Ports
The Write Port implementation for both dual-port and quad-port memory is the same. Data, address, and
enables for both write ports are optionally registered with the rising edge of wr_clk when PIPE = 1. Data,
address, and enable signals for Port A and Port B are multiplexed to the memory and settle while wr_clk
signal is high and low respectively. Then data is written into the memory on the next rising edge of
wr_2xclk (next falling or rising edge of wr_clk).

Figure 5 • Quad-Port Memory Implementation
6 Revision 1

Design Considerations
Timing Diagrams
Figure 6 and Figure 7 shows the relationships of the signals during Write and Read Cycles for both
dual-port and quad-port memories.

Design Considerations
The implementation of both dual-port memory and quad-port memory involves doubling the clock
frequency at which data is clocked into ProASICPLUS embedded memory and the use of multiplex logic
to arbitrate between Port A and Port B. The simplest way to implement the doubled frequency is to make
use of the on-chip PLL, with the exact configuration generated using ACTgen Macro Builder.

Figure 6 • ProASICPLUS Multi-Port memory Implementation Write Cycle

Figure 7 • ProASICPLUS Multi-Port memory Implementation Read Cycle
Revision 1 7

Implementing Multi-Port Memories in ProASICPLUS Devices
Utilization
Using the reference design example in the "Appendix: Design Example" on page 10, the following tables
quantify the additional logic overhead introduced by the necessary gates, flip-flops, and PLL used in both
dual-port and quad-port memory configurations in un-registered versus registered inputs and outputs
configuration.

The limiting portion of the design is the use of a doubled-frequency clock to a read/write into memory.
The maximum PLL output frequency is 180 MHz, as listed on ProASICPLUS Flash Family FPGAs
Datasheet. Therefore; if PLL is used to generate the doubled-frequency clock, the operation of the
wrapper code is at a limit of 90 MHz read/write. To achieve faster performance, the double-frequency
clock can be generated off chip.

If the configuration has the outputs registered (OREG = 1), this generates opposite edge flip-flops that is
part of the critical path of the design.

Dual-Port Memory with Unregistered Inputs and Outputs.

Dual-Port Memory with Registered Inputs and Outputs.

Quad-Port Memory with Unregistered Inputs and Outputs.

Quad-Port Memory with Registered Inputs and Outputs.

Notice the utilization increases significantly from the unregistered inputs and outputs to the registered
configuration. This is due to the additional flip-flops necessary to generate the registered inputs and
outputs for each bit of the data and address busses, as well as the enable signals. Also, the utilization
shows a slight increase from the dual-port to quad-port memory configuration.

Table 3 • Designer Resource Utilization Report (PMODE = 0, PIPE = 0, OREG = 0)

Data Width 9 Bits 18 Bits 36 Bits 72 Bits

Core Cells 19 28 46 82

RAM/FIFO Cells 1 2 4 8

PLLs 1 1 1 1

Table 4 • Designer Resource Utilization Report (PMODE = 0, PIPE = 1, OREG = 1)

Data Width 9 Bits 18 Bits 36 Bits 72 Bits

Core Cells 114 195 356 680

RAM/FIFO Cells 1 2 4 8

PLLs 1 1 1 1

Table 5 • Designer Resource Utilization Report (PMODE = 1, PIPE = 0, OREG = 0)

Data Width 9 Bits 18 Bits 36 Bits 72 Bits

Core Cells 27 36 54 90

RAM/FIFO Cells 1 2 4 8

PLLs 1 1 1 1

Table 6 • Designer Resource Utilization Report (PMODE = 1, PIPE = 1, OREG = 1)

Data Width 9 Bits 18 Bits 36 Bits 72 Bits

Core Cells 142 223 384 708

RAM/FIFO Cells 1 2 4 8

PLLs 1 1 1 1
8 Revision 1

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130708
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130708

Conclusion
Conclusion
Implementation of multi-port memories using a wrapper source code to interface the basic ProASICPLUS

memory block is straightforward and intuitive. Although, implementation of both dual-port and quad-port
memories requires additional logic overhead, including extra multiplexers, and flip-flops, still proves
useful in certain designs.

While the particular reference design included in the "Appendix: Design Example" on page 10 does not
account for parity, parity input and output signals can be easily implemented in the multi-port memory
wrapper source code. First, make use of the parity checking/generating capabilities built-in to the
ProASICPLUS memory blocks, and instantiate the desired memory macro in place of the RAM256x9SA
used in the example. Then, follow the basic principle of multiplexing Port A and Port B parity signals at
rising and falling edges of the clock signal.

Related Documents
For more information, see the following documents:

• ProASICPLUS Flash Family FPGAs Datasheet

• AC281: ProASICPLUS RAM-FIFO Blocks Application Note

• AC306: Using ProASICPLUS Clock Conditioning Circuits Application Note

• Microsemi SmartGen, FlashROM, ASB, and Flash Memory System Builder User Guide
Revision 1 9

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129861
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130819
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130708
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=129864

Implementing Multi-Port Memories in ProASICPLUS Devices
Appendix: Design Example
This design example implements a variable width dual-port or quad-port memory (up to 72 bits wide),
based on the 256 × 9 memory blocks available in Microsemi ProASICPLUS devices. For deeper
memories, the user must gang these blocks together and modify this design example.

A sample instantiation of the multi-port memory wrapper, which may be cut and pasted into the higher-
level VHDL code are as follows:

-- QPM0: mpm_apa

-- GENERIC MAP (PMODE => 0, PIPE = 0, OREG = 0, WIDTH = 9);

--

-- PORT MAP (reset_n => <your reset>,

-- wr_2xclk => <2x write clock>,

-- wr_clk => <write port data/enable clock>,

--

-- a_wrblk => <active low block enable for write>,

-- a_wrb => <active low data enable for write>,

-- a_wadr => <write/dpm address bus (8-bits)>,

-- a_wdata => <write data bus (variable width)>,

--

-- b_wrblk => <active low block enable for write>,

-- b_wrb => <active low data enable for write>,

-- b_wadr => <write/dpm address bus (8-bits)>,

-- b_wdata => <write data bus (variable width)>,

--

-- rd_clk => <read data clock (QPM mode)>,

--

-- a_rdblk => <output register enable 1>,

-- a_rdb => <output register enable 2>,

-- a_radr => <output address bus 8-bits (QPM mode)>,

-- a_rdata => <output data bus (variable width)>,

--

-- b_rdblk => <output register enable 1>,

-- b_rdb => <output register enable 2>,

-- b_radr => <output address bus 8-bits (QPM mode)>,

-- b_rdata => <output data bus (variable width)>);

The multi-port memory implementation source code are as follows:

Note: The source code can also be obtained from Microsemi Technical Support or from your local FAE.

--

--

-- Copyright 2002 Microsemi Corporation

--

--

--

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.std_logic_unsigned.all;

-- depending on the tools suite used, the APA library

-- may need to be referenced for VITAL simulation models.

--library apa;

--use apa.all;
10 Revision 1

Appendix: Design Example
-- NOTE: Integer types are used for all GENERIC declarations

-- in order to include synopsys support.

entity mpm_apa is

generic (PMODE : INTEGER range 0 to 1 := 0; -- DPM, QPM

PIPE : INTEGER range 0 to 1 := 0; -- M, R

OREG : INTEGER range 0 to 1 := 0; -- M, R

WIDTH : INTEGER range 1 to 72 := 9); -- 1:72

port(reset_n : in std_logic; -- active low

wr_2xclk : in std_logic;

wr_clk : in std_logic;

a_wrblkb : in std_logic;

a_wrb : in std_logic;

a_wadr : in std_logic_vector(7 downto 0);

a_wdata : in std_logic_vector(WIDTH - 1 downto 0);

b_wrblkb : in std_logic;

b_wrb : in std_logic;

b_wadr : in std_logic_vector(7 downto 0);

b_wdata : in std_logic_vector(WIDTH - 1 downto 0);

rd_clk : in std_logic;

a_rdblkb : in std_logic;

a_rdb : in std_logic;

a_radr : in std_logic_vector(7 downto 0);

a_rdata : out std_logic_vector(WIDTH - 1 downto 0);

b_rdblkb : in std_logic;

b_rdb : in std_logic;

b_radr : in std_logic_vector(7 downto 0);

b_rdata : out std_logic_vector(WIDTH - 1 downto 0));

end mpm_apa;

architecture RTL of mpm_apa is

-- APA 256x9 RAM with parity checking (parity not used)

component RAM256x9SA

port(

DO8 :out STD_ULOGIC;

DO7 :out STD_ULOGIC;

DO6 :out STD_ULOGIC;

DO5 :out STD_ULOGIC;

DO4 :out STD_ULOGIC;

DO3 :out STD_ULOGIC;

DO2 :out STD_ULOGIC;

DO1 :out STD_ULOGIC;

DO0 :out STD_ULOGIC;
Revision 1 11

Implementing Multi-Port Memories in ProASICPLUS Devices
WPE :out STD_ULOGIC;

RPE :out STD_ULOGIC;

DOS :out STD_ULOGIC;

WADDR7 :in STD_ULOGIC;

WADDR6 :in STD_ULOGIC;

WADDR5 :in STD_ULOGIC;

WADDR4 :in STD_ULOGIC;

WADDR3 :in STD_ULOGIC;

WADDR2 :in STD_ULOGIC;

WADDR1 :in STD_ULOGIC;

WADDR0 :in STD_ULOGIC;

RADDR7 :in STD_ULOGIC;

RADDR6 :in STD_ULOGIC;

RADDR5 :in STD_ULOGIC;

RADDR4 :in STD_ULOGIC;

RADDR3 :in STD_ULOGIC;

RADDR2 :in STD_ULOGIC;

RADDR1 :in STD_ULOGIC;

RADDR0 :in STD_ULOGIC;

WCLKS :in STD_ULOGIC;

DI8 :in STD_ULOGIC;

DI7 :in STD_ULOGIC;

DI6 :in STD_ULOGIC;

DI5 :in STD_ULOGIC;

DI4 :in STD_ULOGIC;

DI3 :in STD_ULOGIC;

DI2 :in STD_ULOGIC;

DI1 :in STD_ULOGIC;

DI0 :in STD_ULOGIC;

WRB :in STD_ULOGIC;

RDB :in STD_ULOGIC;

WBLKB :in STD_ULOGIC;

RBLKB :in STD_ULOGIC;

PARODD :in STD_ULOGIC;

DIS :in STD_ULOGIC);

end component;

SIGNAL wrblk_a : std_logic;

SIGNAL wrb_a : std_logic;

SIGNAL wadr_a : std_logic_vector(7 downto 0);

SIGNAL wdata_a : std_logic_vector(WIDTH - 1 downto 0);

SIGNAL wrblk_b : std_logic;

SIGNAL wrb_b : std_logic;

SIGNAL wadr_b : std_logic_vector(7 downto 0);

SIGNAL wdata_b : std_logic_vector(WIDTH - 1 downto 0);

SIGNAL wrblk : std_logic;

SIGNAL wrb : std_logic;

SIGNAL wadr : std_logic_vector(7 downto 0);

SIGNAL wdata : std_logic_vector(80 downto 0);

SIGNAL rdblkb_a : std_logic;

SIGNAL rdblkb_b : std_logic;

SIGNAL rdb_a : std_logic;

SIGNAL rdb_b : std_logic;
12 Revision 1

Appendix: Design Example
SIGNAL rdblkb : std_logic;

SIGNAL rdb : std_logic;

SIGNAL radr_a : std_logic_vector(7 downto 0);

SIGNAL radr_b : std_logic_vector(7 downto 0);

SIGNAL radr : std_logic_vector(7 downto 0);

SIGNAL rd_data : std_logic_vector(80 downto 0);

SIGNAL a_idata : std_logic_vector(WIDTH - 1 downto 0);

SIGNAL GND : std_logic;

begin

begin

GND <= '0'; -- used to tie off unused inputs to memories

--

-- Register incoming data from the write ports

--

A: if (PIPE = 1) generate

B: process(reset_n, wr_clk)

begin

if (reset_n = '0') then

wrblk_a <= '0';

wrb_a <= '0';

wadr_a <= (OTHERS => '0');

wdata_a <= (OTHERS => '0');

wrblk_b <= '0';

wrb_b <= '0';

wadr_b <= (OTHERS => '0');

wdata_b <= (OTHERS => '0');

elsif (wr_clk'event and wr_clk = '1') then

wrblk_a <= a_wrblkb after 1 ns;

wrb_a <= a_wrb after 1 ns;

wadr_a <= a_wadr after 1 ns;

wdata_a <= a_wdata after 1 ns;

wrblk_b <= b_wrblkb after 1 ns;

wrb_b <= b_wrb after 1 ns;

wadr_b <= b_wadr after 1 ns;

wdata_b <= b_wdata after 1 ns;

end if;

end process;

end generate;

-- Otherwise, just pass them through to the mux

--

C: if (PIPE /= 1) generate
Revision 1 13

Implementing Multi-Port Memories in ProASICPLUS Devices
wrblk_a <= a_wrblkb;

wrb_a <= a_wrb;

wadr_a <= a_wadr;

wdata_a <= a_wdata;

wrblk_b <= b_wrblkb;

wrb_b <= b_wrb;

wadr_b <= b_wadr;

wdata_b <= b_wdata;

end generate;

--

-- Multiplex the write ports to the memory

--

wrblk <= wrblk_a when (wr_clk = '1') else wrblk_b;

wrb <= wrb_a when (wr_clk = '1') else wrb_b;

wadr <= wadr_a when (wr_clk = '1') else wadr_b;

wdata(80 downto WIDTH) <= (OTHERS => '0'); -- tie off unused bits

wdata(WIDTH - 1 downto 0) <= wdata_a when (wr_clk = '1') else

wdata_b(WIDTH - 1 downto 0);

--

-- IF FOUR-Port and PIPE = 1 Register the read

-- addresses and enables

--

D: if (PMODE = 1 AND PIPE = 1) generate

E: process(reset_n, rd_clk)

begin

if (reset_n = '0') then

rdblkb_a <= '0';

rdb_a <= '0';

radr_a <= (OTHERS => '0');

rdblkb_b <= '0';

rdb_b <= '0';

radr_b <= (OTHERS => '0');

elsif (rd_clk'event and rd_clk = '1') then

rdblkb_a <= a_rdblkb after 1 ns;

rdb_a <= a_rdb after 1 ns;

radr_a <= a_radr after 1 ns;

rdblkb_b <= b_rdblkb after 1 ns;

rdb_b <= b_rdb after 1 ns;

radr_b <= b_radr after 1 ns;

end if;

end process;

end generate;
14 Revision 1

Appendix: Design Example
--

-- Otherwise, it's just a pass them through

--

F: if (PIPE /= 1) generate

rdblkb_a <= a_rdblkb;

rdb_a <= a_rdb;

radr_a <= a_radr;

rdblkb_b <= b_rdblkb;

rdb_b <= b_rdb;

radr_b <= b_radr;

end generate;

--

-- In four-port mode, multiplex the read addresses

-- NOTE: enables are used for output registers only.

--

W: if (PMODE = 1) generate

radr <= radr_a when (rd_clk = '1') else radr_b;

end generate;

--

-- IF OREG is 1 (registered), then create the output

-- registers, use rd_clk in QPM (PMODE = 1) mode...

--

rd_data(80 downto WIDTH) <= (OTHERS => '0'); -- tie off unused bits.

G: if (PMODE = 1 AND OREG = 1) generate

I: process(reset_n, rd_clk)

begin

if (reset_n = '0') then

a_idata <= (OTHERS => '0');

elsif (rd_clk'event and rd_clk = '0') then

if(rdblkb_a = '0' AND rdb_a = '0') then

a_idata <= rd_data(WIDTH-1 downto 0) after 1 ns;

end if;

end if;

end process;

J: process(reset_n, rd_clk)

begin

if (reset_n = '0') then

b_rdata <= (OTHERS => '0');

a_rdata <= (OTHERS => '0');

elsif (rd_clk'event and rd_clk = '1') then

if(rdblkb_b = '0' AND rdb_b = '0') then

b_rdata <= rd_data(WIDTH-1 downto 0) after 1 ns;

end if;

if(rdblkb_a = '0' AND rdb_a = '0') then

a_rdata <= a_idata after 1 ns;
Revision 1 15

Implementing Multi-Port Memories in ProASICPLUS Devices
end if;

end if;

end process;

end generate;

--

-- In dual port mode - use the write clock for output registers.

--

K: if (PMODE = 0 AND OREG = 1) generate

M: process(reset_n, wr_clk)

begin

if (reset_n = '0') then

a_idata <= (OTHERS => '0');

elsif (wr_clk'event and wr_clk = '0') then

if(a_rdblkb = '0' AND a_rdb = '0') then

a_idata <= rd_data(WIDTH-1 downto 0) after 1 ns;

end if;

end if;

end process;

N: process(reset_n, wr_clk)

begin

if (reset_n = '0') then

b_rdata <= (OTHERS => '0');

a_rdata <= (OTHERS => '0');

elsif (wr_clk'event and wr_clk = '1') then

if(b_rdblkb = '0' AND b_rdb = '0') then

b_rdata <= rd_data(WIDTH-1 downto 0) after 1 ns;

end if;

if(a_rdblkb = '0' AND a_rdb = '0') then

a_rdata <= a_idata after 1 ns;

end if;

end if;

end process;

end generate;

--

-- otherwise, assign the output of the

-- memory directly to the read data ports.

--

O: if (OREG /= 1) generate

a_rdata <= rd_data(WIDTH-1 downto 0); -- assign to output ports

b_rdata <= rd_data(WIDTH-1 downto 0);

end generate;

--

-- IF QPM generate (WIDTH/9) RAM BLOCKS with separate read/write ports

--

Q: if (PMODE = 1) generate
16 Revision 1

Appendix: Design Example
R: for i in 0 to (WIDTH/9) generate

S: RAM256x9SA

port map(DI8 => wdata((i*9)+8), DI7 => wdata((i*9)+7),

DI6 => wdata((i*9)+6), DI5 => wdata((i*9)+5),

DI4 => wdata((i*9)+4), DI3 => wdata((i*9)+3),

DI2 => wdata((i*9)+2), DI1 => wdata((i*9)+1),

DI0 => wdata((i*9)+0),

WADDR7 => wadr(7), WADDR6 => wadr(6),

WADDR5 => wadr(5), WADDR4 => wadr(4),

WADDR3 => wadr(3), WADDR2 => wadr(2),

WADDR1 => wadr(1), WADDR0 => wadr(0),

WBLKB => wrblk, WRB => wrb,

WCLKS => wr_2xclk,

WPE => open, RPE => open, DOS => open,

RBLKB => GND, RDB => GND,

RADDR7 => radr(7), RADDR6 => radr(6),

RADDR5 => radr(5), RADDR4 => radr(4),

RADDR3 => radr(3), RADDR2 => radr(2),

RADDR1 => radr(1), RADDR0 => radr(0),

DO8 => rd_data((i*9)+8), DO7 => rd_data((i*9)+7),

DO6 => rd_data((i*9)+6), DO5 => rd_data((i*9)+5),

DO4 => rd_data((i*9)+4), DO3 => rd_data((i*9)+3),

DO2 => rd_data((i*9)+2), DO1 => rd_data((i*9)+1),

DO0 => rd_data((i*9)+0),

PARODD => GND, DIS => GND

);

end generate;

end generate;

--

-- IF DPM generate (WIDTH/9) RAM BLOCKS with combined read/write ports

-- ie: use muxed write address for the read address also.

--

T: if (PMODE = 0) generate

U: for i in 0 to (WIDTH/9) generate

V: RAM256x9SA

port map(DI8 => wdata((i*9)+8), DI7 => wdata((i*9)+7),

DI6 => wdata((i*9)+6), DI5 => wdata((i*9)+5),

DI4 => wdata((i*9)+4), DI3 => wdata((i*9)+3),

DI2 => wdata((i*9)+2), DI1 => wdata((i*9)+1),

DI0 => wdata((i*9)+0),

WADDR7 => wadr(7), WADDR6 => wadr(6),

WADDR5 => wadr(5), WADDR4 => wadr(4),

WADDR3 => wadr(3), WADDR2 => wadr(2),

WADDR1 => wadr(1), WADDR0 => wadr(0),
Revision 1 17

Implementing Multi-Port Memories in ProASICPLUS Devices
WBLKB => wrblk, WRB => wrb,

WCLKS => wr_2xclk,

WPE => open, RPE => open, DOS => open,

RBLKB => GND, RDB => GND,

RADDR7 => wadr(7), RADDR6 => wadr(6),

RADDR5 => wadr(5), RADDR4 => wadr(4),

RADDR3 => wadr(3), RADDR2 => wadr(2),

RADDR1 => wadr(1), RADDR0 => wadr(0),

DO8 => rd_data((i*9)+8), DO7 => rd_data((i*9)+7),

DO6 => rd_data((i*9)+6), DO5 => rd_data((i*9)+5),

DO4 => rd_data((i*9)+4), DO3 => rd_data((i*9)+3),

DO2 => rd_data((i*9)+2), DO1 => rd_data((i*9)+1),

DO0 => rd_data((i*9)+0),

PARODD => GND, DIS => GND

);

end generate;

end generate;

end RTL;
18 Revision 1

List of Changes
List of Changes
The following table shows important changes made in this document for each revision.

Revision Changes Page

Revision 1
(June 2016)

Non-technical updates. N/A

Revision 0
(July 2003)

Initial release. N/A
Revision 1 19

ty of
f the
ve
ny

not
to
emi
ly

P
 this
s

nd

Micros
One E
CA 92
Within
Outsid
Sales:
Fax: +
E-mail
www.m

© 2016
rights r
Micros
Micros
tradem
proper
Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitabili
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out o
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi ha
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. A
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility
independently determine suitability of any products and to test and verify the same. The information provided by Micros
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entire
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other I
rights, whether with regard to such information itself or anything described by such information. Information provided in
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in thi
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies a
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

emi Corporate Headquarters
nterprise, Aliso Viejo,
656 USA
 the USA: +1 (800) 713-4113
e the USA: +1 (949) 380-6100
 +1 (949) 380-6136
1 (949) 215-4996
: sales.support@microsemi.com
icrosemi.com

 Microsemi Corporation. All
eserved. Microsemi and the
emi logo are trademarks of
emi Corporation. All other
arks and service marks are the
ty of their respective owners.
51900037-1/6.16

http://www.microsemi.com
http://www.microsemi.com
mailto:sales.support@microsemi.com
http://www.microsemi.com

	Implementing Multi-Port Memories in ProASICPLUS Devices
	Table of Contents
	Introduction
	Basics of Multi-Port Memories
	Dual-Port Memory
	Quad-Port Memory

	Implementing Multi-Port Memories
	Read Ports: Dual-Port Memory
	Read Ports: Quad-Port Memory
	Write Ports
	Timing Diagrams

	Design Considerations
	Utilization

	Conclusion
	Related Documents
	Appendix: Design Example
	List of Changes

