
Application Note AC360

SmartFusion cSoC: Implementation of FatFs on
Serial Flash

Table of Contents

Introduction
The SmartFusion® customizable system-on-chip (cSoC) device contains a hard embedded
microcontroller subsystem (MSS), programmable analog circuitry, and FPGA fabric consisting of logic
tiles, static random access memory (SRAM), and phase-locked loops (PLLs). The MSS consists of a
100 MHz ARM® Cortex™-M3 processor, advanced high-performance bus (AHB) matrix, system
registers, Ethernet MAC, DMA engine, real-time counter (RTC), embedded nonvolatile memory (eNVM),
embedded SRAM (eSRAM), fabric interface controller (FIC), the Philips Inter-Integrated Circuit (I2C),
serial peripheral interface (SPI), and external memory controller (EMC).

This application note describes:

• How to port and use the FatFs file system on the serial flash connected to the SPI interface of the
SmartFusion Evaluation Kit Board and the SmartFusion Development Kit Board

• Configuration options of the FatFs

• How to use the SmartFusion RTC for the timestamping requirements of the FatFs

A basic understanding of the SmartFusion design flow is assumed. Refer to the Using UART with a
SmartFusion cSoC - Libero SoC and SoftConsole Flow tutorial to understand the SmartFusion design
flow.

Introduction to FatFs File System
FatFs is a software module used to organize a storage medium. It abstracts the physical layer interfaces
to the storage medium and provides the functionalities to manage user data more efficiently with files and
directories. Embedded file system library (EFSL) and FatFs are two popular and freely available FAT
libraries for developing small embedded systems.

FatFs is a generic FAT file system module for small embedded systems that can be ported to any
underlying hardware. It has been architected with separate layers for hardware accesses.

Introduction . 1
Introduction to FatFs File System . 1
Porting FatFs Requirements . 3
Disk I/O Interface . 3
FatFs Configurations . 6
Example Application Software . 10
Running the Design . 10

Appendix A – Design Files . 12

List of Changes . 13
January 2013 1

© 2013 Microsemi Corporation

http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf
http://www.microsemi.com/soc/documents/SmartFusion_UART_HW_flow_LiberoSoftConsole_tutorial_UG.pdf

SmartFusion cSoC: Implementation of FatFs on Serial Flash
Figure 1 shows the structure of FatFs.

The FatFs has the following features:

1. Windows compatible FAT12/16/32 file system

2. Platform independence and easy to port

3. Very small footprint for code and work area

4. Various configuration options:

– Multiple volumes (physical drives and partitions)

– Multiple original equipment manufacturer (OEM) code pages, including double byte character
set (DBCS)

– Long file name (LFN) support in OEM code or Unicode

– Real-time operating system (RTOS) support

– Multiple sector size support

– Read-only, minimized API, I/O buffer, etc.

This application note aims at porting and using the FatFs generic file system module on SPI flash
memory available on the SmartFusion Evaluation Kit Board and the SmartFusion Development Kit Board
as a physical medium.

Refer to the Accessing Serial Flash Memory Using SPI Interface application note for understanding SPI
flash Read/Write operations on the SmartFusion Evaluation Kit Board and the SmartFusion Development
Kit Board.

The FatFs module is free software available for education, research, and development. For more
information about FatFs, refer to http://elm-chan.org/fsw/ff/00index_e.html.

Figure 1 • Structure of FatFs
2

http://www.microsemi.com/soc/documents/SmartFusion_Accessing_SPI_Flash_AN.pdf

Porting FatFs Requirements
Porting FatFs Requirements
You must provide the following functions to FatFs to give control for read and write to the physical
medium.

Disk I/O Interface
Since the FatFs module is completely separated from the disk I/O layer, it requires the following functions
to access the physical storage media. The low level disk I/O module is not a part of the FatFs module and
hence the following APIs are provided to access the SPI Flash on the SmartFusion Evaluation Kit Board
and the SmartFusion Development Kit Board:

• disk_initialize – Initialize disk drive

• disk_status – Get disk status

• disk_read – Read sector(s)

• disk_write – Write sector(s)

• disk_ioctl – Control device dependent features

• get_fattime – Get current time

Table 1 • FatFs Porting Layer APIs

Function Use When Required

Disk_initialization Required for initialization of the
physical medium

Always

Disk_status Required to get the status of the
physical medium for read and write

Always

Disk_read Required to read the data from the
physical medium

Always

Disk_write Required to write the data to the
physical medium

If file system is configured in both read and write
mode

Disk_ioctl (CTRL_SYNC) Required to get the write operations
to be synchronized

If the file system is configured in both read and
write mode

Disk_ioctl
(GET_SECTOR_COUNT)

Required to send the number of
sectors on the physical medium

When creating the file system on the medium

Disk_ioctl
(GET_SECTOR_SIZE)

Required to send the sector size If sector size is > 1024

Disk_ioctl
(GET_BLOCK_SIZE)

Required to send the block size of
the physical medium

When creating the file system on the medium

Disk_ioctl
(CTRL_ERASE_SECTOR)

Required when file system required
to erase the sectors

When erase is required
3

SmartFusion cSoC: Implementation of FatFs on Serial Flash
The following sections provide more details on API requirements.

Disk Initialization
API in C code implementation:

DSTATUS disk_initialize (
BYTE drv /* Physical drive umber (0..) */
)
{
 spi_flash_init();
 spi_flash_control_hw(SPI_FLASH_GLOBAL_UNPROTECT,0,NULL);
 return 0;
}

Description: The above API performs the SPI Flash initialization and provides read and write access

variables.

Disk Read
API in C code implementation:

#define ERASE_BLOCK_SIZE 4096
DRESULT disk_read (

BYTE drv,/* Physical drive umber (0..) */
BYTE *buff,/* Data buffer to store read data */
DWORD sector,/* Sector address (LBA) */
BYTE count/* Number of sectors to read (1..255) */

)
{

return (spi_flash_read(sector* ERASE_BLOCK_SIZE, buff, count* ERASE_BLOCK_SIZE));
}

Description: This API implements read functionality for the SPI Flash based on the sector address and
number of sectors to be read.

Disk Write
API in C code implementation:

DRESULT disk_write (
BYTE drv,/* Physical drive umber (0..) */
const BYTE *buff,/* Data to be written */
DWORD sector,/* Sector address (LBA) */
BYTE count/* Number of sectors to write (1..255) */

)
{
 int i;
 for (i =1; i<=count; i++)
{

spi_flash_control_hw(SPI_FLASH_4KBLOCK_ERASE,(sector*i* ERASE_BLOCK_SIZE),NULL);
 }
 return (
 spi_flash_write(sector* ERASE_BLOCK_SIZE, (uint8_t *) buff, count*
ERASE_BLOCK_SIZE));
}

Description: This API implements write functionality for the SPI Flash based on the sector address and
number of sectors to written.
4

FatFs Configurations
Disk I/O Controls
API in C code implementation:

#define NO_OF_SECTORS 2048
DRESULT disk_ioctl (

BYTE drv,/* Physical drive umber (0..) */
BYTE ctrl,/* Control code */
void *buff/* Buffer to send/receive control data */

)
{
 UINT *result = (UINT *)buff;
 switch (ctrl)
 {
 case GET_SECTOR_COUNT:
 *result = NO_OF_SECTORS;
 break;

 case GET_SECTOR_SIZE:
 *result = ERASE_BLOCK_SIZE;
 break;
 case GET_BLOCK_SIZE:
 *result = 1;/*in no.of Sectors */
 break;
 default:
 break;
 }
 return 0;
}

Description: This API implements the GET_SECTOR_COUNT, GET_SECTOR_SIZE, and
GET_BLOCK_SIZE functionalities. SECTOR_COUNT is the number of physical sectors available on SPI
Flash, SECTOR_SIZE is the minimum erase block size available for the SPI Flash, and
GET_BLOCK_SIZE is the number of sectors for each block, it being one in this case.

FatFs Configurations
The ffconfig.h file, available in the SoftConsole project provided in the design files, defines all the
possible configuration for the FatFs. Table 2 on page 6 describes the configurations that are enabled in
the software.
5

SmartFusion cSoC: Implementation of FatFs on Serial Flash
Table 2 • FatFs Configuration Selection

Modules Configuration Description

Function and
Buffering
Configurations

#define _USE_MKFS 1 Enabling support for making the file systems command f_mkfs.
After setting _USE_MKFS to 1, set _FS_READONLY to 0.

#define _FS_TINY 0 When _FS_TINY is set to 1, FatFs uses the sector buffer in the
file system object instead of the sector buffer in the individual file
object for file data transfer. This reduces memory consumption
by 512 bytes in each file object.

#define _FS_READONLY 0 Setting _FS_READONLY to 1 defines read only configuration.
This removes writing functions, f_write, f_sync, f_unlink, f_mkdir,
f_chmod, f_rename, f_truncate, and f_getfree.

#define _FS_MINIMIZE 0 The _FS_MINIMIZE option defines minimization level to remove
some functions.

0: Full function.

1: f_stat, f_getfree, f_unlink, f_mkdir, f_chmod, f_truncate, and
f_rename are removed.

2: f_opendir and f_readdir are removed in addition to level 1.

3: f_lseek is removed in addition to level 2.

#define _USE_STRFUNC1 To enable string functions, set _USE_STRFUNC to 1 or 2.

#define _USE_FORWARD 0 To enable f_forward function

#define _USE_FASTSEEK 0 To enable the fast seek function
6

FatFs Configurations
Locale and
Namespace
Configurations

#define _CODE_PAGE 437 The _CODE_PAGE specifies the OEM code page to be used on
the target system.

Incorrect setting of the code page can cause a file open failure.

932 - Japanese Shift-JIS (DBCS, OEM, Windows)

936 - Simplified Chinese GBK (DBCS, OEM, Windows)

949 - Korean (DBCS, OEM, Windows)

950 - Traditional Chinese Big5 (DBCS, OEM, Windows)

1250 - Central Europe (Windows)

1251 - Cyrillic (Windows)

1252 - Latin 1 (Windows)

1253 - Greek (Windows)

1254 - Turkish (Windows)

1255 - Hebrew (Windows)

1256 - Arabic (Windows)

1257 - Baltic (Windows)

1258 - Vietnam (OEM, Windows)

437 - U.S. (OEM)

720 - Arabic (OEM)

737 - Greek (OEM)

775 - Baltic (OEM)

850 - Multilingual Latin 1 (OEM)

858 - Multilingual Latin 1 + Euro (OEM)

852 - Latin 2 (OEM)

855 - Cyrillic (OEM)

866 - Russian (OEM)

857 - Turkish (OEM)

862 - Hebrew (OEM)

874 - Thai (OEM, Windows)

1 - ASCII only (Valid for non LFN cfg.)

Table 2 • FatFs Configuration Selection (continued)

Modules Configuration Description
7

SmartFusion cSoC: Implementation of FatFs on Serial Flash
#define _USE_LFN 1 To enable long file names. These can show 0-3 options. The
_USE_LFN option switches the LFN support.

0: Disable LFN. _MAX_LFN and _LFN_UNICODE have no
effect.

1: Enable LFN with static working buffer on the bss. NOT
REENTRANT.

2: Enable LFN with dynamic working buffer on the STACK.

3: Enable LFN with dynamic working buffer on the HEAP.

The LFN working buffer occupies (_MAX_LFN + 1) X 2 bytes.
After enabling LFN, Unicode handling functions ff_convert() and
ff_wtoupper() must be added to the project. When enabled to
use heap, memory control functions ff_memalloc() and
ff_memfree() must be added to the project.

#define _MAX_LFN 255 To set the maximum file name length

#define _LFN_UNICODE 0 0: ANSI/OEM or 1:Unicode

To switch the character code set on FatFs API to Unicode,
enable LFN feature, and set _LFN_UNICODE to 1.

#define _FS_RPATH 1 To enable the relative path.

When _FS_RPATH is set to 1, the relative path feature is
enabled and f_chdir, f_chdrive functions are available.

Physical Drive
Configurations

#define _DRIVES 1 Number of volumes (logical drives) to be used

#define _MAX_SS 4096 This is the minimum erase sector size of the SPI Flash.

#define _MULTI_PARTITION 0 When _MULTI_PARTITION is set to 0, each volume is bound to
the same physical drive number and can mount only the first
primary partition. When it is set to 1, each volume is tied to the
partitions listed in Drives.

System
Configurations

#define _WORD_ACCESS 0 Set to 0 first and it is always compatible with all platforms. The
_WORD_ACCESS option defines which access method is used
to the word data on the FAT volume.

0: Byte-by-byte access.

1: Word access. Do not choose this unless following condition is
met:

When the byte order on the memory is big-endian or address
misaligned word access results incorrect behavior, the
_WORD_ACCESS must be set to 0. If it is not the case, the
value can also be set to 1 to improve the performance and code
size.

#define _FS_REENTRANT 0 This option is needed in a multi-threaded environment, such as
when RTOS/OS is used.

#define _FS_TIMEOUT 1000 Timeout period in unit of time ticks

#define _FS_SHARE 0 To enable the file sharing feature, set _FS_SHARE to ≥1 and
also user provided memory handlers. The ff_memalloc and
ff_memfree functions must be added to the project. The value
defines the number of files that can be opened per volume.

Table 2 • FatFs Configuration Selection (continued)

Modules Configuration Description
8

FatFs Configurations
Table 3 shows which API function is removed by configuration options for the module size reduction.

Table 3 • FatFs APIs with Configuration

Function _FS_MINIMIZE _FS_READONLY _USE_STRFUNC
_FR_RPATH
FUNCTION _USE_MKFS _USE_FORWARD

1 2 3 1 0 0 1 0 0

f_mount

f_open

f_close

f_read

f_write X

f_sync X

f_lseek X

f_opendir X X

f_readdir X X

f_stat X X X

f_fgetfree X X X X

f_truncate X X X X

f_unlink X X X X

f_mkdir X X X X

f_chmod X X X X

f_utime X X X X

f_rename X X X X

f_chdir X

f_chdrive X

f_getcvd X X

f_mkfs X X

f_forward X

f_putc X X

f_puts X X

f_printf X X

f_gets X
9

SmartFusion cSoC: Implementation of FatFs on Serial Flash
You must include the ff.h header file in the application to use the FatFs APIs. The entire file system
configuration has to be selected in the ffconfig.h header file. These two files are available in the design
files provided with this application note.

Example Application Software
This demo example shows how to create, mount, and use the FatFs file system on SPI flash using the
SmartFusion cSoC devices. Use HyperTerminal help once the design files are loaded in the SmartFusion
Development Kit Board and the SmartFusion Evaluation Kit Board.

Running the Design

Board Settings
The design example works on the SmartFusion Development Kit Board and the SmartFusion Evaluation
Kit Board with default board settings. Refer to the following user’s guides for default board settings:

• SmartFusion Development Kit User’s Guide

• SmartFusion Evaluation Kit User’s Guide

Program the Design
Program the SmartFusion Evaluation Kit Board or the SmartFusion Development Kit Board with the
generated/provided *.STP file (refer to "Appendix A – Design Files" on page 12) using FlashPro, and
then power cycle the board.

Table 4 • Some of the FatFs API Usage and Description

API Usage Description

f_mount f_mount(isked, &fatfs); This API is used to mount the FatFs file system on the physical
medium.

f_open f_open(&file1,(char*)file_name,FLAGS); This API is used to open the file with different flags, such as
read, write, create etc.

f_close f_closes(&file1); This API is used to close the opened file.

f_read f_read(&file1, Buff, sizeof(Buff), &s1); This API is used to read an open file.

f_write f_write(&file1 Buff, sizeof(Buff), &s1); This API is used to write to an open file.

f_lseek f_lseek(&file1, size); This API is used to move the file pointer to the required location.

Figure 2 • Data Flow Diagram for the FatFs
10

http://www.microsemi.com/soc/documents/A2F500_DEV_KIT_UG.PDF
http://www.microsemi.com/soc/documents/A2F_EVAL_KIT_UG.pdf
http://www.microsemi.com/soc/documents/A2F_EVAL_KIT_UG.pdf

Running the Design
Running the Application
Invoke the SoftConsole IDE, double-click Write Application Code under Develop Firmware in the
Libero® System-on-Chip (SoC) software design flow window
(refer to "Appendix A – Design Files" on page 12) and launch the debugger. Start a HyperTerminal
session with the baud rate set to 57600, 8 data bits, 1 stop bit, no parity, and no flow control.

If your PC does not have the HyperTerminal program, use any free serial terminal emulation program
such as PuTTY or Tera Term. Refer to the Configuring Serial Terminal Emulation Programs tutorial for
configuring HyperTerminal, Tera Term, or PuTTY.

When you run the debugger in SoftConsole, the HyperTerminal window prompts the file system
commands and you must select the command to do the File system operation. Figure 3 shows the main
menu of the FatFs.

Release Mode
The release mode programming file (STAPL) is also provided. Refer to the Readme.txt file included in the
programming file for more information.
Refer to the SmartFusion cSoC: Building Executable Image in Release Mode and Loading into eNVM
Tutorial for more information on building an application in Release mode.

Figure 3 • Menu of the FatFs Demo
11

http://www.microsemi.com/soc/documents/Configuring_Serial_Terminal_Emulation_Programs.pdf
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf
www.microsemi.com/soc/documents/SmartFusion_Release_Built_Tutorial.pdf

SmartFusion cSoC: Implementation of FatFs on Serial Flash
Appendix A – Design Files
You can download the design files from the Microsemi SoC Products Group website:
www.microsemi.com/soc/download/rsc/?f=A2F_AC360_DF.
The design file consists of Libero SoC, Verilog project, SoftConsole software project, and programming
files (*.stp). Refer to the Readme.txt file included in the design file for directory structure and description.

You can download the programming files (*.stp) in release mode from the Microsemi SoC Products
Group website: www.microsemi.com/soc/download/rsc/?f=A2F_AC360_PF.
The programming file consists of STAPL programming file (*.stp) for A2F500-DEV-KIT and A2F-EVAL-
KIT, and a Readme.txt file.
12

www.microsemi.com/soc/download/rsc/?f=A2F_AC360_DF
www.microsemi.com/soc/download/rsc/?f=A2F_AC360_PF

List of Changes
List of Changes
The following table lists critical changes that were made in each revision of the document.

Revision* Changes Page

Revision 4
(January 2013)

Added "Board Settings" section and Modified "Running the Design" section
(SAR 43469).

10

Revision 3
(May 2012)

Modified "Appendix A – Design Files" (SAR 38435) 12

Revision 2
(February 2012)

Removed "zip" extension in the Design files link (SAR 36763). 12

Revision 1
(January 2012)

Modified the "Introduction" section (SAR 35869). 1

Modified the "Running the Design" section (SAR 35869). 10

Added section called "Release Mode" (SAR 35869). 11

Modified the "Appendix A – Design Files" section (SAR 35869). 12

Note: *The revision number is located in the part number after the hyphen. The part number is displayed at the bottom
of the last page of the document. The digits following the slash indicate the month and year of publication.
13

51900228-4/01.13

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo CA 92656 USA
Within the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

http://www.microsemi.com

	Introduction
	Introduction to FatFs File System
	Porting FatFs Requirements
	Disk I/O Interface
	Disk Initialization
	Disk Read
	Disk Write
	Disk I/O Controls

	FatFs Configurations
	Example Application Software
	Running the Design
	Board Settings
	Program the Design
	Running the Application
	Release Mode

	Appendix A – Design Files
	List of Changes

