Microsemi

KEY FEATURES

- Internal Reference $800 \mathrm{mv} \pm 2 \%$ Accuracy (Line and Temp.)
- 4.5V to 5.5V Input Range
- Internal Soft Start
- Adj. Output From 0.8V to VIN
- Output Current ($\mathrm{I}>1.5 \mathrm{~A}$)
- Quiescent Current < 550 A A, typ at $23^{\circ} \mathrm{C}$
- 1.1MHz PWM Frequency
- Micro Lead-frame, Thin MO229, 6-Pin Package

APPLICATIONS/BENEFITS

- Portable Microprocessor Core Voltage Supplies
- 5 V to 3 V
- RoHS compliant product

PRODUCT HIGHLIGHT

Figure 1 - LX12973 Circuit Topology and Typical Efficiency Performance

Note: Available in Tape \& Reel. Append the letters "TR" to the part number. (i.e. LX12973CLD-TR)

Production Data Sheet

ABSOLUTE MAXIMUM RATINGS

Input Voltage (IN). \qquad .-0.3 V to 7.0 V
SW to GND D.... \qquad .0 .3 V to $\left(\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$
V_{FB} to GND. \qquad
SW Peak Current (Internally Limited) \qquad -0.3 V to +2 V

Operating Temperature Range... $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range, T_{A}... $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Junction Temperature.. $150^{\circ} \mathrm{C}$
Package Peak Temp. for Solder Reflow (40 seconds max. exposure) $260^{\circ} \mathrm{C}(+0,-5)$
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMAL DATA: "LD" PACKAGE

THERMAL RESISTANCE-JUNCTION TO AMBIENT, $\theta \mathrm{JA}$ (Assumes no AMBIENT AIRFLow)
$\mathbf{2 5}-\mathbf{4 0}{ }^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{PCB}$ layout dependent)

Junction Temperature Calculation: $T_{J}=T_{A}+\left(P_{D} \times \theta_{J A}\right)$. The $\theta_{J A}$ numbers are guidelines for the thermal performance of the device/pc-board system.

FUNCTIONAL PIN DESCRIPTION	
NAME	DESCRIPTION
VIN ANALOG	Unregulated supply voltage input, ranging from +4V to 6.OV for internal analog control circuitry.
VIN PWR	Unregulated supply voltage input (+4V to 6.0V), high current path, connects to PMOS Source of PWM switch.
FB	Feedback input for setting programming output voltage.
GND	Circuit ground providing bias for IC operation and high frequency gate drive bias, can be connected to heatsink terminal.
SW	Inductor and commutation diode connection point. Connects to internal PMOSFET source.

ELECTRICAL CHARACTERISTICS

Specifications apply over junction temperature of: $0^{\circ} \mathrm{C} \leq \mathrm{T} \leq 125^{\circ} \mathrm{C}$ for $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ (except where otherwise noted). Typical values are at $\mathrm{T}_{\mathrm{A}}=23^{\circ} \mathrm{C}$.

Parameter	Symbol	Test Conditions	Min	Typ	Max	Units
- Operating Range	$V_{\text {IN }}$	Functional operation guaranteed by design	4.5		5.5	V
Feed Back Threshold	$V_{\text {FBT }}$	$4.0 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 6.0 \mathrm{~V}$	784	800	816	mV
FB Input Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=0.81 \mathrm{~V}$		40	75	nA
Error Amplifier	BW	Closed Loop		100		Khz
Quiescent Operating Current	$\mathrm{I}_{\mathrm{Q}}(\operatorname{Pin} 5)$	$\mathrm{V}_{\text {FB }}>0.825 \mathrm{~V}$, Rload Switch Pin $<1 \mathrm{~K}$ ohms		500	850	$\mu \mathrm{A}$
Soft Start, Vout Slew Rate	Vo	Initial Power On or after Short Circuit		21	50	V / mS
P-Channel Switch ON Resistance	$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	$\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}$		0.25	0.5	Ω
Maximum Duty Cycle	D	$\mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}$ (assured by design, not ATE tested)	80	100		\%
SW Leakage Current	$I_{\text {LEAK }}$	$\mathrm{V}_{\mathrm{FB}}=0.825 \mathrm{~V}$		0.01	5	$\mu \mathrm{A}$
P-Channel Current Limit	ILIM	Peak Current at Switch Pin (not dc current)	1.6	1.9		A
PWM Frequency	Fop-PWM	PWM Mode	700	1020	1400	KHz
PFM Mode Region	Io	PFM Mode		250		mA
Feed Back PSRR		1hz < Frequency Vin < 10Khz		-40		dB
Closed Loop Load Regulation	Load Reg	$\mathrm{V}_{\mathrm{O}}=1.2 \mathrm{~V}, 50 \mathrm{~mA} \leq \mathrm{l}_{0} \leq 1.2 \mathrm{~A}$, ckt figure 1		0.85		\% V_{0}
Thermal Shutdown	$\mathrm{T}_{\text {SD }}$	(assured by design, not ATE tested)	135	150		${ }^{\circ} \mathrm{C}$

LX12973 $\mathrm{V}_{\text {REF }} @ 800 \mathrm{mV}, 1.5 \mathrm{~A}, 1.1 \mathrm{MHz}$ PWM

Production Data Sheet

Figure 2 - LX12973 Block Diagram

Figure 3 - PCB Layout Considerations

APPLICATION NOTE

Functional Description

The LX12973 is a Current Mode PWM regulator with internal compensation.

The internal PMOS high side switch is protected with current limit on a pulse by pulse basis and with thermal shutdown. Thermal shutdown is activated with a junction temperature of $160^{\circ} \mathrm{C}$ (typical) and has $20^{\circ} \mathrm{C}$ of hysteresis.

The regulator has an internal Power On Reset delay of 50-100us to ensure all circuitry is operating before enabling the Switch output.

Soft Start is activated upon initial power-on, or following recovery from either thermal shutdown or short circuit. The Soft start control block generates a voltage ramp that clamps the error amplifier non-inverting reference voltage. As this clamp voltage rises, the duty cycle is gradually increased, thus limiting the peak inrush currents.

PWM / PFM mode of operation is determined by the load current condition. The PFM mode increases system efficiency by reducing the switching frequency thus switching losses. During light loading, Iout < 200ma typically, PFM mode becomes active, the switching frequency begins to decrease, the frequency change occurs over a continuous range, decreasing further as Iout decreases.

Output Voltage Programming

Resistors R1 and R2 program the output voltage. The value of R2 (lower resistor of divider) should be less than $10 \mathrm{~K} \Omega$. The value of R1 can be determined using the following equation, note $\mathrm{V}_{\text {REF }}$ is also referred to as V_{FB}.

$$
\mathrm{R} 1=\mathrm{R} 2\left[\left(\frac{\mathrm{~V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{REF}}}\right)-1\right]
$$

Diode Selection

A Schottky diode is required for switching speed and low forward voltage. Efficiency is determined mostly by the diode's forward voltage. The diode conducts 1-D\%, for Vout $=1.2 \mathrm{~V}$ this becomes 76% in a 5 V system.

Inductor Selection

Selecting the appropriate inductor type and value ensures optimal performance of the converter circuit for the intended application. A primary consideration requires the selection of an inductor that will not saturate at the peak current level. EMI, output voltage ripple, and overall circuit efficiency affect inductor choice. The inductor that works best depends upon the application's requirements and some experimentation with actual devices in-circuit is typically necessary to make the most effective choice.

Inductor Selection, cont.

The LX12973 allows for a broad selection of inductor values and choosing a value between $2.2 \mu \mathrm{H}$ and $22 \mu \mathrm{H}$ supports a majority of applications. The benefit of a larger inductor value can increase efficiency at the lower output currents and reduces output voltage ripple, thus output capacitance related to ripple filtering. Smaller inductors typically provide smaller package size (critical in many portable applications) at the expense of increasing output ripple current. Regardless of inductor value, selecting a device manufactured with a ferrite-core produces lower losses at higher switching frequencies and thus better overall performance. Larger inductors may lead to diminished StepLoad response.

Capacitor Selection

To minimize ripple voltage, output capacitors with a low series resistance (ESR) are recommended. Multi-layer ceramic capacitors with X5R or X7R dielectric make an effective choice because they feature small size, very low ESR, a temperature stable dielectric, and can be connected in parallel to increase capacitance. Typical output capacitance values of 10 to $30 \mu \mathrm{~F}$ has proven effective. Other low ESR capacitors such as solid tantalum, specialty polymer, or organic semiconductor, make effective choices provided that the capacitor is properly rated for the output voltage and ripple current. Finally, choose an input capacitor of sufficient size to effectively decouple the input voltage source impedance (e.g., $\mathrm{C}_{\mathrm{IN}} \geq 4.7 \mu \mathrm{~F}$).

Layout Considerations

The high peak currents and switching frequencies present in DC/DC converter applications require careful attention to device layout for optimal performance. Basic design rules include: (1) maintaining wide traces for power components (e.g., width $>50 \mathrm{mils}$); (2) place $\mathrm{C}_{\text {IN }}$, $\mathrm{C}_{\text {OUT }}$, the Schottky diode, and the inductor close to the LX12973; (3) minimizing trace capacitance by reducing the etch area connecting the SW pin to the inductor; and (4) minimizing the etch length to the FB pin to reduce noise coupling into this high impedance sense input. Other considerations include placing a 0.1 uF capacitor between the LX12973 VOUT pin and GND pin to reduce high frequency noise and decoupling the VIN pin using a 0.1uF capacitor. The LX12973 Switch has fast switching speeds which may generate noise spikes when a high capacitance Schottky diode is selected for the catch diode. A simple snubber circuit, as shown in Figure 1, R=10 ohms and $\mathrm{C}=680 \mathrm{pF}$ has proven effective to reduce the spike voltage generated at the Switch Pin / Diode connection.

LX12973 $\mathrm{V}_{\text {REF }} @ 800 \mathrm{mV}, 1.5 \mathrm{~A}, 1.1 \mathrm{MHz}$ PWM

Production Data Sheet

Figure 4- Step Load Response 250ma-1.2A 3.3uH, 40uF Blue: Vout 50mV/div AC; Green: Istep 200ma/div

Figure 6 - Power On and Soft Start For lout 10ma to 1amp

Figure 5 - Switching Waveforms: PFM Mode

Figure 7- Vout Temperature Stability

PACKAGE DIMENSIONS

LD 6 Pin Plastic $3 \times 3 \times .9 \mathrm{~mm}$

Dim	MILLIMETERS		INCHES			
	MIN	MAX	MIN	MAX		
A	0.80	1.00	0.031	0.039		
A1	0.00	0.05	0.000	0.002		
K	0.20		MIN	0.008		MIN
e	0.95		BSC	0.037		BSC
L	0.30	0.50	0.012	0.02		
b	0.30	0.45	0.012	0.018		
D2	1.90	2.40	0.75	0.094		
E2	1.15	1.65	0.045	0.065		
D	3.00	BSC	0.118			
E BSC						
L1	3.00	BSC	0.118	BSC		
L1	0.00	0.15	0.000	0.006		

Note:

1. Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}\left(.006^{\prime \prime}\right)$ on any side. Lead dimension shall not include solder coverage.

NOTES

[^0]
[^0]: PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

