

 MIV_ESS User Guide

Introduction

The MIV_ESS v2.0 is a Mi-V ecosystem IP core available for the Microchip FPGA and System-on-Chip (SoC) FPGA
device families. The core is a multi-featured, highly-configurable, Extended Subsystem (ESS), which supports both
bootstrap and base peripherals. It is specifically designed to use with the MIV_RV32 soft processor.

Features
MIV_ESS has the following features.

• Designed for low-power FPGA implementations.
• Highly configurable, compact, and extended subsystem solution for the MIV_RV32 soft processor.
• Optional bootstrap function from the following nonvolatile sources.

– Serial peripheral interface (SPI) Flash
– I2C EEPROM
– On-chip µPROM (PolarFire® and RTG4™ devices)

• APB interface for bootstrap transfers to TCM on the MIV_RV32 (TAS compatible).
• Optional memory-mapped peripherals.

– Timer (64-bit with pre-scaler)
– Watchdog
– SPI
– I2C
– μDMA with AHB-Lite read port and either AHB-Lite or TAS (APB) write port options
– Platform-Level Interrupt Controller (PLIC) with up to 31 interrupts
– GPIO
– UART

• APB interface to access subsystem memory-mapped peripherals.
• Seven optional external APB interfaces to connect additional peripherals.

Core Versions
This user guide applies to the MIV_ESS v2.0 core. A design guide is also provided as a supplementary document for
this core. The following four existing DirectCore IPs are integrated within the MIV_ESS core.

• CoreGPIO v3.2.102
• CoreSPI v5.2.104
• CoreUARTapb v5.7.100
• CoreAPB v4.2.100

For more information about these DirectCore IP cores, see IP Catalog → Peripherals in the Libero® tool.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 1

Supported Families
• PolarFire®

• PolarFire® SoC
• RT PolarFire®

• RTG4™

• IGLOO®2
• SmartFusion®2

Abbreviations
The following acronyms are used in this document.

Table 1. List of Acronyms

Acronym Expanded

ECC Error Correction Code

TCM Tightly Coupled Memory

TAS TCM APB Slave

PLIC Platform Level Interrupt Controller

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 2

Table of Contents

Introduction...1

1. Features... 1
2. Core Versions...1
3. Supported Families.. 2
4. Abbreviations..2

1. Resource Utilization and Performance ...5

1.1. Typical Resource Utilization... 7

2. MIV_ESS Architecture.. 8

2.1. Description... 8
2.2. Interface... 9
2.3. Programming.. 11

3. Bootstrap...14

3.1. Description... 14
3.2. Interface... 16
3.3. SPI Mode - Programming and Operation...26
3.4. I2C Mode – Programming and Operation...29
3.5. µPROM Mode – Programming and Operation... 29

4. APB... 32

4.1. Description... 32
4.2. Interface... 32
4.3. Programming..34

5. μDMA.. 36

5.1. Description... 36
5.2. Interface... 36
5.3. Programming..38

6. GPIO... 42

6.1. Description... 42
6.2. Interface... 42
6.3. Programming..44

7. I2C... 48

7.1. Description... 48
7.2. Interface... 48
7.3. Programming..51

8. PLIC.. 56

8.1. Description... 56
8.2. Interface... 56
8.3. Programming..57

9. SPI.. 59

9.1. Description... 59

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 3

9.2. Interface... 59
9.3. Programming..62

10. TIMER... 70

10.1. Description... 70
10.2. Interface... 72
10.3. Programming..74

11. UART...77

11.1. Description... 77
11.2. Interface... 77
11.3. Programming..80

12. Watchdog.. 83

12.1. Description... 83
12.2. Interface... 85
12.3. Programming..87

13. Tool Flow... 93

13.1. License...93
13.2. RTL...93
13.3. SmartDesign...93
13.4. Configuring the MIV_ESS.. 94
13.5. Simulation...95
13.6. Synthesis in Libero...95
13.7. Place-and-Route in Libero..95

14. System Integration.. 96

14.1. MIV_ESS Bootstrap Example.. 96
14.2. MIV_ESS Peripheral Example... 96
14.3. Multiple MIV_ESS Example .. 97

15. SoftConsole...98

15.1. Setting the System Clock Frequency and Peripheral Base Addresses......................................98

16. Revision History.. 100

The Microchip Website...101

Product Change Notification Service..101

Customer Support.. 101

Microchip Devices Code Protection Feature.. 101

Legal Notice... 101

Trademarks.. 102

Quality Management System... 103

Worldwide Sales and Service...104

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 4

1. Resource Utilization and Performance
The Resource Utilization and Performance (RUP) data is listed in Table 1-1 through Table 1-4 for the supported
device families. The listed PolarFire information is also applicable to PolarFire SoC and RT PolarFire. This data is
indicative only. The overall resource utilization and performance of the core is system-dependent. The RUP data is
generated using Libero SoC v2021.2 and Synplify R-2021.03M. The Place-and-Route Logic Element (LE) signifies
the number of logic elements used in the synthesized component for benchmarking.

Note:  These values are for reference only and vary depending on Place-and-Route runs.

The following tables also list the device resource utilization and performance for selected configurations of the
MIV_ESS IP core.

Table 1-1. SPI Boot

Family Part Number Synthesis Place-
and-

Route
LE

Performance
(MHz)

DFF 4LUT Total

PolarFire® MPF500T-1 FCG1152E 379 733 1,112 759 361.7

RTG4™ RTG4150L FCG1657M 380 667 1,047 697 86.8

SmartFusion®2 M2S150T FC1152 380 739 1,119 768 164.1

IGLOO®2 M2GL150 FC1152 380 739 1,119 768 164.1

Configuration
Parameters

Bootstrap: Enabled, Bootstrap Source: SPI, UART Enable: Yes, GPIO Enable: Yes

Table 1-2. I2C Boot

Family Part Number Synthesis Place-
and-

Route
LE

Performance
(MHz)

DFF 4LUT Total

PolarFire® MPF500T-1 FCG1152E 579 901 1,480 950 374.5

RTG4™ RTG4150L FCG1657 578 828 1,406 884 91.4

SmartFusion®2 M2S150T FC1152 579 893 1,472 948 184.8

IGLOO®2 M2GL150 FC1152 579 893 1,472 948 184.8

Configuration
Parameters

Bootstrap: Enabled, Bootstrap Source: I2C, I2C Enable: Yes, UART Enable: Yes, GPIO Enable:
Yes

Table 1-3. PolarFire μPROM Boot

Family Part Number Synthesis Place-
and-

Route
LE

Performance
(MHz)

DFF 4LUT Total

PolarFire® MPF500T-1 FCG1152E 438 544 982 655 377.7

RTG4™ RTG4150L FCG1657 — — — — —

SmartFusion®2 M2S150T FC1152 — — — — —

Resource Utilization and Performance

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 5

...........continued
Family Part Number Synthesis Place-

and-
Route

LE

Performance
(MHz)

DFF 4LUT Total

IGLOO®2 M2GL150 FC1152 — — — — —

Configuration
Parameters

Bootstrap: Enabled, Bootstrap Source: μPROM, UART Enable: Yes, GPIO Enable: Yes

Table 1-4. RTG4 μPROM Boot

Family Part Number Synthesis Place-
and-
Route
LE

Performance
(MHz)

DFF 4LUT Total

PolarFire® MPF500T-1 FCG1152E — — — — —

RTG4™ RTG4150L FCG1657 424 527 951 595 88.5

SmartFusion®2 M2S150T FC1152 — — — — —

IGLOO®2 M2GL150 FC1152 — — — — —

Configuration
Parameters

Bootstrap: Enabled, Bootstrap Source: μPROM, UART Enable: Yes, GPIO Enable: Yes

Resource Utilization and Performance

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 6

1.1 Typical Resource Utilization
The following table lists a breakdown of average resource usage for the MIV_ESS module across the supported
families.

Table 1-5. Component Resources

Feature Parts Synthesis

Average DFF Average 4LUT Average Total

Bootstrap SPI MPF500T-1FCG1152E

RTG4150L FCG1657

M2S150T FC1152

M2GL150 FC1152

210 293 503

Bootstrap I2C 118 110 228

Bootstrap µPROM
(PolarFire)

109 97 206

Bootstrap µPROM (RTG4) 86 74 160

uDMA (AHB Write) 217 223 440

uDMA (TAS Write) 414 402 816

GPIO (4 Inouts) 16 6 22

I2C 162 224 386

PLIC (8 sources) 63 79 142

Timer 192 311 503

Timer (RTC) 195 338 533

UART 114 150 264

Watchdog 133 266 399

Note: 
The I2C module must be enabled while using Bootstrap I2C.

Resource Utilization and Performance

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 7

2. MIV_ESS Architecture
The MIV_ESS core has been primarily developed to provide extended subsystem features to the MIV_RV32 soft
processor core. It is a compact, highly-configurable, support core which is intended to enhance and simplify the
design experience for systems utilizing the MIV_RV32 core.

2.1 Description
The core uses a GUI configurator to generate only the required logic blocks. On Reset, the Bootstrap feature (if
enabled) automatically copies the code from SPI, I2C, or FPGA μPROM memory to the MIV_RV32 TCM. The
bootstrap transfer occurs across the TCM APB Slave (TAS) interface and the processor is released from reset on
completion of the transfer cycle.

The core supports the following range of optional peripheral modules:

• μDMA with Read/Write to AHB-Lite ports and Write to optional TAS port.
• GPIO interface offering up to 32 inputs and/or outputs.
• I2C interface to connect to external I2C compliant devices.
• Platform Level Interrupt Controller (PLIC) configurable with up to 31 interrupts.
• SPI interface to connect to external SPI compliant devices.
• Timer with 64-bit resolution, which can be used as a system timer across multiple processors or as an additional

timer resource.
• UART for simple serial communications.
• Watchdog, which performs a system Reset on time-out.

The core has the following APB interfaces:

• APB Target interface to access the preceding memory-mapped peripheral modules.
• Optional APB Initiator interface to connect to the MIV_RV32 TAS for bootstrap support and for μDMA Write

operations to the TCM.

The GPIO, SPI, and UART are the pre-existing DirectCore IP—CoreGPIO, CoreSPI, and CoreUARTapb. For more
information on these cores, see the respective documentation. This document provides information on all other
peripherals integrated as MIV_ESS modules.

The Bootstrap feature, once enabled and configured correctly is a hardware boot function which is active following
a PRESETN or SYS_RESET_REQ Reset and requires no software intervention. The peripheral modules within the
core, once enabled and configured correctly in the Configurator, are accessible through an APB mirrored Initiator/
Target interface.

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 8

A block diagram of the MIV_ESS is provided in the following figure.

Figure 2-1. MIV_ESS Block Diagram

2.2 Interface
The following table lists the global signal names associated with the core.

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 9

Table 2-1. Global Ports

MIV_ESS Ports

Ports Width Direction Description

PCLK 1 Input Clock input

PRESETN 1 Input Active-low reset

SYS_RESET_REQ 1 Input An active-high reset request
from the system. For example,
a system controller

APB_0_mINITIATOR

Ports Width Direction Description

APB_T0_PADDR 32 Input APB Initiator Interface

APB_T0_PSEL 1 Input

APB_T0_PENABLE 1 Input

APB_T0_PWRITE 1 Input

APB_T0_PRDATA 32 Output

APB_T0_PWDATA 32 Input

APB_T0_PREADY 1 Output

APB_T0_PSLVERR 1 Output

A synchronous reset architecture is applied when the MIV_ESS core is implemented on RTG4. An asynchronous
reset architecture is applied for all other supported FPGA families.

The APB port is a mirrored Initiator configuration by default so it can connect directly to the MIV_RV32 soft processor.
Alternatively, the APB port can be configured as a target interface so multiple MIV_ESS IP cores can form part of a
larger system.

The core has a number of configuration options that are dependent on the enabled features. Ports are generated to
support the configuration as required. The following figure illustrates the complete range of ports available in the core.

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 10

Figure 2-2. MIV_ESS Ports

2.3 Programming
The MIV_ESS core is a highly configurable core, and the configurator provides a top-level general tab which allows
the user to enable or disable features.

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 11

Figure 2-3. General Configuration Tab

The user must select the relevant FPGA family from the dropdown menu. If the Bootstrap feature is enabled,
it requires selection of the appropriate Bootstrap Source. For ease of use, there are pre-set Design Guide
Configurations DGC 1 – 3 available which can be selected to auto configure the core per the supplementary Design
Guide document. Finally, the required peripherals are selected by ticking the appropriate check box.

The MIV_ESS Base Address is determined by the connected APB Initiator address range which must be large
enough for the complete memory map of the enabled peripheral modules within the MIV_ESS. The APB address
range on MIV_RV32 is set up in the GUI Configurator as shown in the following figure. The default range is
0x7000_0000 to 0x7fff_ffff.

Figure 2-4. Mi-V RV32 APB Address Range

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 12

The following table lists the memory-mapped peripheral modules.

Table 2-2. Peripheral Module Address Offsets

Peripheral Modules Offset from MIV_ESS Base Address Note

PLIC 0x000_0000 —

UART 0x100_0000 —

TIMER 0x200_0000 —

APB_TARGET 0x300_0000 External APB slot 3

APB_TARGET 0x400_0000 External APB slot 4

GPIO 0x500_0000 —

SPI 0x600_0000 —

RESERVED 0x700_0000 Future use

uDMA 0x800_0000 —

WATCHDOG 0x900_0000 —

I2C 0xA00_0000 —

APB_TARGET 0xB00_0000 External APB slot 11

APB_TARGET 0xC00_0000 External APB slot 12

APB_TARGET 0xD00_0000 External APB slot 13

APB_TARGET 0xE00_0000 External APB slot 14

APB_TARGET 0xF00_0000 External APB slot 15

MIV_ESS Architecture

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 13

3. Bootstrap
This section provides information on the the Bootstrap module used in the MIV_ESS core.

3.1 Description
The Bootstrap module is used for MIV_ESS bootstrap operations and the module operates by integrating the
following three components in the MIV_ESS core:

• Bootstrap: A controller unit for accessing external memories such as SPI, I2C, and µPROM.
• Reset Controller: A controller used for holding the target CPU in Reset so that the boot source data can be

transferred into TCM for MIV_RV32 to boot.
• APB Writer unit: It is used to transfer data from target memories SPI/I2C/µPROM to TCM over the TAS interface.

The following figure describes the bootstrap module.

Figure 3-1. Bootstrap Diagram

The bootstrap controller allows booting the MIV_RV32 soft processor from either a SPI, I2C, or µPROM device
indirectly, by first copying the boot code from the SPI/I2C/µPROM memory device to the MIV_RV32 internal TCM via
the APB TAS interface.

3.1.1 Features
The Bootstrap module has the following features.

• An APB 3.0 mirrored host interface to use with the MIV_RV32 TCM TAS.
• Support for enabling and disabling MIV_RV32 CPU and TAS I/F access.
• An optional µPROM interface compatible for loading boot code from external PolarFire and RTG4 µPROM

memory devices.
• An optional SPI interface for loading boot code from an external SPI memory device.
• An optional I2C interface for loading data from an external I2C memory device.
• Supports three Reset sources.

a. External Reset
b. System Reset Request
c. Watchdog Reset Request

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 14

• Supports all available SPI Flash chips, through Motorola Mode 0 signaling, and parameterized software
Reset command sequences along with various timing parameters to handle differences between SPI chip
manufacturers.

3.1.2 Block Diagram
The following figure shows the block diagram of Bootstrap.

Figure 3-2. Bootstrap - Block Diagram

The Bootstrap is responsible for reading the boot code byte-by-byte from the external device (SPI/I2C/µPROM),
assembling a 32-bit instruction from the read data, and passing the assembled instructions to the APB Writer.

The APB Writer is responsible for writing 32-bit instructions from the Bootstrap into the MIV_RV32 TCM via the TAS
APB interface.

The Reset Controller is responsible for generating the Reset signal used by the Bootstrap and the APB Writer.

The following figure shows the top-level block diagram of the Reset Controller.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 15

Figure 3-3. Reset Controller

3.1.3 Bootstrap Operation
Following the assertion of one of the reset sources in the Reset Controller, the Bootstrap asserts the
CPU_ACCESS_DISABLE signal for MIV_RV32 and de-asserts the TAS_ACCESS_DISABLE signal. This halts the Hart
of MIV_RV32 before executing the first instruction, and it allows the APB Writer to access the TCM via the APB TAS
interface.

The Bootstrap copies the boot code from SPI/I2C, or µPROM memory device to the MIV_RV32 TCM. After copying
with no errors, the Bootstrap de-asserts the CPU_ACCESS_DISABLE signal and asserts the TAS_ACCESS_DISABLE
signal, which allows MIV_RV32 to boot from the code copied into TCM.

The Bootstrap initially takes control over the SPI/I2C/µPROM interface during the booting process, the Bootstrap then
finishes by passing control of the SPI/I2C/µPROM interface to the respective modules SPI/I2C/µPROM, allowing for
the SPI/I2C/µPROM memory device to be accessed by the MIV_RV32 over an APB interface.

3.1.4 APB Writer Operation
This section describes the APB Writer operation.

1. Following the assertion of the ESS_GEN_RESETN signal, the APB Writer.
– De-asserts the CPU_RESETN signal to hold the MIV_RV32 in reset.
– Asserts the CPU_ACCESS_DISABLE signal to block Hart access to TCM.
– De-asserts the TAS_ACCESS_DISABLE signal to allow TAS access to TCM.

2. The APB Writer asserts the APB_WRITER_RD_READY signal to indicate that it is ready to receive a 32-bit
instruction from the Bootstrap.

3. Once the Bootstrap asserts the APB_WRITER_RD_DATA_AVAIL signal, the APB Writer writes the 32-bit
instruction from the APB_WRITER_RD_DATA line into TCM.

4. If the PSLVERR signal on the TAS interface is asserted at any point, the APB Writer will abort the transfer and
assert bit [0] of the APB_ERR signal.

5. Once the Bootstrap has finished reading data from the source, the APB_WRITER_RD_ALL_DONE signal will
be asserted. The APB Writer will then read the first instruction back from TCM, and compare it with the
first instruction received from the Bootstrap. If a mismatch is detected, bit [1] of the APB_ERR signal will be
asserted.

6. Once it is checked, the APB Writer waits for the External Processor Reset Duration. After this, the APB Writer:
– Asserts the CPU_RESETN signal to release the MIV_RV32 from reset.
– De-asserts the CPU_ACCESS_DISABLE signal to allow Hart access to TCM.
– Asserts the TAS_ACCESS_DISABLE signal to block TAS access to TCM.

3.1.5 Reset
When the Bootstrap module completes the code transfer into the TCM, the Bootstrap asserts the CPU_RESETN
signal, which in turn resets the Hart and allows MIV_RV32 boot from TCM.

3.2 Interface
This section provides details of the bootstrap interfaces.

3.2.1 General Bootstrap Parameters
The Bootstrap module is enabled from the General tab in the MIV_ESS GUI, as shown in the following figure.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 16

Figure 3-4. GUI – General Bootstrap Tab Options

The following table list the parameters that apply to the Bootstrap module.

Table 3-1. Bootstrap General Parameters

Configurator
Parameter

Parameter Name Valid Values Default
Value

Description

Bootstrap
Enable

BOOTSTRAP_EN 0 0 0 = Disable Bootstrap module

1 = Enable Bootstrap module

Option to enable Bootstrap module in
the design.

Bootstrap
Source

BOOTSTRAP_SOURCE 0 or 1 or 2 0 This option determines the source
memory interface to be enabled for
Bootstrap transfers. Only a single
Bootstrap Source can be selected for
the APB Writer to handle transfers
from.

The inputs and outputs as they
appear on the MIV_ESS instance
varies depending on the selected
memory interface.

Available options:

0 = Select ‘SPI’ as Bootstrap Source
memory interface

1 = Select I2C as Bootstrap Source
memory interface

2 = Select ‘μPROM’ as Bootstrap
Source memory interface

After the Bootstrap is enabled, the Bootstrap Source parameters will be available in the Bootstrap tab as shown in the
following figure.

Figure 3-5. Bootstrap Transfer Configuration Options

The following table lists the Transfer Configuration parameters apply to all the selected Bootstrap Sources.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 17

Table 3-2. Transfer Configuration Parameters

Configurator
Parameter

Parameter Name Valid Values Default Value Description

Destination Start
Address: Upper 16
bits (Hex)

APB_DST_ADDR_UPPER 0x0 –
0xFFFF

0x4000 Defines the upper 16
bits of target address for
the Bootstrap transfers.
Together with ‘Lower 16
bits (Hex)’ it makes
up the 32-bit transfer
destination address.

Lower 16 bits (Hex) APB_DST_ADDR_LOWER 0x0 -0xFFFF 0x0000 Defines the lower 16-
bits of target address
for the Bootstrap
transfers. Together
with ‘Destination Start
Address: Upper 16 bits
(Hex)’ it makes up the
32-bit transfer destination
address.

External/Processor
Reset Duration

RST_POR_DURATION 4 – 65535 1000 The External Processor
Reset Duration. After
the completion of
the Bootstrap Transfer
operation, the Bootstrap
module wait for this
number of clock cycles
before releasing the
CPU_RESETN signal,
allowing the MIV_RV32
Hart to come out of reset.

32-Bit Data Word
Count

DATA_WORD_CNT 0 - 262,144 8192 The number of 32-bit
words to be read from
the source device and
transferred. (Source .hex
file size in bytes divided
by 4)

For example, 32 kB =
8192 words

3.2.2 General Bootstrap Ports
The ports that appear on the MIV_ESS core instance in relation to the Bootstrap, vary depending on the selected
Bootstrap Source in the design. The following table lists Bootstrap inputs and outputs that are available in the design,
if the Bootstrap is enabled, as they are not specific to any Bootstrap Source.

Table 3-3. Bootstrap – General Ports

Ports Width Direction Description

BOOTSTRAP_BYPASS 1 Input An input signal to effectively bypass the
Bootstrap if it is enabled in the design.
An active High signal that will inhibit the
Bootstrap function.

SYS_RESET_REQ 1 Input Active-high reset request signal.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 18

...........continued
Ports Width Direction Description

CPU_RESETN 1 Output Active-low signal for CPU reset. This
signal is used to hold the target
processor in the reset mode during the
Bootstrap transfer operation.

CPU_ACCESS_DISABLE 1 Output When asserted, CPU's access to the
TCM is disabled.

TAS_ACCESS_DISABLE 1 Output When asserted, TAS access to the TCM
is disabled.

3.2.3 SPI Bootstrap Parameters
To configure the Bootstrap in SPI mode, enable the Bootstrap from the General tab and select SPI as the Bootstrap
Source as shown in the following figure.

Figure 3-6. SPI Bootstrap Enable

To configure Bootstrap’s SPI transfer parameters, navigate to the Bootstrap tab and update parameters under SPI
Device Configuration as shown in the following figure.

Figure 3-7. SPI Device Configuration

The following table lists the SPI device configuration parameters.

Table 3-4. SPI Device Configuration Parameters

Configurator
Parameter

Parameter Name Valid Values Default Value Description

Source Start
Address : Upper
16 bits (Hex)

SPI_SRC_ADDR_UPPER 0x0 –
0xFFFF

0x0 Upper 16-bits of the SPI
Source Start Address:
location of the first 32-
bit word of boot code
in the SPI-Flash memory
device.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 19

...........continued
Configurator
Parameter

Parameter Name Valid Values Default Value Description

Lower 16 bits
(Hex)

SPI_SRC_ADDR_LOWER 0x0 –
0xFFFF

0x0 Lower 16-bits of the SPI
Source Start Address:
location of the first 32-
bit word of boot code
in the SPI-Flash memory
device.

Reset Recovery
Duration

RST_RECOVERY_DURATION 4 - 65535 8 Number of PCLK cycles
following a hardware or
software reset before
enabling polling the SPI
chip. This ranges from
under 50 ns to over 100
µs.

SPI Clock Ratio SPI_CLK_RATIO 1 - 32768 4 The SPI clock prescaler/
divider. Indicates the
number of PCLK cycles
in a SPI_CLK period.

Target Select
Deselect Duration

SS_DESELECT_DURATION 1 - 65535 8 The deselect duration in
PCLK cycles for the SPI
chip’s SS (Slave Select)
pin between commands.

Adesto Device READ_STATUS_TYPE 0 or 1 0 Indicates if a Flash
memory device made by
Adesto Technologies is
used.

SPI Software
Reset Type

SW_RESET_TYPE 0 - 3 0 SPI Software Reset type:

0 = No software reset

1 = Command sequence
66h, 99h (covers most
devices)

2 = 4-byte command
“f0,00,00,00” (Adesto
devices)

3 = 1-byte
“f0” command (Cypress/
Spansion devices)

Number of
Address Bytes

READ_4BYTE_ADDR 0 or 1 0 0 = 3 byte SPI
addressing

1 = 4 byte SPI
addressing for SPI chips
≥ 128 Mbit

3.2.4 SPI Bootstrap Ports
The following figure shows the ports as they appear on the MIV_ESS instance, if Bootstrap is enabled and configured
in the SPI mode.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 20

Figure 3-8. SPI Ports

The following table lists the Bootstrap SPI Boot Source configuration ports.

Table 3-5. SPI Port Signals

Ports Width Direction Description

SPI_SDI 1 Input Bootstrap SPI reader Serial Data In.

SPI_SCK 1 Output Bootstrap SPI reader Serial Clock (out).

SPI_SDO 1 Output Bootstrap SPI reader Serial Data Out.

SPI_SS 1 Output Bootstrap SPI reader Chip Select.

3.2.5 I2C Bootstrap Parameters
The Bootstrap module has configurable parameters under the General and Bootstrap tabs in the MIV_ESS core.

To enable the Bootstrap module in MIV_ESS, select the Bootstrap check box under the General tab in the Bootstrap
section. To configure the Bootstrap module to boot from an I2C memory source, the Bootstrap Source parameter
value must be I2C.

To enable I2C module in MIV_ESS, select I2C check box under Peripherals → General. The I2C module supports
Initiator read and write accesses to peripheral I2C devices and can be configured by the Bootstrap Controller to copy
I2C boot memory to the TCM of the MIV_RV32 soft processor. See I2C for more details about the I2C module.

The following figure shows the parameters that need to be configured to use the Bootstrap in the I2C mode.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 21

Figure 3-9. Bootstrap I2C Mode Parameters Under the General Tab

The I2C Device Configuration section enables you to configure the I2C settings, as shown in the following figure.
Note:  Under the Bootstrap tab, all sections are disabled except I2C Device Configuration as the Bootstrap Source
is set to I2C in the General tab.

Figure 3-10. Bootstrap I2C Mode Parameters Under the Bootstrap Tab

The following table lists description of each I2C configurable parameters.

Table 3-6. I2C Bootstrap Configuration Options

Configurator
Parameter

Parameter

Name

Valid Values Default

Value

Description

I2C Enable I2C_EN 0 or 1 1 If this parameter is set as 1,
the I2C module is enabled in the
MIV_ESS core.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 22

...........continued
Configurator
Parameter

Parameter

Name

Valid Values Default

Value

Description

I2C Device
Address

I2C_SLV_ADDR 0x0 – 0xFF 0x50 The unique I2C device address
to begin booting from.

Number of
Address Bytes

I2C_MULTI_ADDR_BYTES 1 or 2 2 The number of bytes used to
represent the I2C address.

1: 1 Byte

2: 2 Bytes

Source Start
Address: Upper
Byte (Hex)

I2C_START_ADDR_UPPER 0x0 – 0xFF 0x0 Upper byte of the address in
the I2C memory from which
the boot-code needs to be
copied. Only valid when 2 byte
addressing is used.

.

Lower Byte
(Hex)

I2C_START_ADDR_LOWER 0x0 – 0xFF 0x0 Lower byte of the address in
the I2C memory from which the
boot-code needs to be copied.

I2C Clock
Divisor

I2C_CLK_DIVISOR 0 – 255
(Decimal)

99 The Serial Clock (SCLK)
prescaler used to generate
the SCLK frequency from the
System Clock, see Prescaler
Register Description.

3.2.6 I2C Bootstrap Ports
The following table lists the I2C Bootstrap ports available on the MIV_ESS module.

Table 3-7. I2C Port Signals

Ports Width Direction Description

BOOTSTRAP_BYPASS 1 Input

The I2C Module mode select:

• When BOOTSTRAP_BYPASS = 0 on Reset, the I2C
module enters the Bootstrap mode

• When BOOTSTRAP_BYPASS = 1, the I2C module
is always in the Peripheral mode

SCL_I 1 Input I2C Clock Line Input

SCL_O 1 Output I2C Clock Line Output

SCL_O_EN 1 Output I2C Clock Line Output Enable

SDA_I 1 Input I2C Data Line Input

SDA_O 1 Output I2C Data Line Output

SDA_O_EN 1 Output I2C Data Line Output Enable

I2C_IRQ 1 Output I2C Interrupt

The following figure shows the MIV_ESS SmartDesign, configured for Bootstrap using I2C.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 23

Figure 3-11. MIV_ESS Instance for Bootstrap Using I2C

3.2.7 µPROM Bootstrap Parameters
The Bootstrap µPROM configuration is FPGA family specific. This module supports both PolarFire and RTG4 family
devices. When instantiating the MIV_ESS core, the correct family must be selected.

The following figure shows how to enable the µPROM Bootstrap in the General tab.

Figure 3-12. µPROM Bootstrap General Setup

Select the correct FPGA family and µPROM as the Bootstrap Source, and navigate to the Bootstrap → µPROM
Configuration for further configuration. The µPROM Configuration section enables you to configure the µPROM
settings, as shown in the following figure.

Figure 3-13. µPROM Source Address Configuration

The following table lists description of each µPROM configurable parameters.

Table 3-8. µPROM Configuration Parameters

Configurator
Parameter

Parameter Name Valid Values Default Value Description

Source Start
Address: Upper
Byte (Hex)

uPROM_SRC_ADDR_UPPER 0x0 – 0xFF 0x0 Upper 8-bits of the
memory address of the
boot code within the
µPROM device.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 24

...........continued
Configurator
Parameter

Parameter Name Valid Values Default Value Description

Lower Byte (Hex) UPROM_SRC_ADDR_LOWER 0x0 – 0xFF 0x0 Lower 8-bits of the
memory address of the
boot code within the
µPROM device.

3.2.8 µPROM Bootstrap Ports
Depending on the selected FPGA family, respective ports will appear on the MIV_ESS instance.

PolarFire µPROM

The following figure shows Bootstrap µPROM ports as they appear on the MIV_ESS instance, if PolarFire is selected.

Figure 3-14. PolarFire μPROM Ports

The following table lists Bootstrap µPROM ports signals for the PolarFire family.

Table 3-9. PolarFire µPROM Port Signals

Ports Width Direction Description

BOOT_BUSY_PF 1 Input PolarFire µPROM busy

BOOT_DATAR_PF [8:0] Input PolarFire µPROM read data

BOOT_BLK_PF 1 Output PolarFire µPROM block select

BOOT_ADDR_PF [15:0] Output PolarFire µPROM read address

RTG4 µPROM

The following figure shows the Bootstrap µPROM ports as they appear on the MIV_ESS instance, if RTG4 is
selected.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 25

Figure 3-15. RTG4 µPROM Ports

The following table lists the Bootstrap µPROM port signals for the RTG4 family.

Table 3-10. RTG4 µPROM Port Signals

Ports Width Direction Description

BOOT_BUSY_RTG4 1 Input RTG4 µPROM busy

BOOT_DATAR_RTG4 [35:0] Input RTG4 µPROM read data

BOOT_RDEN_RTG4 1 Output RTG4 µPROM read enable

BOOT_ADDR_RTG4 [13:0] Output RTG4 µPROM read address

3.3 SPI Mode - Programming and Operation
This section describes the programming and operation procedures of the SPI Bootstrap configuration.

3.3.1 How to Use the Bootstrap SPI
After the Bootstrap option is enabled in the General tab, it gets integrated into the MIV_ESS instance.

The Bootstrap can be connected to MIV_RV32 directly and the Bootstrap SPI pins can be promoted to the top
level, so they can be interfaced with the external SPI memory device via constraints. The following figure shows an
example of SmartDesign setup for Bootstrap SPI.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 26

Figure 3-16. Bootstrap Setup in SPI Mode

The Bootstrap operation is a hardware function that does not require a software. It is completely configurable using
the MIV_ESS GUI, as shown in the Interface section.

3.3.2 Operation
The SPI memory must be pre-programmed with the boot code to enable Bootstrap to copy boot code from an
external SPI memory. For more information on pre-programming the SPI memory, see MIV_ESS Design Guide.
The Bootstrap SPI operations are only responsible for copying pre-programmed boot code from the SPI Bootstrap
Source.

3.3.2.1 SPI Control
The Bootstrap SPI state machine gets started after PRESETN or SYS_RESET_REQ is released, and the following
operations are performed.

1. Hardware Reset Recovery: After releasing PRESETN, the state machine waits a period of
RST_RECOVERY_DURATION PCLK cycles to ensure the completion of internal reset actions in the SPI Flash
chip.

– Micron - 40 ns
– Spansion/Cypress - 200 ns
– ISSI - 100 us
– GigaDevice - 60 us
– Macronix - 10 us
– Adesto - 1 us

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 27

– Winbound - NA
2. Check for Flash Busy: This polls the SPI Flash’s STATUS Register Busy bit. This handles reset during an SPI

program, erase, or write to certain registers, which takes time to complete.
3. Apply a Software Reset: Apply a software Reset, if the SPI Flash chip supports it, to clear any volatile registers

which may have changed modes of operation such as addressing modes. The parameter SW_RESET_TYPE
indicates, which reset type applies to the SPI Flash chip.

4. For Micron, ISSI, Winbound, Macronix, and GigaDevice a software Reset is done with a 66H 8-bit command,
for SS_DESELECT_DURATION, followed by a 99H 8-bit command.

– Micron SS_DESELECT_DURATION - 40 ns
– ISSI - 7 ns (tCEH)
– Winbond - 50 ns (tCSH)
– Macronix - 30 ns
– GigaDevice - 20 ns

5. For Adesto, a software reset is done by a 32-bit command with the code f0_00_00_00, while for Cypress/
Spansion it is an 8-bit code f0.

6. Software Reset Recovery: After applying software Reset, the state machine waits a period of
RST_RECOVERT_DURATION PCLK cycles to ensure that internal reset actions in the SPI Flash chip are
completed.

7. Read data and pass to APB Writer: The Flash is now ready for reads. For Flash chips of 128 Mbit and
above, 4 byte addressing is used via the 13th command, otherwise it uses three-byte addressing via the 13th

command. This is setup via the READ_4BYTE_ADDR parameter.

An inner loop fetches 32 bits of data one bit at a time, after which it removes ‘SPI_SS’ for SS_DESELECT_DURATION.
In addition, for Adesto this is 30 ns and for Spansion/Cypress it’s 10 ns. The 32-bit ‘rd_data’ value is then passed to
the APB Writer controller with the indication rd_data_valid.

An outer loop increments a word counter and its SPI address, repeating step 5 until DATA_WORD_CNT words are
transferred to APB Writer, and completes the copy process by asserting rd_all_done to APB. It also indicates to
the CKSUM_CTRL block that it can perform a data check.

During the transfer, the current SPI address is compared with CKSUM_SPI_ADDR, and the data at this address is
latched. CKSUM_SPI_ADDR must reside at some location within the code being copied.

When the Bootstrap function completes, it indicates that the check is complete internally. It also indicates if there
is an error. In the initial release, data checking is not provided and this block assigns CKSUM_ERR to 0, and
cksum_done to 1.

3.3.2.2 Bootstrap Transaction
Following the assertion of PRESETN, the Bootstrap module initiates copying boot code from source SPI memory
to TCM. The CPU_RESETN signal is LOW, holding MIV_RV32 in Reset. The CPU_ACCESS_DISABLE is HIGH to
block Hart access to TCM. The TAS_ACCESS_DISABLE is LOW to allow the Bootstrap module access TAS interface
access into TCM.

The following steps describe how Bootstrap performs the operation.

1. The bytes are assembled into 32-bit words and written into MIV_RV32 TCM. This operation continues until the
number of 32-bit words transferred matches the number specified by DATA_WORD_CNT.

2. After it is transferred, the Bootstrap module’s APB Writer reads the first instruction back from the TCM and
compare it to the first instruction received from the Bootstrap.

3. The Bootstrap module then waits for External Processor Reset Duration, then the CPU_RESETN is set to HIGH
to release MIV_RV32 from reset.

4. The CPU_ACCESS_DISABLE is set LOW to allow Hart access to the TCM and TAS_ACCESS_DISABLE is set
to HIGH to block TAS access to TCM.

5. The Bootstrap completes the operation.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 28

3.4 I2C Mode – Programming and Operation
Only the Bootstrap configuration with I2C as the Bootstrap Source is covered in this programming and operation
section.

3.4.1 How to use the Bootstrap I2C
The Bootstrap operation is a hardware function that does not require a software. It is completely configurable via the
MIV_ESS GUI, as shown in the Interface section.

3.4.2 Operation
The circuit shown in the following figure describes how the MIV_ESS instance can be connected to MIV_RV32 for
booting from an I2C memory source. The MIV_ESS I2C communication pins must be connected with bidirectional
buffer lines. For more details on how to connect the I2C lines, see Programming.

1. When the BOOTSTRAP_BYPASS pin is logic LOW, then on reset, the Bootstrap module begins the booting
process.

2. The control signals, CPU_ACCESS_DISABLE and TAS_ACCESS_DISABLE, first halt the Hart of the MIV_RV32
and allow the TCM to be accessed via the TAS interface.

3. The bootstrap begins to read data byte-by-byte from the specified I2C device and location.
4. Each time a 32-bit word is assembled, it is written to the internal TCM of the MIV_RV32.
5. Repeat this until the number of 32-bit words transferred matches that was specified.
6. The Hart is resumed, TCM access is disabled, and the MIV_RV32 CPU is reset by the MIV_ESS via

CPU_RESETN, which connects to the reset of the MIV_RV32.
7. The MIV_RV32 core executes instructions at its Reset Vector Address.

Figure 3-17. MIV_ESS Instance Connected to MIV_RV32 for I2C Booting

3.5 µPROM Mode – Programming and Operation
This section describes the Bootstrap operation with µPROM as the Bootstrap Source. The specific µPROM reading
operation used is dependent on the selected FPGA device (PolarFire or RTG4).

3.5.1 How to Use the Bootstrap µPROM
The Bootstrap operation is a hardware function that does not require any software. It is completely configurable via
the MIV_ESS GUI, as shown in the Interface section. Ensure that the ‘FPGA Family’ parameter selected reflects the
intended board (PolarFire or RTG4).

PolarFire µPROM Setup

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 29

The MIV_ESS must be connected to the MIV_RV32 and µPROM device, as shown in the following figure. See
Details of Operation for operation details.

Figure 3-18. Bootstrap PolarFire μPROM Setup

RTG4 µPROM Setup

MIV_ESS must be connected to MIV_RV32 and µPROM device as shown in the following figure when using an
RTG4 device. See Details of Operation for operation details.

Figure 3-19. Bootstrap RTG4 μPROM Setup

3.5.2 Details of Operation
PolarFire µPROM Setup

When booting from µPROM on a PolarFire device, the Bootstrap module operates as follows:

1. The Bootstrap initiates a read transfer by asserting the BOOT_BLK_PF signal.
2. The Bootstrap drives the start address of the read data onto the µPROM BOOT_ADDR_PF line.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 30

3. The Bootstrap then receives a 9-bit word (MSB = ECC bit) from the µPROM BOOT_DATAR_PF line. The
Bootstrap then increments the address pointer to read the next 9-bit word.

4. After the Bootstrap has received four 9-bit words, it assembles a 32-bit instruction (discarding the ECC bit on
each 9-bit word) and passes the 32-bit instruction to the APB Writer (logic responsible for writing data to a
MIV_RV32’s TCM over the TAS interface)

5. After all boot code has been read from the µPROM, the Bootstrap de-asserts the BOOT_ADDR_PF signal to
indicate the end of the read transfer.

RTG4 µPROM Setup

When booting from a µPROM on a RTG4 device, the Bootstrap module operates as follows:

1. The Bootstrap initiates a read transfer by asserting the BOOT_RDEN_RTG4 signal.
2. The Bootstrap drives the start address of the read data onto the µPROM BOOT_ADDR_RTG4 line.
3. The Bootstrap then receives a 36-bit word (Bits [35:32] = ECC bits) from the µPROM BOOT_DATAR_RTG4

line.
4. The Bootstrap passes the 32-bit instruction (discarding the ECC bits) to the APB Writer and increments the

address pointer to read the next instruction.
5. After all boot code is read from the µPROM, the Bootstrap de-asserts the BOOT_BLK_PF signal to indicate the

end of the read transfer.

Bootstrap

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 31

4. APB
This section provides information on the APB module used in the MIV_ESS.

4.1 Description
The APB module is a bus component that provides an advanced microcontroller bus architecture (AMBA®) advanced
peripheral bus (APB) fabric to interconnect between an APB Initiator and up to 15 APB targets. The targets may be
AMBA 2 or AMBA 3 compatible. Unlike AMBA 2 APB targets, AMBA 3 APB targets provide ready and error signals.

The APB has the following key features:

• Supports up to 15 APB targets (seven external and eight internal).
• Supports Initiator data bus width of 32 bits
• Supports Initiator address bus width of 32 bits

For more information about this IP, see CoreAPB3 v4.2 Handbook in Libero Catalog.

4.2 Interface
This section describes the configuration parameters and interface ports of the APB module.

4.2.1 Configuration Parameters
The following table lists the parameters (Verilog) for configuring the RTL code of the core.

Table 4-1. APB Configuration Parameters

Configurator

Name

Parameter

Name

Valid

Values

Default Description

APB Mirror I/F APB_INITIATOR_0_MIRROR 0 or 1 1 APB External Interface option

0: APB Target Interface

1: APB Mirrored Initiator Interface

PLIC PLIC_EN 0 or 1 1 0: Disables PLIC on target 0

1: Enables PLIC on target 0

UART UART_EN 0 or 1 1 0: Disables UART on target 1

1: Enables UART on target 1

TIMER SYS_TIMER_EN 0 or 1 1 0: Disables TIMER on target 2

1: Enables TIMER on target 2

Slot 3 APBSLOT3ENABLE 0 or 1 1 0: Disables target 3

1: Enables target 3

Slot 4 APBSLOT4ENABLE 0 or 1 1 0: Disables target 4

1: Enables target 4

SPI SPI_EN 0 or 1 1 0: Disables SPI on target 5

1: Enables SPI on target 5

APB

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 32

...........continued
Configurator

Name

Parameter

Name

Valid

Values

Default Description

GPIO GPIO_EN 0 or 1 1 0: Disables GPIO on target 6

1: Enables GPIO on target 6

uDMA uDMA_EN 0 or 1 1 0: Disables uDMA on target 8

1: Enables uDMA on target 8

Watchdog WDT_EN 0 or 1 1 0: Disables Watchdog on target 9

1: Enables Watchdog on target 9

I2C I2C_EN 0 or 1 1 0: Disables I2C on target 10

1: Enables I2C on target 10

Slot 11 APBSLOT11ENABLE 0 or 1 1 0: Disables target 11

1: Enables target 11

Slot 12 APBSLOT12ENABLE 0 or 1 1 0: Disables target 12

1: Enables target 12

Slot 13 APBSLOT13ENABLE 0 or 1 1 0: Disables target 13

1: Enables target 13

Slot 14 APBSLOT14ENABLE 0 or 1 1 0: Disables target 14

1: Enables target 14

Slot 15 APBSLOT15ENABLE 0 or 1 1 0: Disables target 15

1: Enables target 15

The following figure shows the APB configuration window.

Figure 4-1. APB Configuration Window

4.2.2 I/O Signals
The following table lists the APB I/O signal description.

Table 4-2. APB3 Ports

Port Name Width Direction Description

PRESETN 1 Input APB Reset, active-low asynchronous reset.

PCLK 1 Input APB clock signal.

PSEL 1 Input APB select from Initiator.

APB

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 33

...........continued
Port Name Width Direction Description

PENABLE 1 Input APB enable from Initiator.

PWRITE 1 Input APB write indication from Initiator.

PADDR 32 Input APB address bus from Initiator.

PWDATA 32 Input APB write data from Initiator.

Depending on the data bus width configuration, it is possible that only the lower
8 or 16 bits of this bus are in use.

PRDATA 32 Output APB read data output to Initiator.

Depending on the data bus width configuration, it’s possible that only the lower
8 or 16 bits of this bus are in use.

PREADY 1 Output APB ready indication output to Initiator.

PSLVERR 1 Output APB target error indication to Initiator.

PENABLES 1 Output APB enable to all targets.

PWRITES 1 Output APB write indication to all targets.

PADDRS 32 Output APB address bus to all targets.

PWDATAS 32 Output APB write data to all targets.

PSELS[n] 1 Output APB select signal to targets (n = 3, 4, 11, 12, 13, 14, or 15).

PRDATAS[n] 32 Input APB read data from targets (n = 3, 4, 11, 12, 13, 14, or 15).

PREADYS[n] 1 Input APB ready signal from targets (n = 3, 4, 11, 12, 13, 14, or 15).

PSLVERRS[
n]

1 Input APB error indication signal from targets (n = 3, 4, 11, 12, 13, 14, or 15).

4.3 Programming
This section describes the APB memory map.

Memory Map
Table 4-3. MIV_ESS APB Address Allocation Map

Target Slot 28-bit Initiator Address Resource

0 0x0000000 – 0x0FFFFFF PLIC

1 0x1000000 – 0x1FFFFFF UART

2 0x2000000 – 0x2FFFFFF Timer

3 0x3000000 – 0x3FFFFFF External Target 3

4 0x4000000 – 0x4FFFFFF External Target 4

5 0x5000000 – 0x5FFFFFF GPIO

APB

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 34

...........continued
Target Slot 28-bit Initiator Address Resource

6 0x6000000 – 0x6FFFFFF SPI

7 0x7000000 – 0x7FFFFFF RESERVED

8 0x8000000 – 0x8FFFFFF uDMA

9 0x9000000 – 0x9FFFFFF Watchdog

10 0xA000000 – 0xAFFFFFF I2C

11 0xB000000 – 0xBFFFFFF External Target 11

12 0xC000000 – 0xCFFFFFF External Target 12

13 0xD000000 – 0xDFFFFFF External Target 13

14 0xE000000 – 0xEFFFFFF External Target 14

15 0xF000000 – 0xFFFFFFF External Target 15

APB

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 35

5. μDMA
This section provides information on the Micro Direct Memory Access (μDMA) module used in the MIV_ESS core.

5.1 Description
The μDMA module allows peripherals with AHB interfaces to transfer data independent of the MIV_RV32 processor.
This includes the capability of a peripheral to write to the MIV_RV32’s internal TCM via the TAS (TCM APB Slave)
interface. The term μDMA is used to describe a basic DMA engine/feature set.

The μDMA module provides an APB target interface for interfacing with MIV_RV32, an AHB-Lite (AHBL) source
(read) Initiator interface for reading from a source memory, an AHBL destination (write) Initiator interface for writing to
a destination memory, and a TAS destination (write) Initiator interface for writing to the MIV_RV32’s TCM. The μDMA
can operate in the following two possible transfer configurations.

• AHBL Read –> AHBL Write: In this configuration, the μDMA reads data from the source memory over an
AHBL (Mirrored Main/Initiator) read interface and writes data to the destination memory over an AHBL (Mirrored
Main/Initiator) write interface.

• AHBL Read –> TAS Write: In this configuration, the μDMA reads data from the source memory over an AHBL
(Mirrored Main/Initiator) read interface and writes data to the destination memory over the TAS (Mirrored Main/
Initiator) write interface.

The CPU controls μDMA over the APB target interface. It prepares the μDMA for operation by writing a source
start address, destination start address, and the block size of the transfer data to the respective μDMA configuration
registers.

The CPU then enables the μDMA to begin a transfer without any additional intervention from the CPU. There is a
configurable interrupt that allows the detection of errors and the completion of transfers. If this interrupt is configured
to trigger at the end of a successful transfer, this can be detected by connecting the interrupt to an interrupt pin on the
MIV_RV32 core.

5.2 Interface
This section describes the configuration parameters and interface ports of the μDMA module.

Configuration Parameters

The μDMA has configurable parameters under two tabs in the MIV_ESS, as shown in the following figure.

Under the General > Peripherals, select the μDMA (Enable) check box to enable the μDMA module in the MIV_ESS
core.

Figure 5-1. μDMA Enable

If the μDMA is enabled, then it can be configured in the μDMA tab.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 36

Figure 5-2. uDMA Configuration

The following table lists the μDMA parameters.

Table 5-1. μDMA Parameters

Configurator
Parameter

Parameter

Name

Valid Values Default
Value

Description

uDMA (Enable) uDMA_EN 0 or 1 1 If checked (1), enables the μDMA in
MIV_ESS.

Read Port
Mirrored I/F

READ_MIRROR 0 or 1 0 If checked (1), enables the Read Port mirror.

Write Port WRITE_PORT 0 or 1 1 Allows you to specify AHBL (1) or TAS (0) as
the Write Port.

Write Port
Mirrored I/F

WRITE_MIRROR 0 or 1 0 If checked (1), enables the Write Port mirror.

Busy Enable BUSY_SIGNAL 0 or 1 1 If checked (1), brings the busy signal to the
top-level of the module.

Interrupt Enable IRQ_EN_SIGNAL 0 or 1 1 If checked (1), enables and brings the μDMA
interrupt signal to the top-level of the module.

Ports
The following table lists μDMA ports available on the MIV_ESS.

Table 5-2. μDMA Port Signals

Ports Width Direction Description

uDMA_BUSY 1 Output
Indicates if the μDMA is busy transferring
data, currently.

uDMA_IRQ 1 Output
Interrupt, which indicates that the data
transfer is completed.

AHBL_READ_INITIATOR
32-bit address
and data bus

Port contains
both Input and
Output

This AHBL Initiator Port facilitates reading
data from peripherals that have an AHBL
Target port.

AHBL_WRITE_INITIATOR
32-bit address
and data bus

Port contains
both Input and
Output

This AHBL Initiator Port facilitates writing
data to peripherals that have an AHBL
Target port.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 37

...........continued
Ports Width Direction Description

TAS_MUX_APB_M_TARGET
32-bit address
and data bus

Port contains
both Input and
Output

This APB Initiator Port facilitates writing
data to the TCM of the MIV_RV32 via the
TAS port.

The μDMA is controlled over the APB target interface called APB_TARGET, or APB_mINITIATOR if APB Initiator
mirroring is enabled in the MIV_ESS GUI.

The μDMA inputs and outputs, as seen on the MIV_ESS SmartDesign instance, for the AHBL Read to AHBL Write
configuration is shown in the following figure.

Figure 5-3. AHBL Read to AHBL Write

The following figure shows the SmartDesign instance for the AHBL Read to TAS Write configuration.
Figure 5-4. AHBL Read to TAS Write

5.3 Programming
This section describes the programmer’s model of the uDMA module.

How to use the μDMA
The software is required to set up a data transfer between two peripherals and handle the interrupt that can be
asserted at the end of the transfer. The device driver is available from the GitHub page: https://github.com/Mi-V-Soft-
RISC-V/platform.

When operating the μDMA in the AHBL Read to TAS Write configuration, the circuit must be connected to the
MIV_RV32, as shown in the following figure. The wire connecting uDMA_IRQ to MIV_RV32 interrupt pin is optional.
The CPU_ACCESS_DISABLE and TAS_ACCESS_DISABLE are necessary control signals to halt the Hart of the
MIV_RV32 core and allow the TCM to be accessed via the TAS interface.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 38

https://github.com/Mi-V-Soft-RISC-V/platform
https://github.com/Mi-V-Soft-RISC-V/platform

Figure 5-5. AHBL Read to APB Write to TCM with MIV_RV32 Connections

μDMA Memory Map
The μDMA module’s register addresses are determined with respect to the MIV_ESS base address. The
MIV_ESS base address [MIV_ESS_BASE] is configurable, see Programming. The μDMA module base address
is [MIV_ESS_BASE + 0x800_0000]. The address offset of each μDMA register is given in the following table.

Register address = MIV_ESS_BASE + 0x800_0000 + Register Address Offset
Table 5-3. μDMA Module Register Map

Register Name Address
Offset

Read/Write Reset

Value

Description

CONTROL 0x00_0000 R/W 0 Control Start/Reset Register

IRQ CONFIG 0x00_0004 R/W 0 Control IRQ configuration Register

STATUS 0x00_0008 R 0 Transfer STATUS Register

SOURCE ADDR 0x00_000C R/W 0 Source Memory Start Address
Register

DESTINATION ADDR 0x00_0010 R/W 0 Destination Memory Start Address
Register

TRANSFER SIZE 0x00_0014 R/W 0 Data Transfer Size Register

Each register in the preceded table is described in the following tables.

Control Register
The Control Register determines when a μDMA transfer is started and reset.

Table 5-4. CONTROL

Bit

Number

Name R/W Reset

Value

Description

1 uDMA_reset R/W 0 Reset Transfer. When set, the μDMA transfer is reset.

0 uDMA_start R/W 0 Start transfer. When set, the μDMA transfer is started.

Control IRQ Configuration Register
The IRQ Configuration Register determines the behavior of the μDMA interrupt.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 39

Table 5-5. IRQ CONFIG

Bit

Number

Name R/W Reset
Value

Description

1 Reserved R/W 0 Reserved

0 IRQ_cfg R/W 0 Configures the μDMA interrupt behaviour. When set, the IRQ is
asserted when an error occurs during a μDMA transfer or on
the completion of a μDMA transfer. When clear, the IRQ is only
asserted when an error occurs during a μDMA transfer.

Transfer STATUS Register
The Transfer STATUS Register contains two read-only bits, which indicate the status of the current μDMA transfer.

Table 5-6. STATUS

Bit
Number

Name R/W Reset

Value

Description

1 Error R 0 When set, it indicates that the last μDMA transfer caused an error.

0 Busy R 0 When set, it indicates that a μDMA transfer is in progress.

When clear, indicates that a μDMA transfer is completed,
cancelled, or not yet started.

Source Memory Start Address Register
The SRC ADDR register specifies the start address of the source memory from where the μDMA will read the data to
be copied to the destination memory.

Table 5-7. SOURCE ADDR

Bit
Number

Name R/W Reset
Value

Description

31:0 SOURCE ADDR R/W 0 Source start address

Destination Memory Start Address Register
The DESTINATION ADDR register specifies the start address of the destination memory to which the data will be
copied by the μDMA.

Table 5-8. DESTINATION ADDR

Bit

Number

Name R/W Reset
Value

Description

31:0 DESTINATION ADDR R/W 0 Destination start address

Data Transfer Size Register
The Data Transfer Size Register specifies the number of 32-bit words to be transferred from source to destination
memory.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 40

Table 5-9. TRANSFER SIZE

Bit

Number

Name R/W Reset
Value

Description

31:0 TRANSFER SIZE R/W 0 Number of 32-bit words to transfer.

μDMA

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 41

6. GPIO
This section provides information on the GPIO module used in the MIV_ESS core.

6.1 Description
The general purpose inputs output (GPIO) module provides an APB register-based interface to up to 32 general
purpose inputs and 32 general purpose outputs. The input logic contains a simple three-stage synchronization circuit,
and the output is set synchronously. Each bit can be set to either fixed configuration or register-based configuration
via top-level parameters, including input type, interrupt type/enable, and output enable.

The GPIO has the following key features:

• AMBA 2 APB support, forward compatibility with AMBA 3 APB
• 8-, 16-, or 32-bit APB data width
• 1 to 32 bits of I/O, for all APB-width configurations
• Fixed or configurable interrupt generation

– Negative edge
– Positive edge
– Both edges
– Level High
– Level Low

• Parameter-configurable for single-interrupt signal or up to 32-bit-wide interrupt bus.
• Fixed or configurable I/O type (input, output, or both).
• Configurable output enable (internal or external implementation).

For more information about this IP, see CoreGPIO v3.2 Handbook in the Libero Catalog.

6.2 Interface
This section describes the configuration parameters and interface pots of the GPIO module.

6.2.1 Configuration Parameters
The following table lists the parameters (Verilog) for configuring the RTL code of the core.

Table 6-1. GPIO Parameters and Generics Descriptions

Configurator
Parameter

Parameter

Name

Valid Values Default

Value

Description

GPIO GPIO_EN 0 or 1 1 GPIO Enable

0: Disabled

1: Enabled

APB Data Width APB_WIDTH 8, 16, 32 32 APB data width

Number of I/Os IO_NUM 1–32 32 Number of GPIOs

Output Enable OE_TYPE 0 or 1 0 If 0, output buffering is implemented outside
GPIO. The user is responsible for instantiating
tri-state buffers outside of the core.

If 1, output buffering (if enabled) is implemented
inside the core. When GPIO_OE[i] is 0,
GPIO_OUT is high impedance (Z).

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 42

...........continued
Configurator
Parameter

Parameter

Name

Valid Values Default

Value

Description

Fixed Config FIXED_CONFI
G_x

0 or 1 0 If 0, configuration for bit x (0-31) is set via
APB-accessible register CONFIG_x (see the
Register Map section).

If 1, configuration for bit x (0-31) is set via
IO_INT_TYPE_x and IO_TYPE_x.

Interrupt Type IO_INT_TYPE_
x

0-5 0 Interrupt types selected according to the
following scheme:

0 – Level High

1 – Level Low

2 – Edge Positive

3 – Edge Negative

4 – Edge Both

7 – Disabled
Note:  Selecting one type will synthesize out
logic for other types. For example, Level High
will remove AND/OR gates for edge detect.

I/O Type IO_TYPE_x 0-2 0 If 0, bit x is of type input-only. Output logic will
be synthesized out.

If 1, bit x is of type output only. Input logic will be
synthesized out.

If 2, bit x is of type input and output (both).

Output on Reset IO_VAL_x 0 or 1 0 Sets the output at reset for GPIO bit x.

Single-bit interrupt
port

INT_BUS 0 or 1 0 If 0, the GPIO_INT_OR output is fixed at 0
(unused).

If 1, the GPIO_INT_OR output is set when any
of the GPIO_INT signals are set (OR operation).

The following figure shows the GPIO configuration window and cross-references to the corresponding top-level
parameters.

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 43

Figure 6-1. GPIO Configuration Window

6.2.2 I/O Signals
The following table lists the GPIO I/O signal description.

Table 6-2. GPIO I/O Signal Description

Port Name Width Direction Description

APB Signals

PCLK 1 Input APB system clock – Reference clock for all internal logic.

PRESETN 1 Input APB active-low asynchronous reset

GPIO Signals

GPIO_IN IO_NUM Input GPIO input

GPIO_OUT IO_NUM Output GPIO output

GPIO_OE IO_NUM Output GPIO output enable

GPIO_INT IO_NUM Output Interrupt mask; can be connected directly to processor.

GPIO_INT_OR 1 Output Bitwise OR version (single wire) of the interrupt mask values
provided on INT[(IO_NUM-1) : 0]

6.3 Programming

6.3.1 Register Map
The following tables describe GPIO register map.

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 44

Table 6-3. GPIO Register Address Map (APB_WIDTH = 8)

PADDR[7:0] R/W Reset

Value

Description

0x00-0x7C (0x00, 0x04,

0x08, …, 0x7C)

R/W 0x00 8-bit configuration registers for all 32 bits; One register per bit.

0x80 W 0x00 Interrupt clear register 1 (bits 7:0)

0x84 W 0x00 Interrupt clear register 2 (bits 15:8)

0x88 W 0x00 Interrupt clear register 3 (bits 23:16)

0x8C W 0x00 Interrupt clear register 4 (bits 31:24)

0x90 R 0x00 Input register 1 (bits 7:0)

0x94 R 0x00 Input register 2 (bits 15:8)

0x98 R 0x00 Input register 3 (bits 23:16)

0x9C R 0x00 Input register 4 (bits 31:24)

0xA0 R/W 0x00 Output register 1 (bits 7:0)

0xA4 R/W 0x00 Output register 2 (bits 15:8)

0xA8 R/W 0x00 Output register 3 (bits 23:16)

0xAC R/W 0x00 Output register 4 (bits 31:24)

Notes: 
1. Values shown in hexadecimal format; type designations: R = read-only; R/W = read/write.
2. Lower 2 bits of PADDR are unconnected inside GPIO.

Table 6-4. GPIO Register Address Map (APB_WIDTH = 16)

PADDR[7:0] R/W Reset

Value

Brief Description

0x00-0x7C (0x00, 0x04,
0x08, …, 0x7C)

R/W 0x00 8-bit configuration registers for all 32 bits; One register per bit.

0x80 W 0x00 Interrupt clear register 1 (bits 15:0)

0x84 W 0x00 Interrupt clear register 2 (1bits 31:16)

0x90 R 0x00 Input register 1 (bits 15:0)

0x94 R 0x00 Input register 2 (bits 31:16)

0xA0 R/W 0x00 Output register 1 (bits 15:0)

Notes: 
1. Values shown in hexadecimal format; type designations: R = read-only; R/W = read/write.
2. Lower 2 bits of PADDR are unconnected inside GPIO.

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 45

Table 6-5. GPIO Register Address Map (APB_WIDTH = 32)

PADDR[7:0] R/W Reset

Value

Brief Description

0x00-0x7C — — —

(0x00, 0x04, 0x08, …, 0x7C) R/W 0x00 (0x00, 0x04, 0x08, …, 0x7C)

0x80 W 0x00 —

0x90 R 0x00 —

0xA0 R/W 0x00 —

Notes: 
1. Values shown in hexadecimal format; type designations: R = read-only; R/W = read/write.
2. Lower 2 bits of PADDR are unconnected inside GPIO.

6.3.2 Configuration Registers
GPIO has up to 32 8-bit configuration registers, depending on the IO_NUM parameter. The following table lists
operations of the GPIO Configuration register.

Table 6-6. Per-bit Configuration Register

Bits Name Function

7:5 INTTYPE Sets the interrupt type for this particular bit:

000 – Level High

001 – Level Low

010 – Edge Positive

011 – Edge Negative

100 – Edge Both

101 to 111 – Invalid

4 Reserved UNUSED

3 INTENABLE Interrupt enable for this particular bit

1 – Enable interrupt generation

0 – Disable interrupt generation

2 OUTBUFF Sets the output enable for this particular bit, whether through
the GPIO_OE signal or implemented internally (see parameter
"OE_TYPE").

1 – Enables output

0 – Disables output

1 INREG Input register enable

1 – Enables input register for this particular bit

0 – Disables input register for this particular bit

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 46

...........continued
Bits Name Function

0 OUTREG Output register enable

1 – Enables output functionality for this particular bit

0 – Disables output functionality for this particular bit

6.3.3 Interrupt Registers
These are per-bit interrupt clear registers. Writing a one to any bit clears the interrupt bit register of the corresponding
GPIO bit.

• In 32-bit mode, all 32 interrupt bits are in a single 32-bit register located at address 0x80.
• In 16-bit mode, 32 interrupt bits are split into two 16-bit registers located at addresses 0x80 and 0x84.
• In 8-bit mode, 32 interrupt bits are split into four 8-bit registers located at addresses 0x80, 0x84, 0x88, and

0x8C.

6.3.4 Input Registers
These are read-only for input configured ports. Disabling a bit in this register with the CONFIG_X[1] (INREG) bit
forces the bit to 0 through a MUX, while storing the incoming current value in the register.

• In 32-bit mode, all 32 input bits are in a single 32-bit register located at address 0x90.
• In 16-bit mode, 32 input bits are split into two 16-bit registers located at addresses 0x90 and 0x94.
• In 8-bit mode, 32 input bits are split into four 8-bit registers located at addresses 0x90, 0x94, 0x98, and 0x9C.

6.3.5 Output Registers
The output registers are writeable/readable for output configured ports, and are logical "don't cares" for input
configured ports. Disabling a bit in this register with the CONFIG_X[0] (OUTREG) bit forces the bit to 0 through
a MUX, while keeping the previously written value in the output register.

• In 32-bit mode, all 32 output bits are in a single 32-bit register located at address 0xA0.
• In 16-bit mode, 32 output bits are split into two 16-bit registers located at addresses 0xA0 and 0xA4.
• In 8-bit mode, 32 output bits are split into four 8-bit registers located at addresses 0xA0, 0xA4, 0xA8, and 0xAC.

GPIO

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 47

7. I2C
This section provides information on the I2C module used in the MIV_ESS core.

7.1 Description
The I2C module is an optional integral component of the MIV_ESS core and is based on an open-source I2C core
designed by Richard Herveille. The purpose of the I2C is to provide a minimal APB-driven I2C interface, supporting
Initiator read and write accesses to peripheral I2C devices. The I2C module can also be configured by the Bootstrap
controller to copy I2C boot memory to the TCM of the MIV_RV32 soft processor.

The I2C module has the following features:

• AMBA APB 3.0 Target interface.
• Compatibility with the Phillips I2C bus standard.
• Bootstrap and peripheral I2C Initiator modes.
• Support for I2C “Normal” 100 kbps, “Fast” 400 kbps and “Fast-Plus” 1 Mbps transmission speeds.
• Support for 7-, 8-, 10-, and 18-bit addressed I2C devices.
• Interrupt driven and byte-by-byte data transfers.
• I2C (Repeated) Start/Stop signal generation/detection.
• Clock stretching and wait-state generation.
• Multi-Initiator operation.
• I2C bus busy detection.

A block diagram of the I2C module is provided in the following figure, illustrating the use of a MUX to control whether
the I2C module is acting as a peripheral device to the MIV_RV32 (Peripheral Mode) or configured to read data from
I2C boot memory (Bootstrap Mode).

Figure 7-1. The Block-level Architecture of the I2C Module

7.2 Interface
This section describes I2C configuration parameters and ports.

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 48

Configuration Parameters
The I2C module has configurable parameters under two tabs in MIV_ESS, as shown in the following figure.

Under the General –> Peripherals tab, select the I2C check box to enable the I2C module in the MIV_ESS.

Figure 7-2. I2C Peripheral Enable

If the I2C module is intended for use in the Peripheral mode, no further configuration in the MIV_ESS GUI is required.
However, if the I2C module is intended for use in conjunction with the Bootstrap, the I2C memory device used for
booting purposes can be configured under the Bootstrap tab in the I2C Device Configuration section.

Figure 7-3. I2C Device Configuration

The following table describes each parameter in the I2C module.

Table 7-1. I2C Parameters

Configurator
Parameter

Parameter

Name

Valid Values Default

Value

Description

I2C Enable I2C_EN 0 or 1 1 If this parameter is 1, the I2C
module is enabled in the MIV_ESS.

I2C Device
Address

I2C_SLV_ADDR 0x0 – 0xFF 0x50 The unique I2C device address to
begin booting from.

Number of
Address Bytes

I2C_MULTI_ADDR_BYTES 1 or 2 2 The number of bytes used to
represent the I2C Address.

1: One-Byte

2: Two-Byte

Source Start
Address: Upper
Byte (Hex)

I2C_START_ADDR_UPPER 0x0 – 0xFFFF 0x0 The upper four hex digits of the
address in the I2C device where
reading/writing must begin.

Lower Byte
(Hex)

I2C_START_ADDR_LOWER 0x0 – 0xFFFF 0x0 Specifies the lower four hex digits
of the address in the I2C device
where reading/writing must begin.

I2C Clock
Divisor

I2C_CLK_DIVISOR 0 – 255 99 The Serial Clock (SCLK) prescaler
is used to generate the SCLK
frequency from the System Clock,
see Prescaler Register Description.

Ports
The following table lists the ports available on the MIV_ESS core directly pertaining to the I2C module.

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 49

Table 7-2. I2C Port Signals

Ports Width Direction Description

BOOTSTRAP_BYPASS 1 Input

The I2C module mode select:

• When BOOTSTRAP_BYPASS = 0, on reset the I2C
module enters Bootstrap mode.

• When BOOTSTRAP_BYPASS = 1, the I2C module
is always in Peripheral mode.

SCL_I 1 Input I2C Clock Line Input

SCL_O 1 Output I2C Clock Line Output

SCL_O_EN 1 Output I2C Clock Line Output Enable

SDA_I 1 Input I2C Data Line Input

SDA_O 1 Output I2C Data Line Output

SDA_O_EN 1 Output I2C Data Line Output Enable

I2C_IRQ 1 Output I2C Interrupt

The I2C module is controlled over the APB target interface in the Peripheral mode, called APB_TARGET, or
APB_mINITIATOR if APB Initiator mirroring is enabled in the MIV_ESS GUI.

The I2C module’s inputs and outputs, as seen in the MIV_ESS SmartDesign instance, configured for Bootstrap mode
and Peripheral mode, is shown in the following figure. The following figure also shows the SmartDesign instance for
the configuration in which only the Peripheral mode is enabled.

Figure 7-4. MIV_ESS Instance for Bootstrap and Peripheral Mode

Figure 7-5. MIV_ESS Instance for Peripheral Mode Only

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 50

7.3 Programming

Software
The I2C Bootstrap operation (Bootstrap mode) is a hardware function that does not require any software. However,
software is required to control the I2C module using the MIV_RV32 (when in Peripheral mode). The device driver is
available from the GitHub page linked here.

Hardware
The I2C module uses individual input, output and output enable signals for the I2C serial clock and data lines (SCL
and SDA). In a hardware design, bidirectional buffers are required to pull these input, output and output enable
signals into open-drain, bidirectional lines. These must be connected, as shown in the following figure:

Figure 7-6. Bidirectional Buffers I2C Connections

The I2C interrupt (I2C_IRQ), when enabled, is asserted when a byte read/write transfer has been completed or
arbitration was lost. This interrupt is connected to an interrupt pin on the MIV_RV32. The MIV_ESS with I2C
bidirectional buffer lines and connections to the MIV_RV32 is shown in the following figure.

Figure 7-7. MIV_ESS with I2C Bidirectional Buffer Lines and Connections to MIV_RV32

I2C Module Memory Map
The I2C module’s register addresses are determined with respect to the MIV_ESS base address. The MIV_ESS
base address [MIV_ESS_BASE] is configurable, see section Programming. The I2C module base address is
[MIV_ESS_BASE + 0xA00_0000]. The address offset of each I2C register is given in the following table.

Register address = MIV_ESS_BASE + 0xA00_0000 + Register Address Offset
Table 7-3. I2C Module Register Map

Register

Name

Address Offset R/W Reset

Value

Description

I2C_PRESCALER 0x00_0000 R/W 0xfff Serial Clock Prescaler
Register

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 51

https://github.com/Mi-V-Soft-RISC-V/platform

...........continued
Register

Name

Address Offset R/W Reset

Value

Description

I2C_CTR 0x00_0004 R/W 0 Control Register

I2C_TXR 0x00_0008 R/W 0 Transmit Register

I2C_RXR 0x00_000C R X Receive Register

I2C_CR 0x00_0010 R/W 0 Command Register

I2C_SR 0x00_0014 R 0 Status Register

Prescaler Register Description
The Prescaler Register is used to set the frequency of the I2C serial clock (SCLK) generated by the I2C module. The
prescaler value required to set a particular I2C clock frequency can be calculated using the following formula.

For example, for a System Clock Frequency of 50 MHz and a Desired I2C Clock Frequency of 100 kHz:

For convenience, precalculated values for Normal, Fast, and Fast-Plus transmission speeds for a range of System
Clock Frequencies are listed in the following table.

Table 7-4. I2C Prescaler Register Calculated Values

System Clock Frequency
(MHz)

Normal Speed (100
kHz)

Fast Speed (400 kHz) Fast-Plus Speed (1 MHz)

100 199 49 19

90 179 44 17

80 159 39 15

70 139 34 13

60 119 29 11

50 99 24 9

40 79 19 7

30 59 14 5

20 39 9 3

10 19 4 1

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 52

Control Register Description
Table 7-5. I2C Control Register (I2C_CTR)

Bit
Number

Bit Name Reset
Value

Description

7 core_en 0 I2C Module Enable Bit.

• When set to 1, the I2C module is enabled.

• When set to 0, the I2C module is disabled.

• Default/Reset Value: 0

6 ien 0 I2C module Interrupt Enable Bit.

• When set to 1, the I2C module interrupt is enabled.

• When set to 0, the I2C module interrupt is disabled.

• Default/Reset Value: 0

5:0 Reserved 0 Reserved

Additional operational information:

• The I2C module will only respond to new commands when the ‘core_en’ bit is set.
• The ‘core_en’ bit must only be cleared when there is no I2C operation in progress.
• Before changing the ‘ien’ bit or the value in the Prescaler Register, the ‘core_en’ bit must be set to 0.

Transmit Register Description
The following two tables describe the fields in the Transmit Register. This register has two interpretations depending
on the operation being executed by the I2C module.

While transmitting an I2C control byte, the Transmit Register is interpreted as shown in the following table.

Table 7-6. I2C Transmit Register (I2C_TXR) – Control

Bit
Number

Bit Name Reset
Value

Description

7:1 I2C Target
Address

0 The 7-bit hardware address of the I2C target device.

0 Direction 0 Indicates the direction of the transfer.

• When set to 1, reading data from target device.
• When set to 0, writing data to target device.

When transmitting an I2C data byte, the Transmit Register is interpreted as shown in the following table.

Table 7-7. I2C Transmit Register (I2C_TXR) – Data

Bit Number Bit Name Reset
Value

Description

7:0 Transmit
Data

0 The data byte to be transmitted to the I2C target device.

Receive Register Description
The following table describes the field in the Receive Register.

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 53

Table 7-8. I2C Receive Register (I2C_RXR)

Bit Number Bit Name Reset
Value

Description

7:0 Receive Data X The last byte received from the I2C target device.

Command Register Description
The following table describes the field in the Command Register.

Table 7-9. I2C Command Register (I2C_CR)

Bit
Number

Bit Name Reset
Value

Description

7 STA 0 Generate I2C (Repeated) Start Condition.

When set to 1, the I2C Module will transmit a (repeated) start condition with
the next write transmission.

6 STO 0 Generate I2C Stop Condition.

When set to 1, the I2C Module will transmit a Stop condition.

5 RD 0 Receive data from target device.

When set to 1, the I2C Module will receive a data byte from the target device.

4 WR 0 Transmit data to target device.

When set to 1, the I2C Module will transmit a data byte to the target device.

3 ACK 0 Read Mode Acknowledge.

• When set to 0, the I2C Module will transmit an ACK to the target after
receiving the next data byte.

• When set to 1, the I2C Module will transmit a NACK to the target after
receiving the next data byte.

2:1 Reserved 0 Reserved

0 IACK 0 Interrupt Acknowledge.

• When set to 1, the I2C Module interrupt flag will be cleared.
• When set to 0, the I2C Module will be able to transmit a new interrupt

request.

Additional operational Information:

• Setting the ‘STA’ bit does not instantly transmit a start condition. After setting the ‘STA’ bit, the I2C start condition
will not be transmitted until the next I2C write operation (that is, when the ‘WR’ bit is set).

• Setting the ‘ACK’ bit does not instantly transmit an ACK/NACK. After setting the ‘ACK’ bit, the ACK/NACK will
not be transmitted until the next I2C read operation (that is, when the RD bit is set).

• When an interrupt is claimed by the processor, the ‘IACK’ bit must be toggled (set to ‘1’, then set to ‘0’) as the
‘IACK’ but must be set back to ‘0’ after the interrupt is claimed to allow for another interrupt to be generated.

• All bits in the command register are cleared automatically on the completion of an I2C operation.

Status Register Description
The following table describes the fields in the Status Register.

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 54

Table 7-10. I2C Status Register (I2C_SR)

Bit
Number

Bit Name Reset
Value

Description

7 Received
Acknowledgment

0 Acknowledge received ACK from the addressed target.

• 1: indicates a NACK was received from target.
• 0: indicates an ACK was received from target.

6 Busy 0 I2C Bus Busy.

• Set to 1 after a START condition is detected on the I2C bus.
• Set to 0 after a STOP condition is detected on the I2C bus.

5 Arbitration Lost 0 I2C Bus Arbitration Lost. Arbitration is lost (and this bit is set to 1)
when:

• A Stop condition is detected, but not requested by the I2C module.
• The I2C module drives the SDA line HIGH, but another I2C device

is driving the SDA line LOW.

4:2 Reserved 0 Reserved.

1 Transfer in Progress 0 Transfer in Progress.

• 1: when the I2C module is currently performing a read/write
transmission.

• 0: when the I2C module has completed a read/write transmission.

0 Interrupt Flag 0 Interrupt Flag. The interrupt flag is set when:

• A byte read/write transfer is completed.
• Arbitration was lost.

When the interrupt flag is set, the I2C_IRQ will be asserted if the
Interrupt Enable bit in the Control Register has also been set. The
processor must toggle the IACK bit in the Command Register to claim
the interrupt.

I2C

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 55

8. PLIC
This section provides information on the Platform Level Interrupt Controller (PLIC) module used in the MIV_ESS
core.

8.1 Description
The PLIC multiplexes multiple external interrupt signals into a single interrupt signal that can be connected to an
external interrupt input pin of a processor.

The PLIC has the following four main blocks:

1. PLIC Gateway: The PLIC gateway is used to capture the interrupt before it is registered by the interrupt
pending register. The PLIC gateway is asserted until the interrupt is cleared by a write to the claim complete
register or by a system reset. Each of the interrupts enabled in the PLIC has its own gateway, which is
connected to the interrupt pending register.

2. Interrupt Enable: When written to this register, it can enable or disable a specific interrupt. For example, if
there are six PLIC interrupts in the design but only interrupt 1 and 3 are enabled, then these are the only
interrupt that must be serviced.

3. Interrupt Pending: When the PLIC gateway asserts, the value is captured in the pending register until the
interrupt is cleared or the system is reset.

4. Interrupt Claim Complete: It is responsible for generating the single external interrupt when a valid interrupt
has occurred. A valid interrupt is when the interrupt is enabled and there is a pending interrupt. The PLIC
identification is generated. The ID is read by the firmware and the correct interrupt handler is selected from the
ID. When the register is written to it clears the PLIC gateway and interrupt pending.

When an interrupt occurs on an enabled interrupt, the PLIC gateway captures the interrupt and asserts the
corresponding interrupt pending bit. Once the enable bit and the pending bit are asserted, then the PLIC_IRQ
signal asserts until the interrupt is claimed by the software interrupt handler, or the system is reset.

When multiple interrupts assert, then the lowest interrupt number will be serviced first. For example, if interrupt 1 and
6 assert at the same time, interrupt 1 will be serviced first, followed by interrupt 6.

8.2 Interface
The following table lists the two PLIC parameters in the MIV_ESS.

Table 8-1. PLIC Parameters

Configurator
Parameter

Parameter
Name

Valid
Values

Default
Value

Description

Available
Interrupt when
PLIC Enabled

NUM_OF_INTS 1 - 31 8 The number of interrupts available in the design.

PLIC Enable PLIC_EN 0 or 1 0 Enables or disables the PLIC interrupts in the design.

To enable the PLIC, the PLIC Enable parameter must be set in the General tab of the MIV_ESS configurator.

Figure 8-1. PLIC Enable

When the PLIC is enabled, the number of interrupts can be set in the PLIC tab of MIV_ESS Configurator →
Available Interrupts, when PLIC is enabled. This allows you to select between 1 and 31 source interrupts.

PLIC

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 56

Figure 8-2. PLIC Interrupts - Valid

Note:  A warning message is displayed, if the value is beyond the specified range.

Figure 8-3. PLIC Interrupts - Invalid

The following table lists the ports available in MIV_ESS for the PLIC:

Table 8-2. PLIC Port Signals

Ports Width Direction Description

PLIC_SCR_IRQ NUM_OF_INTS:0 Input Interrupt sources are active-high.

PLIC_IRQ 1 Output
PLIC interrupt, which connects to the external interrupt of a
processor.

8.3 Programming
Software is required to enable, disable, and handle an asserted interrupt. This is available from https://github.com/
Mi-V-Soft-RISC-V/platform. The following figure shows how the PLIC_IRQ signal is connected to the MIV_RV32
processor's external interrupt signal (EXT_IRQ).

Figure 8-4. PLIC Connection Diagram

The PLICs register addresses are determined with respect to the MIV_ESS base address. The MIV_ESS base
address (MIV_ESS_BASE) is configurable. The PLICs base address is MIV_ESS_BASE + 0x0000000. The address
offset of each register is as follows.

Register address = MIV_ESS_BASE + 0x000_0000 + Register Address Offset.
Table 8-3. PLIC Registers

Register Address Offset Reset
Value

R/W Description

Interrupt Pending 0x1000 0 R Interrupt Pending Register

PLIC

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 57

https://github.com/Mi-V-Soft-RISC-V/platform
https://github.com/Mi-V-Soft-RISC-V/platform

...........continued
Register Address Offset Reset

Value
R/W Description

Interrupt Enable 0x2000 0 R/W Interrupt Enable Register

Interrupt Claim Complete 0x20_0004 0 R/W Interrupt Claim Complete Register

Interrupt Pending Register

The following table lists the interrupt pending status of each of the interrupt sources.

Table 8-4. Interrupt Pending Register

Bit
Number

Bit Name Reset
Value

R/W Description

0 Interrupt_pending 0 0 R Reserved

1 Interrupt_pending 1 0 R Interrupt Pending register for source interrupt 1.

… … … … …

31 Interrupt_pending 31 0 R Interrupt Pending register for source interrupt 31.

Interrupt Enable Register

The Interrupt Enable register allows enabling each of the global interrupts corresponding to the bit in the register.

Table 8-5. Interrupt Enable Register

Bit
Number

Bit Name Reset
Value

R/W Description

0 Interrupt_enable 0 0 R/W Reserved

1 Interrupt_enable 1 0 R/W Interrupt Enable register for source interrupt 1.

… … … … …

31 Interrupt_enable 31 0 R/W Interrupt Enable register for source interrupt 31.

Interrupt Claim/Complete Register

The register generates the interrupt source ID of each interrupt. It also sends the interrupt completion message to the
associated gateway, which then clears the interrupt on the gateway and on the pending register.

Table 8-6. Interrupt Claim/Complete Register

Bit
Number

Bit Name Reset
Value

R/W Description

0 Interrupt_claim_complete 0 0 R/W Reserved

1 Interrupt_claim_complete 1 0 R/W Interrupt Claim Complete register for source interrupt 1.

… … … … …

31 Interrupt_claim_complete 31 0 R/W Interrupt Claim Complete register for source interrupt 31.

PLIC

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 58

9. SPI
This section provides information on the Serial Peripheral Interface (SPI) module used in the MIV_ESS core.

9.1 Description
The SPI is a controller core designed for synchronous serial communication using a Motorola, TI, or NSC mode of
operations. The core is parameterized to allow user specification of the Operating mode, FIFO depth, and frame
width. Operation is fully synchronous and operates on the system clock, as well as the external SPI clock for the
Target mode.

The SPI consists of an APB interface designed to connect to an APB bus. Its registers, including transmit and receive
FIFOs can be accessed by an APB Initiator.

The SPI controller has the following key features:

• SPI clock rate is configurable through parameter:
– From PCLK/512 to PCLK/2 in two steps
– Maximum data-rate of PCLK/2 in Initiator mode and PCLK/8 in Target mode.

• SPI protocol is configurable:
– Initiator and target operation
– As an initiator, supports up to eight target devices
– Motorola SPI support
– TI SPI support
– NSC SPI support
– Target select behavior configurable during IDLE cycles
– Supports broadcast operation
– Configurable frame size (4 to 32 bits)

• FIFO:
– Width set to frame size for optimal core size
– Depth configurable through the parameter

• Interrupt generation:
– Receive/transmit data interrupts
– FIFO overflow and under run
– Command transmitted interrupt

• APB3 compliant

For more information about this IP, see CoreSPI v5.2 Handbook in the Libero Catalog.

9.2 Interface

9.2.1 Configuration Parameters
The following table lists the parameters (Verilog) for configuring the RTL code of the core.

Table 9-1. SPI Parameters

Configurator Name Parameter Name Value
Values

Default
Value

Description

SPI SPI_EN 0 or 1 1 SPI Enable

0: Disabled

1: Enabled

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 59

...........continued
Configurator Name Parameter Name Value

Values
Default
Value

Description

APB Data Width APB_DWIDTH 8, 16, 32 8 APB data width can be 8, 16, or 32 bits.

Operation in NSC mode is only possible with an
APB data width of 32.

Frame Size (4-32) CFG_FRAME_SI
ZE

4 to 32 4 SPI frame size, in bits.

For Motorola and TI modes, this is the actual
required frame size. For NSC mode, this is set to 9
+ the required data frame size.

FIFO Depth (1-32) CFG_FIFO_DEP
TH

1 to 32 4 Number of frames that can be stored in the FIFO
at any given time (both TX and RX FIFOs).

Clock Rate (0-255) CFG_CLK 0 to 255 7 Clock rate parameter, which determines the
generated SPI Initiator clock by: SPICLK =
PCLK/(2*(CFG_CLK+1))

Mode CFG_MODE 0 – 2 0 Determines Operating mode:

0: Motorola mode

1: TI mode

2: NSC mode

Mode CFG_MOT_MOD
E

0 – 3 0 Motorola mode selection:

0: Mode 0

1: Mode 1

2: Mode 2

3: Mode 3

Keep SSEL active CFG_MOT_SSEL 0 – 1 0 Target select active between back-to-back
transfers in Motorola mode.

0: Target select behavior varies depending on the
Motorola mode selected.

1: Active – Remains active between back-to-back
transfers.

Transfer Mode CFG_TI_NSC_C
USTOM

0 – 1 0 Enable custom transfer configuration in TI/NSC
mode.

0: Normal transfer

1: Custom transfer

Free running clock CFG_TI_NSC_F
RC

0 – 1 0 Free running clock in TI/NSC mode.

0: Clock in-active between transfers

1: Clock remains active

Jumbo frames CFG_TI_JMB_FR
AMES

0-1 0 Concatenate frames in a TI mode back-to-back
transfer:

0: Standard TI transfers

1: Jumbo frame transfers

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 60

...........continued
Configurator Name Parameter Name Value

Values
Default
Value

Description

NSC Specific
Configuration

CFG_NSC_OPE
RATION

0 -2 0 NSC specific transfer settings:

0: Standard NSC transfers

1: Idle cycles inserted between frames in back-to-
back transfers.

2: Large response frames. Response frames
stored in TX_FIFO are concatenated to form a
single large response frame.

The following figure shows the SPI Configuration tab.

Figure 9-1. SPI Configuration Window

9.2.2 I/O Signals
The following table lists the SPI I/O signals.

Table 9-2. SPI I/O Signal Descriptions

Name Direction Description

PCLK Input APB System Clock – Reference clock for all internal logic.

PRESETN Input APB active-low asynchronous reset.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 61

...........continued
Name Direction Description

SPIINT Output Interrupt pending: This active-high output signal is the interrupt output
signal from SPI. It can be programmed to become active on certain events
to inform the CPU that such an event has occurred. The CPU can then
take appropriate action.

9.3 Programming
This section describes SPI registers.

9.3.1 Register Summary
The following tables list the values in hexadecimal format; type designations: R = read-only; W = write-only; R/W =
read/write.

Table 9-3. SPI Internal Register Address Map

Register Name Address

Offset

R/W Width Reset Value Description

CONTROL 0x00 R/W 8 0x00 Control Register 1

INTCLEAR 0x04 W 8 0x00 Interrupt Clear Register

RXDATA 0x08 R 32 0x00 Receive Data Register

Reading from this register reads one frame
from the RX FIFO.

TXDATA 0x0C W 32 0x00 Transmit Data Register

Writing to this register writes one frame to
the TX FIFO.

INTMASK 0x10 R 8 0x00 Masked interrupt status

These bits indicate the masked interrupt
status by ANDing the interrupt enables in the
CONTROL and CONTROL2 registers with
the raw interrupt register.

When any of these bits are set, the interrupt
output will be active.

Bits are cleared by writing to the Interrupt
clear register.

INTRAW 0x14 R 8 0x00 Raw interrupt status

CONTROL2 0x18 R/W 8 0x80 Control Register 2

COMMAND 0x1C W 8 0x00 Command Register

STAT 0x20 R 8 0x00 Status Register

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 62

...........continued
Register Name Address

Offset

R/W Width Reset Value Description

SSEL 0x24 R/W 8 0x44 Target Select Register

Specifies the targets selected

Default 0 (nothing selected). Write 1 to each
bit to select one or more targets.

Target select output pin is active Low.

In TI mode, the target select outputs are
inverted to become active High.

TXDATA_LAST 0x28 W 32 0x00 Transmit Data Register

Writing to this register writes one frame to
the TX FIFO.

Also indicates to SPI that this is the
last frame in this packet before SSEL is
supposed to go inactive, effectively allowing
for the specification of the number of
transmitted frames.

CLK_DIV 0x2C R/W 8 CFG_CLK Clock rate register. Writing to this register
will update clock division factor of SPI
generated clock (SPICLKO) in the Initiator
mode.

9.3.2 Control Register 1
The following tables list the Control register 1 and bit definitions.

Table 9-4. Control Register 1

PADDR[5:0] Register Name R/W Width Reset Value Description

0x00 CONTROL R/W 8 0x00 Control Register 1

Table 9-5. Control Register 1 Bit Definition

Bits Name R/W Description

7 OENOFF R/W 0: SPI output enable active as required

1: The core will not assert the SPI output enable. This allows multiple
targets to be connected to a single Initiator sharing a single target select
and software protocol implemented that can enable the targets transmit
data when a certain broadcast address SPI command is received.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 63

...........continued
Bits Name R/W Description

6 FRAMEURUN R/W W 0: Under runs are generated whenever a read is attempted from an
empty transmit FIFO

1: Under run condition will be ignored for the complete frame if the first
data frame read resulted in a potential overflow, that is, the target was not
ready to transmit any data. If the first data frame is read from the FIFO
and transmitted then an under run will be generated if the FIFO becomes
empty for any of the remaining packet frames, that is, while SSEL is
active.

Initiator operation will never create a transmit FIFO under run condition.

5 INTTXURUN R/W Interrupt on transmit under run

0: Interrupt disabled

1: Interrupt enabled.

4 INTRXOVFLOW R/W Interrupt on receive overflow

0: Interrupt disabled

1: Interrupt enabled.

3 INTTXDONE R/W Interrupt on transmit data of data which has been placed in TX FIFO
through the TXDATA_LAST register.

0: Interrupt disabled

1: Interrupt enabled.

2 — — Reserved

1 INITIATOR R/W 0: Run SPI in Target mode

1: Run SPI in Initiator mode

0 ENABLE R/W 0: Core does not respond to external signals until this bit is enabled.
SPISCLKO driven to zero and SPIOEN, SPISS (target select) driven
inactive.

1: Core is active

9.3.3 Interrupt Clear Register
The following tables list the Interrupt Clear Register and bit definitions.

Table 9-6. Interrupt Clear Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x04 INTCLEAR W 8 0x00 Interrupt Clear Register

Table 9-7. Interrupt Clear Register Bit Definition

Bits Name R/W Description

7 TXRFM W Writing 1 clears the TXRFM interrupt.

6 DATA_RX W Writing 1 clears the DATA_RX interrupt.

5 SSEND W Writing 1 clears the SSEND interrupt.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 64

...........continued
Bits Name R/W Description

4 CMDINT W Writing 1 clears the CMDINT interrupt.

3 TXUNDERRUN W Writing 1 clears the TXUNDERRUN interrupt.

2 RXOVERFLOW W Writing 1 clears the RXOVERFLOW interrupt.

1 — — Reserved

0 TXDONE W Writing 1 clears the TXDONE interrupt.

9.3.4 RX Data Register
The following tables list the Rx and Tx Data Registers.

Table 9-8. RX Data Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x08 RXDATA R 32 0x00 Receive Data Register

Reading from this register reads
one frame from the RX FIFO.

Table 9-9. TX Data Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x0C TXDATA W 32 0x00 Transmit Data Register

Writing to this register writes one
frame to the TX FIFO.

9.3.5 Interrupt Masked Register
The following table lists the Interrupt Masked Register.

Table 9-10. Interrupt Masked Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x10 INTMASK R 8 0x00 Masked interrupt status

These bits indicate the masked
interrupt status by ANDING the
interrupt enables in the CONTROL
registers with the raw interrupt
register.

When any of these bits are set, the
INTERRUPT output will be Active.

The bits are cleared by writing to
the Interrupt clear register.

9.3.6 Interrupt Raw Register
The following tables list Interrupt Raw Register and bit definitions.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 65

Table 9-11. Interrupt Raw Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x14 INTRAW R 8 0x80 Raw interrupt status

Table 9-12. Interrupt Raw Register Bit Definition1

Bits Name R/W Description

7 TXRFM R Indicates that there is at least one frame free in the transmit FIFO for
writing.

6 DATA_RX R Indicates that at least one byte is received. Check the RXEMPTY bit in the
Status Register to determine if there is more Rx data available in the Rx
FIFO. Writing a 1 to the corresponding bit in the Interrupt Clear register
clears this bit, provided that the RX FIFO is empty.

5 SSEND R Indicates that SSEL is Inactive.

4 CMDINT R Indicates that the number of frames set by the CMDSIZE register are
received as a single packet of frames (SSEL held active).

3 TXUNDERRUN R Indicates that in Target mode that the data was not available when required
in the transmit FIFO.

2 RXOVERFLOW R Indicates that in Initiator and Target mode, the receive FIFO is overflowed.

1 — — Reserved

0 TXDONE R Indicates that all frames, including last frame (see Aliased TX Data
Register), are transmitted.

1. Writing a 1 to the corresponding bit in the Interrupt Clear register clears the associated Interrupt Raw register
bit, provided that the hardware condition that triggered the interrupt in the first instance is resolved.

9.3.7 Control Register 2
The following tables list the Control register 2 and bit definitions.

Table 9-13. Control Register 2

PADDR[5:0] Register Name R/W Width Reset Value Description

0x18 CONTROL2 R/W 8 0x00 Control Register 2

Table 9-14. Control Register 2 Bit Definition

Bits Name R/W Description

7 INTEN_TXRFM R/W 0: No effect

1: Enables the interrupt when there is room in the Tx FIFO.

6 INTEN_DATA_RX R/W 0: No effect

1: Enables the interrupt when at least one byte is received.

5 INTEN_SSEND R/W 0: No effect

1: Enables the interrupt as SSEL goes High. SPI Initiator and target
modes.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 66

...........continued
Bits Name R/W Description

4 INTEN_CMD R/W 0: No effect

1: Enables Interrupt after the number of frames set by CMDSIZE
(above) is received as a single packet of frames (SSEL held active).

3 — R/W Reserved

2:0 CMDSIZE R/W Number of frames sent before interrupt is generated when
INTEN_CMD is set (see above).

9.3.8 Command Register
The following tables list the Command Register and bit definitions.

Table 9-15. Command Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x1C COMMAND W 8 0x00 Command Register (write-only)

Table 9-16. Command Register Bit Definition

Bits Name R/W Description

7:2 — — Reserved

1 TXFIFORST W Writing 1 will reset the TX FIFO.

This bit always reads as zero.

0 RXFIFORST W Writing 1 will reset the RX FIFO.

This bit always reads as zero.

9.3.9 Status Register
The following tables list the Status Register and bit definitions.

PADDR[5:0] Register Name R/W Width Reset Value Description

0x20 STAT R 8 0x44 Status Register (read-only)

Table 9-17. Status Register Bit Definition1

Bits Name R/W Description

7 ACTIVE R Core is still transmitting data.

6 SSEL R Current state of SSEL.

5 TXUNDERRUN R Transmit FIFO under flowed.

4 RXOVFLOW R Receive FIFO overflowed.

3 TXFULL R Transmit FIFO is full, that is, no space for more data.

2 RXEMPTY R Receive FIFO is empty, that is, no data available to read.

1 DONE — No of requested frames have been transmitted and received.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 67

...........continued
Bits Name R/W Description

0 FIRSTFRAME R Next frame in Receive FIFO was first received after SSEL went active
(Command Frame).

9.3.10 Target Select Register
The following table lists the Target Select Register.

PADDR[5:0] Register Name R/W Width Reset Value Description

0x24 SSEL R/W 8 0x00 Target Select Register

Specifies the targets selected.

Default 0 (nothing selected). Write 1 to
each bit to select one or more targets.

Target select outputs are active-low in
Motorola and NSC modes.

In TI mode, the target select outputs are
inverted to become active High.

For example, to select Target 0 and
Target 5, write the value 0x00100001 to
this register.

9.3.11 Aliased TX Data Register
The following table lists the Aliased TX Data Register.

PADDR[5:0] Register Name R/W Width Reset Value Description

0x28 TXDATA_LAST W 32 0x00 Transmit Data Register

Writing to this register writes one frame
to the TX FIFO.

Also indicates to SPI that this is the
last frame in this packet before SSEL
is supposed to go inactive, effectively
allowing for the specification of the
number of transmitted frames.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 68

9.3.12 Clock Rate Register

PADDR[5:0] Register Name R/W Width Reset Value Description

0x2C CLK_DIV R/W 8 CFG_CLK Clock rate register.

Writing to this register will update clock
division factor of SPI generated clock
(SPICLKO) in the Initiator mode.

Clock rate of generated SPI Initiator clock
is determined by the formula:SPICLK =
PCLK / (2 * (CLK_DIV + 1))

The register value overrides the parameter
value (CFG_CLK) set in the core
configuration window.

At the power ON, the CLK_DIV register
will have the value of configurable
parameter CFG_CLK and this value will be
used to determine the clock rate of the
generated SPI Initiator clock.

Whenever the CLK_DIV register is
updated, the new value is used to
determine the clock rate of the generated
SPI Initiator clock.

Note: 
It is recommended that the user updates
this register when the core is not
performing any SPI transactions.

SPI

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 69

10. TIMER
This section provides information on the Timer module used in the MIV_ESS core.

10.1 Description
Timer with 64-bit resolution, which can be used as a system machine timer or as a general timer resource.

Figure 10-1. Timer – Top-Level Diagram

10.1.1 Features
The following features are implemented in the Timer module:

• An APB interface for accessing the timer count (MTIME) register, the timer compare (MTIMECMP) register, and
the configuration registers.

• A 64-bit Timer register ‘MTIME’.
• A 64-bit Timer Compare register ‘MTIMECMP’.
• A 16-bit Prescaler that divides the input clock source by a predefined integer value to derive an MTIME

timebase.
• A Timer interrupt signal (TIMER_IRQ), if enabled, generates an interrupt when the count register (MTIME)

exceeds the value found in the Timer Compare register (MTIMECMP).
• Two input clock options are available:

– External Real Time Clock (RTC) source.
– The System Clock (PCLK) source.

10.1.2 RTC CDC – Clock Domain Crossing
Only the Real-Time Clock (RTC) source clock uses the Clock Domain Crossing (CDC) feature. The CDC is used
to synchronize the RTC with the system clock. Therefore, no timing errors are created due to two separate clock
domains for the interrupt generation. The clock pulses are synchronized using two flip-flops. These two flip-flops
create an area for any metastability that might occur while synchronizing the RTC. The following figure shows the
flip-flop synchronization.

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 70

Figure 10-2. Timer - CDC Block

The source RTC_CLK is flopped twice before it is used by destination logic. The two flip-flops aid in correct sampling
of the signal without Metastable States. The source RTC_CLK must run at strictly less than half the rate of the
System Clock (PCLK).

10.1.3 Block Diagram
The following figure shows timer’s block diagram with a brief description.

Figure 10-3. Timer Block Diagram

CDC and Clock Sel

The CDC block takes the input RTC and performs Clock Domain Crossing on it to bring it into the system clock
domain. The new post CDC RTC is fed into the Clock Sel block. Depending on user configuration, the RTC or system
clock are either used as the target clock for timing intervals in the system.

Prescaler

The Prescaler component is used to divide the selected clock source by a defined integer value, which is then fed to
the input of the MTIME counter register. The Prescaler has Read Only access over the APB I/F.

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 71

MTIME Register

The MTIME register contains the 64-bit value of the timer count. The count increments by 1 every time the Prescaler
ticks (reaches the end of its own count). The MTIME register also outputs an MTIME_COUNT_OUT[63:0] signal that
contains the current value of the timer count. The register has Read/Write access over the APB I/F.

MTIMECMP

MTIMECMP is the 64-bit timer compare register, it pre-sets the threshold which needs to be reached by the MTIME
register. When the MTIME register value is greater than or equal to the value found in register MTIMECMP, a timer
interrupt signal (TIMER_IRQ) is generated. The register has Read/Write access over the APB I/F.

TIMER_IRQ

The TIMER_IRQ is the timer generated interrupt signal output from the Timer module and appears as an output
on MIV_ESS. The signal can be fed directly into the MIV_RV32’s TMR_IRQ input if the soft-processor’s internal
MTIMER module has been internally disabled. Alternatively, it can be connected to the MIV_RV32 processor core as
a regular external interrupt.

The TIMER_IRQ is asserted High only if the value of MTIME register is greater than or equal to the value of the
MTIMECMP register. The interrupt is Low for all other conditions.

10.2 Interface
This section describes parameters and port lists of the Timer module.

10.2.1 Parameters
To enable the timer, select the Timer check box in the Peripherals section.

Figure 10-4. Selecting Timer Option

After the Timer option is enabled, the ‘Timer’ tab will be available for configuring, and it can be used to specify the
Timer configuration as shown in the following figure.

Figure 10-5. Timer Settings

The following table lists the Timer parameters.

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 72

Note:  Checked boxes for parameters hold the value ‘1’ and un-checked boxes hold the value ‘0’.

Table 10-1. Timer Parameters

Configurator
Parameter

Parameter Name Valid
Values

Default
Value

Description

Timer (Enable) SYS_TIMER_EN 0 or 1 1 0: The Timer is not enabled in MIV_ESS

1: The Timer is enabled in MIV_ESS

Enable Timer
Interrupt

INTERNAL_MTIME_IRQ 0 or 1 1 0: Disable Timer-generated interrupt

1: Enable Timer-generated interrupt

If enabled, the timer interrupt (TIMER_IRQ)
output signal is enabled and it is asserted
High if the timer based interrupt occurs.

If disabled, the timer interrupt signal is not
present in the design.

Enable Real
Time Clock

MTIME_RTC_CLOCK 0 or 1 0 0: Disable Real-Time Clock (RTC)

1: Enable Real-Time Clock (RTC)

If the RTC is enabled, an RTC input
appears on the MIV_ESS core and the timer
uses that RTC as the reference clock for
generating the timer interrupt for the system.

If the RTC is disabled, the timer uses the
input system clock (PCLK) as the reference
clock for generating the timer interrupt for the
system.

Timer Prescaler MTIME_PRESCALER 1 –
65,335

1000 This parameter pre-sets the Prescaler value
in decimal number. It determines, the amount
of clock cycles the target system clock or
RTC need to make for MTIME register to
increment by a value of 1.

The minimum Prescaler value is 0, where no
scaling of the target clock occurs.

The maximum Prescaler value is 65,535,
where the target clock needs to go through
65,535 cycles before a single MTIME
register value increment.

10.2.2 Port List
The timer inputs and outputs as seen on the MIV_ESS instance without the Real-Time Clock is shown in the following
figure.

Figure 10-6. MIV_ESS: Timer Module

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 73

The Timer inputs and outputs of the MIV_ESS instance with the Real-Time Clock enabled is shown in the following
figure.

Figure 10-7. MIV_ESS: Timer Module

The following table shows only the unique inputs and outputs to the timer.

Table 10-2. Timer – I/Os

Ports Width Direction Description

TIMER_COUNT_OUT [63:0] Output The current timer count value of the Timer module.

TIMER_IRQ 1 Output The timer interrupt output signal generated around the timer’s
special clock intervals.

TIMER_RTC_CLK 1 Input The input for the RTC. Only present if enabled in the
MIV_ESS GUI.

Note:  The RTC input is optional, and it does not appear in the top-level design unless the ‘Enable Real Time Clock’
option is checked in the GUI. The same applies for the timer generated interrupt signal, it is only available if not
disabled in the GUI.

10.3 Programming
This section describes how to use the timer and timer register maps.

10.3.1 How to Use the Timer
After the Timer is enabled, it gets configured from the individual Timer tab and gets integrated into the MIV_ESS
instance.

The timer can be connected to MIV_RV32 directly through the TMR_IRQ input on the core, provided the internal
MTIMER on the MIV_RV32 core is disabled.

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 74

Figure 10-8. MIV_ESS: Timer Module - Connections

Alternatively, the timer can be wired up as an external interrupt for the target soft-processor core.

10.3.2 Details of Operation
The initial operation of the timer is determined in the GUI from the following:

• Enable the timer interrupt
• Determine the timer count clock
• Pre-set the value by which the timer count must be prescaled.

When reset, the value of MTIME register is 0, Prescaler is 0 and the value of MTIMECMP register is
64’FFFF_FFFF_FFFF_FFFF.

On next positive clock edge of the selected timer clock, the Prescaler counter increments by 1 and continues to
increment until it reaches the value pre-set in the GUI. When the counter reaches that value, the MTIME register
increments by 1 and the Prescaler counter goes back to zero.

Both the MTIME and MTIMECMP register values can be written through software over the APB I/F.

The MTIME register is typically read and the MTIMECMP value updated with a value of MTIME plus the required
interrupt period.

The MTIME register continues to increment until the count reaches a value that is greater than or equal to the value
of the MTIMECMP register. When this occurs, the timer interrupt is asserted High. The timer interrupt is asserted Low
when the MTIMECMP register is updated with a value greater than MTIME. This is typically the current MTIME plus
the next required interrupt period value.

10.3.3 Timer Register Map
The Timer module’s register addresses are determined with respect to the MIV_ESS base address. The
MIV_ESS base address [MIV_ESS_BASE] is configurable. The Timer module base address is [MIV_ESS_BASE
+ 0x200_0000]. The address offset of each timer register is given in the following table.

Register address = MIV_ESS_BASE + 0x200_0000 + Register Address Offset

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 75

Table 10-3. Timer Register Map

Register Name Address Offset R/W Reset Value Description

MTIMECMP_L 0x4000 R/W 0xFFFF_FFF
F

The lower 32-bits of the compare time register
Write (PWDATA[31:0] and Read (PRDATA[31:0]).

MTIMECMP_U 0x4004 R/W 0xFFFF_FFF
F

The upper 32-bits of the compare time register
Write (PWDATA[31:0] and Read (PRDATA[31:0]).

MTIME_L 0xBFF8 R/W 0x0 The lower 32-bits of the time count register Write
(PWDATA[31:0] and Read (PRDATA[31:0]).

MTIME_U 0xBFFC R/W 0x0 The upper 32-bits of the time count register Write
(PWDATA[31:0] and Read (PRDATA[31:0]).

Prescaler 0x5000 R — The pre-set Prescaler value can be read by Read
(PRDATA[31:0]).

TIMER

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 76

11. UART
This section provides information on the UART module used in the MIV_ESS core.

11.1 Description
The UART is a serial communication controller with a flexible, serial data interface that is intended primarily
for embedded systems. The UART can be used to interface directly to industry standard UARTs. The UART is
intentionally a subset of full UART capability to make the function cost-effective in a programmable device.

The UART has the following key features:
• Asynchronous mode to interface with industry standard UART
• Optional transmit and receive FIFOs
• Advanced Peripheral Bus (APB) interface
• Fixed and Programmable modes of operation

For more information about this IP, see CoreUARTapb v5.7 Handbook in the Libero Catalog.

11.2 Interface

11.2.1 Configuration Parameters
This section describes configuration parameters of UART.

The following table lists the parameters (Verilog) for configuring the RTL code of the core.

Table 11-1. UART Configurable Options

Configurator Name Parameter Name Valid
Values

Default
Value

Description

UART UART_EN 0 or 1 1 UART Enable

0: Disabled

1: Enabled

TX FIFO TX_FIFO 0 or 1 0 Transmit FIFO

0: Disabled

1: Enabled

RX FIFO RX_FIFO 0 or 1 0 Receive FIFO

0: Disabled

1: Enabled

Configuration FIXEDMODE 0 or 1 1 0- Programmable

1- Fixed

Fixed or Programmable mode. In Fixed mode,
the parameters BAUD_VALUE, Character Size,
and Parity are hardwired. In Programmable
mode, they are programmed by the control
registers.

Baud Value1 BAUD_VALUE 1 to
8191

1 Baud value is set only when configuration is set
to Fixed mode.

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 77

...........continued
Configurator Name Parameter Name Valid

Values
Default
Value

Description

Fractional Part of
Baud Value

BAUD_VAL_FRCT
N

0 to 7 0 This parameter is only relevant when the
parameter FIXEDMODE is set to Fixed and
parameter BAUD_VAL_FRCTN_EN has been
enabled. The value chosen here is added to
the baud value to give a precise baud value.

Enable Extra Precision BAUD_VAL_FRCT
N_EN

0 or 1 0 When parameter FIXEDMODE is set to
Programmable, enabling this parameter
enables an additional control register (Control
Register 3) that can be used to set a fractional
part for the baud value. The baud value can be
set with a precision of 0.125.

When parameter FIXEDMODE is set to Fixed,
enabling this parameter allows you to set a
fixed fractional part for the baud value. The
size of the fractional part is specified by the
BAUD_VAL_FRCTN parameter.

Status Flags UART_STATUS_F
LAGS

0 or 1 0 When enabled the error, READY and OVERFLOW
status signals are available as outputs.

Character Size PRG_BIT8 0 This option can only be set when Configuration
mode is set to Fixed mode. This option defines
the number of valid data bits in the serial
bitstream. Character size can be 8 bits or 7
bits.

Parity PRG_PARITY 0 This option can only be set when Configuration
mode is set to Fixed mode. The options for
parity are as follows: Parity Disable, Even
Parity, or Odd Parity.

RX Legacy Mode RX_LEGACY_MO
DE

0 When disabled, the UART_RXRDY signal is
synchronized with the UART_FRAMING_ERR
output, which occurs after the STOP bit. When
enabled (Legacy mode), the UART_RXRDY
signal is asserted after all data bits have been
received, but before the STOP bit.

FIFO Implementation USE_SOFT_FIFO 0 When disabled, the FIFO is implemented using
a device-specific hard macro. When enabled, a
16-byte FIFO is implemented in the FPGA logic
instead. 54SXA and RTSX-S devices use this
soft-FIFO by default.

Note: 
1. BAUD_VALUE = 0 is not supported.

The following table lists the baud value fractions and precisions.

Table 11-2. Baud Value Fraction

BAUD_VAL_FRCTN Precision

0 +0.0

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 78

...........continued
BAUD_VAL_FRCTN Precision

1 +0.125

2 +0.25

3 +0.375

4 +0.5

5 +0.625

6 +0.75

7 +0.875

The following figure shows the UART tab, as well as cross-references to the corresponding top-level parameters.

Figure 11-1. UART Configuration Window

11.2.2 I/O Signals
The following table lists the UART I/O signal description.

Table 11-3. UART Signals

Name Direction Description

PCLK Input APB System Clock – Reference clock for all internal logic.

PRESETN Input APB active-low asynchronous reset.

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 79

...........continued
Name Direction Description

UART_TXRDY Output Status bit; when set to logic 0, indicates that the transmit data buffer/FIFO is not
available for additional transmit data.

UART_RXRDY Input Status bit; when set to logic 1, indicates that data are available in the receive
data buffer/FIFO to be read by the system logic. The data buffer must be
read through APB via the Receive Data Register (0x04) to prevent an overflow
condition from occurring.

UART_PARITY_ERR Output Status bit; when set to logic 1, indicates a parity error during a receive
transaction. When RX FIFO is enabled, this bit is self-clearing between bytes.
Otherwise, this bit is synchronously cleared by performing a Read operation on
the Receive Data register through the APB target interface.

UART_FRAMING_E
RR

Output Status bit; when set to logic 1, indicates a framing error (that is, a missing
STOP bit) during the last received transaction. When RX FIFO is enabled, this
bit is self-clearing between bytes. Otherwise, this bit is synchronously cleared
by performing a read operation on the Receive Data register through the APB
target interface.

UART_OVERFLOW Output Status bit; when set to logic 1, indicates that a receive overflow has occurred.
This bit is synchronously cleared by performing a read operation on the
Receive Data register through the APB target interface.

UART_RX Input Serial receive data

UART_TX Output Serial transmit data

11.3 Programming
This section describes UART Programmer's models.

Table 11-4. UART Registers

Register Name Address Offset R/W Reset Value Description

TxData 0x000 W 0x00 Transmit Data register

RxData 0x004 R 0x00 Receive Data register

Ctrl1 0x008 R/W 0x00 Control register 1

Ctrl2 0x00C R/W 0x00 Control register 2

Status 0x010 R 0x01 Status Register

Ctrl3 0x014 R/W 0x00 Control register 3

11.3.1 Transmit Data Register
The Transmit Data Register contains the 7- or 8-bit transmit data.

11.3.2 Receive Data Register
The Receive Data Register contains the 7- or 8-bit receive data.

11.3.3 Control Register 1
Control Register 1 contains a single-field, baud value, used to set the baud rate for UART.

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 80

The baud value must be set according to the following equation:

Where, clk is the system clock frequency in Hertz.

The result of this calculation must be rounded to the nearest integer and converted to hexadecimal to obtain the
value that must be written to Control register 1 and Control register 2, as shown in the following table. For example,
when the clock frequency is 10 MHz and a baud rate of 9,600 is desired, 0x40 must be written to Control register
1 and 0x00 must be written to Control register 2. When the clock frequency is 50 MHz and a baud rate of 381 is
desired, 0xFF must be written to Control register 1, and 0x1F must be written to the top 5 bits of Control register 2.

Table 11-5. Control Register 1

Bit(s) Name R/W Function

7:0 Baud value R/W Bits 7:0 of 13-bit baud value

11.3.4 Control Register 2
The following table shows Control Register 2, which is used to assign values to the configuration inputs available on
UART.

Table 11-6. Control Register 2

Bit(s) Name R/W Function

0 BIT8 R/W Data width setting:

BIT8 = 0: 7-bit data

BIT8 = 1: 8-bit data

1 PARITY_EN R/W Parity is enabled when this bit is set to 1.

2 ODD_N_EVEN R/W Parity is set as follows:

ODD_N_EVEN = 0: even

ODD_N_EVEN = 1: odd

7:3 BAUD_VALUE R/W Bits 12:8 of 13-bit baud value.

11.3.5 Control Register 3
The following table shows Control Register 3, which is used to assign values to the configuration inputs available on
UART.

Table 11-7. Control Register 3

Bit(s) Name R/W Function

2:0 BAUD_VAL_FRACTION R/W When configuration is set to Programmable, this
register can be used to set a fractional part of the
baud value.

The baud value can be set with a precision of 0.125.

The following table lists the fractional part of the baud value.

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 81

Table 11-8. Fractional Baud Value Settings

Bit(s) Extra Precision

000 +0.0

001 +0.125

010 +0.25

011 +0.375

100 +0.5

101 +0.625

110 +0.75

111 +0.875

11.3.6 Status Register
The following table shows Control register 3, which is used to assign values to the configuration inputs available on
UART.

Table 11-9. Status Register

Bit(s) Name R/W Function

0 TXRDY R When Low, the transmit data buffer/FIFO is not available for
additional transmit data.

1 RXRDY R When High, data are available in the receive data buffer/FIFO.
This bit is cleared by reading the Receive Data register.

2 PARITY_ERR R When High, a parity error has occurred during a receive
transaction. This bit is cleared by reading the Receive Data
register.

3 OVERFLOW R When High, a receive overflow occurs. This bit is cleared by
reading the Receive Data register.

4 FRAMING_ERR R When High, a framing error occurrs during a receive transaction.
This bit is cleared by reading the Receive Data register.

7:5 — — Unused

Note:  When RX_FIFO is enabled, PARITY_ERR is asserted when a parity error occurs, but de-asserted before
UART receives the next byte. You need to monitor the UART_PARITY_ERR signal (for example, treat it as an interrupt
signal), as it is non-persistent when RX_FIFO = 1. Similarly, when RX_FIFO is enabled, UART_FRAMING_ERR is
asserted when a framing error occurs, but de-asserted before UART receives the next byte. It must be treated in the
same way as an interrupt signal.

UART

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 82

12. Watchdog
This section provides information on the Watchdog module used in the MIV_ESS core.

12.1 Description
The Watchdog is a hardware timer that generates a reset for the system automatically if the software does not
periodically update or refresh the Timer Countdown register. The timer is not allowed to be updated within the
forbidden window or if it has already triggered and timed out.

The following sawtooth timing diagram represents the Watchdog’s behavior. The red area represents the ‘forbidden
window’, the green area represents ‘refresh legal’ window, and the blue area represents ‘time-out’ window.

Figure 12-1. Watchdog – Sawtooth Waveform

The timer countdown begins from a pre-set value. The timer decrements by 1 every time the 8-bit prescaler value/
register reaches the end of its count. With the default configuration, the timer decrements by 1 every 256 system
clock cycles. The timer initially decrements through the forbidden window, within this window the timer cannot be
legally refreshed. As the timer decrements, it reaches a threshold called the ‘Maximum Value up to which Refresh is
Permitted’ (MVRP). When it is below this threshold, the MVRP Interrupt is asserted, flagging the system that the timer
is now within a ‘window’ where refreshes to the timer are legal and permitted.

The Watchdog firmware must update the timer in this window. If not updated, the timer continues to decrement until
it reaches a trigger threshold where refreshes are no longer allowed, and the timer has timed out. This causes the
WDOG interrupt to assert, and the timer counts down to a reset. The WDOG Interrupt is asserted, and the timer
continues counting down to reset. This window is much smaller than the other two and it is meant to allow the Hart to
prepare for a reset recovery before it is reset by the Watchdog.

12.1.1 Features
The Watchdog has the following features implemented.

• An APB3 interface for accessing the Watchdog registers.
• A 23-bit register with initial values for Watchdog runtime.
• A 23-bit register with initial values for MVRP runtime threshold.
• A 12-bit register with initial values for the Watchdog’s trigger time.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 83

• An 8-bit Prescaler to divide the Watchdog countdown.
• A Control register, which allows enabling the interrupts and the forbidden window.
• The Watchdog generates the following two interrupt signals.

– An MVRP interrupt that gets asserted when Watchdog countdown leaves the forbidden window. Refresh
must be permitted after this interrupt.

– A WDOG interrupt is a time-out interrupt that gets asserted when the Watchdog count value falls below
the trigger time value. Watchdog initiates a countdown to reset, refresh is no longer permitted once, this
interrupt is asserted.

• When refreshed, the Watchdog’s registers must be updated with pre-set or default values. Watchdog refresh
conditions must be as follows:

– The refresh is only allowed if timer count leaves the forbidden window, otherwise the time-out interrupt is
asserted.

– The refresh must occur before the countdown reaches zero.
– The refresh must occur before the Watchdog has triggered.
– Once a refresh occurs, the Watchdog must be stopped from triggering or tripping.

• When the timer countdown reaches zero, the timer reaches expiration, and a reset request must be sent to the
Hart.

12.1.2 Block Diagram
The following figure shows the block diagram of the Watchdog.

Figure 12-2. Watchdog - Block Diagram

The Watchdog operates within a set of parameters that determine the thresholds for the forbidden window, legal
refresh window, and time-out window. These values are determined by key registers, such as the Watchdog runtime
for timer start value, the MVRP runtime (threshold) for marking the forbidden window boundary, and the Watchdog
trigger time value for timer time-out. These registers are initialized with default values and can be configured through
the software.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 84

Prescaler

The Prescaler value is the amount of clock cycles that must occur before a single Prescaler tick.

• The Prescaler is fixed and counts 256 clock ticks before the prescaler tick occurs.
• The prescaler tick is used for the Watchdog Timer register.

Watchdog Timer Register

This component performs the Watchdog countdown to zero. Depending on the count, you can instruct the Watchdog
to refresh the count if the countdown value is not in the forbidden window or already below the Watchdog trigger
runtime value.

Counter Operation

• The counter decrements the count by 1 on each prescale tick (every 256 clock cycles).
• The Watchdog count down operates whilst the WDOG_HALT input is deasserted.

Watchdog Interrupts and Resets

There are two output interrupt signals that are generated by the Watchdog.

• WDOG_MVRP_IRQ: This interrupt is asserted when the ‘Timer’ countdown register leaves the MVRP window.
The assertion of this interrupt must signal software to update the ‘Timer’ register to prevent the countdown from
decrementing further.

• WDOG_IRQ: This interrupt is asserted when the ‘Timer’ times out, it is no longer in the region where refreshes
are permitted. The Watchdog Triggers and timer begins counting down towards a reset. This interrupt forewarns
of a pending reset and allows the Hart some time to save data and prepare for a reset.

There is a single output reset signal generated by the Watchdog

• CPU_RESETN: This is the reset request signal for the Hart. This asserts when the Watchdog has reached the
reset condition.

12.2 Interface
This section describes the Watchdog parameters and port lists.

12.2.1 Parameters
You must enable the Watchdog from MIV_ESS GUI > General tab. The Watchdog has no further parameters in the
GUI. The initial values for registers are fixed and can only be configured in the software. The following figure shows
that the Watchdog is enabled.

Figure 12-3. Watchdog Enable

The following table lists the Watchdog parameters available in MIV_ESS.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 85

Table 12-1. Watchdog Enable Parameter

Configurator
Parameter

Parameter
Name

Valid
Values

Default
Value

Description

Watchdog
(Enable)

WDT_EN 0 or 1 1 0: Disable the Watchdog in the MIV_ESS.

1: Enable the Watchdog in the MIV_ESS.

12.2.2 Port List
The following figure shows the Watchdog inputs and outputs in the MIV_ESS instance.

Figure 12-4. MIV_ESS: Watchdog Module

The following table shows only the unique inputs and outputs of the Watchdog.

Table 12-2. Watchdog Port Signals

Ports Width Direction Description

WDOG_HALT 1 Input An input, which halts the
Watchdog countdown. During processor
debugging, this input must be asserted
(active High) to prevent the Watchdog
resetting the whilst the processor is
halted by the debugger. For normal
Watchdog operation, this input must be
deasserted.

Versions later than MIV_RV32 v3.0
have a dedicated debug mode output,
which can be connected directly to this
input so the Watchdog is automatically
halted and resumed by the debugger.

CPU_RESETN 1 Output The Hart reset request signal output by
the Watchdog.

WDOG_MVRP_IRQ 1 Output Maximum value up to which a refresh is
permitted, Interrupt.

WDOG_IRQ 1 Output This Watchdog interrupt is asserted
when the Watchdog times out.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 86

12.3 Programming
This section describes Watchdog registers.

12.3.1 How to Use the Watchdog
The enabled Watchdog can be connected to MIV_RV32 directly. The following figure shows the sample SmartDesign
connections of the Watchdog module to MIV_ESS.

Figure 12-5. MIV_ESS: Watchdog Module - Connections

The Watchdog’s interrupts are fed into the MIV_RV32 core as external interrupts WDOG_IRQ as MSYS_EI[4] and
WDOG_MVRP_IRQ as MSYS_EI[3].

12.3.2 Details of Operation
The Watchdog module can be added to the MIV_ESS instance, but the timer does not initiate the countdown until the
following conditions are true.

• The WDOG_HALT input is deasserted.
• The system is not reset.

The Watchdog has a basic default mode of operation. It relies on software for control, so the timer gets updated and
refreshed through the Interrupt Service Routines (ISRs).

Hardware Function

The Watchdog operates on default values unless the registers are updated in the software. Assuming Watchdog is
enabled, it operates as follows in default conditions.

1. If the Watchdog is enabled, the Prescaler increments by 1 on every SYS CLK tick, 256 times.
2. When the prescaler reaches the end of its count. The Watchdog countdown register (WDOGTIME)

decrements by 1 from its initial value of 16,777,200.
3. Assuming the forbidden window is enabled. When timer value falls to the value stored in the MVRP threshold

register (WDOGMSVP), which holds the value of 10,000,000 initially, it leaves the forbidden window and
WDOG_MVRP_IRQ is asserted.

4. The Watchdog is then currently found in the time window where refreshes to the timer are permitted. This is
when software must write to the ‘WDOGRFSH’ register to update the timer count.

5. If not, refresh service routine is established, the timer register continues to decrement, when timer is equal
to the value of Watchdog Trigger Time register (WDOGTRIG), the Watchdog times out and WDOG_IRQ is

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 87

asserted. Refreshes are no longer permitted at this point. If there is still no software response, the ‘Timer’
continues the countdown.

6. If the timer continues the countdown and reaches the value 0, the Hart reset request is generated on the
CPU_RESETN output. The timer resets and the CPU is given a chance to reload the Watchdog registers.

Software Function

The Watchdog relies on configuration through software. The operation relies on how the internal registers are
configured in the software. Software support allows Watchdog to have:

• A ‘service’ or a ‘refresh’ routine to be setup in software that periodically updates the Watchdog’s Timer register.
The Timer register is updated with the default pre-set values on reset, the timer continuously decremented by -1
until it reaches a time-out. To prevents this, update the timer register.

• Control over Watchdog features that can either be enabled or disabled. The software allows for enabling and
disabling of the following:

– Forbidden window: Refreshes are not permitted within this region.
– WDOG_MVRP_IRQ: Asserts when timer count leaves forbidden window threshold.
– WDOG_IRQ: Asserts when timer count reaches time-out value.

• Force reset
• A status check of the Watchdog to see if it is in the forbidden window or not
• A way to clear the interrupts
• For reads and writes to registers used to update the values of — WDOGMSVP, WDOGTRIG, and

WDOGFORCE.

12.3.3 Watchdog Register Map
The Watchdog contains read/write registers, which can be accessed over APB I/F.

You can access the seven control registers to read or write to. Reading these registers provide information about
the status of the Watchdog or timer value. Writing to these registers allows Watchdog to perform operations, such as
‘refresh’ of timer to prevent a time-out, or manually force a reset.

The Watchdog module’s register addresses are determined with respect to the MIV_ESS base address. The
MIV_ESS base address [MIV_ESS_BASE] is configurable. The Watchdog module base address is [MIV_ESS_BASE
+ 0x900_0000]. The address offset of each Watchdog register is given in the following table.

Register address = MIV_ESS_BASE + 0x900_0000 + Register Address Offset
Table 12-3. Watchdog Register Map

Register
Name

Address
Offset

R/W Reset
Value

Description

WDOGRFSH 0x00 R/W 0x0 Refresh register

This register is used for refreshing the Watchdog counter
value when a ‘Refresh’ is allowed.

WDOGCNTL 0x04 R/W 0x2 Control Register

This register is used for enabling and disabling the
Watchdog interrupts and the forbidden window. By default,
the WDOG_IRQ is enabled, and the forbidden window and
WDOG_MVRP_IRQ are disabled.

WDOGSTAT 0x08 R/W 0x0 Status Register

This register is used to check, if the interrupts are tripped or
clearing the interrupts.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 88

...........continued
Register

Name
Address
Offset

R/W Reset
Value

Description

WDOGTIME 0x0C R/W 16,777,20
0

Watchdog Runtime Register

The register stores the value from which the Watchdog
initiates its countdown from. Register cannot be written to if
the Watchdog is locked.

WDOGMSVP 0x10 R/W 10,000,00
0

Watchdog MVRP Runtime Threshold Register

The Maximum Value up to which a Refresh is permitted. If
the forbidden window is enabled and Watchdog count falls
below the value determined by this register, WDOG_MVRP_IRQ
is asserted and Watchdog is legally allowed to ‘Refresh’. The
register cannot be written to if the Watchdog is locked.

WDOGTRIG 0x14 R/W 1,0000 Watchdog trigger time value Register

If the Watchdog countdown falls below the value determined
by this register, the Watchdog times out and WDOG_IRQ is
asserted. The register cannot be 'written to' if the Watchdog is
locked.

WDOGFORC
E

0x18 W 0x0 Watchdog Force Reset Register

This register can be used to force a Watchdog reset.

12.3.3.1 Watchdog Refresh Register
Table 12-4. Watchdog Refresh Register

Bit
Number

Bit Name R/W Reset Value Description

31:0 WDOGRFSH R/W 0x0 To refresh the Watchdog, special value needs to be
written: 0xdeadc0de.

The refresh can only be performed if the Watchdog
has not yet triggered and if the timer is not within the
forbidden window. The refresh in forbidden window is
only allowed, if the CPU is Debug mode where format
is HIGH. The Watchdog becomes locked when writing to
this register.

Reading the register shows the current 24-bit value of
Timer Countdown register.

12.3.3.2 Watchdog Control Register
Table 12-5. Watchdog Control Register

Bit
Number

Bit Name R/W Reset Value Description

31:5 Reserved — 0x0 Reserved

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 89

...........continued
Bit
Number

Bit Name R/W Reset Value Description

4 next_enforbidden R/W 0x0 Write a value to bit to enable/disable the forbidden
window:

1 = Enable the forbidden window

0 = Disable the forbidden window

Reading the bit indicates whether the forbidden
window is enabled:

1 = Forbidden window is enabled

0 = Forbidden window is disabled

3:2 Reserved — 0x0 Reserved

1 next_intent_wdog R/W 0x1 Write a value to bit to enable/disable WDOG_IRQ
1 = Enable WDOG_IRQ
0 = Disable WDOG_IRQ
Reading the bit indicates whether WDOG_IRQ is
enabled

1 = WDOG_IRQ is enabled

0 = WDOG_IRQ is disabled

0 next_intent_msvp R/W 0x0 Write a value to bit to enable/disable MVRP_IRQ:

1 = Enable MVRP_IRQ
0 = Disable MVRP_IRQ
Reading the bit indicates whether MVRP_IRQ is
enabled

1 = MVRP_IRQ is enabled

0 = MVRP_IRQ is disabled

12.3.3.3 Watchdog Status Register
The following table list the Watch Status registers.

Table 12-6. Watchdog Status Register

Bit
Number

Bit Name R/W Reset Value Description

31:5 Reserved — 0x0 Reserved

4 wdoglocked R 0x0 Reading the bit indicates whether the Watchdog is
locked.

3 triggered R 0x0 Reading the bit indicates whether the Watchdog has
timed out.

2 forbidden R 0x0 Reading the bit indicates whether the timer is currently
within the forbidden window.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 90

...........continued
Bit
Number

Bit Name R/W Reset Value Description

1 wdog_tripped R/W 0x0 Write a value to this bit to clear the time-out interrupt

1 = Clear format

Reading the bit indicates whether the Watchdog time-
out interrupt is currently asserted

1 = The WDOG_IRQ is currently asserted

0 = The WDOG_IRQ is not currently asserted

0 msvp_tripped R/W 0x0 Write a value to bit to clear the maximum value up to
which a Refresh is Permitted interrupt.

1 = Clear WDOG_MVRP_IRQ
Reading the bit indicates whether the Maximum value
up to which a Refresh is Permitted interrupt is asserted

1 = The WDOG_MVRP_IRQ is currently asserted

0 = The WDOG_MVRP_IRQ is not currently asserted

12.3.3.4 Watchdog Runtime Register
The following table lists the Watchdog Runtime registers.

Table 12-7. Watchdog Runtime Register

Bit
Number

Bit Name R/W Reset Value Description

31:24 Reserved — 0x0 Reserved

23:0 wdogvalue R/W 16,777,200 If the Watchdog is not locked, write a 24-bit value to the
register to serve as the next Watchdog runtime value.

Read the 24-bit value of the register that is used as the
Watchdog runtime value.

12.3.3.5 Watchdog MVRP Runtime Register
The following table lists the MVRP runtime registers.

Table 12-8. Watchdog MVRP Register

Bit
Number

Bit Name R/W Reset Value Description

31:24 Reserved — 0x0 Reserved

23:0 wdogmsvp R/W 10,000,000 If the Watchdog is not locked, write a 24-bit value to the
register to serve as the next MVRP runtime value.

Read the 24-bit value of the register that is used as the
MVRP runtime threshold value.

12.3.3.6 Watchdog Trigger Timeout Register
The following table lists the Trigger Time-out registers.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 91

Table 12-9. Watchdog Trigger Timeout Register

Bit
Number

Bit Name R/W Reset Value Description

31:24 Reserved — 0x0 Reserved

23:0 wdogrst R/W 1,000 If the Watchdog is not locked, write a 24-bit value to the
register to serve as the next Watchdog Trigger Timeout
value.

Read the 24-bit value of the register that is used as the
Watchdog Trigger Timeout value.

12.3.3.7 Watchdog Force Reset Register
The following table lists the Watchdog Force Reset registers.

Table 12-10. Watchdog Force Reset Register

Bit
Number

Bit Name R/W Reset Value Description

31:0 WDOGFORCE W 0x0 Writing any value to register when the Watchdog
has not timed out will result in Watchdog time-out.
The time-out interrupt WDOG_IRQ will be set to HIGH
and Watchdog Timer countdown register updated with
Watchdog Trigger Timeout register value.

If the Watchdog has timed out, a special 16-bit value
must be written to the register to force a reset on format.

0xDEAD

Then the Watchdog countdown is reset/updated with the
top Watchdog Runtime register value.

Watchdog

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 92

13. Tool Flow

13.1 License
No license required.

13.2 RTL
Complete RTL source code is provided.

13.3 SmartDesign
MIV_ESS is available in the Processor section of the IP Catalog in the Libero SoC design environment. The core
can be used with the Libero v12.1 onwards. The following figure illustrates the available ports on the core with SPI
Bootstrap and all the peripheral modules enabled.

Tool Flow

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 93

Figure 13-1. MIV_ESS Instance

13.4 Configuring the MIV_ESS
The top-level General tab allows you to select FPGA Family and enable Bootstrap and peripheral modules,
as required. It also has three pre-set configurations, which follow the Bootstrap configurations provided in the
accompanying MIV_ESS Design Guide. A fourth pre-set configuration provides the MIV_ESS basic peripheral
settings for a design outlined in the MIV_RV32 Quick Start Design Guide.

Tool Flow

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 94

Figure 13-2. Configurator General Tab

For information on configurator settings, see 2. MIV_ESS Architecture section.

13.5 Simulation
This code does not provide any testbench. MIV_ESS RTL can be simulated as part of a standard MIV_RV32 system
with a Libero generated HDL testbench. A hex file generated within SoftConsole, with the first line removed, can be
imported into an LSRAM and MIV_RV32 booted from this code. Core transactions can be simulated as part of the
MIV_RV32 processor system.

13.6 Synthesis in Libero
To run synthesis on the core, set the SmartDesign sheet as the design root and click Synthesize in the Libero SoC.

13.7 Place-and-Route in Libero
After the design is synthesized, run the compilation and the Place-and-Route tools. Click the Layout icon in Libero
SoC to invoke the designer.

Tool Flow

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 95

14. System Integration
This section describes system integration examples of MIV_ESS.

14.1 MIV_ESS Bootstrap Example
The following figure shows MIV_ESS in the SPI Bootstrap configuration.

Figure 14-1. DGC1 - SPI Bootstrap Design

For more information on design configuration, see the MIV_ESS Design Guide.

14.2 MIV_ESS Peripheral Example
The following figure illustrates the standard reference design from the MIV_RV32 Quick Start Design Guide
implemented with MIV_ESS.

Figure 14-2. MIV_RV32 Design using MIV_ESS

System Integration

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 96

14.3 Multiple MIV_ESS Example
Multiple MIV_ESS cores can be used in a design. CoreAPB3_C0 is configured, so the 32 bits are driven by the
MIV_RV32 APB mapping MIV_ESS_C0 to an address at 0x6000_0000 and MIV_ESS_C1 to 0x7000_0000 as shown
in the following figure.

Figure 14-3. Dual MIV_ESS Design

System Integration

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 97

15. SoftConsole
For information on setting up SoftConsole for the MIV_ESS core, see MIV_ESS Design Guide from the Help menu in
the configurator, or if the core is selected in the Libero catalog.

15.1 Setting the System Clock Frequency and Peripheral Base Addresses
If the UART is used, the system clock frequency is provided to the software and this is done in the
fpga_design_config.h file by changing the #define SYS_CLK_FREQ to the clock frequency.
Note:  This value must be in Hertz.

Figure 15-1. Setting System Clock Frequency and Peripheral Addresses

The fpga_design_config.h file sets the base address for peripherals. The base address of a peripheral can be
found in the project memory map generated by Libero.

Figure 15-2. Libero Memory Map Window

Note:  Some of the Libero versions do not support the memory map feature as shown in the preceding figure.

The peripheral module address [27:0] in the fpga_design_config.h file must match the address in Libero for the
peripheral to function correctly. These upper nibble [31:28] is determined by the APB Initiator connected to MIV_ESS.

SoftConsole

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 98

In the MIV_RV32, the default APB Initiator address is 0x7000_0000, which corresponds to the address shown in the
preceding figure.

SoftConsole

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 99

16. Revision History
Revision Date Description

A 01/2022 Initial Revision

Revision History

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 100

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within operating

specifications, and under normal conditions.
• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code

protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded
by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 101

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support
https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron,
and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime,
IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity,
JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,
ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9694-6

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 102

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 103

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2022 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003264A-page 104

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	1. Features
	2. Core Versions
	3. Supported Families
	4. Abbreviations

	Table of Contents
	1. Resource Utilization and Performance
	1.1. Typical Resource Utilization

	2. MIV_ESS Architecture
	2.1. Description
	2.2. Interface
	2.3. Programming

	3. Bootstrap
	3.1. Description
	3.1.1. Features
	3.1.2. Block Diagram
	3.1.3. Bootstrap Operation
	3.1.4. APB Writer Operation
	3.1.5. Reset

	3.2. Interface
	3.2.1. General Bootstrap Parameters
	3.2.2. General Bootstrap Ports
	3.2.3. SPI Bootstrap Parameters
	3.2.4. SPI Bootstrap Ports
	3.2.5. I2C Bootstrap Parameters
	3.2.6. I2C Bootstrap Ports
	3.2.7. µPROM Bootstrap Parameters
	3.2.8. µPROM Bootstrap Ports

	3.3. SPI Mode - Programming and Operation
	3.3.1. How to Use the Bootstrap SPI
	3.3.2. Operation
	3.3.2.1. SPI Control
	3.3.2.2. Bootstrap Transaction

	3.4. I2C Mode – Programming and Operation
	3.4.1. How to use the Bootstrap I2C
	3.4.2. Operation

	3.5. µPROM Mode – Programming and Operation
	3.5.1. How to Use the Bootstrap µPROM
	3.5.2. Details of Operation

	4. APB
	4.1. Description
	4.2. Interface
	4.2.1. Configuration Parameters
	4.2.2. I/O Signals

	4.3. Programming

	5. μDMA
	5.1. Description
	5.2. Interface
	5.3. Programming

	6. GPIO
	6.1. Description
	6.2. Interface
	6.2.1. Configuration Parameters
	6.2.2. I/O Signals

	6.3. Programming
	6.3.1. Register Map
	6.3.2. Configuration Registers
	6.3.3. Interrupt Registers
	6.3.4. Input Registers
	6.3.5. Output Registers

	7. I2C
	7.1. Description
	7.2. Interface
	7.3. Programming

	8. PLIC
	8.1. Description
	8.2. Interface
	8.3. Programming

	9. SPI
	9.1. Description
	9.2. Interface
	9.2.1. Configuration Parameters
	9.2.2. I/O Signals

	9.3. Programming
	9.3.1. Register Summary
	9.3.2. Control Register 1
	9.3.3. Interrupt Clear Register
	9.3.4. RX Data Register
	9.3.5. Interrupt Masked Register
	9.3.6. Interrupt Raw Register
	9.3.7. Control Register 2
	9.3.8. Command Register
	9.3.9. Status Register
	9.3.10. Target Select Register
	9.3.11. Aliased TX Data Register
	9.3.12. Clock Rate Register

	10. TIMER
	10.1. Description
	10.1.1. Features
	10.1.2. RTC CDC – Clock Domain Crossing
	10.1.3. Block Diagram

	10.2. Interface
	10.2.1. Parameters
	10.2.2. Port List

	10.3. Programming
	10.3.1. How to Use the Timer
	10.3.2. Details of Operation
	10.3.3. Timer Register Map

	11. UART
	11.1. Description
	11.2. Interface
	11.2.1. Configuration Parameters
	11.2.2. I/O Signals

	11.3. Programming
	11.3.1. Transmit Data Register
	11.3.2. Receive Data Register
	11.3.3. Control Register 1
	11.3.4. Control Register 2
	11.3.5. Control Register 3
	11.3.6. Status Register

	12. Watchdog
	12.1. Description
	12.1.1. Features
	12.1.2. Block Diagram

	12.2. Interface
	12.2.1. Parameters
	12.2.2. Port List

	12.3. Programming
	12.3.1. How to Use the Watchdog
	12.3.2. Details of Operation
	12.3.3. Watchdog Register Map
	12.3.3.1. Watchdog Refresh Register
	12.3.3.2. Watchdog Control Register
	12.3.3.3. Watchdog Status Register
	12.3.3.4. Watchdog Runtime Register
	12.3.3.5. Watchdog MVRP Runtime Register
	12.3.3.6. Watchdog Trigger Timeout Register
	12.3.3.7. Watchdog Force Reset Register

	13. Tool Flow
	13.1. License
	13.2. RTL
	13.3. SmartDesign
	13.4. Configuring the MIV_ESS
	13.5. Simulation
	13.6. Synthesis in Libero
	13.7. Place-and-Route in Libero

	14. System Integration
	14.1. MIV_ESS Bootstrap Example
	14.2. MIV_ESS Peripheral Example
	14.3. Multiple MIV_ESS Example

	15. SoftConsole
	15.1. Setting the System Clock Frequency and Peripheral Base Addresses

	16. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

