MICROCHIP
RT PolarFire® FPGA Programming User Guide

Introduction

RT PolarFire® FPGAs offer a variety of programming options to diverse end-user applications. The following
components of RT PolarFire devices are programmable:

+ FPGA fabric

» Secure non-volatile memory (sNVM)

» User security settings (keys, passcodes, and locks)

The device can be programmed using the on-chip system controller through its dedicated JTAG or SPI interface.
Based on the interface used, the following three programming modes are supported:

« JTAG
* SPI master
* SPlslave

If System Controller Suspend Mode is enabled, SPI master (In-Application Programming (IAP) and Auto Update)
mode is not available to program the device.

In JTAG and SPI slave programming modes, the device can be programmed either using an external master such as
a microprocessor or a Microchip FlashPro programmer v5 or later. The external master fetches the programming data
(bitstream) from an external memory to program the device.

In SPI master programming mode, the system controller acts as the master and fetches the bitstream from an
external SPI flash memory to program the device. This mode supports two programming features—Auto Update and
IAP. In auto update, the device reprograms itself on power-up, and in IAP, the device is programmed when the user
application initiates programming.

Figure 1. Programming Modes

Using FlashPro Programmer
—» JTAG Using External Microprocessor

Using ChipPro Solution

Auto Update
Programming Modes——» SPI Master
IAP

Using FlashPro Programmer
—» SPI Slave
Using External Microprocessor

The following block diagram shows the device programming modes and the associated interfaces.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 1
and its subsidiaries

Figure 2. Device Programming Modes and Interfaces

Board

Programming Header

(Dedicated JTAG)

sNVM and User
Security Settings

FPGA Fabric

RT PolarFire® FPGA
(ON0)
(ON0)
JTAG 00
Controller O O
(ON0)
System
Controller
SPI
SPI Flash
Memory

SPI Directory

Programming
Images

]

External
Programmer
(FlashPro5 or later)
or
External
Microprocessor

Device contents to be
programmed

SPI master programming
SPI slave programming

JTAG programming

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003239A-page 2

Table of Contents

[0 To [0 e (1] o TP P U PP P PTRPPRPPPROI 1

1. BitStre@am GENEIratiON..........iiiiiiiiiie et 5

1.1, Bitstream Generation FIOW.........coocuiiiiiiiiii e s 5

1.2. Adding sNVM Data to the BitStream..........ccooiiiiiiiii e 6

1.3. Adding User Security Settings to the Bitstream.............ccccooiiiiniii 6

1.4. Configuring Bitstream COmMPONENTS.........cooi i 9

1.5, Programming File SIZe.........oo oot 10

2. Device Programming FIOW.coo ittt et e e e e sttt e e e e e et e e e e e asnnaeeeeeesnees 12

2.1, Programming TiME.....coouuei ittt ettt e e et s b e e e a e e e be e s nnn e e e e e 13

3. System Controller SUSPENd MOE............uuiiiiiiii ettt e et e e e e e nereee e e e anees 14

3.1. Configuring System Controller Suspend MOdE..............ooeeieiiiiiiii i 15

4. Programming MOGES..........ooiuiiiiiiiie ittt e bt e s e ra e e et e e e er e s 16

g TR B X C 3 o oo = 0 T 411 T USSR 16

4.2. SPI SIave Programming.........o e oo eeeieee et e e e e et e e e e aaeee e e e e e aanbaeeeaeeaannteeaaeeaannaeeeas 20

4.3. SPIMaSster Programming.........cuoooueee ittt ettt et e st e e e e 23

Lo T [B e oYl a=To oo =T o 40 11 o SRS PRRPTN 40

5.1. In-Flight Reprogramming GUIANCE..........ccocuiiiiiiiiiiiie et 40

5.2. In-Flight Reprogramming SEQUENCE.............uuiiiiiiiiiiiie ettt e s e e e e e anaeeea e 40

5.3. In-Flight Reprogramming SOIUtIONS.coiiiiiiiiiii e e e 41

6. Bypassing the Back Level Prot@CtioN.cocuuii i e 43

6.1. Bypass Back Level Protection Use Case...........ocoiiiiiiiiiiiiiiee ettt 44

7. 1/O States DUrNG ProgrammMing..........ccciicueiieeeiiiiiiie e e e st e e e e e e e e e st ea e e e sataeeeaesesssrseeaseassssereaessnnens 45

8. Programming ReCOMMENTALIONS.iiiiiiiiiiiie ettt 47

9. Brownout DUriNG Programming..........o oottt e e et e e e s et e e e e e e bae e e e e e e anneeeeaeeeanneeeas 48

L =Y (o] (o] PP SP PP RTSPPPP PSRN 49

11. Programming the External SPI FIash...........coo e 50

11.1. Supported SPI FIash DEVICES.........ccoiiiiiiii et e a e e aereeeas 50

T I =T (o SO 50

11.3. Use Models for Programming SPI Flash.............oooi e 51

LA o] 1Y o To [=gl 070 o LY SO OPPURRO 56

13, REVISION HISTOMY ..ttt et e et e et nanes 58

MiICTOCHIP FPGA SUPPOI.....ciiiiiiieie ettt e e e ettt e e e e ettt e e e e e e e eataeeeeeeeaabaeeeeseasaseeaeeeassseeaeeaannres 59

The MICrOChID WEDSITE. ...t ettt e e e et 59

Product Change Notification SEIrVICE.........oo e i e e e 59
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 3

and its subsidiaries

(G0 (o] 11 1=T g0 o] o To] o SO OO OP P UUPROTPPN 59

Microchip Devices Code Protection FEAtUIE............cc.uviiiiiiiiiiie e e e 59
[ITo E= |l N\ o) (o PP PP PP P PPRPPTPOE 60
LI Lo =T 1 F=T TSP PP ST 60
Quality ManagemeEnt SYSTEM........coiiiiieiiie ettt st e se e e et e e s ne e e e anb e e e eneeeeneeas 61
Worldwide Sales @nd SEIVICE........cociiiiiiiiiit et e e e e e neee s 62
User Guide DS50003239A-page 4

© 2021 Microchip Technology Inc.
and its subsidiaries

Bitstream Generation

1. Bitstream Generation

The Libero™ SoC design suite generates the programming bitstream required for various programming modes.
Depending on the requirement, the programming bitstream may contain one or more of the following components:

» FPGA fabric logic
+ sNVM data
» User security settings

The following table lists the programming interfaces used in various programming modes and the associated
bitstream formats.

Table 1-1. RT PolarFire FPGA Programming Interfaces and Bitstream Formats

JTAG programming System controller’s dedicated FlashPro programmer
JTAG

JTAG programming System controller’s dedicated External microprocessor DAT
JTAG

JTAG programming System controller’s dedicated ChipPro solution using STAPL
JTAG FlashPro6

SPI slave programming System controller’s dedicated SPI FlashPro programmer DAT

SPI slave programming | System controller’s dedicated SPI | External microprocessor DAT

SPI master programming System controller’s dedicated SPI = System controller SPI

1.1 Bitstream Generation Flow

The following figure shows where the bitstream is generated in the Libero SoC.

Figure 1-1. Bitstream Generation in Libero Design Flow

< Create Design >

A

Implement Design Constraint Manager

1. Synthesis - Pre-synthesis constraints
2. Place and route - Place and route constraints
3. Verify timing - Timing constraints

A

A

Program and Debug Design

- Configure design initialization data and memories
- Configure device I/0 states during programming
- Configure programming options and security

- Generate bitstream

- Program the device
Handoff Design for Production
Export bitstream (.STP, .DAT, .SPI, and .SVF)

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 5
and its subsidiaries

1.2

1.3

Bitstream Generation

Adding sNVM Data to the Bitstream

The sNVM is a user non-volatile flash memory that can be programmed independently. Each RT PolarFire FPGA has
56 Kbytes of SNVM.

To add multiple sSNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.

Figure 1-2. Design and Memory Initialization

Project File Edit View Design Tools Help
N XN 0@
Jesign Flow g x Reports & X] PCle_RP_Top_derived_constraints.sdc & X I Constraint Manager & X B pcre re

Top Module(roat): PCle_RP_Top oo @ Desian Initialzation | LPROM SPIFIash]Fabri:RAMsI e |

Active Synthesis Implementation: synthesis Aol ‘
Apply

viscard ‘ Help |

| Tool lLl Usage statistics Clients
. Simulate
=~ b Constraints
.f'm Manage Constraints Used memary (in pages): 33
¥ = » Implement Design Free memory (in pages): 188 Client Name | Start Page ‘ 36-bit words |

1 Open Metlist Viewer ﬂINIT_STAGE_W_SNVM_CLIENT 202 4352

Available memory (in pages): 221 Add ... |v Edit ... | Delete

v > Synthesize
Eb- b Verify Post-Synthesized Design
] Generate Simulation File
. Simulate
v 4 Place and Route
=+ b Verify Post Layout Implementation
C‘}_\ Verify Timing
(’k’_\ Open SmartTime
= b Configure Hardware
Il Programming Connectivity and Interface
@ Configure Programmer
& Select Programmer
=~ # Program Design
v +[| Generate FPGA Array Data
I‘% Confisure Desisn Initialization Data and Memories I
V *L enerate Uesign Intialization Data
« Configure Programming Options
@ Cenfigure Security
% Generate Bitstream
5 Cenfigure Actions and Procedures
‘G Run PROGRAM Action
Et- # Program 5Pl Flash Image
‘& Generate SPI Flash Image
—}- » Debug Design
Y, Identify Debug Design
=} » Handoff Design for Production
@ Configure Permanent Locks for Praduction
4 Export Bitstream b
-@ Export FlashPro Express Job [] Used space
% Export Job Manager Data] Free space
'@ Export SP| Flash Image j

2 | INIT_STAGE_2_SMVM_CLIENT |0 3612

Design Flow ‘ Design Hierarchy J Stimulus Hierarchy I Catalog J Files HODL Templates I 4|

Adding User Security Settings to the Bitstream

RT PolarFire FPGA are provisioned with a set of unique factory keys. In addition, the end users can also enroll their
own security keys, thus providing complete independence from using Microchip provided keys. The user encryption
key1 (UEK1) and user encryption key2 (UEK2) are user-defined AES-2 symmetric keys. Either of these keys can be
used as the root key for encrypting and decrypting bitstreams, and to authenticate them.

To add user security settings in the bitstream:

1. InLibero SoC, go to Design Flow > Program Design > Configure Security > Custom security options, as
shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 6
and its subsidiaries

Bitstream Generation

Figure 1-3. Configure Security—Custom Security Options

L& 2>l

Jeskon Pl 8% Repors BX | e AP Top_ceted constanmeic 8 X Corstantonsger @ X | Edrcie ppTon @ X Desgn and Memary bitakzasen 8 % | st
Top Medue{roat): PCTe AP Top a0 ’;ﬂ ?’ 7 Canfigure Security Wizard *
ictive Synthess Imphementation; smthesis
Liser K -
| 7201 || e A L
B cimalze Enable LEX L. Flachi nck/UPK 1 is required 1o change this sebing. UPKL and LEX L wil be programmed and available for use.
S st ks Enable LEX2. FlachLodgUPK 1 is required 1o change this seting.
= LIPHCE and US2 vl be programned and avadable for Lse, UPKZ ks requred 1o change P2 and WEKZ.
© Menege Constremts B
W B b Implement Deign Update Poicy
B Cpen Hatlist Viewss
nthesize b al 1 or LEX2.
v = fy P Synth o SMNVM can be updated using & bitstream encrypled with UEKL or LEXD.
B L et Eack Leves pratection & dsatied.
Generate Simulstion. File rogramesng , Aute Update, TAP Services, for update.
I simulete ITAG interface & enabled for update.
% Place Rowte SPI Save interface ks enabled for update.
v & .r';'d Frogram action bs enabled for TTAG and SPL Slave inserfaces.
- ferify Perst Lyt In : TS =
& Werify Tining erify [for JTAG and SPT E =]
Open SmartTime.
Seaunty ey mode:
£ b Configure Hardware el
I+l Programming Connectivity and Interface r defaudt ke
& Configure Programmer
& Select Programmer
B b Program Design Les Ky Set 1 QS
v enerte FRGA Amay Data it b
Configure Design Inialization Data and Memaries R Flashiockj/UPKL prodects al secLrity settings. Wou are requred to configere it
v enerate Design Iniializstion Data Fshlsck PR L (54 HEE chansl:
g Dptions
| e [0111000101552885756345527234TA0S301 205512 3055342085704570134780 iy
Configure Actions and Procedures Yous can use User Encryption Key 1 (LEKY) for updating the Fabric, UPROM, and shivM or disable .
' Run PROGRAM Action I DsbieLEX1
= b Program 5P flash Image
i3 Generate P Flash Image LEKL fUer Enrymtion Key 1) {64 HEX chars)c
B b Debug Design
T2 1dentity Debug Dessign o [02210:01019530037952450273347004 300205913 3032342075 8405750049085
- b Hansolt Design for Production
Canfigure Permanent Locks for Production User Ky Set 2 {UKSZ)
Expart Bitstream = _ - P
| Eaport PlazhPro Express ob o can cpticnay e s Ky Set 2 (KS3) for 3 socond encrypon k.
Esport Job Manager Dsts I Drssbie LEX2
Export 52 Flash Image 2 .
e LEX2 {Usser Enaryption Key 2 {54 HEX chars)e 3
Design Flow | Stinuserarchy | Catsiog | Fles | HOL Tenglates | 4 K
. o [011102010135288376 4853785457257 4500205012 3053343085 TI0ATLEATED e =
o9
l User Pass Key 2 {UPX2) protects UEK2 and is required you use UBKZ.
[8] messages €3 Erors i Wamings (@ inf UPK2 {User Fass ey 2) (54 HEX chars):
Winzo: Hemory files have been generated succeasfully | e [smens 5 T a} I b
*Generace design initialization data' has completed succd ——
Stage 1 initialazation client has been added To =NV,
2 initializacion client has been added To SHVM.
J B
Leg [Message | Search Resds | Cores | |i _bw | | sk | men | [mow | cow |

o8 omal | new | wees | mda | e [T =TT Watchcase T Hatdh o word
Click Next to modify Update policy. The Configure Security wizard appears, as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 7

and its subsidiaries

Bitstream Generation

Figure 1-4. Configure Security Wizard—Update Policy

=

Decin Fow

oo B|

fx

oA

Top Moduefroat]: PCle_RP_Top
Aztive Synthess [mplenentator: synthess:

T

| B
£ b Constraints
0 Marage Cerstraints
¥ 2 b implement Desgn
By Open Metlist Viswar
T Synthesice

b Verily Post-Synit

red Darsign

=5 b Veify Poot Layout lmphementation

& Verdy Timing

@ Ogen SmartTime

Configure Hardware

M Progremming Connectivity and Inderface

&\ Corfigure Programmer

BB Select Progeasnmes

Program hesign

=C] Generste FPGA Aray Data

+[1 Canfigure Design Inifializstion Deta and Memones

*L] Gerverite Design Initislization Dats

= Configure Programeing Opteans

@ Configure Seourity

5 Generate Bitstresm

% Configure Actinrs and Procedures

© Fun PROGRAM Actis

= b Program 5P| Flash
‘& Generste P F

Detug Design

Wentify Debug Design

Handoff Diesign for Peodue tion

BB Cerfiguee Perranent Lodes for Prosuction

E Export Bitstraam

Expart FlashPro Express Job
4] Expert 5P Flash Image |

Expert Job Manager Deta
Desgn Pl | Destan Himarchy | s Herarchy | Catekog | Fles | HOGTemplates | 4

tog

b

[E]Messages & A wernng @ Info

[W¥Info: Hemocy £iles have been genezated successfally

ate design initislization data' has completed succd
AL
rnce: srage 2 dnicializavion clisnt has besn added co siVH.

initialization client has been added to

Log [Mermage | SearchRemits | Cores |

Reports ® X | PCIe AP Top_derhved_nstraintscde # X | ConstantMansger @ X | Elpcre e top 8 X Design and Mensey Iitiainten 8% | e

51 Cordigure Security Wizard =

Updsie Pobey

Fabric can be updated usng & bitstream encrypted with UEK Y or UEKZ,

s con e undated using bitstream encrypted with UEK] or LEKZ,

Back Level protecton s ensbied, Use FlashlocsUPK 1 tn bymass adk Level oratection,
Gresgn version: Bads Level verson: &

'g Rieoovery ane ensbied for update,

action s mabled for JTAG snd S0 Save riasfaces,
cats ctor is ensbd for TTA ad 571 Sy e s,
i it o eniabbiad For JTAG and 50T Sla vbir faces.

Dutug Pokcy

Dl has ot been provided and vl rot be programsed.

SmaritDetag wer cebug oosss and acthe probes are enabied, ==
Security bey mode

™ Ertstraam encrypsion with defaultkey % Custom seourity optons

Fisid Upclates are erabied by default. You can disable updates by setting cptions bk
Lise: Fashlock fUPKL b temporanty erable disabled setangs.

Fabricfhivi

[Updates abioved Laing Lser defned encryvoton havs; FasLockiPia & netreqared for updates =]

ograning interfaces:
| I Aurto Frogramming and L4 Servces
I mas
I 5pr Slrve

Disable titstrem prograssring actions (JTAG/SP] Savil:

® ¥ Fndt Mt] m.reul Find A |9~am:|

=] T Hatchome | Matth whaie word

If Back Level protection is enabled, the Back Level version must be lower than the version of the design being
programmed. For more information about the fields, click Help. The back-level version value restricts the design
version that the device accepts as an update. Only (new) programming bitstreams with a Design Version strictly
greater than the current Back Level Version previously stored in the device are allowed for programming. Back-level
protection is secured by FlashLock/UPK1, which can be bypassed. The back level version and design version can
be modified in the configure programming options tool. For more information about SNVM and security settings, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003239A-page 8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814

1.4

Bitstream Generation

The following figure shows the configuration of programming options.

Figure 1-5. Configure Programming Options

N2 oR

Jesign Flow

Top Module(root): PCle_RP_Top

Active Synthesis Implementation: synthesis

f X

B0l

|Tnn|

B

. Simulate
=} b Constraints
® Manage Constraints
Implement Design
E Open Netlist Viewer
v S Synthesize
¥ Verify Post-Synthesized Design
(| Generate Simulation File
. Simulate
(74 9@ Place and Route
b Verify Post Layout Implementation
Q Verify Timing
Open SmartTime
Configure Hardware
I+l Programming Connectivity and Interface
& Configure Programmer
& Select Programmer
Program Design
("4 +L| Generate FPGA Array Data
+] Configure Design Initialization Data and Memories
- . L

I % Configure Programming Optmn;l

T OTE SECaTTy
% Generate Bitstream
_‘Fé Configure Actions and Procedures
‘G Run PROGRAM Action
=l ¥ Program SPI Flash Image
%3 Generate 5P Flash Image
Debug Design
£y Identify Debug Design
Handoff Design for Production
a Configure Permanent Locks for Preduction
48] Export Bitstream
48] Export FlashPro Express Job
48] Export Job Manager Data

<

i
-

T
-

<

T
-

T
-

Reports & X]

Desian Initialization] UPROM

PCIe_RP_Top_derived_constraints.sdc & X]

Constraint Manager & X E PCIe_Ri

W | 5P Fiash | Fabricrams | e |

Apply | Discard | Help |
Usage statistics Clients
Available memory (in pages): 221 Add ... |v Edit ... | Delete ‘ Load design configuration
Used memory (in pages): 33
Free memory {in pages): 188 Client Name ‘ Start Page ‘ 36-bit words ‘
1| INIT_STAGE_1_SNVM_CLIENT | 202 4352
2| INIT_STAGE_2_SNVM_CLIENT |0 3612

B Cenfigure Programming Options

Design name: PCle_RP_Top

Design version (number between 0 and 65535):

0 Back Level version (number between 0 and 65535): |3

|5

Silicon signature (max length is 8 HEX chars):

0x | 12345678

OK. Cancel

| | Used space
[] Free space

@ Export SPI Flash Image ﬂ

Design Flow | Design Hierarchy J Stimulus Hierarchy J Catalog J Files HDLTempIatesJ a

For more information about the bypass back-level protection, see 6.1. Bypass Back Level Protection Use Case.

Configuring Bitstream Components
To configure security settings, and bitstream components such as fabric and sNVM, follow these steps:

In Libero SoC, go to Design Flow > Program Design > Program Design.

b=

Click OK.

Right-click Generate Bitstream, and select Configure Options....
The Configure Bitstream window opens.
Select Custom security, Fabric, and sNVM.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003239A-page 9

1.5

Bitstream Generation

Figure 1-6. Configure Bitstream Window

]:E‘ ﬂﬁoﬁ

Design Flow

Top Modulelroat): top
ks |
Active Synthesis Implementation: synthesis v : SoC Libero
| Tool !ll iber u What wou
=+ P Verify Post-Synthesized Design
'i Generate Simulation File I if; [on * \iey
Simulate cre:
+L| Configure Register Lock Bits o LEzanili LA
(74 #§ Place and Route Libero Tutorials . e
Edit Post Layout Design ; and
= ¥ Verify Post Layout Implementation Eroduct Tutoripls
*L| Generate Back Annotated Files Training Webcasts * Cre;
B simulate conj
v Qt Verify Timing Microsemi SoC Website
Open SmartTime * Imp
ify Power
£% Open SSN Analyzer

= ¥ Configure Hardware
B Programming Connectivity and Interface
Configure Programmer
Select Programmer
=I- » Program Design

174 *] Generate FPGA Array Data
+L1 Configure Design Initialization Data and Memories
v *L| Generate Design Initialization Data

g% Configure /0 States During JTAG Programming
= Configure Programming Op‘tinns
nfi i
Generate Bitstream
'3 Configure Actions and Procedures
i3 Run PROGRAM Action
=~ ¥ Program 5Pl Flash Image

I8 Generate 5P| Flash Image

Custom security e

¥ Fabric/shviM

d

I™ Sanitize all sNVM pages in ERASE action

To export bitstream files, go to Design Flow > Handoff Design for Production > Export Bitstream.

Note: Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is
used to program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to

enable it.

Programming File Size

Programming files are encrypted with factory key or user key. So, the file (.dat or .spi) cannot be compressed to
reduce the file size. The following table lists the programming file sizes when custom security is disabled.

Table 1-2. Programming Files Sizes—Custom Security Disabled

RT PolarFire FPGA

and its subsidiaries

RTPF500
Fabric and sNVM (kB) STAPL 23446
DAT 14780
SPI 14776
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 10

Bitstream Generation

The following tables list the programming file sizes when custom security is enabled.

Table 1-3. Programming Files Sizes—Custom Security Enabled

RT PolarFire FPGA

RTPF500
Custom Security, Fabric STAPL Master Files 23446
- and sNVM (kB) UEK1/UEK2 23439
DAT Master Files 14780
UEK1/UEK2 14775
SPI Master Files 14776
UEK1/UEK2 14773
Custom Security (kB) STAPL NA 87
DAT NA 8
SPI NA 4
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 11

and its subsidiaries

Device Programming Flow

Device Programming Flow

The device programming flow starts when the system controller receives or initiates device programming and ends
when the bitstream data is fully transferred and verified. The system controller fetches the bitstream data block-by-
block to program the device. Authentication of the bitstream and verification of the programmed contents are part of
the programming flow. The security settings are enabled either after erasing the device contents or on completion of
device programming. On successful completion of programming, the system controller resets the device to run the
programmed design. This programming flow is common to all the programming modes.

The following figure summarizes the device programming flow.

Figure 2-1. Programming Flow

< Device initiates programming >

h 4

Device gets programming data

Authenticate the
bitstream

Fail

Pass

Device erases the fabric, sSNVM, and user security
settings according to the bitstream

!
»

Device processes the block of bitstream data

l

According to the bitstream, device programs and verifies the
- user security settings

- fabric
- SNVM
No
End of bitstream?
4
< End of device programming > < Display error >
message
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 12

and its subsidiaries

21

Device Programming Flow

Note: Programming cycle count is incremented for both programming and erase operations, since erase is internally
a programming scheme. For more information about programming cycle count, see the PolarFire FPGA and
PolarFire SoC FPGA System Services User Guide.

Programming Time

Programming time is the time taken to erase the existing contents of the device, process bitstream data, program
the device, and verify the programmed contents. The programmed content is verified as the next block of data is
loaded for programming. The simultaneous programming and verification mechanism considerably reduces the total
programming time.

The total JTAG programming time of RT PolarFire FPGA is less than 147 seconds. For information about
programming time for specific devices and programming modes, see RT PolarFire Datasheet.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 13
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969

System Controller Suspend Mode

System Controller Suspend Mode

To protect the device from unintended behavior due to single event upset (SEU), the system controller can be held

in Suspend mode after device initialization. The system controller is active if the device is power-cycled or if a

hard reset is applied. But it returns to Suspend Mode, once the initialization cycle is completed. A Sonos bit that

is programmed during device programming controls the System Controller Suspend Mode. This Sonos bit is not
accessible from the customer design or by any external pin. The flash bit is only accessible through the programming
file loaded into the device.

As the control bit is stored in a flash cell, it is immune to radiation effects due to the following:

* Neutrons or alpha particles in terrestrial and airborne applications

* Heavy ions in space applications
While the FPGA is in System Controller Suspend Mode, programming via JTAG or SPI-Slave mode can be
accomplished, by asserting the JTAG_TRSTB pin HIGH, to temporarily remove the FPGA from System Controller

Suspend Mode. If the JTAG_TRSTB pin is LOW, all the other JTAG input signals are blocked from activating the
system controller.

For programming, run Scan Chain using FlashPro software (from the Menu bar, click Programmers > Scan Chain),
which keeps the JTAG_TRSTB pin HIGH. Keeping the JTAG_TRSTB pin HIGH causes system controller to exit from
Suspend Mode and then program the device.

When in space, the JTAG_TRSTB pin must be held LOW using one of the following methods:
» Hardwired to ground
» Connected to ground through a jumper
» Tied to ground through a pull-down, if an active device is included in the circuit to allow on-orbit reprogramming

To restore normal operation, the device must be reprogrammed using the JTAG port with the System Controller
Suspend Mode bit turned off, that is, disable the System Controller Suspend Mode in Libero SoC software,
regenerate the bitstream, and reprogram the device.

When RT PolarFire FPGAs are used in System Controller Suspend Mode, device programming is disabled to protect
the device from unintended programming because of SEUs. After device initialization, the system controller is held in
Reset state and cannot provide system services such as security, IAP, or auto update programming. After the device
exits the System Controller Suspend Mode, it can be programmed as usual.

If the System Controller Suspended Mode is disabled, it increases vulnerability to radiation single event effects
(SEEs) in the System Controller.

The following table lists the programming support when System Controller Suspend Mode is enabled or disabled.

Table 3-1. Programming Support

Programming Mode | System Controller Programming Support
Suspend Mode

JTAG Disabled Supported

JTAG Enabled Supported — requires System Controller Suspend Mode to be
temporarily disabled by asserting JTAG_TRSTB.

SPI Slave Disabled Supported

SPI Slave Enabled Supported — requires System Controller Suspend Mode to be
temporarily disabled by asserting JTAG_TRSTB.

SPI Master Disabled Supported

SPI Master Enabled Not supported

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 14

and its subsidiaries

3.1

System Controller Suspend Mode

Configuring System Controller Suspend Mode

The System Controller Suspend Mode can be configured, that is, enabled or disabled in the Libero SoC software, as
shown in the following figure.

Figure 3-1. System Controller Suspend Mode

G‘ New project

Device settings

Choose device settings for your project

Project Details
Device Selection
Device Settings
Add HDL Sources

Add Constraints

. gl
leelio\

System-on-Chip

Help

Core Voltage : |1.0 -

I/O settings
Default I/O technology: LVCMOS 1.8V~ ﬂ Please use the /O Editor to change individual I/O attributes.

[¥" Reserve pins for probes

[system controller suspended mode

If System controller suspended mode is Enabled, the following operations will not be available during normal operation:
= All System controller services that are requested after power-up completes and the System controller has been suspended
= System controller generated Tamper flags
= Device reset and device zeroization Tamper responses
= SPI-Master In-Application Programming (IAP)
= SPI-Slave programming mode
For further information, refer to the System Services section in the PolarFire FPGA Security User Guide (UG0753).

< Back ‘ Next >

Selected part: RTPF500TS-1061509M

- O Py

Einish | Cancel |

If System Controller Suspend Mode is enabled, the following operations are not available during normal operation:

» SPI master programming mode (IAP and Auto Update).
» SPI slave programming mode.
» All system controller services that are requested after power-up completes and the system controller is

suspended.

» System controller generated Tamper flags.
» Device reset and device zeroization Tamper responses.

© 2021 Microchip Technology Inc. User Guide

and its subsidiaries

DS50003239A-page 15

41

411

41.2

Programming Modes

Programming Modes

This section describes the three programming modes in detail.

JTAG Programming

RT PolarFire FPGA device has a built-in JTAG controller that is compliant with the IEEE® 1149.1 and IEEE 1532
standards. The JTAG controller communicates with the system controller using a command register that sends the
JTAG instruction to be executed and a 128-bit data buffer that transfers any associated data.

JTAG Programming Interface
In RT PolarFire FPGA, the JTAG pins are located in a dedicated 1/0 Bank 3. For information about the 1/0 states
during JTAG programming, see 7. 1/O States During Programming.

The JTAG bank voltages can be set to operate at 1.8 V, 2.5V, or 3.3 V. The following table lists the JTAG pins.
Table 4-1. JTAG Pins

Weak Pull-Up/Unused Description
Condition

Input Yes/DNC JTAG test mode select.
TRSTB Input Yes' JTAG test reset. Must be held low during device operation.
TDI Input Yes/DNC JTAG test data in.

In ATPG or test mode, when using a 4-bit TDI bus, this I/O is
used as tdi[0].

TCK Input No? JTAG test clock
TDO Output No/DNC JTAG test data out.

1. If TRSTB is unused and the System Controller is in suspend mode, either an external 1 kQ pull-down resistor
must be connected to it to override the weak internal pull-up or it must be driven LOW from an external source.
2. In unused condition, must be connected to VSS through 10 kQ resistor.

JTAG Timing

Operation of JTAG programming depends on the timing relationship between JTAG pins, as shown in the following
figure. For recommended timing values, see JTAG switching characteristics in the RT PolarFire FPGA Datasheet.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 16

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969

Programming Modes

Figure 4-1. JTAG Signals Timing Diagram

TCK

TDI

A 4

|
torsu

TMS

TDO

|

|

,

|

|

|

|

i |
toiHp :
|

|

|

|

|

T

|

trmssu :4—}:4—)' trmsHD

|
!

A

Tristate

L}

JTAG Programming Using FlashPro Programmer

Microchip FlashPro programmer v5 or later can be used to program RT PolarFire FPGA through the dedicated JTAG
interface. This can be done either using the Libero SoC or a standalone FlashPro Express.

4—>: trek2q

The FlashPro programmer connects to the device via a 10-pin programming header using a FlashPro cable (10-pin
ribbon), as shown in the following figure.

Figure 4-2. JTAG Programming Using External Programmer

Kit Board

RT PolarFire® FPGA

Programming Header
(Dedicated JTAG)

8 8 10-Pin Ribbon External USB
Controier [O O« cale Programmer |q = | st pc
00 (FlashPro5 or
later
System ©Oo)
Controller
v
sNVM and User
Security Settings
FPGA Fabric
|:| Device contents to be programmed
User Guide DS50003239A-page 17

© 2021 Microchip Technology Inc.
and its subsidiaries

Programming Modes

The following table lists the FlashPro header signals.

Table 4-2. FlashPro Header Signals

Direction to FlashPro Description
Programmer

TCK/SCK Output JTAG/SPI clock.
2 GND — Signal reference. GND pins must be connected.
3 TDO/MISO Input JTAG/SPI data output from programming device.
4 PROG_MODE Not connected Unused
5 TMS/SS Output JTAG test-mode select/SPI slave select.
6 VJTAG/VSPI | — Target interface voltage input.
7 VPUMP Not connected Unused
8 TRSTB Output JTAG test reset.
9 TDI/MOSI Output JTAG/SPI data input to programming device.
10 GND — GND

A single FlashPro programmer can program multiple Microchip FPGAs from the same family or from different families
in a single JTAG chain. The TDO pin of the JTAG header represents the beginning of the chain. The TDI pin of the
last device connects back to the JTAG header, thus completing the JTAG chain. The following types of FPGAs can be
added to a JTAG chain:

» Microchip devices targeted for programming
* Microchip bypass devices not targeted for programming
* Non-Microchip bypass devices

When a device is in Bypass mode, the device’s data register length is automatically set to 1 and the device

stops responding to any programming instructions. To place a device in bypass mode, the instruction register (IR)
length must be known. For Microchip FPGAs, the IR length is obtained automatically by the FlashPro Express. For
non-Microchip FPGAs, the boundary scan description language (BSDL) file, which contains a sequence of boundary
scan commands and data, must be loaded, or the IR length must be manually entered in the FlashPro Express. For
more information about JTAG chain programming, see FlashPro User’s Guide.

Figure 4-3. Device Programming in JTAG Chain

Device #6 Device #5 Device #4

e
Non-Microsemi RT Polarfire FPGA Non-Microsemi
TDI B TDI SoC FPGA TDO - TDI R=8 1O B TDI Soc FPGA TDO—
IR=4 IR=6

FlashPro s IJTAG

Programmer Header
Device #1 Device #2 Device #3
o
Non-Microsemi SmartFusion 2/ P ASI FPGA
TDO « TOO soc FPGA ~ TOI« TDO 1GLOO'2 FPGA TPl roASIC'3 FPG oI 4

IR=14
IR=4 IR=4

For information about power supply requirement and filtering capacitors, see UG0726: PolarFire FPGA Board Design
User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 18
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520

Programming Modes

The following figure shows the connections between the programming header and the device.

Figure 4-4. Connecting FlashPro Programmer to a Device

RT PolarFire® FPGA

System Controller

TCK

TCK

TDO

TDO

T™S

TDI
TRSTB

JTAG Controller

T™S

\.DT\lm w |~

TDI

1 kQ

FlashPro/
JTAG Header

PROG_MODE

VITAG
VPUMP

TRSTB

GND

o [o [~

GND

JTAG Programming Using External Microprocessor
An external microprocessor can be used to program the device through the dedicated JTAG interface. This type of
programming requires that the external microprocessor run DirectC, a Microchip programming solution for FPGAs,
and the microprocessor’s GPIO ports drive the JTAG interface.

1kQ

I—AW—

Note: The DirectC solution supports programming of the FPGA fabric, SNVM, and user security settings. DirectC

is used by adding the necessary APIs and compiling the source code to create a binary executable. The binary
executable is downloaded to the external microprocessor along with the programming data file. For more information,
see the latest version of the DirectC User Guide available on the Microchip DirectC solution webpage.

Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is used to
program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to enable

it.

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003239A-page 19

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads

41.5

4.2

421

Programming Modes

The following figure shows a sample implementation of device programming using an external microprocessor
running DirectC.

Figure 4-5. Programming Using External Microprocessor

RT PolarFire’ FPGA Programming Header
(Dedicated JTAG) *
a
0O <
e | 8 8 P 8| e Microprocessor
< < L Y o H H
Controller o0 5 £ Running DirectC
[G]
System ©©o E
Controller y
A\ 4 Y
sNVM and User
Security Settings Programming Image (.DAT)
y
FPGA Fabric
Device contents to be
programmed

JTAG Programming Using ChipPro Solution

The ChipPro programmer baseboard with FlashPro6 can be used to program the device through the dedicated JTAG
interface. This can be done either using the Libero SoC or a standalone FlashPro Express. For information about
ChipPro, see CP-PROG-BASE.

SPI Slave Programming

RT PolarFire FPGA can be programmed using an external SPI master such as an external microprocessor or a
FlashPro programmer through the SPI interface. See Table 4-4 for the pin settings that must be used to configure the
system controller SPI in slave mode.

The SPI slave or master mode is determined by |IO_CFG_INTF SPI pin at device Power-on Reset (POR) and cannot

be switched dynamically. A power cycle or DEVRST is required to change the SPI configuration from Slave to Master
or vice-versa by configuring the |IO_CFG_INTF pin, as mentioned in Table 4-3.

When SPl is in Slave mode, fabric has no access to SPI and the SPI interface is dedicated to the system controller.

Design initialization from an external SPI flash is not supported when the device is in SPI slave programming mode.
For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Power-up and Reset User
Guide.

Note: SPI-Slave programming can be accomplished while System Controller Suspend Mode is enabled, by
temporarily exiting System Controller Suspend Mode by holding JTAG_TRSTB HIGH.

SPI Slave Programming Interface

In addition to the standard SPI signals, RT PolarFire FPGA provide two pins—SPI_EN and I0_CFG_INTF—for
configuring the SPI controller.

The following table lists the system controller’s SPI pins and specifies what must be done if a pin is not in use
(unused condition). For information about unused conditions and power sequence, see UG0726: PolarFire FPGA
Board Design User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 20

and its subsidiaries

https://www.microsemi.com/existing-parts/parts/152642#overview
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide

4.2.2

Programming Modes

Table 4-3. System Controller SPI Pins

Bidirectional | SPI clock.' Connect to VSS through a 10 kQ
resistor
SS? Bidirectional 'SPl slave select. Connect to VSS through a 10 kQ
resistor
SDI Input SDI input." Connect to VDDI3 through a 10
kQ resistor
SDO Output SDO output.” DNC
SPI_EN Input SPI enable. Connect to VSS through a 10 kQ
0: SPI output tristated resistor
1: Enabled

Pulled up or down through a resistor or driven
dynamically from an external source to enable or
tristate the SPI /0.

IO_CFG_INTF Input SPI I/O configuration. Connect to VSS through a 10 kQ
0: SPI slave interface resistor
1: SPI master interface

Pulled up or down through a resistor.

1. Shared between the system controller and the FPGA fabric. When the system controller’s SPI is enabled and
configured as master, the system controller hands over the control of the SPI to the fabric (after device power-up).
When the SPI_EN pin is disabled (driven low) or when the SS is driven HIGH, the system controller’s SPI outputs
are tristated.

2. The system controller SS pin is an active-low signal. In unused condition, the pin must be tied to VSS to avoid a
floating pin on the device.

The SPI_EN and I0_CFG_INTF pins must be configured external to the device. This can be done by using jumpers
on the board or by bootstrapping. The following table lists the SPI_EN and IO_CFG_INTF configuration for SPI slave
programming.

Table 4-4. System Controller’s SPI Configuration - SPI Slave

SPI Slave Description
Programming

SPI_EN |O_CFG_INTF

0 X No Dynamic switching from Slave to Master or vice-versa is

not allowed. A power-cycle or device reset (DEVRST_N) is
1 0 (SPI slave mode) | Yes required to change the SPI configuration from Slave to Master
1 1 (SPI master mode) No or vice-versa by configuring the I0_CFG_INTF pin.

SPI Slave Programming Using FlashPro Programmer

Microchip FlashPro programmer (version 5 or later) can be used to program device through the dedicated SPI. This
can be done using either the Libero SoC or a standalone FlashPro Express. The FlashPro programmer is connected
to the device SPI ports, as shown in the following figure.

The target board must provide power to the VDD, VDD18, VDD25, and VDDI3.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 21
and its subsidiaries

423

Programming Modes

Figure 4-6. SPI Slave Programming Using External Programmer

VDDI3
T
— 10 kQ
1kQ | RT PolarFire® FPGA FlashPro
(SPI Slave) Header
SPI_EN 2
GND
System Controller
SCK [« ; SCK 4
opy SO0 MISO PROG_MODE [—x
ss|—— 3ss vspr|o—mn—
o1 Xg{ VPUMP 8
D Most FL_GLD [X
enp L0
IO_CFG_INTF
1 kQ §1 kQ

Device Programming using SPI Slave can be selected in Libero SoC Design Flow > Configure Hardware >
Programming Connectivity and Interface.

SPI Slave Programming Using External Microprocessor

An external microprocessor (such as a host PC or another Microchip FPGA) can be used to program the device
through the dedicated SPI port, as shown in the following figure. This type of programming requires that the external
microprocessor run the Microchip SPI-DirectC solution. The external microprocessor can also control the SPI_EN,
IO_CNF_INTF, and DEVRST_N pins to program the device.

SPI-DirectC supports programming of the FPGA fabric, sSNVM, and user security settings. SPI-DirectC is used by
adding the necessary APIs and compiling the source code to create a binary executable. The binary executable is
downloaded to the external microprocessor along with the programming data file. For more information, see the latest
version of the SPI-DirectC User Guide available on the Microchip DirectC solution webpage. The example project
(Direct-C installer) is also available on the Downloads tab.

For information about FlashPro header signals, see Table 4-2.

Figure 4-7. SPI Slave Programming Using External Microprocessor

VDDI3
1 kQ
RT PolarFire® FPGA External
(SPI Slave) 10 "‘é Microprocessor
SPL_EN (SPI Master)
System Controller
sS |« SS
spr SCK < SCK
SDO |—————P» MISO
SDI |@——|——— MOSI
10_CFG_INTF §1 kQ
1kQ
User Guide DS50003239A-page 22

© 2021 Microchip Technology Inc.
and its subsidiaries

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads

4.3

Programming Modes

SPI Master Programming

When the system controller SPI is configured as a master, a device can program itself. In SPI master programming,
the programming images are stored in the external SPI flash memory using the SPI directory. For more information
about the SPI directory and about programming the external SPI flash memory, see 11. Programming the External
SPI Flash.

SPI master programming supports auto update and IAP. In auto update programming, if the version of the update
image is found to be different from the currently programmed version, the system controller reads the update image
bitstream from the external SPI flash memory and programs the device on power-up. In IAP, the user application
initiates the device program, and the system controller reads the bitstream from the external SPI flash memory to
program the device. The auto update and IAP operations are atomic and cannot be interrupted by JTAG or SPI slave
commands.

The Auto Update feature is not enabled by default and if required, this needs to be enabled using Libero SoC. SPI
Master mode also supports Auto Programming and Auto Recovery, see Table 4-5. These two features are enabled by
default and do not require user configuration.

For information about the 1/O states during SPI master programming, see 7. /O States During Programming.

The following table lists the initiation sources for the features supported by SPI master programming.

Table 4-5. Device Program Initiation Sources

Programming Description Initiation Source
Feature

Auto programming | Programs a blank device Device reset or power-cycle

Auto update Updates device contents Device reset, power-cycle, or system service request
automatically

IAP Updates device contents upon user | System service request
request

Auto recovery’ Automatically recovers the device Device power failure during programming

from programming failure

1If there is a power interruption while Auto update or IAP is updating the sSNVM, then the auto-recovery is not

triggered. Though, if the SNVM is not updated completely because of a power interruption, the device starts up and
will attempt to boot as normal. However, the partially programmed sNVM causes the user design to malfunction. In
this case, the user needs to use the VERIFY action or Digest Check to determine if the programming is successful.

Note: If System Controller Suspend Mode is enabled, SPI master (IAP and Auto Update) programming mode is not
available to program the device.

For information about implementing Auto update and IAP, see AC466: PolarFire FPGA Auto Update and In-
Application Programming Application Note.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 23
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707

431

4311

4.3.2

4.3.21

Programming Modes

The following figure shows the recommended board configuration for SPI master programming. The VDDI3 must
match the voltage specified in the datasheet associated with the external SPI flash.

Figure 4-8. Recommended Board Configuration for SPI Master Programming

vDDI3
10 k
§1 k RT PolarFire® FPGA External
(SPI Master) 10k SPI Flash
WP Vv
cc
SPI_EN HOLD
System Controller
Ss Ccs
SCK SCK
SPI SDO MOSI
SDI [¢——— MISO
?4.7 K GND
I0_CFG_INTF gl K

SPI Master Programming Interface

The SPI_EN and I0_CFG_INTF pins must be configured external to the device by using jumpers on the board or by
bootstrapping. The following table provides the SPI_EN and IO_CFG_INTF pin configuration details for SPI master
programming.

Table 4-6. System Controller’s SPI Configuration—SPI Master

SPI Master Programming

0 X No No

1 0 (SPI slave mode) No No
1 1 (SPI master mode) Yes Yes

System Controller SPI Mode and Clock

The system controller SPI operates in data transfer mode 3 (SPI mode 3) for SPI flash read operations. Both the
clock polarity (SPO/CPOL) and clock phase (SPH/CPHA) for this data transfer mode must be set to HIGH. The
system controller’s SPI operates at a fixed clock of 20 MHz.

System Services

RT PolarFire FPGA devices include a System Controller, which accepts and responds to system service requests
from the user.

The user application can initiate the following programming related system services:

» Bitstream authentication
* |AP image authentication
* Auto update

+ IAP

System Services
In RT PolarFire FPGA, system services are system controller actions initiated by the fabric user logic through the
system controller’s system service interface (SSI). For initiating the system services, the fabric user logic requires the

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003239A-page 24

Programming Modes

PF_SYSTEM_SERVICES SgCore IP available in the Libero catalog. The following figure shows the design interface
between fabric and System Controller.

Figure 4-9. Design Interface Between Fabric and System Controller

RT PolarFire® FPGA

sNVM pNVM
PUF
FPGA Fabric 7y
\ 4
» SSI |
General APB < » System Controller
Purpose |« p{ PF_SYSTEM_SERVICES - -
Processor q Device and Design
Mailbox g Information Services
Interface

Device Programming
Services

Data Security Services

Fabric Services

System SPI
Controller
Cryptoprocessor
and NRBG JTAG

For information about system services driver and example SoftConsole project, see Firmware Catalog, which is
available in the Libero SoC installation package.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 25

and its subsidiaries

Programming Modes

4.3.2.1.1 RT PolarFire System Services Configurator

43.2.2

The following figure shows the RT PolarFire System Services Configurator.

Figure 4-10. PolarFire FPGA Core System Services Configurator

B! Configurator

PolarFire System Services
Microsemi:SgCore;PF_SYSTEM_SERVICES

Configuration | SHVM | =
Device and Design Information Services
Serial Mumber Service: [UserCode Service: F
Design VersionService: [Device Certificate Service:
Read Digest Service: F Query Security Service:
Read Debug Info Service: I PF SYSTEM SERVICES 0
DE el USR_CMD _ERROR|
Bitstream Authentication Service: [I I IAP Image Authentication Service: [I = i
CLK USR_BUSY
Data Security Services RESETN SS_BUSY,
Data Signature Service: [* Sacure NVM Write Service: [© APBSlave USR_RDVLD|—
Secure NVM Read Service: [PUF Emulation Serviee: [* SYSSERV_INIT REQ
Nonce Service: I
. PF_SYSTEM_SERVICES
Digest Check Service: " [AP Service: F] _
[14P Auto Update Service: [|
b
Jl M\ symbol /
Log

[ElMessages @ Errors .k Warnings @ Info

Help T QK Cancel |

The fabric master is connected to the PF_SYSTEM_SERVICES core using the APB interface. The
PF_SYSTEM_SERVICES core can be configured using the PolarFire System Services configurator in Libero SoC, as
shown in Figure 4-10. For more information, see UG0848: PolarFire System Services User Guide.

System Service Request

In RT PolarFire FPGA, the system service request is initiated by passing a 16-bit system service descriptor to the
System Controller. The lower seven bits of the descriptor specify the service to be performed and the upper nine
bits specify address offset. There is a 2 Kbytes internal mailbox RAM memory space. This space is used for passing
the input data and storing the service request output that is returned by the System controller. The mailbox address
specifies the service-specific data structure that is used for any additional inputs to or outputs from the service. On
completion of service, the System Controller writes a status code indicating the successful completion of the system
service or an error code. The following table lists the system service request descriptor bits. For information about
mailbox read/write communication from Fabric, see UG0848 PolarFire System Services User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 26
and its subsidiaries

http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf

4.3.2.3

4.3.2.3.1

4.3.23.2

Programming Modes

Table 4-7. RT PolarFire FPGA System Service Request Descriptor

System Service Descriptor | Value Description
Bit Field

157 MBOXADDRJ[10:2] Specifies the address offset in mailbox RAM to access
minimum four bytes of memory. Mailbox addresses are
specified using a word offset (0-511).

6:0 SERVICECMD Service command for System Controller to execute the
request.

For more information about system services, see PolarFire FPGA and PolarFire SoC FPGA System Services User
Guide.

Bitstream and IAP Image Authentication System Services

For security and reliability reasons, the programming bitstream must be authenticated and validated before the
device is programmed. Successful authentication of the bitstream prevents auto recovery. While the authentication is
in progress, the fabric user logic in RT PolarFire FPGA continues to operate normally, though without access to SPI
flash and system services. Before the device is programmed using auto update or IAP, the user application can run
the authentication system service.

Note: If the bitstream authentication system service is initiated while a new bitstream is being loaded through the
JTAG interface, the system service takes precedence, and the JTAG operation fails.

Bitstream Authentication System Service
The bitstream authentication system service parses a bitstream image stored in the SPI flash and verifies the integrity
of the bitstream. The following table lists the fields in a bitstream authentication service request.

Table 4-8. Bitstream Authentication Service Request

15:7 MBOXADDR[10:2] | Mailbox address. For the format, see Table 4-9.

6:0 23H Bitstream authentication command code.

The following table describes the bitstream authentication service mailbox format.

Table 4-9. Bitstream Authentication Service Mailbox Format

e e

SPIADDR | Input Address of the bitstream in SPI flash.
If the external SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

IAP Image Authentication System Service
The IAP image authentication system service parses an image stored in the SPI flash and verifies the integrity of the
image descriptor, bitstream, and design initialization data.

The following table lists the fields in an IAP image authentication service request.

Table 4-10. IAP Image Authentication Service Request

Field

15 — Reserved.
147 IMAGEID[7:0] Identifies the image index in the SPI directory for image
authentication.
6:0 22H Authenticates image command.
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 27

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815

4.3.2.3.3

4.3.2.3.4

433

Programming Modes

Authentication Service Status Codes

If bitstream authentication or IAP image authentication is successful, the status code 0 is generated. If bitstream
authentication or IAP image authentication fails, an 8-bit error code is generated. For the detailed information about
error codes, see 12. Appendix: Error Codes.

Usage of Authentication System Services

The programming image contains the image descriptor, bitstream, and optional design initialization data. The
bitstream authentication system service can be used to authenticate the bitstream only. The IAP image authentication
system service, however, can be used to authenticate the entire programming image, including the image descriptor,
bitstream, and optional design initialization data.

Auto Update

For auto update to occur, the auto update feature needs to be enabled in the user design. On power-up, the device
selects the newer version of the first two images stored in the SPI directory. If the version of the newer image

does not match that of the currently programmed image, then auto update occurs. The following figure shows the
high-level flow of auto update programming.

Figure 4-11. Auto Update High-Level Flowchart

Power-up/
System Reset

h 4

Device Boot Up

Y

Device Yes

SPI master mode programmed
enabled? No already?
Yes No
b 4

Auto update
enabled?

Yes

Device
programmed
already?

A

A 4 A 4

. Initialize and execute
Design not updated .
(9 P) user design
*Different scenarios to reach here:

- Device is blank and auto update is initiated to program the device
- As part of IAP recovery when power fails during IAP or partially programmed with an invalid image
- As part of auto update recovery when power fails during auto update

Execute Auto
Update Flow

The following figure shows the detailed flow of auto update programming.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 28

and its subsidiaries

Programming Modes

Figure 4-12. Auto Update Detailed Flow

Auto Update
Start

A

A Program newer
image

1.Read image descriptor pointers.

2.Read Image 0 and Image 1
version info and determine
update image.

Program

Passed?
Y
. Yes
Design update
required??! Image info No
authenticated??
No
Retry program
newer image
Y
A
Program No Program older
—————————P .
passed? image
Yes
e Yes Program
b passed?
No
A 4 v

Design not Initialize desi Design not
updated nitialize design updated?
1. Condition for update: version of the design differs from the update image or the device is blank.

2. Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of
the bitstream as part of the programming.
3. The device is not programmed, and user intervention is required.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 29

and its subsidiaries

4.3.3.1

4.3.3.2

Programming Modes

The following table lists example auto update conditions when different image versions are available in the SPI flash.

Table 4-11. Example Auto Update Conditions

Version Running on First Two Image Versions Back Level Protection | Image Version Selected for
the Device Available in SPI Flash Auto Update

Blank device Disabled

3 2,3 Disabled No auto update
3 1,2 Disabled 2

2 1,2 Disabled No auto update
1 1,2 Disabled 2

2 3,4 Enabled and set to 4 No auto update
3 3,5 Enabled and set to 4 5

2 3,5 Enabled and set to 4 5

5 2,3 Enabled and set to 4 No auto update

Auto Update on a Blank Device (Auto Programming)
When a blank device is powered up or reset (with SPI master mode enabled), the device programs itself using the
newest version of the image. This process is known as auto programming.

When the device is blank and programmed using the auto programming method with security-enabled bitstream,
subsequent programming can only be done using a custom security-enabled bitstream file (UEK1/UEK2). For more
information about generating security enabled bitstream, see 1.3. Adding User Security Settings to the Bitstream.

Auto Update on a Pre-programmed Device

Auto update is also initiated through system services on a pre-programmed device. If the device is preprogrammed, it
compares the update image with the currently programmed image. If the version of the update image is found to be
different from the currently programmed version, auto update programming is initiated.

To perform auto update on a preprogrammed device, the user application must initiate a system service request. The
system controller executes the system service request and programs the device.

The user application cannot obtain the status code in the following scenarios:

+ If the auto update program is successful, the device is automatically restarted to initialize the new version of the
design.

+ If the auto update program fails, the auto update recovery procedure attempts to program the device with the
valid image again.

The following table lists the fields in an auto update system service request.

Table 4-12. Auto Update System Service Request

Field

15:7 — Reserved.
6:0 46H Auto update programming command.

When auto update is not enabled in the user design, the auto update system service can be used to update the
device with the newest image using the user application.

Note: Auto update system service does not generate an error if SPI controller is not in the master mode.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 30
and its subsidiaries

43.33

43.3.4

Programming Modes

Recovery on Auto Update Programming Failure
When power fails during auto update programming, the auto update programming flow is initiated on the next boot
cycle to program the device with the newest image.

Note: If the device fails to program the newer image, it retries once before programming itself with the older version
of the image. If the device remains blank at the end of auto update, there is no indication through I/O and user
intervention is required.

Enabling Auto Update Option in User Design
To enable auto update, follow these steps:

1. Click Configure Design Initialization Data and Memories and select the SPI Flash tab.
2. Select the Enable Auto Update checkbox.
Figure 4-13. Auto Update Setting

Project File Edit View Design Tocls Hel

DE 2> 0H6

Iatalog . B X feports & X | PCleRP_Top_derved_constraintssdc @ ¥ | ConsamtManager @ X | S pcie P Top @ %
[ayatem services @ v T smulason Mode &
P T [7] oo intiakzation | WPROM | stom FahncR.nMs| e |
CoreAXMinterconnect 27100 (%) | " I |
CoredXMinterconnect 22102 Arely it il) [ke
& CoreANITOAHBL 3.5.100
o ConebclF 22100
& CorePCIF_AHB 42100 = -
5 Peripherals SPIFlashmemory size; |128 ¥ | M8
&= Core1553BRT_APE 42106 Usage statistics 5PI Fiash Clienits
&= Cored2d 312105
&= Cored2d_APB 312105 Awaizble memory (K8): 131071 Add... v Edit Celete
CarefXldDMAC entroller 2.0.100 Used memory (KB): 1]
S CoreE] i Free memory (4B : 131071
&= CoreSysServices PF 23116 Pragram MName Trpe Index
&= CorelJART 5.6.102
& CorellARTaph 56102
PolarFire System Senices 3.0.100

= PolarFireSoC Features

= Processors
&= CoreABC 38102
CoreRISC-V_AXI4 20102
PolorFireSel MSS System (Pre-production) 20100
-1 User Defined
CoreDDR_TIP 111247 =1
MS5 System (Pre
B Ussdspace
ST e e
i e cores are avalable Downikoad Ehem now!

_DesgnFiow | _Desgn Herarchy | _Stmubus Herarchy Catakg | Fles | HOL Templates | 4]

3. Click Configure Programming Options, and specify the design version and back level version, as shown in
the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 31
and its subsidiaries

4.3.3.5

Programming Modes

Figure 4-14. Design Version

Design Flow g x Reports & X B iog_cdr_test & x l
Top Module(root): jog_cdr_test =] ° g’ @ v 0 |h~l im % | 'ﬂ | 8 25} HD | DD 'BQ
ITooI 1L| -

=t b Verify Pre-Synthesized Design
. Simulate
=t » Constraints

¥ Manage Constraints T ewmms
v == k Implement Design
- Open Netlist Viewer
v - %5 Synthesize
= b Verify Post-Synthesized Design
L] Generate Simulation File
. Simulate
v % Place and Route
=t- # Verify Post Layout Implementation
v @ Verify Timing
@ Open SmartTime
EJ. Verify Power
£% Open 55N Analyzer
= » Configure Hardware
- *l Programming Connectivity and Interface ' Configure Prograrmming Options x
& Configure Programmer E
B Select Programmer
=l » Program Design

Design nameziog_cdr_test

v +(] Generate FPGA Array Data Design version {number between 0 and 65535): |1
~+L| Configure Design Initializetion Data and Memories
("4 ~+L| Generate Design Initizlization Data Back Level version {number between 0 and 65535): |5

Silicon signature (max length is 8 HEX chars): Ox | 12345678

% Generate Bitstream
i3 Run PROGRAM Action Heb | o | comce
= b Program 5P1 Hash Image i
v {3 Generate 5P| Flash Image]

Auto Update Use Models

Auto update is initiated when a different version of the programming image is available in the SPI flash memory. For
more information, see 11.2. SPI Directory. The device uses the Bits/Version component of the programming image
to determine the version. The Bits/Version component appears at the beginning of a bitstream and contains version
information. This section describes three auto update use models—ping pong, golden image, and single image.
Based on the design requirement, any of these models can be used.

Ping Pong

Auto update uses the newer of the first two images on the SPI flash memory. When a new image is written to the SPI
flash memory, the older of the two images is overwritten with the new image. This is known as the ping pong model
and is used when the previous image version needs to be retained along with the newer image. This facilitates an
automatic rollback to the previous image if the new image fails. The following figure shows the ping pong use model.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 32
and its subsidiaries

Programming Modes

Figure 4-15. Ping Pong Use Model

SPI Flash Memory

Memory Address 0

3
Image 0 Descriptor Pointer -
Memory Address 4
Image 1 Descriptor Pointer - SPI Directory
Memory Address 8
A 4
|
|
|
:
|
Image 0_Memory Address -——-——--———-—7-——————————— <

Bits/Version

Bitstream Data

Image 0
Design
Initialization Data
|
|
:
|
Image 1_Memory Address | ———----—-——-—7-———————————1 <
Bits/Version
Image 1 Bitstream Data

Design
Initialization Data

Golden Image

When auto update fails with a newer version of the image, the device needs to be updated safely using a working
image. This image is known as the golden image. When a new image is written to the SPI flash memory, it must not
overwrite the golden image. The following figure shows the golden image use model.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 33
and its subsidiaries

Programming Modes

Figure 4-16. Golden Image Use Model

SPI Flash Memory

Memory Address 0
Golden Image Descriptor Pointer |-

Memory Address 4
Update Image Descriptor Pointer -
Memory Address 8 SPI Directory

Golden Image Memory Addressf - - —————— o ___ <
Bits/Version

Bitst Dat
Golden Image tstream Data

Design
Initialization Data

Update Image Memory Address f———-—-——=—7-———————————+ -
Bits/Version

Update Image | Bitstream Data

Design
Initialization Data

Single Image

This model is used when only one image is available for updating the device. The following figure shows the single
image use model.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 34
and its subsidiaries

43.4

4341

Programming Modes

Figure 4-17. Single Image Use Model

SPI Flash Memory
Memory Address 0

Image 0 Descriptor Pointer -

Memory Address 4

Empty Slot Filled with 0 SPI Directory

Image 0_Memory Address--------—-—-—-7-—-——-—-—-—————— <
Bits/Version

Bitstream Data

Design
Initialization Data

IAP

IAP reprograms the device with a specific programming image. In IAP, regardless of the image version, the device
chooses the programming image based on either the image index or the SPI| image address. The fabric user logic
specifies the programming image and initiates reprogramming of the device using the IAP system service.

IAP Using System Service

The user application initiates an IAP system service request using fabric user logic. The system service specifies
whether the image is used for verification or programming. The system controller automatically reads the bitstream
from the SPI flash to verify or program the device contents.

Verify Operation

The verify operation compares the specified programming image contents with the device contents. The following
table lists the fields in an IAP system service request using the image index.

Table 4-13. IAP Verify Request by Image Index

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 44H IAP verify operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as shown in the
following table.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 35
and its subsidiaries

Programming Modes

Table 4-14. IAP Verify Request by Image Address

15:7 MBOXADDR[10:2] | Mailbox address. For the format, see Table 4-17.
6:0 45H IAP verify operation.

If the IAP verification is successful, the status code 0 is generated. If the IP verification fails, an 8-bit error code is
generated. For the detailed information about error codes, see 12. Appendix: Error Codes.

Digest Check system service is recommended to verify the integrity of the device contents instead of IAP verify
operation. For more information, see RT PolarFire FPGA Datasheet.

Note: Digest printed during programming (same as in *.digest file) s bitstream payload digest. It is meant for
device to confirm that it receives the correct bitstream payload. Digest exported from DEVICE_INFO is the digest of
the actual memory content. It does not have other metadata that is included in the encrypted bitstream payload, so it
is different than one generated during programming.

Program Operation

The program operation updates the device contents using a specified programming image. The IAP program
operation does not authenticate the image before executing the program. The image can be authenticated using

the IAP image authentication system service. For more information, see 4.3.2.3.2. IAP Image Authentication System
Service.

The user application cannot obtain the status code in the following scenarios:

* If IAP is successful, the device is automatically restarted to initialize the new design.
» If IAP fails, the IAP recovery procedure attempts to program the device with image 0.

Note: IAP recovery considers image 0 when the pointer to image 1 in the SPI directory is null. For more information,
see 11.2. SPI Directory.

The following table lists the fields in an IAP system service request using the image index.

Table 4-15. IAP Program Request by Image Index

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 42H IAP program operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as specified in the
following table.

Table 4-16. IAP Request by Image Address

15:7 MBOXADDR[10:2] | For the mailbox format, see the following table.
6:0 43H IAP program operation.
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 36

and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969

43.4.2

Programming Modes

The following table describes the mailbox format.

Table 4-17. Mailbox Format

e e

SPIADDR | Input Programming image address in SPI flash memory. If the
attached SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

Recovery on Programming Failure
When power fails during IAP, the device programs itself with image 0.

Note: When the device fails to program the specific image, it retries once before programming itself with image 0. If
the device is still blank at the end of IAP, there is no indication through 1/0O and user intervention is required.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 37
and its subsidiaries

Programming Modes

4343 |AP Flow

The following figure shows the IAP flow.

Figure 4-18. IAP Flowchart

(IAP system service request)

SPI
master mode
enabled?

No
Image specified?

1.Read SPI directory descriptor pointer
2.Program device with specified image

Yes

Program passed?

No

Image info

authenticated?*

Yes

Retry program with same image

Program passed?

Device
enabled?

Yes

No |«
A

1.Read SPI directory descriptor pointer
2.Program device with image 0

Yes
Program passed?

» No
A 4

Design not updated

A
Initialize and execut
user design

>

A
Execute auto update

* Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of

the bitstream as part of the programming.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003239A-page 38

Programming Modes

4.3.4.4 |AP Use Model

RT PolarFire FPGA support the multi-image IAP use model, which allows up to 255 images to be stored in

the SPI flash memory. The image descriptor pointers are in Sector 0 of the SPI flash memory. The device can

be programmed with any image; however, if the program fails, the device is programmed with image 0. The
programming image pointer next to the image 0 pointer must be null (empty slot). This model is used when the
device needs to be updated with a specific image from among the available images. The following figure shows the

multi-image use model.

Figure 4-19. Multi-image Use Model

Memory Address 0

Memory Address 4
Memory Address 8

Memory Address 4*N

Image 0_Memory Address

Image 1_Memory Address

Image N-1_Memory Address

SPI Flash Memory

Image 0 Descriptor Pointer

Empty Slot Filled with 0

Image 1l D

escriptor Pointer

Image (N-1) Descriptor Pointer

Bits/Version
Bitstream Data

Design
Initialization Data

Bits/Version
Bitstream Data

Design
Initialization Data

Image (N-1)

Bits/Version
Bitstream Data

Design

Initialization Data

SPI Directory

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide

DS50003239A-page 39

5.1

5.2

In-Flight Reprogramming

In-Flight Reprogramming

Reprogramming on orbit is increasingly becoming a hard requirement for space payload electronics. Satellite
payload electronics' complexity have evolved so much that it is impossible to identify hardware bugs until the
satellite is launched. The ability to reprogram an FPGA in space can be used to fix critical bugs. Furthermore,
re-programmability in the FPGAs enables tuning of data processing algorithms to give the optimum results for
new science missions. When the primary mission of the satellite is accomplished, the satellite hardware can be
re-purposed to accomplish additional objectives if the FPGAs can be reprogrammed.

In-Flight Reprogramming Guidance

Microchip has performed several sets of radiation tests on RT PolarFire FPGAs and determined that the FPGAs can
be programmed in space, with a greater-than-99% probability of success in space.

RT PolarFire reprogramming in space is supported using JTAG with DirectC, with the following guidance:

» Single Event Effects (SEE) Impact

— Probability of first-time success for programming in GEO-synchronous orbit with Solar-Min conditions is
calculated to be greater than 99%. If radiation disrupts programming, it is likely that the next programming
attempt will be successful. Heavy ION test results can be obtained from Microchip, on request.

— Probability of programming success in LEO is very high. No programming or verify failure was observed in
accelerated ground testing. Proton test data is available from Microchip, on request.

— In-beam reprogramming and verify is non-destructive as seen in accelerated ground testing.

— ltis unlikely that an ION will disrupt programming, since the flux in space is many orders of magnitude
lower than the flux tested during accelerated ground testing.

» Total lonizing Dose (TID) Impact
— No in-flight programming constraints are identified after TID testing to 100 Krad.

In-Flight Reprogramming Sequence
When reprogramming is initiated, the FPGA is erased. Therefore, the programming and stand-alone verify operations
must be completed to success, otherwise the FPGA will be inoperable. The following sequence must be followed
when performing in-flight reprogramming:

* Programming must be followed by stand-alone verify.

« If programming fails, programming must be attempted again.

« If stand-alone verify fails, the stand-alone verify action must be attempted again.

» If stand-alone verify fails second time, reprogramming of the device must be initiated again.

For information about timing requirements and interface to the RT PolarFire FPGA JTAG pins, see 4.1. JTAG
Programming.

The following figure shows the sequence of in-flight reprogramming.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 40
and its subsidiaries

In-Flight Reprogramming

Figure 5-1. In-Flight Reprogramming Flow Chart

Begin Device \‘
Programming J‘

Y

¢ Erase the Device
e Program the Device
e Embedded Verify

Program Passed?

No

Stand-alone Verify

1st Attempt

2" Attempt

Stand-alone Verify
Attempts?

Passed Stand-alone
Verify?

End Device Programming

5.3 In-Flight Reprogramming Solutions
A programming controller is required to retrieve the new programming code from an external memory and to upload
the new code into the target RT PolarFire FPGA, which is to be programmed. Some of the viable options for a
programming controller include (but not limited to):
Standalone radiation-tolerant microcontroller such as Microchip's SAMRH71F20. A reference design is available
at GitHub. A demonstration video for RTG4 FPGA reprogramming is available here; a demonstration video for
RT PolarFire will be provided in the later version of the document.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 41

and its subsidiaries

https://github.com/MicrochipTech/adg_fpga_reconfiguration
https://vimeo.com/578616331

In-Flight Reprogramming

» Soft microprocessor IP such as RISC-V core implemented in a FPGA. A reference design using RISC-V core
in RTG4 FPGA to program another RTG4 FPGA can be found in the DirectC Installer > SpaceForum.zip
file. Similar principles can be applied to program an RT PolarFire FPGA by an RTG4 FPGA or by another
RT PolarFire FPGA. Download the DirectC Installer. The SpaceForum.zip file can be found in the DirectC
installation folder. For example, \DirectC_Suite_v1.1\JTAG-DirectC_v4.1\SpaceForum.zip. This reference design
has not been updated to the latest Libero software versions.

» Other possible solutions, which include implementing a JTAG player in RTL or using a different soft processor
on another FPGA. These solutions have not been tested by Microchip.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 42
and its subsidiaries

https://www.microsemi.com/product-directory/programming-and-debug/4980-embedded-programming#downloads

Bypassing the Back Level Protection

Bypassing the Back Level Protection

If Back Level protection is enabled in the Configure Security tool, the back level protection can be bypassed for SPI
bitstreams while exporting the bitstream using Libero. To prevent Programming Recovery failures, enable the Bypass
the Back Level Protection for Recovery/Golden bitstream (SPI files only), as shown in the following figures.

Figure 6-1. Selecting Bypass Back Level Protection Feature

1 57 Export Bitstream x |
Top Modue(roat): ieg_sdr_test |
T Bitstmem Fe =
v T Qpen Netia Viewsr Mase: | aample Exstrg fles:
| S Synthesize - <He Bitstraam fles Fourd >
= b Verify Post-Synthesized Design Losatior: [Fipanele J
| +£1 Generate Simulation File e
v Fi5 Place and Route W sTARL Suppart for [F
| = b Verify Post Layout Implementation - =
I & Verity Timing - =
| % Open SmanTime W DAt Suppart for Embadded 152 (TTAG and 5P1-Slave]
| 3 Werify Pawer & Kor sk Py s
B9 Open $SH Analyzer W spr e !
= b Configure Hardware
1] Programming Connectivity and Interface I svr Suppart for ISP
| Cenfigure Programmer
| Sedect Programmer Tursization actiors
= P [hesi
1 '.”"lm" o I Likor New (Erases all Lser data; device can be immediately reprogrammed by user)
"4 o} Generste FPGA Array Data
| Carfigure Design Indialization Data and Memari w il (Erases ol data and ok reprogranmabity; devios must be scragped)
v 1 Generate Design Intialization Data

@ Configure [0 Sw:sl:lumglmc Frogramming Security options set with ConSgure Secunty tool

|
1
% Candigure P ing Oypti

| @ c“ [9 "5’“9’;"""“ ng Options Tiaale af Factory key modes s configured secueity settings.

| ealigure Security sz Plashlock/UPK.2 to temporanty enable settngs during ons programming session.
1

|

1

[Generate Bitstream Usit FlashledUPK 1 o temporarity enablie settings during one debugging session,
& Fun PROGRAM Action FlasHLock/LPK1 will be exported in plsnbext {master
= b Frogram SPI Flash Image Back Level protection is enabled. Use FashlodgUrx L mhv:ms Back Lewel protection.
{0 Generate 5P Flash image Smar ihebug Acoess conlral is enabled. Trtermal data may e acoessibke, Anyone can dekug of Access aclive probes, access Live Prabe, and read the content of M,
© Run PROGRAM_SPIIMAGE Actin Factory best mode is aliowed. This will sllow Mcrosemi 8o parform Padure Snalysis,
| b B Db o Perdicobic I Zerozaton trough TTAGISPT St i erabled. This i ot secommended for production davices,
e K 2 Extrrmial Fabric/siWiM desion digest check request throuch JTAG/SPL Save is ensbled,
| Cenfiquie Pemaneat Lacks for Producticn Repeated external Fabric digest cakulations can lspact its relabilty. Wew Datasheet for addtional information.
cport Bitstream
| Export FlahPra Bxpress Job Frogranving Options set with Configure Programming Optians tool
| % Export 5P| Flach knage Design verson: [5 Back Level versin [(]
I Ll Export Pin Repart
1 Bifstotam fles bo be exported
Herarchy | _caaiog | Eitstream companents [Bypass Back Level protection for
Recoveryfookden bitskream
Log {571 files orly)
1 Master file o program = - - —
E] DEnes i, wariogs @ e at trusted falty ¥ Custom secumity Fabrc 7 st 5
Cimiimoumim dmen rmaies
File encrypted with UEK] to program =
Design Initielizasion Data'| st untrusted facity or for Brasdcast fald pdate o I
fanerave SPI Flask Image'...
an programming 5P1 Flash Tmage'... - :
File ted with UEKZ to L]
"Expazt SPI Flpak Izage'... aruﬁ;dm“h.nmfmwm I™ febnc T stir r
k|
10T e e Il £ corcet_|
nco: cenerate e design fnivializavien dava’ haz o |

When the SPI bitstream is added to the SPI flash using design and memory initialization data, the tool shows back
level protection bypass feature in bitstream, as shown in the following figure.

Figure 6-2. Status of Bypass Back Level Protection

|Brean| Fie Bt Wiew Desan Tech Hep
1= o |
= L =
| i BX pman A% | e ne Top dowed combaninsd: 8 K Combartverager 8% | Erce e 8% Desonand Mesory hisimion® 8 X | Swree 8 % =
| Toe tdeiaat e e T B O B G cosr st | wmom | so | e | i

| et st repamariation: sy

Anglitic r-wn.:mrl A |' i

| CH Pcc i Bowne Ut iy) T
| &‘:—;‘__:‘ﬂ implans Free mewary BB umu St fng "
| e Ardeeny | Addrem | ¥
| BN i L 1
1] Fregpamming Canneciney ansiriartace
| Conlgure Primgiammes
| T —
[|L8 =
= e T

Progeam Pama e inder CartartFia

v

lw

gifl?"fur;'f:mm ferprien

;ﬁb:wlﬁnrbnh Fremzh

)

=11 Export Diesign refiabzstion Data ard Memery Repert . i i A o 2

| oot P [ey | emmrmn | ey | T | Pt e | o]] o
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 43

and its subsidiaries

6.1

Bypassing the Back Level Protection

Bypass Back Level Protection Use Case
The following table lists the user case for Bypass Back Level Protection.

Table 6-1. Bypass Back Level Protection Use Case

SPI Bitstream Design Design Back | Device Back
Version Level Version |Level Version

Golden/Recovery | Auto Programming Pass

2 IAP/Update
Bitstream

3 IAP/Update
Bitstream

Auto Update/IAP

Auto Update/IAP

The steps are described as follows:

Pass 3 2 2
Fail, Attempt 4 Not 2
Programming Enabled
Recovery

1. The device programs with a bitstream version 2 and back level version 1. The current device back level

version is set to 1.

2. The device then updates with a bitstream version 3 and back level version 2.
The current device back level version is set to 2.

3. The device attempts to update itself with a bitstream version 4 and fails to update. In this case, the device
attempts to recover using a golden/recovery bitstream version 2. But the recovery also fails as the current
device back level protection is set to version 2 and the golden/recovery bitstream version is equal to the back
level version. The Bypass Back Level Protection must be enabled (see Figure 6-1) for Golden/Recovery
bitstream to avoid programming recovery failures because of back level protection.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003239A-page 44

I/0 States During Programming

I/0 States During Programming

The following table lists the 1/O states that apply during various stages of programming.

Table 7-1. 1/0 States for Various Programming Modes

IIO Type 1/0 States
JTAG Programming SPI Slave SPI Master Programming (IAP/Auto
Programming Update)
System controller | Enabled. Enabled. Enabled.
I/0
XCVR reference Not affected. Not affected. Not affected.
clock inputs May be kept alive during IAP using

loopback mode, allowing the XCVR
link to be kept active.

XCVR data I/O As set by the boundary scan | Not affected. Not affected.
cell. May be kept alive during IAP using
loopback mode, allowing the XCVR
link to be kept active.

GPIO and HSIO 1/Os are enabled, but the I/O Can be weakly Outputs are tristated and weakly
state can be set using the pulled up using the pulled up.
boundary scan cell. SPI slave instruction
ISC_ENABLE.

In Libero SoC, the I/O states can be set before JTAG programming, and these I/O states are held at the set values
during JTAG programming. The following are the I/O output state settings:
* 1:1/Ois set to drive out logic HIGH
* 0:1/Ois set to drive out logic LOW
» Last Known State: I/O is set to the last value that was driven out before entering the programming mode and
then held at that value during programming
* Z:1/Ois tri-stated

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 45

and its subsidiaries

I/0 States During Programming

The I/O output states can be set, as shown in the following figure.

Figure 7-1. 1/O States During Programming (JTAG Mode Only)

D203 |

Design Flow 8% | Reports & | Stripage @ % Design and Memory Inibization & X |
Top Madule{roat): PROC_SUBSYSTEM =] o [j] @“ { Design Inttislzation /" uPROM L/ sivm %/ 571 Flash '\ Fabric RaMs
Troal o | e | pieenea | |
B Smuiae 17 Specify |70 States During Programming - JTAG Mede Only 7 Es
= b Constraints
[Manage Constraints Save to file... I~ Show BSR Detals
¥ = b Implement Design
2 Metlist Viewer
v S Synthesize
v 9,—: Pace and Route :I
=k Verify Post Layout Implementation B
&, Verify Timing
L Open SmantTime 1 L
'D. Werify Power 1
= b Program and Debug Design 2 |GPIO_OUTI1] ADLIB:OUTBUF B26 H
v =’ Genesate FBGA Array Data Last Known State
"I Configure Design Initialization Data and Memories B |GPIO_OUT2] ADLIB:OUTBUF c6 IE
v I8 £l Genelrate Design Initialization Data i |epio_ouial -OUTBUE D35 z I
= b Configure Hardware = LA
b l}rngr.amm:ng Cennectivity and Interface 5 |rer_cic o ADLIB:HEUF E25 7
Cenfigure Progerammer
i Device /O States During_lamgramming - JTAG Mode Only | b |re ADLIE:IMEUF Hi8 7
w Lonfigure Programming Optons
@ Configure Security T ADLIB:OUTBUF 617 z
= b Program Design
% Generste Bitstream 2 |resetn ADLIB:INBUF K22 z
0 Run PROGRAM Action
v - # Program 5P Flash Image 3 |UNUSED UNUSED A Z
v 0 Generate 581 Flash Image
v © Run PROGRAM_SPI_IMAGE Action 10 |UNUSED UNUSED A2 z
=t ¥ Debug Design
& SmortDebua Desian 11 |UNUSED UNUSED Bl z
DesqnFlow | DesinFerarchy | Stmuius Herarchy | Catalog | Fles 12 |UNUSED UNUSED €1 z -
Mezzage r
- Help I oK Cancel
[E]Messages €3 Erors i, wamings @@ Info [5] Manage suppressed messages P

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 46
and its subsidiaries

Programming Recommendations

8. Programming Recommendations

To ensure successful programming, the following guidelines are recommended:

» Authenticate the bitstream before programming the device.

» Do not assert the reset pin (DEVRST_N) during programming because this may corrupt the device
configuration.

» Use the correct configuration and programming interface based on the selected programming mode.

» Configure the device I/O states (before JTAG programming) based on the design requirements. For more
information, see 7. 1/O States During Programming.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 47
and its subsidiaries

Brownout During Programming

Brownout During Programming

Brownout is a condition that occurs when the power supplies fall below recommended levels. If brownout occurs
during programming, the device automatically recovers from the programming failure (since auto recovery is enabled
by default) and programs the device with a valid programming image stored in the external SPI flash.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 48

and its subsidiaries

10.

Zeroization

Zeroization

RT PolarFire FPGAs have a built-in capability that can zeroize (clear and verify) any or all configuration storage
elements as per the user setting. Internal volatile memories such as LSRAMs, uSRAMs, and system controller RAMs
are cleared and verified. Once the zeroization is complete, a zeroization certificate can be retrieved using a JTAG/SPI
slave instruction to confirm that the zeroization process is successful. For more information about zeroization, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 49
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814

1.

1.1

1.2

Programming the External SPI Flash

Programming the External SPI Flash
To perform IAP or auto update, an external SPI flash memory is required. This SPI flash memory interfaces with the
system controller's SPI and stores the programming images.

The SPI flash memory is divided into several sectors. The 1 KB memory in first sector (sector 0) is used as the SPI
directory, and it contains the programming image indexes (descriptor pointers). The remaining flash memory stores
the programming images.

Supported SPI Flash Devices

SPI flash devices from various vendors implement a standard instruction set for read operations. The system
controller firmware executes the following command to identify the addressing mode (3-byte or 4-byte):
READ SERIAL FLASH DISCOVERY PARAMETER (5AH)

The system controller supports devices from Micron, Winbond, Macronix, and Spansion. However, any other device
compatible with the JESD216 standard may also be used. Devices that are not JESD216-compliant may still be used
if they support the FAST READ (0BH) command with 3-byte addressing. Such devices are limited to using only the
first 128 Mb of the flash memory.

SPI Directory

The SPI directory is a collection of image descriptor pointers that point to the beginning of the programming image.
Each pointer uses four bytes. If the SPI flash memory device supports only the 3-byte addressing mode, the first
three bytes are used.

For IAP recovery to choose image 0 on power-up, the programming image pointer next to the image 0 pointer must
be null (empty slot), otherwise auto update is chosen. The following figure shows the SPI flash directory with the
programming image descriptor pointers.
Figure 11-1. SPI Flash Directory

Sector 0

Memory Address 0—— Image 0 Descriptor Pointer
Memory Address 4 —pp»| Empty Slot
Memory Address 8 — Image 1 Descriptor Pointer
|
I
I
I
I
I
|
I
Memory Address 4*(N-1)—Jp»| Image(N-1) Descriptor Pointer

The SPI directory contains the start addresses of the programming images. The SPI directory occupies 1 KB memory
from sector 0 of external SPI flash memory. For example, if the external SPI flash contains three images: golden
image, update image, and IAP image, then these images are stored at memory with starting the addresses: 0x400,
0xA00000, and 0x1400000. If the Libero configurator is used to program SPI flash with programming images, then
the Libero configurator takes care of the programming SPI directory automatically. If the user application programs
the external SPI flash with programming images, then the application must write starting addresses of each image
into SPI directory starting from SPI flash address 0, as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 50
and its subsidiaries

Programming the External SPI Flash

Figure 11-2. SPI Flash Memory

0x00000000 A
0x00000400 (golden_image.spi, Index 0)
0x00000004
0x00A00000 (update_image.spi, Index 1)
0x00000008
0x01400000 (iap_image.spi, Index 2)
1 KB SPI Flash Directory
|
|
|
|
|
|
|
: v
0x00000400 r'y
golden_image.spi
y
0x00A00000 7y
update_image.spi
y
0x01400000 yy
iap_image.spi
A 4
|
|
|
|
|
|
|
|
|

1.3 Use Models for Programming SPI Flash

The external SPI flash can be programmed using either JTAG or the system controller’'s SPIl. When the system
controller’s SPI is enabled and configured in SPI master mode, the system controller’s SPI port is shared between
the system controller and either the FPGA fabric master or JTAG. This section describes the use models for
programming the external SPI flash.

11.3.1 Programming the SPI Flash Using External Processor
When the SPI_EN pin is disabled (driven LOW), the system controller’s SPI outputs are tri-stated, and the external
processor can drive the SPI pins to program the SPI flash. Neither the system controller nor the fabric can drive the
SPl interface. The external processor can drive the SPI_EN pin LOW to program the external SPI flash. The SPI_EN

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 51
and its subsidiaries

11.3.2

Programming the External SPI Flash

pin can also be configured external to the device using the jumpers on the board. The SPI flash is programmed
using an external processor SPI master SCK frequency. The SCK frequency is configured using external processor
application. The following figure shows the connections required for programming the SPI flash using an external

processor.

Figure 11-3. SPI Flash Programming Using External Processor

VDDI3
T
1kQ
10 kQ

SPI_EN

RT PolarFire® FPGA
(SC_SPI Disabled)

System Controller

SPI

10 kQ

10 kQ

WP
HOLD

P SCK

SO

A 4

SS SCK MISO MOSI

SPI Controller (Master)

External Processor

Programming the SPI Flash Using JTAG
The external SPI flash can be programmed using a FlashPro programmer (version 5 or later) through the system
controller’s JTAG interface. The JTAG controller uses a special JTAG instruction—SPIPROG (IR=0xb0)—to
interface with the external SPI flash through the system controller’s SPI. The JTAG controller in both the device
families support this instruction to directly drive the system controller’s SPI outputs. The following figure shows the
connections required for programming the SPI flash using JTAG.

Figure 11-4. SPI Flash Programming Using JTAG

External
SPI-Flash

GND

——= 0.1 pF

VDDI3
-
1 kQ 10 kQ
RT PolarFire® FPGA External
(SPI Master) SPI Flash
SPI_EN 10ka WP
HOLD Vcce
System Controller
ss » CS
SCK P SCK
SPI SDI |« SO

SDO

JTAG
Controller

JTAG Programmer

Host PC with
SPI Image Files

SI

GND

—

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003239A-page 52

Programming the External SPI Flash

11.3.2.1 Programming External SPI Flash Using Libero

The Libero SoC software allows you to program the external SPI flash memory with programming images. To
program the SPI flash memory:

1. Go to Design Flow > Program and Debug Design > Configure Design Initialization Data and Memories,
and select the SPI Flash tab, as shown in following figure.
Figure 11-5. SPI Flash Programming in Libero SoC
Projext File Edd Yiew Design Toels Help
SNl
Jesgn Flw B%| geons #x | Switegs § % Desgn ond Henery Inalzain 8 X
Tap Mockieack): PROC_SURSYSTEM a0 g @v Oesin Insaiaaton | wPhom | st | 5e1 Fesn® Jrateic navs
| Tuet = N T
v
v
V » e
Tupe Wdes Content Fle l ot e |
F o ueoer st Srstean for I |Gupmincc ASITOeoHtMOC SESTBUGE Do [oaiset 2
v . F Romcoresry_Biisrasm 5P Bdstrean for Recoverp/Gokien [0 designes PROC_SUBSYSTEMeport ¥og_ode_test,_dhl. s o 30000 w13abt 0
4 R T T R R
= WP _Chark_1 T Stxtrears for LAP 3 desgnes PROC_SUBSYSTEM wrqort PROC_SUESYSTES wfimy [le00000 Dx3T1%caf |5
v P4 Flash Image
v D Generate 51 Flash lage.
v G Run PROGRAM SPIIMAGE Artinn
g i -
Note: For RT PolarFire FPGA, to streamline the SPI-Flash Programming support with FlashPro6, effective
from Libero SoC v12.4, the vendor information is replaced with the density of the target memory.

2. Under SPI Flash Clients, add the required programming images, and click Apply. For more information about
values to be entered in the fields, click Help.

3. Go to Design Flow > Configure Hardware > Configure Programmer > right-click and select Programmer
Settings in the FlashPro tabs. User can modify the TCK frequency by checking and selecting the Force TCK
Frequency to enhance the SPI flash programming time.

Figure 11-6. Programmer Settings
Design Flow g x StartPage & X E top & X I
% — o
Top Module(root): top O QO « g’ v 6 ..:I im = ’E 8
Active Synthesis Implementation; synthesis .
B} Programmer Settings %
Tool
© Manage Constraints ro6/Embedded FlashPro FlashPro5 | FlashProd | FlashProa | 4 »
v = P# Implement Design |
£ Open Netlist Viewer TCK Mode: Discrete Clocking |
v ‘G Synthesize ¥ Force TCK Frequency
= » Verify Post-Synthesized Design
+[| Generate Simulation File 4 T -MHz
B simulate L
v %5 Place and Route g QSEI DEAE
= » Verify Post Layout Implementation
v & Verify Timing 5
&, Open SmartTime fﬂ
B Verify Power 15
' Open SSN Analyzer 30
= # Configure Hardware
P Programming Connectivity and Interface
& Configure Programmer
& Select Programmer
= » Program Design
("4 +(| Generate FPGA Array Data —
(] Configure Design Initialization Data and Mern Help I ‘ OK] Cancel |
v +(| Generate Design Initialization Data
&= Configure 1/0 States During JTAG Programmin
« Configure Programming Options
@ Configure Security [o
- . p oK Cancel
v % Generate Bitstream | Q | |]
© 2021 Microchip Technology Inc. User Guide DS50003239A-page 53

and its subsidiaries

11.3.3

Programming the External SPI Flash

4. Double-click Run PROGRAM_SPI_IMAGE Action to get the SPI flash programmed with the SPI directory and
the programming images.

Figure 11-7. Run PROGRAM_SPI_IMAGE Action
Project File Edit View Design Tools Help

R A1) =

Jesign Flow g X
Top Module(root): PROC_SUBSYSTEM 3 Q

|T|:|0I |;|

¥ = b Implement Design
B Metlist Viewer
v 'S Synthesize
v Y% Place and Route
=+ # Verify Post Layout Implementation
& Verify Timing
(".’_J. Open SmartTime
El Verify Power
=+~ # Program and Debug Design
*L| Generate FPGA Array Data
*L| Configure Design Initialization Data and Memories
v *L| Generate Design Initialization Data
=+ # Configure Hardware
I*[Programming Connectivity and Interface
& Configure Programmer
fts: Device /0 States During Programming - JTAG Mode Only
» Configure Programming Options
@ Configure Security
=+~ # Program Design
‘3 Generate Bitstream
& Run PROGRAM Action

‘...

[} =~ # Program 5Pl Flash Image
V % _Generate SPLElash lmane —
i |'& Run PROGRAM_SPI_IMAGE Action |

=+~ # Debug Design
€ SmartDebug Design
=+ # Configure Permanent Locks for Production
@ Configure OTP Security
! =~ b Handoff Desian for Production ﬂ

Design Flaw | Design Hierarchy] Stimulus Hierarchy] Catalog J Files]

For more information about design initialization data and memories, see PolarFire FPGA and PolarFire SoC FPGA
Device Power-up and Reset User Guide.

Notes: The following are the recommendations for SPI Flash Programming Using Libero.
» This tool erases the SPI Flash prior to programming. It is recommended to program the SPI Flash with Libero
SoC prior to programming other data on the SPI Flash using non-Libero programming solutions.
» Partial update of the SPI Flash is currently not supported.

» Itis not recommended to have large gaps between clients in the SPI Flash, since gaps are currently
programmed with 1’s and increases programming time.

Programming the SPI Flash Using Fabric User Logic

When the system controller’s SPI is enabled and configured as master, the system controller hands over the control
of the SPI to the fabric (after device power-up). The JTAG controller that starts programming the SPI flash, or any
system service request from the fabric user logic, can take over the control of SPI from the fabric.

The fabric user logic gets the programming images from an external memory source, as shown in the following figure.
The fabric user logic accesses the external SPI flash using the CoreSPIcontroller and PF_SPI macro provided in
Libero Catalog. The external SPI flash is programmed using SPI master SCK frequency. The SCK frequency can be
configured in user logic.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 54
and its subsidiaries

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811

Programming the External SPI Flash

System controller can only access dedicated SPI I/Os (SPI Interface pins). System Controller cannot access the
fabric I10s. As a result, all the services from the system controller using SPI (that is, programming) can only use the
dedicated SPI 1/Os. The user can use PF_SPI, a macro provided in the Libero Catalog to get access to the dedicated
SPI 1/Os from the fabric (that is, once the system controller releases them) to access the SPI flash memory.

Note: To fetch the programming images and write to the external SPI flash, both the device families must be
preprogrammed with a design. For more information, see AC466: PolarFire FPGA Auto Update and In-Application
Programming Application Note.

Figure 11-8. SPI Flash Programming Using Fabric User Logic

VDDI3

SPI_EN

RT PolarFire® FPGA

(SPI Master)

IO_CFG_INTF

SS
SCK
SDI
SDbO
SS_O SCK D_O D_I

PF_SPI

10 kQ

10 kQ%~

L
[

EEX

SS SCK SDO SDI
CoreSPI

4
A 4

External
SPI-Flash
wp
Vcc

HOLD
cs
SCK
SO
SI

GND

—

PCle/Ethernet/UART -
Lad

Fabric Master |«

Programming images from an

external memory

© 2021 Microchip Technology Inc.

and its subsidiaries

User Guide

DS50003239A-page 55

https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note
https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note

12.

Appendix: Error Codes

Appendix: Error Codes

The system controller executes system service requests from the design. When a service is completed, a status code
is returned to the user application. This status code can be 0 (success) or an 8-bit error code. The following table lists
the error codes.

Table 12-1. Error Codes

Error Description Explanation
Code

1

10

11

12

13
14
21

22

23

Validator or hash chaining
mismatch
Unexpected data received

Invalid/corrupt encryption key

Invalid component header

Back level not satisfied

lllegal bitstream mode

DSN binding mismatch

lllegal component sequence

Insufficient device capabilities

Incorrect DEVICEID

Unsupported bitstream protocol
version (regeneration required)

Verify not permitted on this
bitstream

Invalid device certificate
Invalid DIB

Device not in SPI master mode

No valid images found (auto
update)

No valid images found (IAP)

Bitstream is constructed incorrectly, or a wrong security key is
used.

Additional data is received after the End of the Bitstream (EOB)
component.

Requested key mode is disabled, or the key could not be read or
reconstructed.

Bitstream contains invalid component data.

Bitstream version is older than that of the current back level in the
device.

Requested bitstream mode is disabled by user security.

Bitstream is rejected because the Device Serial Number (DSN) in
the bitstream does not match the DSN on the device.

Bitstream ends in the ERR state, meaning it is an illegal
bitstream.

Every bitstream begins in the BEGIN state, but only a legal
bitstream ends in the END state.

Bitstream is rejected because the capabilities specified in the
bitstream do not match the target device’s capabilities.

Bitstream is rejected because an attempt by the DEVICEID
specified in the bitstream does not match the part identification
field of the target device.

Bitstream is rejected because of an attempt made by the old
device to decode the new version of bitstream or by the new
device to decode the old version of the bitstream.

When the device programs the bitstream with encryption keys,
it is not possible to use the bitstream later to verify the device

contents because the device refers to the modified encryption
keys.

Device certificate is missing or invalid.
Device integrity bits are invalid.

Bitstream is executed in IAP mode, but the device is not
configured as SPI master.

Bitstream is executed through auto update mode, but no valid
image pointers are found.

Bitstream is executed through IAP via index mode, but no valid
image pointers are found.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003239A-page 56

Appendix: Error Codes

continued

Error Description Explanation
Code

24

25
26

27

127
128
129

130
131
132
133
134
135

Programmed design version
newer than auto update image

Reserved

Selected image invalid and no
recovery performed because the
device is running a valid design

Selected recovery image failed to
program

Abort
NVMVERIFY
PROTECTED

NOTENA
SNVMVERIFY
SYSTEM
BADCOMPONENT
HVPROGERR
HVSTATE

Bitstream is executed through auto update mode, and the design
version is the latest.

Bitstream is executed through auto update or IAP mode, and the
selected image is invalid.

Bitstream is executed through auto update or IAP mode, and the
selected recovery image failed to program the device.

A non-bitstream instruction is executed during bitstream loading.
Fabric/security key segment verification failed.

The device non-volatile memory cannot be modified because of
device security settings.

Programming mode is not enabled.

The sNVM verify operation failed.

An error occurred in the system hardware (PUF or DRBG).
An error is detected in a component’s payload.

The HV programming subsystem has failed.

The HV programming subsystem is in an unexpected state
because of an error.

© 2021 Microchip Technology Inc.
and its subsidiaries

User Guide DS50003239A-page 57

13.

Revision History

Revision History
The revision history table describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Table 13-1. Revision History

Roison o oo

A 12/2021 The first publication of the document.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 58

and its subsidiaries

Microchip FPGA Support

Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

¢ From North America, call 800.262.1060

* From the rest of the world, call 650.318.4460

* Fax, from anywhere in the world, 650.318.8044

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

« Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

* Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

* Microchip believes that its family of products is secure when used in the intended manner, within operating
specifications, and under normal conditions.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 59
and its subsidiaries

http://www.microchip.com/support
http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

» Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

* Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test,

and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded

by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron,
and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime,
IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connecitivity,
JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad I/0, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-1.S., storClad, SQI, SuperSwitcher,
SuperSwitcher I, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 60
and its subsidiaries

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services

ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.
ISBN: 978-1-5224-9500-0

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 61
and its subsidiaries

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office Australia - Sydney India - Bangalore Austria - Wels

2355 West Chandler Blvd. Tel: 61-2-9868-6733 Tel: 91-80-3090-4444 Tel: 43-7242-2244-39
Chandler, AZ 85224-6199 China - Beijing India - New Delhi Fax: 43-7242-2244-393
Tel: 480-792-7200 Tel: 86-10-8569-7000 Tel: 91-11-4160-8631 Denmark - Copenhagen
Fax: 480-792-7277 China - Chengdu India - Pune Tel: 45-4485-5910
Technical Support: Tel: 86-28-8665-5511 Tel: 91-20-4121-0141 Fax: 45-4485-2829
www.microchip.com/support China - Chonggqing Japan - Osaka Finland - Espoo

Web Address: Tel: 86-23-8980-9588 Tel: 81-6-6152-7160 Tel: 358-9-4520-820
www.microchip.com China - Dongguan Japan - Tokyo France - Paris
Atlanta Tel: 86-769-8702-9880 Tel: 81-3-6880- 3770 Tel: 33-1-69-53-63-20
Duluth, GA China - Guangzhou Korea - Daegu Fax: 33-1-69-30-90-79
Tel: 678-957-9614 Tel: 86-20-8755-8029 Tel: 82-53-744-4301 Germany - Garching
Fax: 678-957-1455 China - Hangzhou Korea - Seoul Tel: 49-8931-9700
Austin, TX Tel: 86-571-8792-8115 Tel: 82-2-554-7200 Germany - Haan

Tel: 512-257-3370 China - Hong Kong SAR Malaysia - Kuala Lumpur Tel: 49-2129-3766400
Boston Tel: 852-2943-5100 Tel: 60-3-7651-7906 Germany - Heilbronn
Westborough, MA China - Nanjing Malaysia - Penang Tel: 49-7131-72400
Tel: 774-760-0087 Tel: 86-25-8473-2460 Tel: 60-4-227-8870 Germany - Karlsruhe
Fax: 774-760-0088 China - Qingdao Philippines - Manila Tel: 49-721-625370
Chicago Tel: 86-532-8502-7355 Tel: 63-2-634-9065 Germany - Munich
ltasca, IL China - Shanghai Singapore Tel: 49-89-627-144-0
Tel: 630-285-0071 Tel: 86-21-3326-8000 Tel: 65-6334-8870 Fax: 49-89-627-144-44
Fax: 630-285-0075 China - Shenyang Taiwan - Hsin Chu Germany - Rosenheim
Dallas Tel: 86-24-2334-2829 Tel: 886-3-577-8366 Tel: 49-8031-354-560
Addison, TX China - Shenzhen Taiwan - Kaohsiung Israel - Ra’anana

Tel: 972-818-7423 Tel: 86-755-8864-2200 Tel: 886-7-213-7830 Tel: 972-9-744-7705
Fax: 972-818-2924 China - Suzhou Taiwan - Taipei Italy - Milan

Detroit Tel: 86-186-6233-1526 Tel: 886-2-2508-8600 Tel: 39-0331-742611
Novi, Ml China - Wuhan Thailand - Bangkok Fax: 39-0331-466781
Tel: 248-848-4000 Tel: 86-27-5980-5300 Tel: 66-2-694-1351 Italy - Padova
Houston, TX China - Xian Vietnam - Ho Chi Minh Tel: 39-049-7625286
Tel: 281-894-5983 Tel: 86-29-8833-7252 Tel: 84-28-5448-2100 Netherlands - Drunen
Indianapolis China - Xiamen Tel: 31-416-690399
Noblesville, IN Tel: 86-592-2388138 Fax: 31-416-690340
Tel: 317-773-8323 China - Zhuhai Norway - Trondheim
Fax: 317-773-5453 Tel: 86-756-3210040 Tel: 47-72884388

Tel: 317-536-2380 Poland - Warsaw

Los Angeles Tel: 48-22-3325737
Mission Viejo, CA Romania - Bucharest
Tel: 949-462-9523 Tel: 40-21-407-87-50
Fax: 949-462-9608 Spain - Madrid

Tel: 951-273-7800 Tel: 34-91-708-08-90
Raleigh, NC Fax: 34-91-708-08-91
Tel: 919-844-7510 Sweden - Gothenberg
New York, NY Tel: 46-31-704-60-40
Tel: 631-435-6000 Sweden - Stockholm
San Jose, CA Tel: 46-8-5090-4654
Tel: 408-735-9110 UK - Wokingham

Tel: 408-436-4270 Tel: 44-118-921-5800
Canada - Toronto Fax: 44-118-921-5820

Tel: 905-695-1980
Fax: 905-695-2078

© 2021 Microchip Technology Inc. User Guide DS50003239A-page 62
and its subsidiaries

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1. Bitstream Generation
	1.1. Bitstream Generation Flow
	1.2. Adding sNVM Data to the Bitstream
	1.3. Adding User Security Settings to the Bitstream
	1.4. Configuring Bitstream Components
	1.5. Programming File Size

	2. Device Programming Flow
	2.1. Programming Time

	3. System Controller Suspend Mode
	3.1. Configuring System Controller Suspend Mode

	4. Programming Modes
	4.1. JTAG Programming
	4.1.1. JTAG Programming Interface
	4.1.2. JTAG Timing
	4.1.3. JTAG Programming Using FlashPro Programmer
	4.1.4. JTAG Programming Using External Microprocessor
	4.1.5. JTAG Programming Using ChipPro Solution

	4.2. SPI Slave Programming
	4.2.1. SPI Slave Programming Interface
	4.2.2. SPI Slave Programming Using FlashPro Programmer
	4.2.3. SPI Slave Programming Using External Microprocessor

	4.3. SPI Master Programming
	4.3.1. SPI Master Programming Interface
	4.3.1.1. System Controller SPI Mode and Clock

	4.3.2. System Services
	4.3.2.1. System Services
	4.3.2.1.1. RT PolarFire System Services Configurator

	4.3.2.2. System Service Request
	4.3.2.3. Bitstream and IAP Image Authentication System Services
	4.3.2.3.1. Bitstream Authentication System Service
	4.3.2.3.2. IAP Image Authentication System Service
	4.3.2.3.3. Authentication Service Status Codes
	4.3.2.3.4. Usage of Authentication System Services

	4.3.3. Auto Update
	4.3.3.1. Auto Update on a Blank Device (Auto Programming)
	4.3.3.2. Auto Update on a Pre-programmed Device
	4.3.3.3. Recovery on Auto Update Programming Failure
	4.3.3.4. Enabling Auto Update Option in User Design
	4.3.3.5. Auto Update Use Models

	4.3.4. IAP
	4.3.4.1. IAP Using System Service
	4.3.4.2. Recovery on Programming Failure
	4.3.4.3. IAP Flow
	4.3.4.4. IAP Use Model

	5. In-Flight Reprogramming
	5.1. In-Flight Reprogramming Guidance
	5.2. In-Flight Reprogramming Sequence
	5.3. In-Flight Reprogramming Solutions

	6. Bypassing the Back Level Protection
	6.1. Bypass Back Level Protection Use Case

	7. I/O States During Programming
	8. Programming Recommendations
	9. Brownout During Programming
	10. Zeroization
	11. Programming the External SPI Flash
	11.1. Supported SPI Flash Devices
	11.2. SPI Directory
	11.3. Use Models for Programming SPI Flash
	11.3.1. Programming the SPI Flash Using External Processor
	11.3.2. Programming the SPI Flash Using JTAG
	11.3.2.1. Programming External SPI Flash Using Libero

	11.3.3. Programming the SPI Flash Using Fabric User Logic

	12. Appendix: Error Codes
	13. Revision History
	Microchip FPGA Support
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

