
 
 RT PolarFire® FPGA Programming User Guide

Introduction
RT PolarFire® FPGAs offer a variety of programming options to diverse end-user applications. The following
components of RT PolarFire devices are programmable:

• FPGA fabric
• Secure non-volatile memory (sNVM)
• User security settings (keys, passcodes, and locks)

The device can be programmed using the on-chip system controller through its dedicated JTAG or SPI interface.
Based on the interface used, the following three programming modes are supported:

• JTAG
• SPI master
• SPI slave

If System Controller Suspend Mode is enabled, SPI master (In-Application Programming (IAP) and Auto Update)
mode is not available to program the device.

In JTAG and SPI slave programming modes, the device can be programmed either using an external master such as
a microprocessor or a Microchip FlashPro programmer v5 or later. The external master fetches the programming data
(bitstream) from an external memory to program the device.

In SPI master programming mode, the system controller acts as the master and fetches the bitstream from an
external SPI flash memory to program the device. This mode supports two programming features—Auto Update and
IAP. In auto update, the device reprograms itself on power-up, and in IAP, the device is programmed when the user
application initiates programming.

Figure 1. Programming Modes

Programming Modes

JTAG

SPI Master

SPI Slave

IAP

Auto Update

Using FlashPro Programmer  

Using External Microprocessor

Using FlashPro Programmer

Using External Microprocessor  

Using ChipPro Solution

The following block diagram shows the device programming modes and the associated interfaces.

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 1



Figure 2. Device Programming Modes and Interfaces

RT PolarFire® FPGA

Board Programming Header
(Dedicated JTAG)

External 
Programmer 

(FlashPro5 or later) 
or 

External 
Microprocessor  

SPI

System 
Controller

sNVM and User 
Security Settings

FPGA Fabric

Device contents to be 
programmed

SPI Flash 
Memory

SPI master programming

JTAG programming

SPI slave programming

JTAG 
Controller

SPI Directory

Programming 
Images

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 2



Table of Contents

Introduction.....................................................................................................................................................1

1. Bitstream Generation.............................................................................................................................. 5

1.1. Bitstream Generation Flow...........................................................................................................5
1.2. Adding sNVM Data to the Bitstream.............................................................................................6
1.3. Adding User Security Settings to the Bitstream........................................................................... 6
1.4. Configuring Bitstream Components............................................................................................. 9
1.5. Programming File Size...............................................................................................................10

2. Device Programming Flow.................................................................................................................... 12

2.1. Programming Time.....................................................................................................................13

3. System Controller Suspend Mode........................................................................................................ 14

3.1. Configuring System Controller Suspend Mode.......................................................................... 15

4. Programming Modes.............................................................................................................................16

4.1. JTAG Programming....................................................................................................................16
4.2. SPI Slave Programming.............................................................................................................20
4.3. SPI Master Programming...........................................................................................................23

5. In-Flight Reprogramming...................................................................................................................... 40

5.1. In-Flight Reprogramming Guidance........................................................................................... 40
5.2. In-Flight Reprogramming Sequence.......................................................................................... 40
5.3. In-Flight Reprogramming Solutions............................................................................................41

6. Bypassing the Back Level Protection....................................................................................................43

6.1. Bypass Back Level Protection Use Case...................................................................................44

7. I/O States During Programming............................................................................................................ 45

8. Programming Recommendations..........................................................................................................47

9. Brownout During Programming.............................................................................................................48

10. Zeroization............................................................................................................................................ 49

11. Programming the External SPI Flash....................................................................................................50

11.1. Supported SPI Flash Devices.................................................................................................... 50
11.2. SPI Directory.............................................................................................................................. 50
11.3. Use Models for Programming SPI Flash....................................................................................51

12. Appendix: Error Codes..........................................................................................................................56

13. Revision History.................................................................................................................................... 58

Microchip FPGA Support..............................................................................................................................59

The Microchip Website.................................................................................................................................59

Product Change Notification Service............................................................................................................59

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 3



Customer Support........................................................................................................................................ 59

Microchip Devices Code Protection Feature................................................................................................ 59

Legal Notice................................................................................................................................................. 60

Trademarks.................................................................................................................................................. 60

Quality Management System....................................................................................................................... 61

Worldwide Sales and Service.......................................................................................................................62

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 4



1. Bitstream Generation
The Libero® SoC design suite generates the programming bitstream required for various programming modes.
Depending on the requirement, the programming bitstream may contain one or more of the following components:

• FPGA fabric logic
• sNVM data
• User security settings

The following table lists the programming interfaces used in various programming modes and the associated
bitstream formats.

Table 1-1. RT PolarFire FPGA Programming Interfaces and Bitstream Formats

Programming Mode Interface Master Bitstream Format

JTAG programming System controller’s dedicated
JTAG

FlashPro programmer STP

JTAG programming System controller’s dedicated
JTAG

External microprocessor DAT

JTAG programming System controller’s dedicated
JTAG

ChipPro solution using
FlashPro6

STAPL

SPI slave programming System controller’s dedicated SPI FlashPro programmer DAT

SPI slave programming System controller’s dedicated SPI External microprocessor DAT

SPI master programming System controller’s dedicated SPI System controller SPI

1.1 Bitstream Generation Flow
The following figure shows where the bitstream is generated in the Libero SoC.

Figure 1-1. Bitstream Generation in Libero Design Flow

Create Design

Implement Design
1. Synthesis
2. Place and route
3. Verify timing

Constraint Manager
- Pre-synthesis constraints
- Place and route constraints
- Timing constraints

Program and Debug Design
- Configure design initialization data and memories
- Configure device I/O states during programming
- Configure programming options and security
- Generate bitstream
- Program the device

Handoff Design for Production
Export bitstream (.STP, .DAT, .SPI, and .SVF)

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 5



1.2 Adding sNVM Data to the Bitstream
The sNVM is a user non-volatile flash memory that can be programmed independently. Each RT PolarFire FPGA has
56 Kbytes of sNVM.

To add multiple sNVM data clients to the bitstream in Libero SoC, go to Design Flow > Program Design >
Configure Design Initialization Data and Memories, as shown in the following figure.

Figure 1-2. Design and Memory Initialization

1.3 Adding User Security Settings to the Bitstream
RT PolarFire FPGA are provisioned with a set of unique factory keys. In addition, the end users can also enroll their
own security keys, thus providing complete independence from using Microchip provided keys. The user encryption
key1 (UEK1) and user encryption key2 (UEK2) are user-defined AES-2 symmetric keys. Either of these keys can be
used as the root key for encrypting and decrypting bitstreams, and to authenticate them.

To add user security settings in the bitstream:

1. In Libero SoC, go to Design Flow > Program Design > Configure Security > Custom security options, as
shown in the following figure.

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 6



Figure 1-3. Configure Security—Custom Security Options

2. Click Next to modify Update policy. The Configure Security wizard appears, as shown in the following figure.

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 7



Figure 1-4. Configure Security Wizard—Update Policy

If Back Level protection is enabled, the Back Level version must be lower than the version of the design being
programmed. For more information about the fields, click Help. The back-level version value restricts the design
version that the device accepts as an update. Only (new) programming bitstreams with a Design Version strictly
greater than the current Back Level Version previously stored in the device are allowed for programming. Back-level
protection is secured by FlashLock/UPK1, which can be bypassed. The back level version and design version can
be modified in the configure programming options tool. For more information about sNVM and security settings, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 8

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814


The following figure shows the configuration of programming options.

Figure 1-5. Configure Programming Options

For more information about the bypass back-level protection, see 6.1.  Bypass Back Level Protection Use Case.

1.4 Configuring Bitstream Components
To configure security settings, and bitstream components such as fabric and sNVM, follow these steps:

In Libero SoC, go to Design Flow > Program Design > Program Design.

1. Right-click Generate Bitstream, and select Configure Options....
2. The Configure Bitstream window opens.
3. Select Custom security, Fabric, and sNVM.
4. Click OK.

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 9



Figure 1-6. Configure Bitstream Window

To export bitstream files, go to Design Flow > Handoff Design for Production > Export Bitstream.

Note:  Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is
used to program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to
enable it.

1.5 Programming File Size
Programming files are encrypted with factory key or user key. So, the file (.dat or .spi) cannot be compressed to
reduce the file size. The following table lists the programming file sizes when custom security is disabled.

Table 1-2. Programming Files Sizes—Custom Security Disabled

RT PolarFire FPGA

RTPF500

Fabric and sNVM (kB) STAPL 23446

DAT 14780

SPI 14776

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 10



The following tables list the programming file sizes when custom security is enabled.

Table 1-3. Programming Files Sizes—Custom Security Enabled

RT PolarFire FPGA

RTPF500

Custom Security, Fabric
, and sNVM (kB)

STAPL Master Files 23446

UEK1/UEK2 23439

DAT Master Files 14780

UEK1/UEK2 14775

SPI Master Files 14776

UEK1/UEK2 14773

Custom Security (kB) STAPL NA 87

DAT NA 8

SPI NA 4

 
Bitstream Generation

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 11



2. Device Programming Flow
The device programming flow starts when the system controller receives or initiates device programming and ends
when the bitstream data is fully transferred and verified. The system controller fetches the bitstream data block-by-
block to program the device. Authentication of the bitstream and verification of the programmed contents are part of
the programming flow. The security settings are enabled either after erasing the device contents or on completion of
device programming. On successful completion of programming, the system controller resets the device to run the
programmed design. This programming flow is common to all the programming modes.

The following figure summarizes the device programming flow.

Figure 2-1. Programming Flow

Device initiates programming

Device gets programming data

Device processes the block of bitstream data

Authenticate the 
bitstream  

End of device programming

Pass

According to the bitstream, device programs and verifies the
- user security settings
- fabric
- sNVM

Display error 
message

Fail

Device erases the fabric, sNVM, and user security 
settings according to the bitstream

End of bitstream?

Yes

No

 
Device Programming Flow

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 12



Note:  Programming cycle count is incremented for both programming and erase operations, since erase is internally
a programming scheme. For more information about programming cycle count, see the PolarFire FPGA and
PolarFire SoC FPGA System Services User Guide.

2.1 Programming Time
Programming time is the time taken to erase the existing contents of the device, process bitstream data, program
the device, and verify the programmed contents. The programmed content is verified as the next block of data is
loaded for programming. The simultaneous programming and verification mechanism considerably reduces the total
programming time.

The total JTAG programming time of RT PolarFire FPGA is less than 147 seconds. For information about
programming time for specific devices and programming modes, see RT PolarFire Datasheet.

 
Device Programming Flow

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 13

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969


3. System Controller Suspend Mode
To protect the device from unintended behavior due to single event upset (SEU), the system controller can be held
in Suspend mode after device initialization. The system controller is active if the device is power-cycled or if a
hard reset is applied. But it returns to Suspend Mode, once the initialization cycle is completed. A Sonos bit that
is programmed during device programming controls the System Controller Suspend Mode. This Sonos bit is not
accessible from the customer design or by any external pin. The flash bit is only accessible through the programming
file loaded into the device.

As the control bit is stored in a flash cell, it is immune to radiation effects due to the following:

• Neutrons or alpha particles in terrestrial and airborne applications
• Heavy ions in space applications

While the FPGA is in System Controller Suspend Mode, programming via JTAG or SPI-Slave mode can be
accomplished, by asserting the JTAG_TRSTB pin HIGH, to temporarily remove the FPGA from System Controller
Suspend Mode. If the JTAG_TRSTB pin is LOW, all the other JTAG input signals are blocked from activating the
system controller.

For programming, run Scan Chain using FlashPro software (from the Menu bar, click Programmers > Scan Chain),
which keeps the JTAG_TRSTB pin HIGH. Keeping the JTAG_TRSTB pin HIGH causes system controller to exit from
Suspend Mode and then program the device.

When in space, the JTAG_TRSTB pin must be held LOW using one of the following methods:

• Hardwired to ground
• Connected to ground through a jumper
• Tied to ground through a pull-down, if an active device is included in the circuit to allow on-orbit reprogramming

To restore normal operation, the device must be reprogrammed using the JTAG port with the System Controller
Suspend Mode bit turned off, that is, disable the System Controller Suspend Mode in Libero SoC software,
regenerate the bitstream, and reprogram the device.

When RT PolarFire FPGAs are used in System Controller Suspend Mode, device programming is disabled to protect
the device from unintended programming because of SEUs. After device initialization, the system controller is held in
Reset state and cannot provide system services such as security, IAP, or auto update programming. After the device
exits the System Controller Suspend Mode, it can be programmed as usual.

If the System Controller Suspended Mode is disabled, it increases vulnerability to radiation single event effects
(SEEs) in the System Controller.

The following table lists the programming support when System Controller Suspend Mode is enabled or disabled.

Table 3-1. Programming Support

Programming Mode System Controller
Suspend Mode

Programming Support

JTAG Disabled Supported

JTAG Enabled Supported – requires System Controller Suspend Mode to be
temporarily disabled by asserting JTAG_TRSTB.

SPI Slave Disabled Supported

SPI Slave Enabled Supported – requires System Controller Suspend Mode to be
temporarily disabled by asserting JTAG_TRSTB.

SPI Master Disabled Supported

SPI Master Enabled Not supported

 
System Controller Suspend Mode

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 14



3.1 Configuring System Controller Suspend Mode
The System Controller Suspend Mode can be configured, that is, enabled or disabled in the Libero SoC software, as
shown in the following figure.

Figure 3-1. System Controller Suspend Mode

If System Controller Suspend Mode is enabled, the following operations are not available during normal operation:

• SPI master programming mode (IAP and Auto Update).
• SPI slave programming mode.
• All system controller services that are requested after power-up completes and the system controller is

suspended.
• System controller generated Tamper flags.
• Device reset and device zeroization Tamper responses.

 
System Controller Suspend Mode

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 15



4. Programming Modes
This section describes the three programming modes in detail.

4.1 JTAG Programming
RT PolarFire FPGA device has a built-in JTAG controller that is compliant with the IEEE® 1149.1 and IEEE 1532
standards. The JTAG controller communicates with the system controller using a command register that sends the
JTAG instruction to be executed and a 128-bit data buffer that transfers any associated data.

4.1.1 JTAG Programming Interface
In RT PolarFire FPGA, the JTAG pins are located in a dedicated I/O Bank 3. For information about the I/O states
during JTAG programming, see 7.  I/O States During Programming.

The JTAG bank voltages can be set to operate at 1.8 V, 2.5 V, or 3.3 V. The following table lists the JTAG pins.

Table 4-1. JTAG Pins

Pin Name Direction Weak Pull-Up/Unused
Condition

Description

TMS Input Yes/DNC JTAG test mode select.

TRSTB Input Yes1 JTAG test reset. Must be held low during device operation.

TDI Input Yes/DNC JTAG test data in.
In ATPG or test mode, when using a 4-bit TDI bus, this I/O is
used as tdi[0].

TCK Input No2 JTAG test clock

TDO Output No/DNC JTAG test data out.

1. If TRSTB is unused and the System Controller is in suspend mode, either an external 1 kΩ pull-down resistor
must be connected to it to override the weak internal pull-up or it must be driven LOW from an external source.
2. In unused condition, must be connected to VSS through 10 kΩ resistor.

4.1.2 JTAG Timing
Operation of JTAG programming depends on the timing relationship between JTAG pins, as shown in the following
figure. For recommended timing values, see JTAG switching characteristics in the RT PolarFire FPGA Datasheet.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 16

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969


Figure 4-1. JTAG Signals Timing Diagram

TCK

TDI

TMS

TDO

tDISU tDIHD

tTMSSU tTMSHD

tTCK2Q

Tristate

4.1.3 JTAG Programming Using FlashPro Programmer
Microchip FlashPro programmer v5 or later can be used to program RT PolarFire FPGA through the dedicated JTAG
interface. This can be done either using the Libero SoC or a standalone FlashPro Express.

The FlashPro programmer connects to the device via a 10-pin programming header using a FlashPro cable (10-pin
ribbon), as shown in the following figure.

Figure 4-2. JTAG Programming Using External Programmer

Kit Board

USB
10-Pin Ribbon 

Cable

Programming Header
(Dedicated JTAG)

External 
Programmer
(FlashPro5 or 

later)

RT PolarFire® FPGA

System 
Controller

JTAG
Controller

sNVM and User 
Security Settings

FPGA Fabric

Device contents to be programmed

Host PC

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 17



The following table lists the FlashPro header signals.

Table 4-2. FlashPro Header Signals

Pin Number Signal Direction to FlashPro
Programmer

Description

1 TCK/SCK Output JTAG/SPI clock.

2 GND — Signal reference. GND pins must be connected.

3 TDO/MISO Input JTAG/SPI data output from programming device.

4 PROG_MODE Not connected Unused

5 TMS/SS Output JTAG test-mode select/SPI slave select.

6 VJTAG/VSPI — Target interface voltage input.

7 VPUMP Not connected Unused

8 TRSTB Output JTAG test reset.

9 TDI/MOSI Output JTAG/SPI data input to programming device.

10 GND — GND

A single FlashPro programmer can program multiple Microchip FPGAs from the same family or from different families
in a single JTAG chain. The TDO pin of the JTAG header represents the beginning of the chain. The TDI pin of the
last device connects back to the JTAG header, thus completing the JTAG chain. The following types of FPGAs can be
added to a JTAG chain:

• Microchip devices targeted for programming
• Microchip bypass devices not targeted for programming
• Non-Microchip bypass devices

When a device is in Bypass mode, the device’s data register length is automatically set to 1 and the device
stops responding to any programming instructions. To place a device in bypass mode, the instruction register (IR)
length must be known. For Microchip FPGAs, the IR length is obtained automatically by the FlashPro Express. For
non-Microchip FPGAs, the boundary scan description language (BSDL) file, which contains a sequence of boundary
scan commands and data, must be loaded, or the IR length must be manually entered in the FlashPro Express. For
more information about JTAG chain programming, see FlashPro User’s Guide.

Figure 4-3. Device Programming in JTAG Chain

FlashPro
Programmer

JTAG 
Header

TDI

TDO

Non-Microsemi
SoC FPGA 

IR = 4

RT PolarFire® FPGA
 IR = 8

Non-Microsemi
Soc FPGA 

IR = 6

Non-Microsemi
Soc FPGA 

IR = 4

SmartFusion®2/
IGLOO®2 FPGA

IR = 4

ProASIC®3 FPGA
IR = 4

Device #6

Device #1

Device #5

Device #2 Device #3

Device #4

TDI TDO

TDITDO

TDI TDO TDI TDO

TDITDOTDO TDI

For information about power supply requirement and filtering capacitors, see UG0726: PolarFire FPGA Board Design
User Guide.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 18

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=130809
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=136520


The following figure shows the connections between the programming header and the device.

Figure 4-4. Connecting FlashPro Programmer to a Device

TMS

TCK

TDO

TDI

VDDI3

1 kΩ

RT PolarFire® FPGA  

VPUMP

1

3

5

FlashPro/
JTAG Header

4

2

x

GND

PROG_MODE

VJTAG

TRSTB

GND

7
9

6

10

8

TDO

TDI

TMS

System Controller

TCK

TRSTB

1 kΩ

JT
A
G

 C
on

tr
ol

le
r

x

4.1.4 JTAG Programming Using External Microprocessor
An external microprocessor can be used to program the device through the dedicated JTAG interface. This type of
programming requires that the external microprocessor run DirectC, a Microchip programming solution for FPGAs,
and the microprocessor’s GPIO ports drive the JTAG interface.

Note:  The DirectC solution supports programming of the FPGA fabric, sNVM, and user security settings. DirectC
is used by adding the necessary APIs and compiling the source code to create a binary executable. The binary
executable is downloaded to the external microprocessor along with the programming data file. For more information,
see the latest version of the DirectC User Guide available on the Microchip DirectC solution webpage.

Security only bitstream must be programmed only on erased or blank devices. If the security bitstream is used to
program a previously programmed FPGA, it disables the FPGA Array. The fabric must be re-programmed to enable
it.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 19

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads


The following figure shows a sample implementation of device programming using an external microprocessor
running DirectC.

Figure 4-5. Programming Using External Microprocessor

Programming Header
(Dedicated JTAG)

RT PolarFire® FPGA

System 
Controller

JTAG
Controller

sNVM and User 
Security Settings

FPGA Fabric

Device contents to be 
programmed

Microprocessor 
Running DirectCG

PI
O

s

JT
A
G

 I
nt

er
fa

ce
 A

PI
s

Programming Image (.DAT)

4.1.5 JTAG Programming Using ChipPro Solution
The ChipPro programmer baseboard with FlashPro6 can be used to program the device through the dedicated JTAG
interface. This can be done either using the Libero SoC or a standalone FlashPro Express. For information about
ChipPro, see CP-PROG-BASE.

4.2 SPI Slave Programming
RT PolarFire FPGA can be programmed using an external SPI master such as an external microprocessor or a
FlashPro programmer through the SPI interface. See Table 4-4 for the pin settings that must be used to configure the
system controller SPI in slave mode.

The SPI slave or master mode is determined by IO_CFG_INTF SPI pin at device Power-on Reset (POR) and cannot
be switched dynamically. A power cycle or DEVRST is required to change the SPI configuration from Slave to Master
or vice-versa by configuring the IO_CFG_INTF pin, as mentioned in Table 4-3.

When SPI is in Slave mode, fabric has no access to SPI and the SPI interface is dedicated to the system controller.

Design initialization from an external SPI flash is not supported when the device is in SPI slave programming mode.
For information about design initialization, see PolarFire FPGA and PolarFire SoC FPGA Power-up and Reset User
Guide.

Note:  SPI-Slave programming can be accomplished while System Controller Suspend Mode is enabled, by
temporarily exiting System Controller Suspend Mode by holding JTAG_TRSTB HIGH.

4.2.1 SPI Slave Programming Interface
In addition to the standard SPI signals, RT PolarFire FPGA provide two pins—SPI_EN and IO_CFG_INTF—for
configuring the SPI controller.

The following table lists the system controller’s SPI pins and specifies what must be done if a pin is not in use
(unused condition). For information about unused conditions and power sequence, see UG0726: PolarFire FPGA
Board Design User Guide.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 20

https://www.microsemi.com/existing-parts/parts/152642#overview
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide
https://www.microsemi.com/document-portal/doc_download/136520-ug0726-polarfire-fpga-board-design-user-guide


Table 4-3. System Controller SPI Pins

SPI Pin Name Direction Description Unused Condition

SCK Bidirectional SPI clock.1 Connect to VSS through a 10 kΩ
resistor

SS2 Bidirectional SPI slave select.1 Connect to VSS through a 10 kΩ
resistor

SDI Input SDI input.1 Connect to VDDI3 through a 10
kΩ resistor

SDO Output SDO output.1 DNC

SPI_EN Input SPI enable.
0: SPI output tristated

1: Enabled

Pulled up or down through a resistor or driven
dynamically from an external source to enable or
tristate the SPI I/O.

Connect to VSS through a 10 kΩ
resistor

IO_CFG_INTF Input SPI I/O configuration.
0: SPI slave interface
1: SPI master interface

Pulled up or down through a resistor.

Connect to VSS through a 10 kΩ
resistor

1. Shared between the system controller and the FPGA fabric. When the system controller’s SPI is enabled and
configured as master, the system controller hands over the control of the SPI to the fabric (after device power-up).
When the SPI_EN pin is disabled (driven low) or when the SS is driven HIGH, the system controller’s SPI outputs
are tristated.
2. The system controller SS pin is an active-low signal. In unused condition, the pin must be tied to VSS to avoid a
floating pin on the device.

The SPI_EN and IO_CFG_INTF pins must be configured external to the device. This can be done by using jumpers
on the board or by bootstrapping. The following table lists the SPI_EN and IO_CFG_INTF configuration for SPI slave
programming.

Table 4-4. System Controller’s SPI Configuration - SPI Slave

SPI Pins SPI Slave
Programming

Description

SPI_EN IO_CFG_INTF

0 x No Dynamic switching from Slave to Master or vice-versa is
not allowed. A power-cycle or device reset (DEVRST_N) is
required to change the SPI configuration from Slave to Master
or vice-versa by configuring the IO_CFG_INTF pin.

1 0 (SPI slave mode) Yes

1 1 (SPI master mode) No

4.2.2 SPI Slave Programming Using FlashPro Programmer
Microchip FlashPro programmer (version 5 or later) can be used to program device through the dedicated SPI. This
can be done using either the Libero SoC or a standalone FlashPro Express. The FlashPro programmer is connected
to the device SPI ports, as shown in the following figure.

The target board must provide power to the VDD, VDD18, VDD25, and VDDI3.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 21



Figure 4-6. SPI Slave Programming Using External Programmer

SS

SCK

MISO

MOSI

SPI_EN

IO_CFG_INTF

VDDI3

10 kΩ
1 kΩ

1 kΩ1 kΩ

RT PolarFire® FPGA 
(SPI Slave)

VPUMP

1
3

5

FlashPro 
Header

4

2

x

x

GND

PROG_MODE

VSPI

FL_GLD

GND

7
9

6

10

8

SDO

SDI

SS
SPI

System Controller

SCK

x

Device Programming using SPI Slave can be selected in Libero SoC Design Flow > Configure Hardware >
Programming Connectivity and Interface.

4.2.3 SPI Slave Programming Using External Microprocessor
An external microprocessor (such as a host PC or another Microchip FPGA) can be used to program the device
through the dedicated SPI port, as shown in the following figure. This type of programming requires that the external
microprocessor run the Microchip SPI-DirectC solution. The external microprocessor can also control the SPI_EN,
IO_CNF_INTF, and DEVRST_N pins to program the device.

SPI-DirectC supports programming of the FPGA fabric, sNVM, and user security settings. SPI-DirectC is used by
adding the necessary APIs and compiling the source code to create a binary executable. The binary executable is
downloaded to the external microprocessor along with the programming data file. For more information, see the latest
version of the SPI-DirectC User Guide available on the Microchip DirectC solution webpage. The example project
(Direct-C installer) is also available on the Downloads tab.

For information about FlashPro header signals, see Table 4-2.

Figure 4-7. SPI Slave Programming Using External Microprocessor

SCK
SDO
SDI

SS SS
SCK
MISO
MOSI

SPI_EN

IO_CFG_INTF

VDDI3

10 kΩ

1 kΩ

1 kΩ

1 kΩ

RT PolarFire® FPGA
(SPI Slave)

External 
Microprocessor 
(SPI Master)

SPI

System Controller

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 22

https://www.microsemi.com/product-directory/programming/4980-embedded-programming#downloads


4.3 SPI Master Programming
When the system controller SPI is configured as a master, a device can program itself. In SPI master programming,
the programming images are stored in the external SPI flash memory using the SPI directory. For more information
about the SPI directory and about programming the external SPI flash memory, see 11.  Programming the External
SPI Flash.

SPI master programming supports auto update and IAP. In auto update programming, if the version of the update
image is found to be different from the currently programmed version, the system controller reads the update image
bitstream from the external SPI flash memory and programs the device on power-up. In IAP, the user application
initiates the device program, and the system controller reads the bitstream from the external SPI flash memory to
program the device. The auto update and IAP operations are atomic and cannot be interrupted by JTAG or SPI slave
commands.

The Auto Update feature is not enabled by default and if required, this needs to be enabled using Libero SoC. SPI
Master mode also supports Auto Programming and Auto Recovery, see Table 4-5. These two features are enabled by
default and do not require user configuration.

For information about the I/O states during SPI master programming, see 7.  I/O States During Programming.

The following table lists the initiation sources for the features supported by SPI master programming.

Table 4-5. Device Program Initiation Sources

Programming
Feature

Description Initiation Source

Auto programming Programs a blank device Device reset or power-cycle

Auto update Updates device contents
automatically

Device reset, power-cycle, or system service request

IAP Updates device contents upon user
request

System service request

Auto recovery1 Automatically recovers the device
from programming failure

Device power failure during programming

1 If there is a power interruption while Auto update or IAP is updating the sNVM, then the auto-recovery is not
triggered. Though, if the sNVM is not updated completely because of a power interruption, the device starts up and
will attempt to boot as normal. However, the partially programmed sNVM causes the user design to malfunction. In
this case, the user needs to use the VERIFY action or Digest Check to determine if the programming is successful.

Note:  If System Controller Suspend Mode is enabled, SPI master (IAP and Auto Update) programming mode is not
available to program the device.

For information about implementing Auto update and IAP, see AC466: PolarFire FPGA Auto Update and In-
Application Programming Application Note.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 23

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=137707


The following figure shows the recommended board configuration for SPI master programming. The VDDI3 must
match the voltage specified in the datasheet associated with the external SPI flash.

Figure 4-8. Recommended Board Configuration for SPI Master Programming

CS
SCK
MOSI
MISO

SPI_EN

IO_CFG_INTF

1 k

1 k

4.7 k

RT PolarFire® FPGA 
(SPI Master)

External 
SPI Flash

GND

VDDI3

HOLD

WP
Vcc

10 k

10 k

SDO
SDI

SS

SPI

System Controller

SCK

4.3.1 SPI Master Programming Interface
The SPI_EN and IO_CFG_INTF pins must be configured external to the device by using jumpers on the board or by
bootstrapping. The following table provides the SPI_EN and IO_CFG_INTF pin configuration details for SPI master
programming.

Table 4-6. System Controller’s SPI Configuration—SPI Master

SPI Pins SPI Master Programming

SPI_EN IO_CFG_INTF IAP Auto Update

0 x No No

1 0 (SPI slave mode) No No

1 1 (SPI master mode) Yes Yes

4.3.1.1 System Controller SPI Mode and Clock
The system controller SPI operates in data transfer mode 3 (SPI mode 3) for SPI flash read operations. Both the
clock polarity (SPO/CPOL) and clock phase (SPH/CPHA) for this data transfer mode must be set to HIGH. The
system controller’s SPI operates at a fixed clock of 20 MHz.

4.3.2 System Services
RT PolarFire FPGA devices include a System Controller, which accepts and responds to system service requests
from the user.

The user application can initiate the following programming related system services:

• Bitstream authentication
• IAP image authentication
• Auto update
• IAP

4.3.2.1 System Services
In RT PolarFire FPGA, system services are system controller actions initiated by the fabric user logic through the
system controller’s system service interface (SSI). For initiating the system services, the fabric user logic requires the

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 24



PF_SYSTEM_SERVICES SgCore IP available in the Libero catalog. The following figure shows the design interface
between fabric and System Controller.

Figure 4-9. Design Interface Between Fabric and System Controller

FPGA Fabric

System 
Controller 

Cryptoprocessor 
and NRBG

SPI

JTAG

System Controller

PUF

sNVM    pNVM

RT PolarFire® FPGA

General 
Purpose 

Processor
PF_SYSTEM_SERVICES

APB
SSI

Mailbox 
Interface

Device and Design 
Information Services

Device Programming 
Services

Data Security Services

Fabric Services

For information about system services driver and example SoftConsole project, see Firmware Catalog, which is
available in the Libero SoC installation package.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 25



4.3.2.1.1 RT PolarFire System Services Configurator
The following figure shows the RT PolarFire System Services Configurator.

Figure 4-10. PolarFire FPGA Core System Services Configurator

The fabric master is connected to the PF_SYSTEM_SERVICES core using the APB interface. The
PF_SYSTEM_SERVICES core can be configured using the PolarFire System Services configurator in Libero SoC, as
shown in Figure 4-10. For more information, see UG0848: PolarFire System Services User Guide.

4.3.2.2 System Service Request
In RT PolarFire FPGA, the system service request is initiated by passing a 16-bit system service descriptor to the
System Controller. The lower seven bits of the descriptor specify the service to be performed and the upper nine
bits specify address offset. There is a 2 Kbytes internal mailbox RAM memory space. This space is used for passing
the input data and storing the service request output that is returned by the System controller. The mailbox address
specifies the service-specific data structure that is used for any additional inputs to or outputs from the service. On
completion of service, the System Controller writes a status code indicating the successful completion of the system
service or an error code. The following table lists the system service request descriptor bits. For information about
mailbox read/write communication from Fabric, see UG0848 PolarFire System Services User Guide.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 26

http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf
http://coredocs.s3.amazonaws.com/Libero/SgCore/PolarFire/PF_SYSTEM_SERVICES/pf_system_services_config_ug.pdf


Table 4-7. RT PolarFire FPGA System Service Request Descriptor

System Service Descriptor
Bit Field

Value Description

15:7 MBOXADDR[10:2] Specifies the address offset in mailbox RAM to access
minimum four bytes of memory. Mailbox addresses are
specified using a word offset (0-511).

6:0 SERVICECMD Service command for System Controller to execute the
request.

For more information about system services, see PolarFire FPGA and PolarFire SoC FPGA System Services User
Guide.

4.3.2.3 Bitstream and IAP Image Authentication System Services
For security and reliability reasons, the programming bitstream must be authenticated and validated before the
device is programmed. Successful authentication of the bitstream prevents auto recovery. While the authentication is
in progress, the fabric user logic in RT PolarFire FPGA continues to operate normally, though without access to SPI
flash and system services. Before the device is programmed using auto update or IAP, the user application can run
the authentication system service.

Note:  If the bitstream authentication system service is initiated while a new bitstream is being loaded through the
JTAG interface, the system service takes precedence, and the JTAG operation fails.

4.3.2.3.1 Bitstream Authentication System Service
The bitstream authentication system service parses a bitstream image stored in the SPI flash and verifies the integrity
of the bitstream. The following table lists the fields in a bitstream authentication service request.

Table 4-8. Bitstream Authentication Service Request

System Service Descriptor Bit Field Value Description

15:7 MBOXADDR[10:2] Mailbox address. For the format, see Table 4-9.

6:0 23H Bitstream authentication command code.

The following table describes the bitstream authentication service mailbox format.

Table 4-9. Bitstream Authentication Service Mailbox Format

Offset Length (bytes) Parameter Direction Description

0 4 SPIADDR Input Address of the bitstream in SPI flash.
If the external SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

4.3.2.3.2 IAP Image Authentication System Service
The IAP image authentication system service parses an image stored in the SPI flash and verifies the integrity of the
image descriptor, bitstream, and design initialization data.

The following table lists the fields in an IAP image authentication service request.

Table 4-10. IAP Image Authentication Service Request

System Service Descriptor Bit
Field

Value Description

15 — Reserved.

14:7 IMAGEID[7:0] Identifies the image index in the SPI directory for image
authentication.

6:0 22H Authenticates image command.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 27

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245815


4.3.2.3.3 Authentication Service Status Codes
If bitstream authentication or IAP image authentication is successful, the status code 0 is generated. If bitstream
authentication or IAP image authentication fails, an 8-bit error code is generated. For the detailed information about
error codes, see 12.  Appendix: Error Codes.

4.3.2.3.4 Usage of Authentication System Services
The programming image contains the image descriptor, bitstream, and optional design initialization data. The
bitstream authentication system service can be used to authenticate the bitstream only. The IAP image authentication
system service, however, can be used to authenticate the entire programming image, including the image descriptor,
bitstream, and optional design initialization data.

4.3.3 Auto Update
For auto update to occur, the auto update feature needs to be enabled in the user design. On power-up, the device
selects the newer version of the first two images stored in the SPI directory. If the version of the newer image
does not match that of the currently programmed image, then auto update occurs. The following figure shows the
high-level flow of auto update programming.

Figure 4-11. Auto Update High-Level Flowchart

Power-up/
System Reset

Device Boot Up

SPI master mode 
enabled?

Device 
programmed 

already?

Initialize and execute 
user design

Auto update
enabled?

Execute Auto 
Update Flow

Device 
programmed 

already?

Yes

Yes

No

No

Yes

Yes

No*

Design not updated

No

*Different scenarios to reach here:
- Device is blank and auto update is initiated to program the device
- As part of IAP recovery when power fails during IAP or partially programmed with an invalid image
- As part of auto update recovery when power fails during auto update

The following figure shows the detailed flow of auto update programming.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 28



Figure 4-12. Auto Update Detailed Flow

Auto Update
Start

1.Read image descriptor pointers.
2.Read Image 0 and Image 1   
   version info and determine  
   update image.

Design update 
required?1

Design not 
updated

Program newer 
image

Program
Passed?

Image info
authenticated?2

Retry program 
newer image

Program
passed?

Initialize design

Program older 
image

Program
passed?

Design not 
updated3

Yes

Yes

No

Yes

No

Yes

No

Yes

No

1. Condition for update: version of the design differs from the update image or the device is blank.
2. Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of 
the bitstream as part of the programming.
3. The device is not programmed, and user intervention is required.

No

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 29



The following table lists example auto update conditions when different image versions are available in the SPI flash.

Table 4-11. Example Auto Update Conditions

Version Running on
the Device

First Two Image Versions
Available in SPI Flash

Back Level Protection Image Version Selected for
Auto Update

Blank device 2, 3 Disabled 3

3 2, 3 Disabled No auto update

3 1, 2 Disabled 2

2 1, 2 Disabled No auto update

1 1, 2 Disabled 2

2 3, 4 Enabled and set to 4 No auto update

3 3, 5 Enabled and set to 4 5

2 3, 5 Enabled and set to 4 5

5 2, 3 Enabled and set to 4 No auto update

4.3.3.1 Auto Update on a Blank Device (Auto Programming)
When a blank device is powered up or reset (with SPI master mode enabled), the device programs itself using the
newest version of the image. This process is known as auto programming.

When the device is blank and programmed using the auto programming method with security-enabled bitstream,
subsequent programming can only be done using a custom security-enabled bitstream file (UEK1/UEK2). For more
information about generating security enabled bitstream, see 1.3.  Adding User Security Settings to the Bitstream.

4.3.3.2 Auto Update on a Pre-programmed Device
Auto update is also initiated through system services on a pre-programmed device. If the device is preprogrammed, it
compares the update image with the currently programmed image. If the version of the update image is found to be
different from the currently programmed version, auto update programming is initiated.

To perform auto update on a preprogrammed device, the user application must initiate a system service request. The
system controller executes the system service request and programs the device.

The user application cannot obtain the status code in the following scenarios:

• If the auto update program is successful, the device is automatically restarted to initialize the new version of the
design.

• If the auto update program fails, the auto update recovery procedure attempts to program the device with the
valid image again.

The following table lists the fields in an auto update system service request.

Table 4-12. Auto Update System Service Request

System Service Descriptor Bit
Field

Value Description

15:7 — Reserved.

6:0 46H Auto update programming command.

When auto update is not enabled in the user design, the auto update system service can be used to update the
device with the newest image using the user application.

Note:  Auto update system service does not generate an error if SPI controller is not in the master mode.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 30



4.3.3.3 Recovery on Auto Update Programming Failure
When power fails during auto update programming, the auto update programming flow is initiated on the next boot
cycle to program the device with the newest image.

Note:  If the device fails to program the newer image, it retries once before programming itself with the older version
of the image. If the device remains blank at the end of auto update, there is no indication through I/O and user
intervention is required.

4.3.3.4 Enabling Auto Update Option in User Design
To enable auto update, follow these steps:

1. Click Configure Design Initialization Data and Memories and select the SPI Flash tab.
2. Select the Enable Auto Update checkbox.

Figure 4-13. Auto Update Setting

3. Click Configure Programming Options, and specify the design version and back level version, as shown in
the following figure.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 31



Figure 4-14. Design Version

4.3.3.5 Auto Update Use Models
Auto update is initiated when a different version of the programming image is available in the SPI flash memory. For
more information, see 11.2.  SPI Directory. The device uses the Bits/Version component of the programming image
to determine the version. The Bits/Version component appears at the beginning of a bitstream and contains version
information. This section describes three auto update use models—ping pong, golden image, and single image.
Based on the design requirement, any of these models can be used.

Ping Pong

Auto update uses the newer of the first two images on the SPI flash memory. When a new image is written to the SPI
flash memory, the older of the two images is overwritten with the new image. This is known as the ping pong model
and is used when the previous image version needs to be retained along with the newer image. This facilitates an
automatic rollback to the previous image if the new image fails. The following figure shows the ping pong use model.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 32



Figure 4-15. Ping Pong Use Model

SPI Flash Memory

Image 0  Descriptor Pointer

Image 1  Descriptor Pointer

Memory Address 0

Memory Address 4

Memory Address 8

Image 0  

Image 1

Bits/Version

Bitstream Data

Design 
Initialization Data

Bits/Version

Bitstream Data

Design 
Initialization Data

Image 1_Memory Address

SPI Directory

Image 0_Memory Address

Golden Image

When auto update fails with a newer version of the image, the device needs to be updated safely using a working
image. This image is known as the golden image. When a new image is written to the SPI flash memory, it must not
overwrite the golden image. The following figure shows the golden image use model.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 33



Figure 4-16. Golden Image Use Model

SPI Flash Memory

Golden Image  Descriptor Pointer

Update Image  Descriptor Pointer

Memory Address 0

Memory Address 4

Memory Address 8

Golden Image  

Update Image

Bits/Version

Bitstream Data

Design 
Initialization Data

Bits/Version

Bitstream Data

Design 
Initialization Data

SPI Directory

Update Image Memory Address

Golden Image Memory Address

Single Image

This model is used when only one image is available for updating the device. The following figure shows the single
image use model.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 34



Figure 4-17. Single Image Use Model

SPI Flash Memory

Image 0  Descriptor Pointer

Empty Slot Filled with 0

Memory Address 0

Memory Address 4

Image 0

Bits/Version

Bitstream Data

Design 
Initialization Data

Image 0_Memory Address

SPI Directory

4.3.4 IAP
IAP reprograms the device with a specific programming image. In IAP, regardless of the image version, the device
chooses the programming image based on either the image index or the SPI image address. The fabric user logic
specifies the programming image and initiates reprogramming of the device using the IAP system service.

4.3.4.1 IAP Using System Service
The user application initiates an IAP system service request using fabric user logic. The system service specifies
whether the image is used for verification or programming. The system controller automatically reads the bitstream
from the SPI flash to verify or program the device contents.

Verify Operation

The verify operation compares the specified programming image contents with the device contents. The following
table lists the fields in an IAP system service request using the image index.

Table 4-13. IAP Verify Request by Image Index

System Service Descriptor Bit Field Value Description

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 44H IAP verify operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as shown in the
following table.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 35



Table 4-14. IAP Verify Request by Image Address

System Service Descriptor Bit Field Value Description

15:7 MBOXADDR[10:2] Mailbox address. For the format, see Table 4-17.

6:0 45H IAP verify operation.

If the IAP verification is successful, the status code 0 is generated. If the IP verification fails, an 8-bit error code is
generated. For the detailed information about error codes, see 12.  Appendix: Error Codes.

Digest Check system service is recommended to verify the integrity of the device contents instead of IAP verify
operation. For more information, see RT PolarFire FPGA Datasheet.

Note:  Digest printed during programming (same as in *.digest file) is bitstream payload digest. It is meant for
device to confirm that it receives the correct bitstream payload. Digest exported from DEVICE_INFO is the digest of
the actual memory content. It does not have other metadata that is included in the encrypted bitstream payload, so it
is different than one generated during programming.

Program Operation

The program operation updates the device contents using a specified programming image. The IAP program
operation does not authenticate the image before executing the program. The image can be authenticated using
the IAP image authentication system service. For more information, see 4.3.2.3.2.  IAP Image Authentication System
Service.

The user application cannot obtain the status code in the following scenarios:

• If IAP is successful, the device is automatically restarted to initialize the new design.
• If IAP fails, the IAP recovery procedure attempts to program the device with image 0.

Note:  IAP recovery considers image 0 when the pointer to image 1 in the SPI directory is null. For more information,
see 11.2.  SPI Directory.

The following table lists the fields in an IAP system service request using the image index.

Table 4-15. IAP Program Request by Image Index

System Service Descriptor Bit Field Value Description

15 — Reserved.

14:7 SPI_IDX[7:0] Identifies the image index in the SPI directory for IAP
operation.

6:0 42H IAP program operation.

An SPI flash memory address can be specified instead of the image index within the SPI directory, as specified in the
following table.

Table 4-16. IAP Request by Image Address

System Service Descriptor Bit Field Value Description

15:7 MBOXADDR[10:2] For the mailbox format, see the following table.

6:0 43H IAP program operation.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 36

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245969


The following table describes the mailbox format.

Table 4-17. Mailbox Format

Offset Length (bytes) Parameter Direction Description

0 4 SPIADDR Input Programming image address in SPI flash memory. If the
attached SPI flash device does not support 32-bit addresses,
SPIADDR[31:24] is ignored.

4.3.4.2 Recovery on Programming Failure
When power fails during IAP, the device programs itself with image 0.

Note:  When the device fails to program the specific image, it retries once before programming itself with image 0. If
the device is still blank at the end of IAP, there is no indication through I/O and user intervention is required.

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 37



4.3.4.3 IAP Flow
The following figure shows the IAP flow.

Figure 4-18. IAP Flowchart

IAP system service request

SPI 
master mode

enabled?

Image specified?

1.Read SPI directory descriptor pointer 
2.Program device with specified image

Program passed?

Image info 
authenticated?*

Retry program with same image

Program passed?

1.Read SPI directory descriptor pointer 
2.Program device with image 0

Program passed?

Initialize and execute 
user design Execute auto update

No

No

Yes

Yes

No

No

Yes

No

Yes

No

Design not updated

Yes

Device 
enabled?

No

Yes

* Device checks only BITS (starting bits of the bitstream) and AUTH (encryption keys information) components of 
the bitstream as part of the programming.

Yes

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 38



4.3.4.4 IAP Use Model
RT PolarFire FPGA support the multi-image IAP use model, which allows up to 255 images to be stored in
the SPI flash memory. The image descriptor pointers are in Sector 0 of the SPI flash memory. The device can
be programmed with any image; however, if the program fails, the device is programmed with image 0. The
programming image pointer next to the image 0 pointer must be null (empty slot). This model is used when the
device needs to be updated with a specific image from among the available images. The following figure shows the
multi-image use model.

Figure 4-19. Multi-Image Use Model
SPI Flash Memory

Image 0 Descriptor Pointer

Empty Slot Filled with 0

Memory Address 0

Memory Address 4

Image 0

Bits/Version

Bitstream Data
Design 

Initialization Data

Image 1  Descriptor Pointer

Image (N-1)  Descriptor Pointer

Memory Address 8

Memory Address 4*N

Image 1

Bits/Version

Bitstream Data
Design 

Initialization Data

Image (N–1)

Bits/Version

Bitstream Data
Design 

Initialization Data

SPI Directory

Image N–1_Memory Address

Image 1_Memory Address

Image 0_Memory Address

 
Programming Modes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 39



5. In-Flight Reprogramming
Reprogramming on orbit is increasingly becoming a hard requirement for space payload electronics. Satellite
payload electronics' complexity have evolved so much that it is impossible to identify hardware bugs until the
satellite is launched. The ability to reprogram an FPGA in space can be used to fix critical bugs. Furthermore,
re-programmability in the FPGAs enables tuning of data processing algorithms to give the optimum results for
new science missions. When the primary mission of the satellite is accomplished, the satellite hardware can be
re-purposed to accomplish additional objectives if the FPGAs can be reprogrammed.

5.1 In-Flight Reprogramming Guidance
Microchip has performed several sets of radiation tests on RT PolarFire FPGAs and determined that the FPGAs can
be programmed in space, with a greater-than-99% probability of success in space.

RT PolarFire reprogramming in space is supported using JTAG with DirectC, with the following guidance:

• Single Event Effects (SEE) Impact
– Probability of first-time success for programming in GEO-synchronous orbit with Solar-Min conditions is

calculated to be greater than 99%. If radiation disrupts programming, it is likely that the next programming
attempt will be successful. Heavy ION test results can be obtained from Microchip, on request.

– Probability of programming success in LEO is very high. No programming or verify failure was observed in
accelerated ground testing. Proton test data is available from Microchip, on request.

– In-beam reprogramming and verify is non-destructive as seen in accelerated ground testing.
– It is unlikely that an ION will disrupt programming, since the flux in space is many orders of magnitude

lower than the flux tested during accelerated ground testing.
• Total Ionizing Dose (TID) Impact

– No in-flight programming constraints are identified after TID testing to 100 Krad.

5.2 In-Flight Reprogramming Sequence
When reprogramming is initiated, the FPGA is erased. Therefore, the programming and stand-alone verify operations
must be completed to success, otherwise the FPGA will be inoperable. The following sequence must be followed
when performing in-flight reprogramming:

• Programming must be followed by stand-alone verify.
• If programming fails, programming must be attempted again.
• If stand-alone verify fails, the stand-alone verify action must be attempted again.
• If stand-alone verify fails second time, reprogramming of the device must be initiated again.

For information about timing requirements and interface to the RT PolarFire FPGA JTAG pins, see 4.1.  JTAG
Programming.

The following figure shows the sequence of in-flight reprogramming.

 
In-Flight Reprogramming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 40



Figure 5-1. In-Flight Reprogramming Flow Chart

Program Passed?

· Erase the Device
· Program the Device
· Embedded Verify

Begin Device 
Programming

Stand-alone Verify

Passed Stand-alone 
Verify?

End Device Programming

Stand-alone Verify 
Attempts?

No 

Yes

Yes

No 

1st Attempt

2nd Attempt

5.3 In-Flight Reprogramming Solutions
A programming controller is required to retrieve the new programming code from an external memory and to upload
the new code into the target RT PolarFire FPGA, which is to be programmed. Some of the viable options for a
programming controller include (but not limited to):

• Standalone radiation-tolerant microcontroller such as Microchip's SAMRH71F20. A reference design is available
at GitHub. A demonstration video for RTG4 FPGA reprogramming is available here; a demonstration video for
RT PolarFire will be provided in the later version of the document.

 
In-Flight Reprogramming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 41

https://github.com/MicrochipTech/adg_fpga_reconfiguration
https://vimeo.com/578616331


• Soft microprocessor IP such as RISC-V core implemented in a FPGA. A reference design using RISC-V core
in RTG4 FPGA to program another RTG4 FPGA can be found in the DirectC Installer > SpaceForum.zip
file. Similar principles can be applied to program an RT PolarFire FPGA by an RTG4 FPGA or by another
RT PolarFire FPGA. Download the DirectC Installer. The SpaceForum.zip file can be found in the DirectC
installation folder. For example, \DirectC_Suite_v1.1\JTAG-DirectC_v4.1\SpaceForum.zip. This reference design
has not been updated to the latest Libero software versions.

• Other possible solutions, which include implementing a JTAG player in RTL or using a different soft processor
on another FPGA. These solutions have not been tested by Microchip.

 
In-Flight Reprogramming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 42

https://www.microsemi.com/product-directory/programming-and-debug/4980-embedded-programming#downloads


6. Bypassing the Back Level Protection
If Back Level protection is enabled in the Configure Security tool, the back level protection can be bypassed for SPI
bitstreams while exporting the bitstream using Libero. To prevent Programming Recovery failures, enable the Bypass
the Back Level Protection for Recovery/Golden bitstream (SPI files only), as shown in the following figures.

Figure 6-1. Selecting Bypass Back Level Protection Feature

When the SPI bitstream is added to the SPI flash using design and memory initialization data, the tool shows back
level protection bypass feature in bitstream, as shown in the following figure.

Figure 6-2. Status of Bypass Back Level Protection

 
Bypassing the Back Level Protection

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 43



6.1 Bypass Back Level Protection Use Case
The following table lists the user case for Bypass Back Level Protection.

Table 6-1. Bypass Back Level Protection Use Case

Step SPI Bitstream Action Result Design
Version

Design Back
Level Version

Device Back
Level Version

1 Golden/Recovery Auto Programming Pass 2 1 1

2 IAP/Update
Bitstream

Auto Update/IAP Pass 3 2 2

3 IAP/Update
Bitstream

Auto Update/IAP Fail, Attempt
Programming
Recovery

4 Not
Enabled

2

The steps are described as follows:

1. The device programs with a bitstream version 2 and back level version 1. The current device back level
version is set to 1.

2. The device then updates with a bitstream version 3 and back level version 2.
The current device back level version is set to 2.

3. The device attempts to update itself with a bitstream version 4 and fails to update. In this case, the device
attempts to recover using a golden/recovery bitstream version 2. But the recovery also fails as the current
device back level protection is set to version 2 and the golden/recovery bitstream version is equal to the back
level version. The Bypass Back Level Protection must be enabled (see Figure 6-1) for Golden/Recovery
bitstream to avoid programming recovery failures because of back level protection.

 
Bypassing the Back Level Protection

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 44



7. I/O States During Programming
The following table lists the I/O states that apply during various stages of programming.

Table 7-1. I/O States for Various Programming Modes

I/O Type I/O States

JTAG Programming SPI Slave
Programming

SPI Master Programming (IAP/Auto
Update)

System controller
I/O

Enabled. Enabled. Enabled.

XCVR reference
clock inputs

Not affected. Not affected. Not affected.
May be kept alive during IAP using
loopback mode, allowing the XCVR
link to be kept active.

XCVR data I/O As set by the boundary scan
cell.

Not affected. Not affected.
May be kept alive during IAP using
loopback mode, allowing the XCVR
link to be kept active.

GPIO and HSIO I/Os are enabled, but the I/O
state can be set using the
boundary scan cell.

Can be weakly
pulled up using the
SPI slave instruction
ISC_ENABLE.

Outputs are tristated and weakly
pulled up.

In Libero SoC, the I/O states can be set before JTAG programming, and these I/O states are held at the set values
during JTAG programming. The following are the I/O output state settings:

• 1: I/O is set to drive out logic HIGH
• 0: I/O is set to drive out logic LOW
• Last Known State: I/O is set to the last value that was driven out before entering the programming mode and

then held at that value during programming
• Z: I/O is tri-stated

 
I/O States During Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 45



The I/O output states can be set, as shown in the following figure.

Figure 7-1. I/O States During Programming (JTAG Mode Only)

 
I/O States During Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 46



8. Programming Recommendations
To ensure successful programming, the following guidelines are recommended:

• Authenticate the bitstream before programming the device.
• Do not assert the reset pin (DEVRST_N) during programming because this may corrupt the device

configuration.
• Use the correct configuration and programming interface based on the selected programming mode.
• Configure the device I/O states (before JTAG programming) based on the design requirements. For more

information, see 7.  I/O States During Programming.

 
Programming Recommendations

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 47



9. Brownout During Programming
Brownout is a condition that occurs when the power supplies fall below recommended levels. If brownout occurs
during programming, the device automatically recovers from the programming failure (since auto recovery is enabled
by default) and programs the device with a valid programming image stored in the external SPI flash.

 
Brownout During Programming

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 48



10. Zeroization
RT PolarFire FPGAs have a built-in capability that can zeroize (clear and verify) any or all configuration storage
elements as per the user setting. Internal volatile memories such as LSRAMs, μSRAMs, and system controller RAMs
are cleared and verified. Once the zeroization is complete, a zeroization certificate can be retrieved using a JTAG/SPI
slave instruction to confirm that the zeroization process is successful. For more information about zeroization, see
PolarFire FPGA and PolarFire SoC FPGA Security User Guide.

 
Zeroization

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 49

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245814


11. Programming the External SPI Flash
To perform IAP or auto update, an external SPI flash memory is required. This SPI flash memory interfaces with the
system controller's SPI and stores the programming images.

The SPI flash memory is divided into several sectors. The 1 KB memory in first sector (sector 0) is used as the SPI
directory, and it contains the programming image indexes (descriptor pointers). The remaining flash memory stores
the programming images.

11.1 Supported SPI Flash Devices
SPI flash devices from various vendors implement a standard instruction set for read operations. The system
controller firmware executes the following command to identify the addressing mode (3-byte or 4-byte):

READ SERIAL FLASH DISCOVERY PARAMETER (5AH)
The system controller supports devices from Micron, Winbond, Macronix, and Spansion. However, any other device
compatible with the JESD216 standard may also be used. Devices that are not JESD216-compliant may still be used
if they support the FAST READ (0BH) command with 3-byte addressing. Such devices are limited to using only the
first 128 Mb of the flash memory.

11.2 SPI Directory
The SPI directory is a collection of image descriptor pointers that point to the beginning of the programming image.
Each pointer uses four bytes. If the SPI flash memory device supports only the 3-byte addressing mode, the first
three bytes are used.

For IAP recovery to choose image 0 on power-up, the programming image pointer next to the image 0 pointer must
be null (empty slot), otherwise auto update is chosen. The following figure shows the SPI flash directory with the
programming image descriptor pointers.

Figure 11-1. SPI Flash Directory

Image(N-1) Descriptor Pointer

Sector 0

Image 0 Descriptor Pointer

Empty Slot

Image 1 Descriptor Pointer

Memory Address 0

Memory Address 4

Memory Address 8

Memory Address 4*(N-1)

The SPI directory contains the start addresses of the programming images. The SPI directory occupies 1 KB memory
from sector 0 of external SPI flash memory. For example, if the external SPI flash contains three images: golden
image, update image, and IAP image, then these images are stored at memory with starting the addresses: 0x400,
0xA00000, and 0x1400000. If the Libero configurator is used to program SPI flash with programming images, then
the Libero configurator takes care of the programming SPI directory automatically. If the user application programs
the external SPI flash with programming images, then the application must write starting addresses of each image
into SPI directory starting from SPI flash address 0, as shown in the following figure.

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 50



Figure 11-2. SPI Flash Memory

0x00000400 (golden_image.spi, Index 0)

0x00A00000 (update_image.spi, Index 1)

0x01400000 (iap_image.spi, Index 2)
1 KB SPI Flash Directory

golden_image.spi

0x00000400

0x00A00000

0x01400000

update_image.spi

iap_image.spi

0x00000000

0x00000004

0x00000008

11.3 Use Models for Programming SPI Flash
The external SPI flash can be programmed using either JTAG or the system controller’s SPI. When the system
controller’s SPI is enabled and configured in SPI master mode, the system controller’s SPI port is shared between
the system controller and either the FPGA fabric master or JTAG. This section describes the use models for
programming the external SPI flash.

11.3.1 Programming the SPI Flash Using External Processor
When the SPI_EN pin is disabled (driven LOW), the system controller’s SPI outputs are tri-stated, and the external
processor can drive the SPI pins to program the SPI flash. Neither the system controller nor the fabric can drive the
SPI interface. The external processor can drive the SPI_EN pin LOW to program the external SPI flash. The SPI_EN

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 51



pin can also be configured external to the device using the jumpers on the board. The SPI flash is programmed
using an external processor SPI master SCK frequency. The SCK frequency is configured using external processor
application. The following figure shows the connections required for programming the SPI flash using an external
processor.

Figure 11-3. SPI Flash Programming Using External Processor

CS

SCK

SO

SI

SPI_EN

VDDI3

10 kΩ

RT PolarFire® FPGA
(SC_SPI Disabled)

External 
SPI-Flash

GND

HOLD

WP
Vcc

10 kΩ

10 kΩ

0.1 µF

1 kΩ

External Processor

SPI Controller (Master)

SS SCK MISO MOSI

SPI

System Controller

11.3.2 Programming the SPI Flash Using JTAG
The external SPI flash can be programmed using a FlashPro programmer (version 5 or later) through the system
controller’s JTAG interface. The JTAG controller uses a special JTAG instruction—SPIPROG (IR=0xb0)—to
interface with the external SPI flash through the system controller’s SPI. The JTAG controller in both the device
families support this instruction to directly drive the system controller’s SPI outputs. The following figure shows the
connections required for programming the SPI flash using JTAG.

Figure 11-4. SPI Flash Programming Using JTAG

SCK

SDO

SDI

SS CS
SCK
SO
SI

SPI_EN

VDDI3

1 kΩ
RT PolarFire® FPGA

(SPI Master)
External 
SPI Flash

GND

HOLD

WP

Vcc

10 kΩ

10 kΩ

JTAG 
Controller

Host PC with 
SPI Image Files

JTAG Programmer

SPI

System Controller

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 52



11.3.2.1 Programming External SPI Flash Using Libero
The Libero SoC software allows you to program the external SPI flash memory with programming images. To
program the SPI flash memory:

1. Go to Design Flow > Program and Debug Design > Configure Design Initialization Data and Memories,
and select the SPI Flash tab, as shown in following figure.
Figure 11-5. SPI Flash Programming in Libero SoC

Note:  For RT PolarFire FPGA, to streamline the SPI-Flash Programming support with FlashPro6, effective
from Libero SoC v12.4, the vendor information is replaced with the density of the target memory.

2. Under SPI Flash Clients, add the required programming images, and click Apply. For more information about
values to be entered in the fields, click Help.

3. Go to Design Flow > Configure Hardware > Configure Programmer > right-click and select Programmer
Settings in the FlashPro tabs. User can modify the TCK frequency by checking and selecting the Force TCK
Frequency to enhance the SPI flash programming time.
Figure 11-6. Programmer Settings

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 53



4. Double-click Run PROGRAM_SPI_IMAGE Action to get the SPI flash programmed with the SPI directory and
the programming images.

Figure 11-7. Run PROGRAM_SPI_IMAGE Action

For more information about design initialization data and memories, see PolarFire FPGA and PolarFire SoC FPGA
Device Power-up and Reset User Guide.

Notes:  The following are the recommendations for SPI Flash Programming Using Libero.
• This tool erases the SPI Flash prior to programming. It is recommended to program the SPI Flash with Libero

SoC prior to programming other data on the SPI Flash using non-Libero programming solutions.
• Partial update of the SPI Flash is currently not supported.
• It is not recommended to have large gaps between clients in the SPI Flash, since gaps are currently

programmed with 1’s and increases programming time.

11.3.3 Programming the SPI Flash Using Fabric User Logic
When the system controller’s SPI is enabled and configured as master, the system controller hands over the control
of the SPI to the fabric (after device power-up). The JTAG controller that starts programming the SPI flash, or any
system service request from the fabric user logic, can take over the control of SPI from the fabric.

The fabric user logic gets the programming images from an external memory source, as shown in the following figure.
The fabric user logic accesses the external SPI flash using the CoreSPIcontroller and PF_SPI macro provided in
Libero Catalog. The external SPI flash is programmed using SPI master SCK frequency. The SCK frequency can be
configured in user logic.

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 54

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245811


System controller can only access dedicated SPI I/Os (SPI Interface pins). System Controller cannot access the
fabric IOs. As a result, all the services from the system controller using SPI (that is, programming) can only use the
dedicated SPI I/Os. The user can use PF_SPI, a macro provided in the Libero Catalog to get access to the dedicated
SPI I/Os from the fabric (that is, once the system controller releases them) to access the SPI flash memory.

Note:  To fetch the programming images and write to the external SPI flash, both the device families must be
preprogrammed with a design. For more information, see AC466: PolarFire FPGA Auto Update and In-Application
Programming Application Note.

Figure 11-8. SPI Flash Programming Using Fabric User Logic

SCK

SDI
SDO

SS CS
SCK
SO
SI

SPI_EN

IO_CFG_INTF

1 kΩ

4.7 kΩ

RT PolarFire® FPGA 
(SPI Master)

External 
SPI-Flash

GND

HOLD

WP
Vcc

10 kΩ

10 kΩ

Fabric Master

PF_SPI

Programming images from an 
external memory

PCIe/Ethernet/UART

SS_O  SCK  D_O  D_I

CoreSPI
SS   SCK   SDO   SDI

VDDI3

 
Programming the External SPI Flash

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 55

https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note
https://www.microsemi.com/document-portal/doc_download/137707-ac466-polarfire-fpga-auto-update-and-in-application-programming-application-note


12. Appendix: Error Codes
The system controller executes system service requests from the design. When a service is completed, a status code
is returned to the user application. This status code can be 0 (success) or an 8-bit error code. The following table lists
the error codes.

Table 12-1. Error Codes

Error
Code

Description Explanation

1 Validator or hash chaining
mismatch

Bitstream is constructed incorrectly, or a wrong security key is
used.

2 Unexpected data received Additional data is received after the End of the Bitstream (EOB)
component.

3 Invalid/corrupt encryption key Requested key mode is disabled, or the key could not be read or
reconstructed.

4 Invalid component header Bitstream contains invalid component data.

5 Back level not satisfied Bitstream version is older than that of the current back level in the
device.

6 Illegal bitstream mode Requested bitstream mode is disabled by user security.

7 DSN binding mismatch Bitstream is rejected because the Device Serial Number (DSN) in
the bitstream does not match the DSN on the device.

8 Illegal component sequence Bitstream ends in the ERR state, meaning it is an illegal
bitstream.
Every bitstream begins in the BEGIN state, but only a legal
bitstream ends in the END state.

9 Insufficient device capabilities Bitstream is rejected because the capabilities specified in the
bitstream do not match the target device’s capabilities.

10 Incorrect DEVICEID Bitstream is rejected because an attempt by the DEVICEID
specified in the bitstream does not match the part identification
field of the target device.

11 Unsupported bitstream protocol
version (regeneration required)

Bitstream is rejected because of an attempt made by the old
device to decode the new version of bitstream or by the new
device to decode the old version of the bitstream.

12 Verify not permitted on this
bitstream

When the device programs the bitstream with encryption keys,
it is not possible to use the bitstream later to verify the device
contents because the device refers to the modified encryption
keys.

13 Invalid device certificate Device certificate is missing or invalid.

14 Invalid DIB Device integrity bits are invalid.

21 Device not in SPI master mode Bitstream is executed in IAP mode, but the device is not
configured as SPI master.

22 No valid images found (auto
update)

Bitstream is executed through auto update mode, but no valid
image pointers are found.

23 No valid images found (IAP) Bitstream is executed through IAP via index mode, but no valid
image pointers are found.

 
Appendix: Error Codes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 56



...........continued
Error
Code

Description Explanation

24 Programmed design version
newer than auto update image

Bitstream is executed through auto update mode, and the design
version is the latest.

25 Reserved

26 Selected image invalid and no
recovery performed because the
device is running a valid design

Bitstream is executed through auto update or IAP mode, and the
selected image is invalid.

27 Selected recovery image failed to
program

Bitstream is executed through auto update or IAP mode, and the
selected recovery image failed to program the device.

127 Abort A non-bitstream instruction is executed during bitstream loading.

128 NVMVERIFY Fabric/security key segment verification failed.

129 PROTECTED The device non-volatile memory cannot be modified because of
device security settings.

130 NOTENA Programming mode is not enabled.

131 SNVMVERIFY The sNVM verify operation failed.

132 SYSTEM An error occurred in the system hardware (PUF or DRBG).

133 BADCOMPONENT An error is detected in a component’s payload.

134 HVPROGERR The HV programming subsystem has failed.

135 HVSTATE The HV programming subsystem is in an unexpected state
because of an error.

 
Appendix: Error Codes

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 57



13. Revision History
The revision history table describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Table 13-1. Revision History

Revision Date Description

A 12/2021 The first publication of the document.

 
Revision History

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 58



Microchip FPGA Support
Microchip FPGA products group backs its products with various support services, including Customer Service,
Customer Technical Support Center, a website, and worldwide sales offices. Customers are suggested to visit
Microchip online resources prior to contacting support as it is very likely that their queries have been already
answered.

Contact Technical Support Center through the website at www.microchip.com/support. Mention the FPGA Device
Part number, select appropriate case category, and upload design files while creating a technical support case.

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update
information, order status, and authorization.

• From North America, call 800.262.1060
• From the rest of the world, call 650.318.4460
• Fax, from anywhere in the world, 650.318.8044

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner, within operating

specifications, and under normal conditions.

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 59

http://www.microchip.com/support
http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support


• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code
protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright
Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly
evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test,
and integrate Microchip products with your application. Use of this information in any other manner violates these
terms. Information regarding device applications is provided only for your convenience and may be superseded
by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your
local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/
design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE,
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR
CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees
to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting
from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights
unless otherwise stated.

Trademarks
The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck,
LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB,
OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity,
SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron,
and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed
Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC
Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra,
TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the
U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching,
BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime,
IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity,
JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified
logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-
ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher,
SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY,

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 60

https://www.microchip.com/en-us/support/design-help/client-support-services
https://www.microchip.com/en-us/support/design-help/client-support-services


ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered
trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9500-0

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

 

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 61

http://www.microchip.com/quality


AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc.
and its subsidiaries

 User Guide DS50003239A-page 62

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	Table of Contents
	1.  Bitstream Generation
	1.1.  Bitstream Generation Flow
	1.2.  Adding sNVM Data to the Bitstream
	1.3.  Adding User Security Settings to the Bitstream
	1.4.  Configuring Bitstream Components
	1.5.  Programming File Size

	2.  Device Programming Flow
	2.1.  Programming Time

	3.  System Controller Suspend Mode
	3.1.  Configuring System Controller Suspend Mode

	4.  Programming Modes
	4.1.  JTAG Programming
	4.1.1.  JTAG Programming Interface
	4.1.2.  JTAG Timing
	4.1.3.  JTAG Programming Using FlashPro Programmer
	4.1.4.  JTAG Programming Using External Microprocessor
	4.1.5.  JTAG Programming Using ChipPro Solution

	4.2.  SPI Slave Programming
	4.2.1.  SPI Slave Programming Interface
	4.2.2.  SPI Slave Programming Using FlashPro Programmer
	4.2.3.  SPI Slave Programming Using External Microprocessor

	4.3.  SPI Master Programming
	4.3.1.  SPI Master Programming Interface
	4.3.1.1.  System Controller SPI Mode and Clock

	4.3.2.  System Services
	4.3.2.1.  System Services
	4.3.2.1.1.  RT PolarFire System Services Configurator

	4.3.2.2.  System Service Request
	4.3.2.3.  Bitstream and IAP Image Authentication System Services
	4.3.2.3.1.  Bitstream Authentication System Service
	4.3.2.3.2.  IAP Image Authentication System Service
	4.3.2.3.3.  Authentication Service Status Codes
	4.3.2.3.4.  Usage of Authentication System Services


	4.3.3.  Auto Update
	4.3.3.1.  Auto Update on a Blank Device (Auto Programming)
	4.3.3.2.  Auto Update on a Pre-programmed Device
	4.3.3.3.  Recovery on Auto Update Programming Failure
	4.3.3.4.  Enabling Auto Update Option in User Design
	4.3.3.5.  Auto Update Use Models

	4.3.4.  IAP
	4.3.4.1.  IAP Using System Service
	4.3.4.2.  Recovery on Programming Failure
	4.3.4.3.  IAP Flow
	4.3.4.4.  IAP Use Model



	5.  In-Flight Reprogramming
	5.1.  In-Flight Reprogramming Guidance
	5.2.  In-Flight Reprogramming Sequence
	5.3.  In-Flight Reprogramming Solutions

	6.  Bypassing the Back Level Protection
	6.1.  Bypass Back Level Protection Use Case

	7.  I/O States During Programming
	8.  Programming Recommendations
	9.  Brownout During Programming
	10.  Zeroization
	11.  Programming the External SPI Flash
	11.1.  Supported SPI Flash Devices
	11.2.  SPI Directory
	11.3.  Use Models for Programming SPI Flash
	11.3.1.  Programming the SPI Flash Using External Processor
	11.3.2.  Programming the SPI Flash Using JTAG
	11.3.2.1.  Programming External SPI Flash Using Libero

	11.3.3.  Programming the SPI Flash Using Fabric User Logic


	12.  Appendix: Error Codes
	13.  Revision History
	Microchip FPGA Support
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

