
UG0771
User Guide

Microsemi FPGA Functional Safety

50200771. 1.0 8/17

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA
Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Fax: +1 (949) 215-4996
Email: sales.support@microsemi.com
www.microsemi.com

© 2017 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of
its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the
application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have
been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any
performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all
performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not
rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to
independently determine suitability of any products and to test and verify the same. The information provided by Microsemi
hereunder is provided “as is, where is” and with all faults, and the entire risk associated with such information is entirely
with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP
rights, whether with regard to such information itself or anything described by such information. Information provided in this
document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this
document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for
aerospace & defense, communications, data center and industrial markets. Products include high-performance and
radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products;
timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing
devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and
scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design
capabilities and services. Microsemi is headquartered in Aliso Viejo, California, and has approximately 4,800 employees
globally. Learn more at www.microsemi.com.

mailto:sales.support@microsemi.com
http://www.microsemi.com
http://www.microsemi.com
http://www.microsemi.com

Contents

1 Revision History . 1
1.1 Revision 1.0 . 1

2 Introduction . 2

3 Overview of Functional Safety and IEC 61508 . 4

4 How to Use Libero SOC v11.5 SP2 in
V-Model Development 5
4.1 Step 1—FPGA Requirement Specification . 6

4.1.1 Microsemi References . 7
4.1.2 Verifying Step Was Completed Correctly . 7
4.1.3 Tools . 7
4.1.4 Specific Techniques and Measures . 7

4.2 Step 2—FPGA Architecture . 7
4.2.1 Microsemi References . 8
4.2.2 Verifying Step Was Completed Correctly . 8
4.2.3 Tools . 8
4.2.4 Specific Techniques and Measures . 8

4.3 Step 3—Test Plan . 8
4.3.1 Microsemi References . 8
4.3.2 Verifying Step Was Completed Correctly . 8
4.3.3 Tools . 9
4.3.4 Specific Techniques and Measures . 9

4.4 Step 4—Logical Module Design . 9
4.4.1 Step 4a—Logical Module Design: Design . 9
4.4.2 Step 4b—Logical Module Design: Test Plan . 10
4.4.3 Step 4c—Logical Module Design: Coding . 11
4.4.4 Step 4d—Logical Module Design: Test . 11
4.4.5 Step 5—Logical Module Integration . 12
4.4.6 Step 5a—Logical Module Integration: Design . 12
4.4.7 Step 5b—Logical Module Integration: Test Plan . 13
4.4.8 Step 5c—Logical Module Integration: Coding . 13
4.4.9 Step 5d—Logical Module Integration: Test . 14

4.5 Step 6—Synthesis . 14
4.5.1 Microsemi References . 15
4.5.2 Verifying Step Was Completed Correctly . 15
4.5.3 Tools . 15
4.5.4 Specific Techniques and Measures . 15

4.6 Step 7—Place and Route . 15
4.6.1 Microsemi References . 15
4.6.2 Verifying Step Was Completed Correctly . 15
4.6.3 Tools . 16
4.6.4 Specific Techniques and Measures . 16

4.7 Step 8—Static Timing Analysis . 16
4.7.1 Microsemi References . 16
4.7.2 Verifying Step Was Completed Correctly . 16
4.7.3 Tools . 16
4.7.4 Specific Techniques and Measures . 17

4.8 Step 9—Gate-level Simulation (Timed) . 17
4.8.1 Microsemi References . 17
UG0771 User Guide Revision 1.0 iii

4.8.2 Verifying Step Was Completed Correctly . 17
4.8.3 Tools . 17
4.8.4 Specific Techniques and Measures . 17

4.9 Step 10—Bitstream Generation . 18
4.9.1 Microsemi References . 18
4.9.2 Verifying Step Was Completed Correctly . 18
4.9.3 Specific Techniques and Measures . 18

4.10 Step 11—Validation Testing . 18
4.10.1 Microsemi References . 19
4.10.2 Verifying Step Was Completed Correctly . 19
4.10.3 Tools . 20
4.10.4 Specific Techniques and Measures . 20

5 Specific Restrictions of Use . 21

6 Techniques and Measures (IEC 61508-2, Table F2) . 22
6.0.1 Effectiveness . 22

7 Available IP Cores . 26

8 Failure Rate, Single Event Upset (SEU) Data . 27
8.1 Microsemi Reliability Report . 27

8.2 Conversion from 60% to 70% Confidence . 27

8.3 FIT Formula . 27

8.4 Failure Rate Prediction . 27
8.4.1 Example: G3 Products Based on 0.13µm . 27

8.5 Adjustment for Alternative Operating Conditions . 28

8.6 Soft Error Rate (SER) . 28

9 Appendix: Safety Compliance Checklists . 29
UG0771 User Guide Revision 1.0 iv

UG0771 User Guide Revision 1.0 v

Figures

Figure 1 V-Model Development Using Libero SoC . 5
Figure 2 V-Model Development Step 1—FPGA Requirement Specification . 7
Figure 3 V-Model Development Step 2—FPGA Architecture . 8
Figure 4 V-Model Development Step 3—Test Planning . 8
Figure 5 V-Model Development Step 4a—Logical Module Design: Design . 9
Figure 6 V-Model Development Step 4b—Logical Module Design: Test Plan . 10
Figure 7 V-Model Development Step 4c—Logical Module Design: Coding . 11
Figure 8 V-Model Development Step 4d—Logical Module Design: Test . 12
Figure 9 V-Model Development Step 5c—Logical Module Integration: Coding . 13
Figure 10 V-Model Development Step 5d—Logical Module Integration: Test . 14
Figure 11 V-Model Development Step 6—Synthesis . 14
Figure 12 V-Model Development Step 7—Place and Route . 15
Figure 13 V-Model Development Step 8—Static Timing Analysis . 16
Figure 14 V-Model Development Step 9—Gate-Level Simulation (Timed) . 17
Figure 15 V-Model Development Step 10—Bitstream Generation . 18
Figure 16 V-Model Development Step 11—Validation Testing . 19

UG0771 User Guide Revision 1.0 vi

Tables

Table 1 Libero SOC v11.5 SP2 Tools . 5
Table 2 Techniques and Measures to Prevent Introduction of Faults during FPGA Design and Development

(IEC 61508–2, Table F2) 22
Table 3 IEC 61508-Qualified Microsemi IP Cores . 26
Table 4 Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development 29
Table 5 Libero SoC v11.5 SP2 V-Model Activities Checklist . 35

Revision History

UG0771 User Guide Revision 1.0 1

1 Revision History

The revision history describes the changes that were implemented in the document. The changes are
listed by revision, starting with the most current publication.

1.1 Revision 1.0
Revision 1.0 is the first publication of this document.

Introduction
2 Introduction

Microsemi is committed to providing customers with FPGAs that can be successfully used in critical
safety designs. New technology brings new ways for a system containing electronics or programmable
electronics to fail. Failures can cause harm to people and property. Even though it is impossible to
guarantee a technological system will never fail, it is possible to reduce the risk of failure and to design
systems so that if they do fail, they fail safely. To that end, functional safety standards were created, and
continue to evolve.

International Electrotechnical Commission (IEC) 61508 Functional Safety of Electrical
/Electronic/Programmable Electronic (E/E/PE) Safety-related Systems is a standard created for industrial
applications and is intended to be the basis for functional safety in all industries. Microsemi is working
with TUV-Rheinland in Cologne, Germany to ensure that the Microsemi SoC FPGA development
environment is compliant with IEC 61508.

This document explains how to use Libero® SoC v11.5 SP2 to develop Microsemi’s third-generation
FPGAs (IGLOO® nano, IGLOO PLUS, ProASIC®3/e, ProASIC3L, and SmartFusion® FPGAs) in
compliance with IEC 61508:2010 up to safety integrity level (SIL) 3. Specifically, Libero SoC v11.5 SP2 is
qualified for use with the following devices:

• IGLOO_AGL030V2
• IGLOO_AGL030V5
• IGLOO_AGL060V5
• IGLOO_AGL125V5
• IGLOO_AGL250V2
• IGLOO_AGL250V5
• IGLOO_AGL1000V5
• IGLOO_AGLN010V2
• IGLOO_AGLN010V5
• IGLOO_AGLN020V2
• IGLOO_AGLN020V5
• IGLOO_AGLN060V2
• IGLOO_AGLN060V5
• IGLOO_AGLN125V2
• IGLOO_AGLP006V5
• IGLOO_AGLP125V5
• ProASIC3_A3P030
• ProASIC3_A3P060
• ProASIC3_A3P1000
• ProASIC3_A3P125
• ProASIC3_A3P250
• ProASIC3_A3P400
• ProASIC3_A3P600
• ProASIC3_A3P600L
• ProASIC3_A3PE1500
• ProASIC3_A3PE3000
• ProASIC3_A3PE600
• ProASIC3_A3PN010
• ProASIC3_A3PN015
• ProASIC3_A3PN020
• ProASIC3_A3PN030Z
• ProASIC3_A3PN060
• ProASIC3_A3PN060Z
• ProASIC3_A3PN125
UG0771 User Guide Revision 1.0 2

Introduction
• ProASIC3_A3PN125Z
• ProASIC3_A3PN250
• ProASIC3_A3PN250Z
• SmartFusion_ A2F200M3E
• SmartFusion_ A2F500M3G

For a list of soft IP cores that qualified to IEC 61508 SIL3, see Available IP Cores, page 26.
UG0771 User Guide Revision 1.0 3

Overview of Functional Safety and IEC 61508

UG0771 User Guide Revision 1.0 4

3 Overview of Functional Safety and IEC 61508

IEC 61508 Functional Safety of E/E/PE Safety-related Systems is widely accepted by the industry as the
standard to develop and implement safe electronic designs. IEC 61508 provides a generic approach for
all safety life cycle activities involved in systems containing E/E/PE elements.

IEC 61508 is an umbrella standard intended to be customized for specific industries. For example, ISO
26262 is the customized IEC 61508-based standard for the automotive industry, and IEC 61513 for the
nuclear Industry. If IEC 61508 is not customized for an industry, IEC 61508 itself may be used.

IEC 61508 provides a framework to address the functional safety of systems that contain electrical,
electronic, or programmable electronic components. The process described to be compliant with the
standard consists of the best practices agreed upon by IEC. The standard consists of the following
sections:

1. General Requirements
2. Requirements for E/E/PE Systems
3. Software Requirements
4. Definitions and Abbreviations
5. Examples of Methods for the Determination of Safety Integrity Levels
6. Guidelines for the Application of IEC 61508-2 and IEC 61508-3
7. Overview of Techniques and Measures

Sections 1 through 3 contain the requirements for compliance with IEC 61508. All systems must meet the
applicable requirements in sections 1 and 2. In addition, software must meet applicable requirements
from section 3.

Understanding there is no such thing as zero risk when it comes to safety, IEC 61508 takes a risk
reduction approach. Safety integrity level as defined in IEC 61508-4 is the probability of an E/E/PE
safety-related system satisfactorily performing the specified safety functions under all the stated
conditions within a stated period of time. SILs 1 through 4 are assigned to the safety functions in a
system. The methods to determine the SIL can be found in IEC 61508-5. As the SIL increases, the IEC
61508 requirements become more stringent.

It is not acceptable to consider safety at the component level only. In most situations, safety is achieved
by a number of systems, which rely on many technologies (for example, mechanical, hydraulic,
pneumatic, electrical, and programmable electronic technologies). Any safety strategy must, therefore,
consider not only all the elements within an individual system (for example, sensors, controlling devices,
and actuators) but also all the subsystems that make up the overall safety-related system. Although IEC
61508 only addresses E/E/PE systems, it can be used as a framework for other safety-related systems.
To be compliant with IEC 61508, the safety of the entire system must be addressed, starting at the
beginning of the project. Developers need to consider the following:

• What is the required SIL?
• How is the safety function defined?
• What is the safe state?
• What are the temporal requirements?

When possible, safety risks are eliminated or reduced in system concept, architecture, or design. Part of
compliance involves using best practice processes during development, implementation, and operations.
Best practices also need to be used for technical techniques and measures used in FPGA development.
The techniques and measures to be used depend on the SIL and are listed in IEC 61508.

IEC 61508 requires the use of a V-model for development. For information about Libero SoC
components used in V-Model development, see How to Use Libero SOC v11.5 SP2 in V-Model
Development, page 5.

How to Use Libero SOC v11.5 SP2 in V-Model Development
4 How to Use Libero SOC v11.5 SP2 in
V-Model Development

Most often, FPGAs are components in a much more complicated system. That puts the FPGA’s
development near the bottom of the V in the development of the system of interest. Because the
development of an FPGA is slightly different from the development of an ASIC, the Microsemi V-model
looks slightly different, but it follows the principles and methodology that are shown in Figure 3: ASIC
development life cycle (the V-Model) in IEC61508-2. The following figure illustrates how to use Libero
SOC v11.5 SP2 in V-Model development.

Figure 1 • V-Model Development Using Libero SoC

The following table lists the tools in the Libero SOC tool flow that are used in V-Model development.

Table 1 • Libero SOC v11.5 SP2 Tools

Tool Description Cat.

SmartDesign Contains the graphics required for design creation. T3

Config MSS Configures in-built microcontroller subsystem components. T3

Synopsys Synplify Pro ME Performs high-level optimization before synthesizing the RTL code
into specific FPGA logic.

T3
UG0771 User Guide Revision 1.0 5

How to Use Libero SOC v11.5 SP2 in V-Model Development
The following sections describe each step in V-model development using Libero SoC in more detail.

Note: IEC 61508 also specifies techniques and measures to be used in each step. These are listed in
Techniques and Measures (IEC 61508-2, Table F2), page 22, and in IEC 61508–2, table F2.

4.1 Step 1—FPGA Requirement Specification
As mentioned in earlier sections, FPGAs are usually part of a bigger system. Requirements for the
system, including safety requirements, are defined during early development and then flowed down to
the various subsystems. The results of the system requirement flow-down are an input to FPGA
development. The first step in the V-model for FPGA development is to create an FPGA specification or
requirements document. The specification is written in enough detail for the design to achieve the
required safety function.

For the specification to be IEC 61508-compliant, the FPGA specification must be:

• complete and correct in terms of the safety requirements assigned to the FPGA
• free from contradictions
• understandable and unambiguous, and
• capable of being verified and validated.

In addition, the hardware and software constraints must be listed.

Designer – Compile Contains a variety of functions that perform legality checks and
basic netlist optimization. Checks for netlist errors (bad
connections and fan-out problems), removes unused logic
(gobbling), and combines functions to reduce logic count and
improve performance. Verifies that the device has sufficient
resources to fit design.

T3

Designer – Place and Route Provides the cockpit and engine used to place and route the
design.

T3

Designer – SmartTime Provides gate-level static timing analysis. T2

Mentor Graphics ModelSim ME Provides gate-level verification, allowing verification of HDL code
line by line.

T2

Designer – Bitstream Generator Provides the cockpit and engine to export the programing file to
program the part, and to export the pin report and IBIS file to
design the board.

T3

FlashPro Programs the FPGA. T3

Designer – SmartPower Provides the cockpit and engine to analyze power consumption of
the design.

T2

Synopsys Identify ME Helps find and correct functional design bugs by probing internal
signals of the design directly from the programmed FPGA at the
system speed.

T2

FlashPro - Inspect Device Allows users to read analog blocks, eNVM, and µFROM. T2

Table 1 • Libero SOC v11.5 SP2 Tools

Tool Description Cat.
UG0771 User Guide Revision 1.0 6

How to Use Libero SOC v11.5 SP2 in V-Model Development
Figure 2 • V-Model Development Step 1—FPGA Requirement Specification

4.1.1 Microsemi References
None

4.1.2 Verifying Step Was Completed Correctly
• Cross-check detailed FPGA requirements specification against input documents. Using unique

identification numbers for the items facilitates the check.
• Peer review the detailed FPGA requirements specification.

4.1.3 Tools
• Standard word-processing software (such as Microsoft Word)
• Requirements authoring and management tools

4.1.4 Specific Techniques and Measures
None

4.2 Step 2—FPGA Architecture
In the FPGA Architecture step, the FPGA design is divided into blocks. The requirements in the FPGA
specification are partitioned and assigned to the blocks. The interconnections between the blocks and
between the blocks and external interfaces are defined. The blocks are assigned such that each block
can independently be developed and tested. Typically, a block diagram is created to show the blocks and
their interconnections.

As part of creating the FPGA architecture, a specific FPGA may be selected, and IP cores, third-party IP,
and standard interfaces may be defined. All necessary safety requirements including design entry, use of
specific tools, and sub-modular and modular diagnostic techniques are considered. Any architectural
features necessary to check the correct operation of safety design are included. Any known issues with
the FPGA devices and tools are considered. The errata for Libero SOC v11.5 SP2 can be found in Libero
SoC v11.5 SP2 Release Notes.
UG0771 User Guide Revision 1.0 7

../User Guides and Release Notes/SW Tools/Libero_115_sp2_Rel_Notes 121416 Rev 1.pdf
../User Guides and Release Notes/SW Tools/Libero_115_sp2_Rel_Notes 121416 Rev 1.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
Figure 3 • V-Model Development Step 2—FPGA Architecture

4.2.1 Microsemi References
Errata for Libero SOC v11.5 SP2 in Libero SoC v11.5 SP2 Release Notes

4.2.2 Verifying Step Was Completed Correctly
• Cross-check input documents items against output document items.
• Peer review or inspect the architecture.

4.2.3 Tools
• Standard drawing software (such as Microsoft Visio)
• Standard word-processing software (such as Microsoft Word)

4.2.4 Specific Techniques and Measures
None

4.3 Step 3—Test Plan
In the Test Plan step, a test description or test specification is created for the fully-integrated FPGA. Each
point in the FPGA specification or functional requirements document is addressed. Tests are specified to
verify correct functionality and possible fault conditions.

Figure 4 • V-Model Development Step 3—Test Planning

4.3.1 Microsemi References
None

4.3.2 Verifying Step Was Completed Correctly
• Cross-check testable items in the design document against the numbered tests in the test

description
• Peer review the test strategy and coverage
UG0771 User Guide Revision 1.0 8

../User Guides and Release Notes/SW Tools/Libero_115_sp2_Rel_Notes 121416 Rev 1.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.3.3 Tools
Standard word-processing software (such as Microsoft Word)

4.3.4 Specific Techniques and Measures
None

4.4 Step 4—Logical Module Design
Logical module design consists of designing individual logical modules, specifying the tests necessary to
verify functionality, coding the modules, and then testing them.

4.4.1 Step 4a—Logical Module Design: Design
The modules or blocks in the FPGA are designed during the Design phase of the Logical Module Design
step. Factors considered during this step are RAM usage and arrangement, clocking resources (PLLs)
routing and arrangement, block I/O connectivity, and bus types. A design document is created, which
details a method to achieve the block’s requirements. The design document may be at the level of
specifying state machine functions, mathematical functions, and detailed block I/O definitions. It must be
of sufficient detail to allow a competent engineer to fully implement the block in the FPGA, including
diagnostics.

At this stage, it is recommended that the behavior of the block be modeled. A model can be used to verify
FPGA architecture and provide a method for checking the final block implementation. The model may be
implemented in a high-level modeling language.

For some designs, it may be desirable to include Microsemi’s IP cores. These IP cores are called
Microsemi DirectCores and can be found in the IP catalog in Libero SOC v11.5 SP2. Microsemi IP cores
qualified for use up to IEC 61508 SIL 3 are listed in Available IP Cores, page 26.

Figure 5 • V-Model Development Step 4a—Logical Module Design: Design

4.4.1.1 Microsemi References
Information about SmartDesign, Config MSS, and catalog core generation from Libero SoC v11.5 User
Guide

4.4.1.2 Verifying Step Was Completed Correctly
• Cross-check the input specification against the output design document.
• Peer review documents.
• Config MSS:

• Use RTL simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Check output file dates with respect to the inputs.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review timing constraints in SmartTime.
• Use a lint tool.
UG0771 User Guide Revision 1.0 9

../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf
../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
• SmartDesign:
• Use RTL simulation of the generated design to verify intended functionality.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Review output logs.
• Check output file dates with respect to the inputs.
• Use of a lint tool.

4.4.1.3 Tools
• Standard word-processing software (such as Microsoft Word)
• SmartDesign
• Config MSS

4.4.1.4 Specific Techniques and Measures
None

4.4.2 Step 4b—Logical Module Design: Test Plan
In the Module Design – Test Plan step, a test description or test specification is created. The test
document describes the tests to be used to verify that the block design meets all its requirements.

Each specification item or functional requirement is addressed. Tests are specified to verify correct
functionality and possible fault conditions. Tests are also specified to verify the capability of the
diagnostic features within the block.

Figure 6 • V-Model Development Step 4b—Logical Module Design: Test Plan

4.4.2.1 Microsemi References
Information about creating a SmartDesign test bench and creating an HDL test bench in Libero SoC
v11.5 User Guide, pages 80–81

4.4.2.2 Verifying Step Was Completed Correctly
• Cross-check testable items in the design document against numbered tests in the test description
• Peer review the test strategy and coverage

4.4.2.3 Tools
• Standard word-processing software (Microsoft Word)
• Libero SoC – Create SmartDesign Testbench
• Libero SoC – Create HDL Testbench

4.4.2.4 Specific Techniques and Measures
None
UG0771 User Guide Revision 1.0 10

../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf
../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.4.3 Step 4c—Logical Module Design: Coding
In the Logical Module Design – Coding step, the detailed block functional description of the block is
translated into a synthesizable design description, which typically takes the form of a (V)HDL description
of the circuit functions. A standard text editor may be used for design entry. Libero SoC v11.5 SP2 offers
options to use SmartDesign, Config MSS, and the Configure catalog to instantiate, configure, and
connect cores and peripherals. Structured diagrammatic methods and a design description in (V)HDL are
highly recommended in IEC 61508 for all SILs. Schematic entry and Boolean equations are not
recommended for SIL 3.

Figure 7 • V-Model Development Step 4c—Logical Module Design: Coding

4.4.3.1 Microsemi References
None

4.4.3.2 Verifying Step Was Completed Correctly
• Use a lint tool (if applicable).
• Conduct a code inspection or walkthrough.
• Config MSS:

• Use RTL simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Cross-check output file dates against the inputs.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review timing constraints in SmartTime.
• Use a lint tool.

• SmartDesign:
• Use RTL simulation of the generated design to verify intended functionality.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Review output logs.
• Cross-check output file dates against the inputs.
• Use a lint tool.

4.4.3.3 Tools
• Standard text editor
• Configure MSS
• SmartDesign

4.4.3.4 Specific Techniques and Measures
• Structured Description: IEC 61508-2 Table F.2.1
• Design Description in (V)HDL: IEC 61508-2 Table F.2.2
• Schematic Entry: IEC 61508-2 Table F.2.3
• Restricted Use of Asynchronous Constructs: IEC 61508-2 Table F.2.9
• Code Inspection or Walkthrough: IEC 61508-2 Table F.2.15

4.4.4 Step 4d—Logical Module Design: Test
In the Logical Module Design - Test step, the tests specified in the test description document are
executed and the results analyzed. Of the many techniques available for testing blocks, those
appropriate for testing the design are selected. First, a test bench or executable code is created for each
UG0771 User Guide Revision 1.0 11

How to Use Libero SOC v11.5 SP2 in V-Model Development
item in the block’s test description document. Test benches are typically created in (V)HDL or Verilog
using a standard text editor. The use of scripts is recommended because scripts not only save time but
also allow tests to be run with a high degree of reliability and repeatability. Next, the tests are run and the
results collected and analyzed. Information about the pass/fail status of each test must be easily
accessible by the engineering team and the management. The source code is modified to correct the
faults in the software and is retested.

Figure 8 • V-Model Development Step 4d—Logical Module Design: Test

4.4.4.1 Microsemi References
None

4.4.4.2 Verifying Step Was Completed Correctly
• Use tools.
• Peer review test results.
• Manually check for valid simulator output.
• Check for the presence of report file and its time and date stamp.
• Check for time and date stamps of simulation library files.
• Mentor Graphics ModelSim ME:

• Review logs for correctness.
• Compare results across RTL and multiple gate-level simulations.
• Verify that the behavior on the FPGA is as expected.
• Check output file and simulation library dates against the inputs.
• Manually check for valid simulator output.
• Confirm that the correct top is used.
• Peer review simulation scripts, test benches, and test results.

4.4.4.3 Tools
Mentor Graphics ModelSim ME

4.4.4.4 Specific Techniques and Measures
• Application of Proven-in-Use (V)HDL Simulators: IEC 61508-2 Table F.2.7
• Functional Test on Module Level (for example, (V)HDL Test benches): IEC 61508-2 Table F.2.8
• Coverage of the Verification Scenarios (Test benches): IEC 61508-2 Table F.2.12
• Documentation of Simulation Results: IEC 61508-2 Table F.2.14
• Application of Proven-in-Use Libraries/CPLD Technologies: IEC 61508-2 Table F.2.24

4.4.5 Step 5—Logical Module Integration
The steps for logical module integration are the same as logical module design. The blocks developed
during logical module design are combined so that the whole FPGA’s design is defined.

4.4.6 Step 5a—Logical Module Integration: Design
The design effort for logical module integration is very similar to the design effort for logical module
design except in module integration, the design of the whole FPGA is considered instead of individual
blocks. The FPGA architecture document may be used to describe the interaction among the blocks. For
more information, see Step 4a—Logical Module Design: Design, page 9.
UG0771 User Guide Revision 1.0 12

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.4.7 Step 5b—Logical Module Integration: Test Plan
The steps for creating a test plan for logical module integration are the same as those for creating the
test plan for logical module design except the testing is done at a higher level in the architecture, usually
full-chip testing. For more information, see Step 4b—Logical Module Design: Test Plan, page 10.

4.4.8 Step 5c—Logical Module Integration: Coding
During logical module integration coding, individual blocks developed during the Logical Module Design
step are combined to create the complete FPGA design.

Libero SmartDesign and Config MSS tools can be used for modular integration. These tools generate
code for IP and can simplify code generation and connection of modules. SmartDesign and Config MSS
generate an HDL file from a schematic representation. This HDL source can be included in the design in
the same way as manually-coded HDL.

Figure 9 • V-Model Development Step 5c—Logical Module Integration: Coding

4.4.8.1 Microsemi References
None

4.4.8.2 Verifying Step Was Completed Correctly
• Analyze the report file output for automated steps.
• Check for VHDL source files time and date stamp.
• Config MSS:

• Use RTL simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Check output file dates against the inputs.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review timing constraints in SmartTime.
• Use a lint tool.

• SmartDesign:
• Use RTL simulation of the generated design to verify intended functionality.
• Use gate-level simulation of the generated design to verify intended functionality.
• Review reports, warnings, errors to determine if output is as expected.
• Review output logs.
• Check output file dates against the inputs.
• Use a lint tool.

4.4.8.3 Tools
• SmartDesign
• Config MSS
• Libero text editor
UG0771 User Guide Revision 1.0 13

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.4.8.4 Specific Techniques and Measures
• Modularization: IEC 61508-2 Table F.2.11
• Application of Validated Soft Cores: IEC 61508-2 Table F.2.16a
• Validation of Soft IP Cores: IEC 61508-2 Table F.2.16b

4.4.9 Step 5d—Logical Module Integration: Test
The Logical Module Integration - Test step is similar to the Module Design - Test step except instead of
individual blocks, the combined blocks as a whole are tested. For more information, see Step 4d—
Logical Module Design: Test, page 11.

Figure 10 • V-Model Development Step 5d—Logical Module Integration: Test

4.4.9.1 Microsemi References
None

4.4.9.2 Verifying Step Was Completed Correctly
• Peer review or inspect test results.
• Manually check for valid simulator output.
• Check for the presence of the report file and its time and date stamp.
• Check of time and date stamp of simulation library files.
• Mentor Graphics ModelSim ME:

• Review logs for correctness.
• Compare results across RTL and multiple gate-level simulations.
• Verify that the FPGA behavior is as expected.
• Check output file and simulation library dates against the inputs.
• Manually check for valid simulator output.
• Confirm that the correct top is used.
• Peer review simulation scripts, test benches, and test results.

4.4.9.3 Tools
Mentor Graphics ModelSim ME

4.5 Step 6—Synthesis
Synopsys Synplify Pro ME, the synthesis tool in the Libero SOC tool suite, performs high-level
optimizations before synthesizing the RTL code into specific FPGA logic.

Figure 11 • V-Model Development Step 6—Synthesis
UG0771 User Guide Revision 1.0 14

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.5.1 Microsemi References
Synopsys FPGA Synthesis Synplify Pro ME I-2014.03M-SP1 User Guide for Libero SoC v11.5

4.5.2 Verifying Step Was Completed Correctly
• Review generated report files for warnings.
• Check internal project database time and date stamp.
• Check input file list.
• Check output file dates against the inputs.
• Use RTL simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Review timing constraints.
• Make sure the Go button does nothing when pushed.

4.5.3 Tools
Synopsys Synplify Pro ME

4.5.4 Specific Techniques and Measures
• Internal Consistency Checks: IEC 61508-2 Table F.2.17
• Documentation of Synthesis Constraints, Results, and Tools: IEC 61508-2 Table F.2.22
• Application of Proven-in-Use Synthesis: IEC 61508-2 Table F.2.23
• Application of Proven-in-Use Libraries/CPLD Technologies: IEC 61508-2 Table F.2.24
• Script-Based Procedure: IEC 61508-2 Table F.2.25

4.6 Step 7—Place and Route
In the Place and Route step, the Designer – Compile subroutine translates the logic functions into a
format that can be implemented within the target FPGA. The Designer – Compile subroutine contains a
variety of functions that perform legality checking and basic netlist optimization. It checks for netlist errors
(bad connections and fanout problems), removes unused logic (gobbling), and combines functions to
reduce logic count and improve performance. It also verifies that the FPGA has sufficient resources to
meet the design requirements. A netlist is created, which includes the placement and routing of each
logic cell. When the default timing-driven setting is used, place and route runs automatically.

Figure 12 • V-Model Development Step 7—Place and Route

4.6.1 Microsemi References
Information about place and route in Libero SoC v11.5 User Guide, pages 108 – 112

4.6.2 Verifying Step Was Completed Correctly
• Analyze tool-generated report files (check for warnings, critical warnings, and so on).
• Check internal project database time and date stamp.
• Check for valid gate-level simulation results.
• Designer – Compile subroutine:

• Use gate-level simulation of the generated design to verify intended functionality.
• Make sure the Go button does nothing when pushed.
• Check output file dates against the inputs.
• Review reports, warnings, and errors to determine if output is as expected.
• Check input file list.
• Manually review constraints.
UG0771 User Guide Revision 1.0 15

../User Guides and Release Notes/SW Tools/Synopsys FPGA Synthesis Synplify Pro ME User Guide.pdf
../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
• Designer – Place and Route subroutine:
• Use gate-level simulation of the generated design to verify intended functionality.
• Review reports, warnings, and errors to determine if output is as expected.
• Check output file dates against the inputs.
• Make sure the Go button does nothing when pushed.
• Use SmartTime post layout to verify design timing.
• Review timing constraints in SmartTime.

4.6.3 Tools
• Designer – Compiler subroutine
• Designer – Place and Route subroutine

4.6.4 Specific Techniques and Measures
• Justification of Proven-in-Use for Applied Hard Cores: IEC 61508-2 Table F.2.26a
• Application of Validated Hard Cores: IEC 61508-2 Table F.2.26b

4.7 Step 8—Static Timing Analysis
During static timing analysis, static timing is analyzed at the gate level.

Figure 13 • V-Model Development Step 8—Static Timing Analysis

4.7.1 Microsemi References
SmartTime for Libero SoC v11.5 User’s Guide

4.7.2 Verifying Step Was Completed Correctly
• Review tool output files for timing failures:

• Check that the tool reads the correct constraints (.sdc) file.
• Check the clocks summary report.
• Check for the presence of the report file and its time and date stamp.
• Check unconstrained paths in report files.

• Review timing constraints in SmartTime.
• Verify golden simulations against actual behavior on the device.
• Test the device in a production context.
• Review reports, warnings, and errors to determine if output is as expected.
• Check output file dates against the inputs.
• Ensure that the flow is driven to the correct part/speed grade.
• Use SmartTime post layout to verify design timing.
• Confirm that the top specified is the top needed.

4.7.3 Tools
Designer – SmartTime subroutine
UG0771 User Guide Revision 1.0 16

../User Guides and Release Notes/SW Tools/SmartTime for Libero SoC Software v11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.7.4 Specific Techniques and Measures
• Documentation of Synthesis Constraints, Results, and Tools: IEC 61508-2 Table F.2.22
• Static Analysis of the Propagation Delay (STA): IEC 61508-2 Table F.2.27b
• Additional Slack (> 20%) For Process Technologies in Use for Less Than 3 Years: IEC 61508-2

Table F.2.31

4.8 Step 9—Gate-level Simulation (Timed)
A simulation of the design is created using the netlist from place-and-route. The simulation can first be
run without timing data. However, all relevant timing data is later added to the logic simulator to detect
any timing violations. It is typical to reuse the simulation test benches created during logical module
design testing (see Step 4d—Logical Module Design: Test, page 11).

Figure 14 • V-Model Development Step 9—Gate-Level Simulation (Timed)

4.8.1 Microsemi References
Libero SoC v11.5 User Guide, page 112

4.8.2 Verifying Step Was Completed Correctly
• Manually check waveforms.
• Check for time and date stamps in the report file.
• Manually check report file pass or fail status.
• If the simulator gives a false pass to a test, compare simulation results across RTL and multiple

gate-level netlists.
• Review logs for correctness.
• Compare results across RTL and multiple gate-level simulations.
• Verify behavior on the FPGA is as expected.
• Check output file and simulation library dates against the inputs.
• Manually check for valid simulator output.
• Confirm that the correct top is used.
• Peer review simulation scripts, test benches, and test results.

4.8.3 Tools
Mentor Graphics ModelSim ME

4.8.4 Specific Techniques and Measures
• Application of Proven-in-Use Libraries/CPLD Technologies: IEC 61508-2 Table F.2.24
• Simulation of the Gate Netlist to Check Timing Constraints: IEC 61508-2 Table F.2.27a
• Additional Slack (> 20%) for Process Technologies in Use for Less than 3 Years: IEC 61508-2 Table

F.2.31
UG0771 User Guide Revision 1.0 17

../User Guides and Release Notes/SW Tools/Libero 11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
4.9 Step 10—Bitstream Generation
The programing files are generated during bitstream generation. The final netlist is used to create the
code, which programs the logic cells in the FPGAs. The programing data file (.pdb) is created by the
Bitstream Generator subroutine in Designer and sent to the Microsemi FlashPro programmer, which
programs the FPGA.

Figure 15 • V-Model Development Step 10—Bitstream Generation

4.9.1 Microsemi References
FlashPro for Software v11.5 User’s Guide

4.9.2 Verifying Step Was Completed Correctly
• Review tool-generated report files.
• Check programming files time and date stamp.
• Microsemi Designer – Bitstream Generator subroutine:

• Review reports, warnings, and errors for expected behavior.
• Verify golden simulations against actual behavior on the device.
• Check output file dates against inputs.
• Make sure the Go button does nothing when pushed.
• Confirm the correct top is used.
• Check the contents of memories in SmartDebug.

• FlashPro:
• Review reports, warnings, and errors for expected behavior.
• Perform functional testing on silicon.
• Run standalone verify on the programmed device.
• Verify golden simulations against actual behavior on the device; ensure the root module is set

correctly.
• Make sure the Go button does nothing when pushed.
• Run device_info in FlashPro for the device being programmed.Tools

• Designer – Bitstream Generator subroutine
• Microsemi FlashPro programmer

4.9.3 Specific Techniques and Measures
None

4.10 Step 11—Validation Testing
During the Validation Testing step, it is determined whether the FPGA meets the requirements in the
FPGA specification. The FPGA is tested according to the test plan (see Step 3—Test Plan, page 8). If the
validation is not successful, the Libero SOC tool suite provides tools to help in the debug process. The
SmartPower subroutine in Microsemi Designer analyses the power consumption of the design. Synopsys
Identify ME helps find and correct functional design bugs by probing internal signals of the design directly
from the programmed FPGA at system speed. The Inspect Device subroutine in Microsemi FlashPro
allows users to read analog blocks, eNVM, and µFROM.
UG0771 User Guide Revision 1.0 18

../User Guides and Release Notes/SW Tools/FlashPro for Software v11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
Figure 16 • V-Model Development Step 11—Validation Testing

4.10.1 Microsemi References
• SmartPower for Libero SoC Software v11.5 User’s Guide
• Synopsys Identify RTL J-2014.09M-1 Debugger User Guide for Libero SoC v11.5
• FlashPro for Software v11.5 User’s Guide

4.10.2 Verifying Step Was Completed Correctly
• Review tool-generated report files.
• To determine if power requirements are correctly calculated, measure power usage on the

programmed part in production context.
• To determine the design is correctly modified to trace an internal signal, verify the device behavior is

as expected.
• To determine the RTL is in the programming bitstream, prior to production, build the design in a

clean environment without Synopsys Identify ME insertion, and check that the checksums generated
match the production bitstream.

• To determine that the RTL is in the programming bitstream and the correct signal trace is returned,
verify the device behavior is as expected.

• Run standalone verify in FlashPro on the programmed device to determine that the bitstream
programmed is the bitstream expected.

• SmartPower:
• Review power report, warnings, and errors for expected behavior.
• Test device power usage in a production context.
• Check output file dates against the inputs.
• Confirm that the correct top is used.
• Review input parameters (frequency, probabilities, toggle rates, and operating conditions).

• Synopsys Identify ME:
• Check the simulation results against the signals on the board.
• Review reports, warnings, and errors for expected behavior.
• Check design netlist for instantiation of debugger IP.
• Check for valid inputs for all points of analysis.

• FlashPro – Inspect Device:
• Check results against user simulation to ensure the design does not write to an unexpected

eNVM address.
• Check the board or device power supply.
• Check the cable connection to the JTAG header on board.
• Check continuity of the JTAG cable.
• Check the device status.
• Check for expected results from the device.
• Check configuration contents from file against those displayed in UI.
• Check the simulation results against the signals on the board.
UG0771 User Guide Revision 1.0 19

../User Guides and Release Notes/SW Tools/smartpower_user guide_v11.5.pdf
../User Guides and Release Notes/SW Tools/Identify_ME_User_Guide_Nov_2014.pdf
../User Guides and Release Notes/SW Tools/FlashPro for Software v11.5 User Guide.pdf

How to Use Libero SOC v11.5 SP2 in V-Model Development
• Check that the correct top is set within Libero.
• Check the eNVM Flash Memory Builder configuration.
• Check the UFROM configuration in - Designer, and data assigned.
• Read the device info, and make sure it is correct.
• Read the device status using the View device status option, and check the design versions.
• Review reports, warnings, and errors for expected behavior.

4.10.3 Tools
• Designer – SmartPower
• Synopsys Identify ME
• Microsemi FlashPro

4.10.4 Specific Techniques and Measures
Final Verification and Validation during Mass Production, Per-Unit-Check: IEC 61508-2 Table F.2.41
UG0771 User Guide Revision 1.0 20

Specific Restrictions of Use

UG0771 User Guide Revision 1.0 21

5 Specific Restrictions of Use

Restrictions of use to the Libero SOC tool flow are detailed in Libero SoC v11.5 SP2 Release Notes. The
Libero SoC v11.5 SP2 certification applies to specific Microsemi devices only. For a list of these devices,
see Introduction, page 2.

IP cores referenced in Available IP Cores, page 26 have no restrictions of use.

../User Guides and Release Notes/SW Tools/Libero_115_sp2_Rel_Notes 121416 Rev 1.pdf

Techniques and Measures (IEC 61508-2, Table F2)
6 Techniques and Measures (IEC 61508-2,
Table F2)

To be compliant with IEC 61508 and to prevent the introduction of faults during the development of an
FPGA, it is necessary to use techniques and measures specified in IEC 61508-2, paragraph 7.4.6.7 and
table F2. Table 2, page 22 lists the techniques and measures for each SIL (except SIL 4, which is outside
the scope of this document). Techniques and measures automatically realized by using the Libero SOC
tool flow are checked. The designations HR*, HR, R, -, and NR indicate the importance of the technique
or measure. The designations low, medium, and high indicate the effectiveness of the technique or
measure.Importance

• HR*: The technique or measure is highly recommended for this SIL. No design should exclude this
technique or measure.

• HR: The technique or measure is highly recommended for this SIL. If this technique or measure is
not used, then the rationale behind not using it should be detailed.

• R: The technique or measure is recommended for this SIL. If this technique or measure is not used
or none of the possible alternatives are used, then the rationale behind not using it should be
detailed.

• −: The technique or measure has no recommendations for or against being used.
• NR: The technique or measure is positively not recommended for this SIL. If this technique or

measure is used, then the rationale behind using it should be detailed.

6.0.1 Effectiveness
• Low: If used, the technique or measure should be used to the extent necessary to give at least low

effectiveness against systematic failures.
• Medium: If used, the technique or measure should be used to the extent necessary to give at least

medium effectiveness against systematic failures.
• High: The technique or measure should be used to the extent necessary to give high effectiveness

against systematic failures.

Table 2 • Techniques and Measures to Prevent Introduction of Faults during FPGA Design and
Development (IEC 61508–2, Table F2)

 Ref Technique/Measure
See IEC
61508-7 SIL 1 SIL 2 SIL 3

Design Entry Phase

1 Structured description E3 HR HR HR*

high high high

2 Design description in (V)HDL E1 HR HR HR*

high high high

3 Schematic entry E2 − − NR

high high

4 Design description using Boolean equations R R NR

high high

5a For circuit descriptions that use Boolean
equations, manual inspection in designs with
limited low complexity

HR HR HR*

high high high

5b For circuit descriptions that use Boolean
equations, simulation of state transitions in
designs with higher complexity

HR HR HR*

high high high
UG0771 User Guide Revision 1.0 22

Techniques and Measures (IEC 61508-2, Table F2)
 6 Application of proven-in-use design
environment

E4 HR HR HR*

high high high

 7 Application of proven-in-use design
environment (V)HDL simulators

E4 HR HR HR*

high high high

8 Functional test at module level (using, for
example, (V)HDL test benches)

E6 HR HR HR*

high high high

9 Restricted use of asynchronous constructs E9 HR HR HR*

high high high

10 Design for testability (depending on the test
coverage in percentage)

E11 R R R

> 95% > 98% > 99%

11 Modularization E12 R R HR

medium medium high

12 Coverage of the verification scenarios (test
benches)

E13 R R HR

medium medium high

13 Observation of coding guidelines E14 HR HR HR*

high high high

14 Documentation of simulation results E17 HR HR HR

low medium high

15a Code inspection E18 R R HR

medium high high

15b Walkthrough E19 R R HR

medium high high

16a Application of validated soft cores E20 R R HR

medium high high

16b Validation of soft cores E21 R R HR

medium high high

Synthesis Phase

 17 Internal consistency checklists (see for
example IEC 61508-7, E4)

HR HR HR*

high high high

18a Simulation of the gate netlist to check timing
constraints

E22 R R R

medium medium high

18b Static analysis of the propagation delay (STA) E23 R R R

medium medium high

19a Verification of the gate netlist against a
reference model by simulation

E24 R R HR

medium medium high

Table 2 • Techniques and Measures to Prevent Introduction of Faults during FPGA Design and
Development (IEC 61508–2, Table F2) (continued)

 Ref Technique/Measure
See IEC
61508-7 SIL 1 SIL 2 SIL 3
UG0771 User Guide Revision 1.0 23

Techniques and Measures (IEC 61508-2, Table F2)
19b Comparison of the gate netlist with the
reference model (formal equivalence check)

E25 R R HR

medium medium high

20 For PLD/CPLD in complex designs; check of
the design by simulation

R R HR

medium medium high

21 Check of IC vendor requirements and
constraints

E26 HR HR HR*

high high high

22 Documentation of synthesis constraints,
results, and tools

E27 HR HR HR*

high high high

 23 Application of proven-in-use synthesis tools E28 HR HR HR*

high high high

 24 Application of proven-in-use libraries/CPDL E29 HR HR HR*

high high high

 25 Script-based procedures E30 R R HR

high high high

Placement, Routing, Layout Generation Phase

26a Justification of proven-in-use for applied hard
cores

E34 HR HR HR*

high high high

26b Application of validated hard cores E35 HR HR HR*

high high high

26c On-line testing of hard cores E36 HR HR HR*

high high high

27a Simulation of the gate netlist to check timing
constraints

E22 HR HR HR*

high high high

27b Static analysis of the propagation delay (STA) E23 HR HR HR*

high high high

28a Verification of the gate netlist against a
reference model by simulation

E24 HR HR HR*

high high high

28b Comparison to the gate netlist with the
reference model (formal equivalence check)

E25 HR HR HR*

high high high

 29 Design rule check (DRC) E37 HR HR HR

high high high

 30 Application of proven-in-use design
environments, application of proven-in-use cell
libraries

E4 HR* HR* HR*

high high high

 31 Additional slack (> 20%) for process
technologies in use less than three years

E39 HR HR HR*

high high high

Table 2 • Techniques and Measures to Prevent Introduction of Faults during FPGA Design and
Development (IEC 61508–2, Table F2) (continued)

 Ref Technique/Measure
See IEC
61508-7 SIL 1 SIL 2 SIL 3
UG0771 User Guide Revision 1.0 24

Techniques and Measures (IEC 61508-2, Table F2)
Notes:

• Appropriate techniques/measures should be selected according to the safety integrity level.
Alternate or equivalent techniques/measures are indicated by a letter following the number. At least
one of the alternate or equivalent technique/measures should be applied.

• (V)HDL denotes either very high-speed integrated circuit HDL or Verilog HDL.

Manufacturing Phase

 32 Application of proven-in-use process
technology

HR HR HR*

high high high

 33 Application of proven-in-use device series E41 HR HR HR*

high high high

34 Proven-in-use manufacturing process E42 HR HR HR

low medium high

35 Quality control of the manufacturing process E43 HR HR HR

high high high

36 Manufacturing quality pass of the device E44 HR HR HR

low medium high

37 Functional quality pass of the device E45 HR HR HR*

high high high

38 Quality standards E46 HR HR HR

low medium high

 39 Quality management, for examples according
to ISO 9000

HR HR HR

low medium high

40 Final verification and validation of the
FPGA/PLD prototype in the system

HR HR HR*

high high high

 41 Final verification and validation during mass
manufacturing, per-unit-check

R R HR*

high high high

42 Burn-in test E40 R R R

low low medium

Table 2 • Techniques and Measures to Prevent Introduction of Faults during FPGA Design and
Development (IEC 61508–2, Table F2) (continued)

 Ref Technique/Measure
See IEC
61508-7 SIL 1 SIL 2 SIL 3
UG0771 User Guide Revision 1.0 25

Available IP Cores

UG0771 User Guide Revision 1.0 26

7 Available IP Cores

The following IP cores are IEC 61508 qualified up to SIL 3. Be sure to use only the version listed in your
critical safety design.

Table 3 • IEC 61508-Qualified Microsemi IP Cores

IP Version

Core AHB2APB3 3.1

CoreABC 3.6

CoreAES128 3.3

CoreAHBLite 5.2

CoreAPB3 4.1

CoreEDAC 2.8

CoreGPIO 3.1

CoreLPC 3.2

CorePWM 4.3

Failure Rate, Single Event Upset (SEU) Data
8 Failure Rate, Single Event Upset (SEU) Data

This section describes how to use Microsemi FPGA performance data for the functional safety
calculations necessary for IEC 61508 certification.

8.1 Microsemi Reliability Report
Microsemi’s extensive reliability report contains the statistical data needed for the IEC 61508 functional
safety calculations for Microsemi FPGAs. At the time of this publication, the latest version is RT0001—
Microsemi Corporation SoC Products Reliability Report, revision 15. The Microsemi Reliability Report
can also be found on the Microsemi website: http://www.microsemi.com/company/quality/reliability. The
report is typically updated annually. The figures in the report may be used as a basis for the functional
safety calculations required by IEC 61508. However, contact Microsemi for the most up-to-date figures
before submitting your design for assessment.

8.2 Conversion from 60% to 70% Confidence
The Microsemi Reliability Report calculates device failure in time (FIT) rates with a 60% confidence
model (FIT60). IEC 61508 requires the use of FIT rates calculated at a 70% confidence level (FIT70).

When no failures are observed for a device, the straightforward conversion from 60% confidence to 70%
confidence level shown in the example below can be used. Device failure information can be obtained
from the Reliability Summary tables in the Microsemi Reliability Report. If your target device has
demonstrated a failure, contact Microsemi for further details of FIT recalculation.

8.3 FIT Formula
Microsemi uses the JESD85 (Methods for Calculating Failure Rates in Units of FITs) standard to
calculate FIT rates. The formula for failure rate is:

Failure rate = Χ2/(2 × A.F. × device hours) failures/hour

In this formula, the chi-squared term Χ2/2 gives the probability estimation for the number of failures or
rejects. The term A.F. refers to the acceleration factor.

Note: For a full explanation of the method to calculate failure rate, refer to the Standard FIT Rate and MTTF
Assumptions section in the Microsemi Reliability Report.

8.4 Failure Rate Prediction
When calculating for 60% confidence, the chi-squared value (Χ2) is 1.83 based on zero failures. When
calculating for 70% confidence, the chi-squared value (Χ2) is 2.41 based on zero failures. By inspection,
to convert from 60% confidence to 70% confidence, the FIT60 rates are multiplied by (2.41/1.83), or 1.32.

Therefore, to use the published Microsemi FIT rates in calculations requiring a 70% confidence level,
multiply the 60% confidence figures by a factor of 1.32:

FIT70 = 1.32 × FIT60.

Note: This approach is only valid for devices that show no failures. Contact Microsemi for further details of FIT
recalculation if your target device has demonstrated a failure.

8.4.1 Example: G3 Products Based on 0.13µm
This example calculation uses FIT information from the Microsemi Reliability Report IGLOO - AGL
0.13µm UMC Flash CMOS FPGA Lifetest Data.

Using chi-squared distribution at 60% confidence level

Acceleration Factor (A.F.) = 77.94

Assuming Ea = 0.7 Ev, Tstress= 125 °C, Tuse= 55 °C
UG0771 User Guide Revision 1.0 27

../Reliability Report/Microsemi_FPGA_and_SoC_Products_Reliability_Report_RT0001_V15.pdf
../Reliability Report/Microsemi_FPGA_and_SoC_Products_Reliability_Report_RT0001_V15.pdf
http://www.microsemi.com/company/quality/reliability

Failure Rate, Single Event Upset (SEU) Data
Based on combined G3 product (IGLOO - AGL 0.13µm UMC Flash CMOS FPGA)

Device Hours = 1732396 with zero failures

FIT60 = Χ2 × 109/2x (device hrs × A.F) = (1.83 × 109)/(2 × 1732396 × 77.94) = 6.78 FITs

Based on Microsemi conversion, FIT70 = 1.32 × FIT60

FIT at 70% Confidence level = 1.32 × 6.78 = 8.94 FITs

8.5 Adjustment for Alternative Operating Conditions
The Microsemi Reliability Report gives FIT rates for particular device operating conditions such as
voltage and temperature. If different operation conditions are experienced, then new acceleration factors
for each failure mechanism must be used to calculate the FIT rate. For information about FIT calculation,
refer to the Standard FIT Rate and MTTF Assumptions section in the Microsemi Reliability Report.

8.6 Soft Error Rate (SER)
Microsemi flash-based FPGAs are immune to SER changes in programmable fabric configuration
because of natural radiation in terrestrial, airborne, and space applications. Single-bit errors in the logic
fabric flip-flops and in embedded SRAM occur at rates that can be easily managed by established error
correction techniques such as shortened hamming codes and forward error correcting codes. The upset
rates are shown as FIT rates below. (1 FIT is one failure in 109 hours):

Changes to configuration (firm errors) FIT rates per megabit of configuration memory: Immune, no
failures detected at sea level at 5,000 ft., 30,000 ft., or 60,000 ft.

Flip-Flop SEU FIT rates: 889 per million flip-flops (note that each FPGA contains significantly fewer than
one million flip-flops)

Embedded memory SEU FIT rates: 1,580 per megabit (note that each FPGA contains significantly fewer
than 1 megabit of SRAM)

Contact Microsemi for more information.
UG0771 User Guide Revision 1.0 28

Appendix: Safety Compliance Checklists
9 Appendix: Safety Compliance Checklists

To ensure steps are not inadvertently skipped during the development of an IEC 61508-compliant FPGA,
it is important to use checklists. The two tables in this section can be used as checklists during FPGA
development in addition to Table 2, page 22.

The following table specifies the document structure and naming convention that must be followed in
order to meet IEC 61508 requirements.

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development

V-Model Step Input Document  Output Document 

2 FPGA
Architecture

FPGA
RequirementsSpecification.doc

PROJECT_DesignDescription.doc

PROJECT_synthesis_constraints.doc

PROJECT_timing_constraints.doc

PROJECT_placement_constraints.doc

PROJECT_Timing_Specification.doc

PROJECT_Power_Specification.doc

3 Test Plan PROJECT_DesignDescription.doc PROJECT_TestDescription_TopLevel.doc

PROJECT_synthesis_constraints.
doc

PROJECT_placement_constraints
.doc

PROJECT_timing_constraints.doc

4 Logical Module Design

4a Design PROJECT_DesignDescription.doc PROJECT_Design_TopLevel_Specification.doc

PROJECT_Design_Module-1_Specification.doc

PROJECT_Design_Module-2_Specification.doc

PROJECT_Design_Module-3_Specification.doc

PROJECT_timing_constraints.sdc

PROJECT_design_constraints.fdc

PROJECT_physical_design_constraints.pdc

4b Test Plan PROJECT_TestDescription_TopLe
vel.doc

PROJECT_TestDescription_Module-1.doc

PROJECT_TestDescription_Module-2.doc

PROJECT_TestDescription_Module-3.doc
UG0771 User Guide Revision 1.0 29

Appendix: Safety Compliance Checklists
4c Coding PROJECT_Design_Module-
1_Specification.doc

RTL_Module-1 (v/vhd)

PROJECT_Design_Module-
2_Specification.doc

RTL_Module-2 (v/vhd)

PROJECT_Design_Module-
3_Specification.doc

RTL_Module-3 (v/vhd)

PROJECT_TestDescription_Modul
e-1.doc

TB_Module-1 (v/vhd)

PROJECT_TestDescription_Modul
e-2.doc

TB_Module-2 (v/vhd)

PROJECT_TestDescription_Modul
e-3.doc

TB_Module-3 (v/vhd)

4d Test PROJECT_TestDescription_Modul
e-1.doc

TB_Module-1.rpt

PROJECT_TestDescription_Modul
e-2.doc

TB_Module-2.rpt

PROJECT_TestDescription_Modul
e-3.doc

TB_Module-3.rpt

RTL_Module-1 (v/vhd)

RTL_Module-2 (v/vhd)

RTL_Module-3 (v/vhd)

TB_Module-1 (v/vhd)

TB_Module-2 (v/vhd)

TB_Module-3 (v/vhd)

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 30

Appendix: Safety Compliance Checklists
5 Logical Module Integration

5a Design RTL_Module-1 (v/vhd) RTL_Top_Level_SmartDesign (v/vhd)

RTL_Module-2 (v/vhd) RTL_Sub_SmartDesign1 (v/vhd)

RTL_Module-3 (v/vhd) RTL_Sub_SmartDesign2 (v/vhd)

PROJECT_Design_TopLevel_Spe
cification.doc

RTL_Core1_file1 (v/vhd)

PROJECT_DesignDescription.doc RTL_Core1_file2 (v/vhd)

RTL_Core2_file1 (v/vhd)

RTL_Core2_file2 (v/vhd)

RTL_MSS_Core_Module (v/vhd)

RTL_MSS_Sub_Components_Module (v/vhd)

RTL_Firmware-Module.c

RTL_Firmware-Module.h

MSS_Hardware_Configuration.efc (embedded
flash configuration file)

TB_MSS.bfm

TB_PROJECT.bfm

Design_Information.xml

DRC_Report.xml

5b Test Plan PROJECT_TestDescription_TopLe
vel.doc

PROJECT_Instrumentation_Specification.doc

PROJECT_Inspect_Specification.doc

5c Coding PROJECT_TestDescription_TopLe
vel.doc

TB_Top_Level (v/vhd)

PROJECT_Design_TopLevel_Spe
cification.doc

RTL_Top_Level (v/vhd)

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 31

Appendix: Safety Compliance Checklists
5d Test RTL_Top_Level_SmartDesign
(v/vhd)

TB_sim.rpt

RTL_Sub_SmartDesign1 (v/vhd)

RTL_Sub_SmartDesign2 (v/vhd)

RTL_Core1_file1 (v/vhd)

RTL_Core1_file2 (v/vhd)

RTL_Core2_file1 (v/vhd)

RTL_Core2_file2 (v/vhd)

RTL_MSS_Core_Module (v/vhd)

RTL_MSS_Sub_Components_Mo
dule (v/vhd)

RTL_Firmware-Module.c

RTL_Firmware-Module.h

TB_MSS.bfm

TB_PROJECT.bfm

TB_Top_Level (v/vhd)

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 32

Appendix: Safety Compliance Checklists
6 Synthesis RTL_Top_Level (v/vhd) PROJECT_design_synthesis.edn

RTL_MSS_Core_Module (v/vhd) PROJECT_design_synthesis (v/vhd) (generated
by rwnetlist.exe)

RTL_MSS_Sub_Components_Mo
dule (v/vhd)

PROJECT_design_synthesis.srr

RTL_RTL_Top_Level_SmartDesig
n (v/vhd)

PROJECT_design_run_options.txt

RTL_Sub_SmartDesign1 (v/vhd) PROJECT_timing_constraints.sdc (forward
annotated)

RTL_Sub_SmartDesign2 (v/vhd)

RTL_Core1_file1 (v/vhd)

RTL_Core1_file2 (v/vhd)

RTL_Core2_file1 (v/vhd)

RTL_Core2_file2 (v/vhd)

PROJECT_timing_constraints.sdc

PROJECT_design_constraints.fdc
(only through standalone Synplify
Pro)

PROJECT_synthesis_constraints.
doc

Designer – Compile Inputs Designer – Compile Outputs

PROJECT_design_synthesis.edn PROJECT_design.adb (internal tool database
file)

PROJECT_timing_constraints.sdc
(forward annotated)

PROJECT_design_compile.rpt

PROJECT_physical_design_const
raints.pdc

PROJECT_design_netlist (v/vhd/adl/afl)

7 Place-and-
Route

PROJECT_design.adb (internal
tool database file)

PROJECT_design.adb (updated adb file with
post-layout placement and routing information)

PROJECT_placement_constraints
.doc

PROJECT_design_place_and_route_report.txt

PROJECT_design_iobank_report.txt

PROJECT_design_globalnet_report.txt

PROJECT_design_globalusage_report.txt

PROJECT_design_ba (v/vhd)

PROJECT_design_ba.sdf

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 33

Appendix: Safety Compliance Checklists
8 Static Timing
Analysis

PROJECT_design.adb (internal
tool database file)

Timing.rpt

PROJECT_Timing_Specification.d
oc

Timing_violations.rpt

Datasheet.rpt

Bottleneck.rpt

Constraints_coverage.rpt

Combinational_loops.rpt

9 Gate-Level
Simulation
(Timed)

PROJECT_design_ba (v/vhd) PROJECT_design.vcd

PROJECT_design_ba.sdf PROJECT_design_synthesis.wlf

TB_Top_Level (v/vhd) TB_sim.rpt

PROJECT_macro_library (v/vhd)
(src code or pre-compiled, from
libero)

PROJECT_TestDescription_TopLe
vel.doc

10 Bitstream
Generation

PROJECT_design.adb (internal
tool database file)

PROJECT_design.pdb

PROJECT_design.stp

PROJECT_design.fdb
(SmartFusion only, input into
FlashPro)

PROJECT_design.fdb (for SmartFusion FPGAs
only; intermediate output of flow; used as input
to FlashPro)

PROJECT_design.dat

PROJECT_design.svf

PROJECT_ieee_1532 (.isc, .bsd)

PROJECT_design_secured.pdb

PROJECT_design.ibs

PROJECT_program.log

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 34

Appendix: Safety Compliance Checklists
The following table is a checklist of activities required during FPGA development for compliance with IEC
61508.

11 Validation
Testing

PROJECT_design.adb (internal
tool database file)

report_power (txt/csv/xml)

PROJECT_Power_Specification.d
oc

report_power_sequencer (txt/csv/xml)

RTL_Module-1 (v/vhd) report_power_peak_analyzer (txt/csv)

RTL_Module-2 (v/vhd)
RTL_Module-3 (v/vhd)

report_power_activity_map (txt/csv)

PROJECT_timing_constraints.sdc PROJECT_instrumented_design_synthesis.edn

PROJECT_Instrumentation_Specif
ication.doc

PROJECT_instrumented_design_synthesis.vm

PROJECT_Design_TopLevel_Spe
cification.doc

PROJECT_instrumented_design_synthesis.prj

PROJECT_design.pdb or PROJECT_instrumented_design_synthesis.vcd

PROJECT_design.stp PROJECT_design_HW.rpt

PROJECT_Inspect_Specification.d
oc

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 

Management

1-6.2.1 Have one or more persons been clearly identified as responsible for functional safety?

1-6.2.2 Is there a policy and strategy in place for achieving functional safety including
communication and evaluation?

1-6.2.3 Were all organizations and individuals responsible for carrying out activities regarding
the safety-related system identified and their responsibilities are communicated to
them?

1-6.2.4 Does a communication plan exist?

1-6.2.5 Are procedures in place to address safety-related recommendations from:
a) hazard and risk analysis
b) functional safety assessment
c) verification activities
d) validation activities
e) configuration management
f) incident reporting and analysis?

1-6.2.6 Are procedures in place to ensure all hazardous events are analyzed and
recommendations made to minimize the probability of a repeat occurrence?

1-6.2.7 Are the requirements for periodic safety audits defined including: frequency, level of
independence of those carrying out the audits, necessary documentation, and follow-up
activities?

Table 4 • Document Checklist for Using Libero SoC v11.5 SP2 in V-Model Development (continued)

V-Model Step Input Document  Output Document 
UG0771 User Guide Revision 1.0 35

Appendix: Safety Compliance Checklists
1-6.2.8 Are procedures in place for initiation and approval of modifications to safety-related
systems?

1-6.2.9 Are procedures in place for maintaining accurate information on hazards, hazardous
events, and safety functions?

1-6.2.10 Is a configuration management system in place and does it include a method to prevent
unauthorized items from entering service?

1-6.2.10 Is a procedure in place to identify all constituent parts of an item?

1-6.2.11 Is a procedure in place to provide training and information for emergency services
where appropriate?

1-6.2.12 Have all management and technical activities been identified to ensure all functional
safety requirements are met?

1-6.2.12 Have all the measures and techniques necessary to meet all IEC 61508 requirements
been defined?

1-6.2.12 Is a plan in place for the functional safety assessments including the definition of the
content and activities?

1-6.2.12 Are procedures in place for identification and assessment of systematic faults which
could jeopardize functional safety? Do the assessments include whether the demand
rates and failure rates are in accordance with the assumptions made during the design
of the system?

1-6.2.13 through
1-6.2.15

Is there a competence management system in place that ensures individuals working
on the safety-related system have the appropriate knowledge and experience?

1-6.2.17 Do suppliers meet the appropriate critical safety requirements?

Documentation

1-5.2.1 Does the documentation for each life cycle phase contain sufficient information for the
next life cycle phase to be successful?

1-5.2.2 Does the documentation contain sufficient information to manage functional safety?

1-5.2.3 Does the documentation contain sufficient information to conduct a functional safety
assessment?

1-5.2.4 Is documentation available for items specified by IEC 61508? (See Table 4, page 29.)

1-5.2.5 Is sufficient documentation available to carry out the duties called out by IEC 61508?

1-5.2.6 Are the documents accurate and concise?

1-5.2.6 Are the documents easy to understand by the persons who need to use them?

1-5.2.6 Do the documents suit the purpose for which they are intended?

1-5.2.6 Are the documents accessible and maintainable?

1-5.2.7 Do the documents have titles that indicate the scope of the contents?

1-5.2.7 Do the documents have some form of index arrangement?

1-5.2.9 Do the documents have a revision index?

1-5.2.10 Is it possible to readily identify the revision number in the document?

1-5.2.10 Are the documents structured in such a way to make it possible to search for relative
information?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 36

Appendix: Safety Compliance Checklists
1-5.2.11 Are the documents revised, amended, reviewed, and approved under document
control?

E/E/PE System Safety Requirements Specification and Requirement Flow-Down to FPGA

1-7.10.2.4 Are the requirements structured and written so that they are: clear, precise,
unambiguous, verifiable, testable, maintainable, and feasible?

1-7.10.2.4 Is each safety function defined with requirements expressed in natural or formal
language and/or using logic, sequence, or cause and effect diagrams?

1-7.10.2.6a Do the functional safety requirements provide comprehensive detailed requirements
sufficient for the design and development of the E/E/PE safety-related system, and are
they flowed down properly to the FPGA requirements?

1-7.10.2.6a Do the functional safety requirements include the manner in which the E/E/PE safety-
related systems are intended to achieve or maintain a safe state for the EUC, and are
these requirements flowed down properly to the FPGA requirements?

1-7.10.2.6a For each safety function, is it specified whether or not continuous control is required,
and for what periods it is needed to achieve and maintain a safe state of the EUC? Are
these requirements flowed down properly to the FPGA requirements?

1-7.10.2.6a Do the functional safety requirements specify whether each safety function is applicable
to E/E/PE safety-related systems operating in low demand, high demand, or continuous
modes of operation, and are these requirements flowed down properly to the FPGA
requirements?

1-7.10.2.6b Do the functional safety requirements specify response time performance (the time
within which it is necessary for the safety function to be completed), and are these
requirements flowed down properly to the FPGA requirements?

1-7.10.2.6c Are the E/E/PE safety-related system and operator interfaces necessary to achieve the
required functional safety specified, and are these requirements flowed down properly
to the FPGA requirements?

1-7.10.2.6f Were all relevant modes of operation of the EUC specified and flowed down properly to
the FPGA requirements, including:
– preparation for use including setting and adjustment,
– start-up, teach, automatic, manual, semi-automatic, steady state of operation,
– steady state of non-operation, re-setting, shutdown, maintenance,
– reasonably foreseeable abnormal conditions?

1-7.10.2.6g Was the failure behavior and the required response in the event of failure defined for
the E/E/PE safety-related system (for example alarms, automatic shutdown, and so
on)? Were these requirements properly flowed down to FPGA requirements?

1-7.10.2.7c Was the required duty cycle and lifetime accounted for in the requirements and
considered in the selection of the FPGA?

1-7.10.2.7e Were the extremes of all environmental conditions likely to be encountered during the
E/E/PE system safety life cycle specified, including manufacture, storage, transport,
testing, installation, commissioning, operation, and maintenance? Were these
requirements properly flowed down to FPGA requirements?

1-7.10.2.7f Were the electromagnetic immunity limits that are required to achieve functional safety
considered in the derivation of requirements?

7-C.2.11 Are the requirements traceable forward and backward?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 37

Appendix: Safety Compliance Checklists
Design Entry

7-E1 Is the functional description at a high abstraction level in a hardware description
language, for example, in (V)HDL?

7-E3 Was a structured or modular approach used in describing the functionality of the circuit
so that it is easily readable and understood?

Was there a procedural crosscheck of detailed FPGA requirements specification
against input documents?

7-E4 Was a proven-in-use design environment used?

7-E6 Were functional tests at the module level using test benches completed and
documented?

7-E9 Were asynchronous constructs restricted?

7-E11 Were structures that are not testable or poorly testable avoided, for example,
asynchronous constructs, latches, and on-chip tristate signals, and wired-AND/wired-
OR logic and redundant logic?

7-E12 Was a modular description of the circuit functions with clearly defined interfaces used?

7-E13 Were the applied verification scenarios quantitative and qualitatively documented?

7-E14 Were coding guidelines that resulted in a syntactic, semantic, easy-to-read circuit code
used?

7-E17 Was all the data needed for a successful simulation in order to verify the circuit’s
functions documented?

7-E18 Was there a review of the circuit description? Did the review include:
– checking the code style
– verifying the functionality against the specification
– checking for defensive coding, error and exception handling?

7-E19 Was a code walkthrough conducted and documented for a set of test cases?

7-E20 and E21 Were all soft cores validated?

Libero SOC V-model If Config MSS was used, was a RTL simulation of the generated design used to verify
intended functionality?

Libero SOC V-model If Config MSS was used, were reports, warnings, and errors reviewed to determine if
the output was as expected?

Libero SOC V-model If Config MSS was used, were the output file dates checked against inputs?

Libero SOC V-model If Config MSS was used, was a gate-level simulation of the generated design used to
verify intended functionality?

Libero SOC V-model If Config MSS was used, were constraints in SmartTime reviewed?

Libero SOC V-model If Config MSS was used, was a lint tool used, if appropriate?

Libero SOC V-model If SmartDesign was used, was an RTL simulation of the generated design used to verify
intended functionality?

Libero SOC V-model If SmartDesign was used, were reports, warnings, and errors reviewed to determine if
the output was as expected?

Libero SOC V-model If SmartDesign was used, were the output file dates checked against inputs?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 38

Appendix: Safety Compliance Checklists
Libero SOC V-model If SmartDesign was used, was a gate-level simulation of the generated design used to
verify intended functionality?

Libero SOC V-model If SmartDesign was used, were output logs reviewed?

Libero SOC V-model If SmartDesign was used, was a lint tool used, if appropriate?

Testing

7-E6 Were functional tests at the module level using test benches completed and
documented?

7-E7 Were functional tests at the top or FPGA level completed and documented?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, were logs reviewed for correctness?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, were results compared across multiple
gate-level simulations?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, was behavior at the FPGA level as
expected?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, were output files and simulation library
dates checked against inputs?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, was a manual check for valid simulator
output performed?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, was it confirmed the correct top was used?

Libero SOC V-model If Mentor Graphics ModelSim ME was used, was a peer review or inspection conducted
of the simulation scripts, test benches, and test results?

Libero SOC V-model Was a peer review or inspection of the test strategy and coverage conducted?

Libero SOC V-model Was a crosscheck completed to determine if all the testable items in the requirements
documents are in the test plan?

Synthesis

7-E22 Was the gate netlist simulated to check timing constraints including best- and worst-
case conditions at the maximum specified clock rate?

7-E23 Was a static timing analysis completed and documented?

7-E24 Was the gate netlist verification against the reference model by simulation completed
and documented?

7-E25 Was the gate netlist compared to the reference model to ensure a functional
equivalence check independent of simulation?

7-E26 Were vendor requirements and constraints checked?

7-E27 Were all constraints required for an optimal synthesis to generate the final gate netlist
documented?

7-E28 Was a proven-in-use synthesis tool been used?

7-E29 Were only proven-in-use libraries used?

7-E30 Were script-based procedures used in the synthesis cycles?

Libero SOC V-model Were the report files generated by Synopsys Synplify Pro ME reviewed for warnings?

Libero SOC V-model Was the internal project database time and date stamp in Synplify Pro ME checked?

Libero SOC V-model Was the input file list to Synopsys Synplify Pro ME checked?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 39

Appendix: Safety Compliance Checklists
Libero SOC V-model Were the output file dates in Synopsys Synplify Pro ME checked against inputs?

Libero SOC V-model Was RTL simulation of the generated design performed to verify intended functionality?

Libero SOC V-model Were the Synopsys Synplify Pro ME reports, warnings, and errors checked to
determine if the output was as expected?

Libero SOC V-model Were the timing constraints checked?

Placement, Routing, and Layout Generation

7-E34 and E35 Were only proven-in-use hard cores used?

7-E36 Was on-line testing performed and documented for hard cores?

7-E22 Was the gate netlist simulated to check timing constraints including best- and worst-
case conditions at the maximum specified clock rate?

7-E23 Was a static timing analysis completed and documented?

7-E24 Was the gate netlist verification against the reference model by simulation completed
and documented?

7-E25 Was the gate netlist compared to the reference model so that there was a functional
equivalence check independent of simulation?

7-E37 Was a detailed design rule check (DRC) completed and documented (that is, were the
vendor design rules verified and documented, for example, minimum and maximum
wire lengths, placement of layout structures, and so on)?

7-E4 Was a proven-in-use design environment used?

7-E39 If the process technology was in use less than three years, was at least 20% slack
added to the minimum and maximum timing constraints?

Libero SOC V-model During static timing analysis, did the tool read the correct constraints (.sdc) file?

Libero SOC V-model During static timing analysis, was the clocks summary report reviewed?

Libero SOC V-model During static timing analysis, was a check done for the presence of the report file and its
time and date stamp?

Libero SOC V-model During static timing analysis, were the unconstrained paths in report files checked?

Libero SOC V-model During static timing analysis, was the device tested in a production context?

Libero SOC V-model During static timing analysis, were reports, warnings, and errors reviewed to determine
if the output was as expected?

Libero SOC V-model During static timing analysis, were output file dates checked against inputs?

Libero SOC V-model During static timing analysis, was it checked that the flow was driven to the correct
part/speed grade?

Libero SOC V-model During gate-level simulation (timed), was there a peer review or inspection of simulation
scripts, test benches, and test results?

Libero SOC V-model During gate-level simulation (timed), was there a manual check of waveforms?

Libero SOC V-model During gate-level simulation (timed), was there a check for time and date stamps in
report file?

Libero SOC V-model During gate-level simulation (timed), was there a manual check of the report file pass or
fail status?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 40

Appendix: Safety Compliance Checklists
Libero SOC V-model During gate-level simulation (timed), if the simulator gave a false pass to a test, were
the simulation results compared across RTL and multiple gate-level netlists?

Libero SOC V-model During gate-level simulation (timed), were the logs reviewed for correctness?

Libero SOC V-model During gate-level simulation (timed), were the results compared across RTL and
multiple gate level simulations?

Libero SOC V-model During gate-level simulation (timed), was it verified expected behavior was happening
on the FPGA?

Libero SOC V-model During gate level simulation (timed), were the output files and simulation library dates
checked against inputs?

Libero SOC V-model During gate level simulation (timed), was a manual check done for valid simulator
output?

Libero SOC V-model During gate level simulation (timed), was it confirmed that the correct top was used?

Libero SOC V-model During bitstream generation, were the tool-generated report files reviewed?

Libero SOC V-model During bitstream generation, were golden simulations used to determine if hardware
was performing as expected?

Libero SOC V-model During bitstream generation, were the programming files time and date stamp
checked?

Libero SOC V-model During bitstream generation, were the reports, warnings, and errors checked for
expected behavior?

Libero SOC V-model During bitstream generation, were the golden simulations verified against actual
behavior on the device?

Libero SOC V-model During bitstream generation, were the output file dates checked against inputs?

Libero SOC V-model During bitstream generation, was it confirmed that the correct top was used?

Libero SOC V-model During bitstream generation, were the contents of memories in SmartDebug checked?

Libero SOC V-model Was SmartTime used post layout to verify design timing?

Libero SOC V-model Were timing constraints reviewed in SmartTime?

Final Validation

Libero SOC V-model Were the tool-generated report files reviewed?

Libero SOC V-model Was the power usage on the programed part in the production context measured to
determine if power requirements were correctly calculated?

Libero SOC V-model To determine the design was correctly modified, was an internal signal traced to verify
expected behavior?

Libero SOC V-model To determine that the RTL was in the programming bitstream, prior to production, was
the design built in a clean environment without identify insertion and the checksums
checked to determine they match the production bitstream?

Libero SOC V-model Was the expected behavior verified on the device to determine that the RTL was in the
programming bitstream and that the correct signal trace was returned?

Libero SOC V-model Was the standalone verify in FlashPro on the programmed device run to determine that
the bitstream programmed was the bitstream expected?

Libero SOC V-model If SmartPower was used, were the power report, warnings, and errors reviewed for
expected behavior?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 41

Appendix: Safety Compliance Checklists
Libero SOC V-model If SmartPower was used, was the device power usage tested in a production context?

Libero SOC V-model If SmartPower was used, were the output file dates checked with respect to the inputs?

Libero SOC V-model If SmartPower was used, was it confirmed the correct top was used?

Libero SOC V-model If SmartPower was used, were the input parameters (frequency, probabilities, toggle
rates, and operating conditions) reviewed?

Libero SOC V-model If Synopsys Identify ME was used, were the simulation results checked against the
signals on the board?

Libero SOC V-model If Synopsys Identify ME was used, were reports, warnings, and errors reviewed for
expected behavior?

Libero SOC V-model If Synopsys Identify ME was used, was the design netlist checked for instantiation of
debugger IP?

Libero SOC V-model If Synopsys Identify ME was used, were inputs valid for all points of analysis?

Libero SOC V-model If Synopsys Identify ME was used, were reports, warnings, and errors reviewed for
expected behavior?

Libero SOC V-model If Synopsys Identify ME was used, were functional tests performed and passed in
silicon?

Libero SOC V-model If Synopsys Identify ME was used, was standalone verify run on the programmed
device?

Libero SOC V-model If Synopsys Identify ME was used, were the golden simulations verified against actual
behavior on the device to ensure that the root module was set correctly?

Libero SOC V-model If Synopsys Identify ME was used, was device_info run in FlashPro for the device being
programmed?

Manufacturing

Was a proven-in-use technology used in the manufacturing process?

7-E41 Does the manufacturer of the safety design have sufficient application experience with
programmable devices and development tools?

7-E42 Does the manufacturer have sufficient series production experience?

7-E43 Does manufacturer have a quality control process that ensures continuous process
control?

7-E44 Is there proof the manufacturer performs selected part stress tests, for example,
temperature-humidity bias test of change of temperature tests?

7-E45 Is there proof that the manufacturer tested the devices for functionality?

7-E46 Is the manufacturer's quality management system qualified against a quality standard
such as ISO 9000?

Was there a final verification and validation of the FPGA/PLD prototype in the system?

Was there a final verification and validation during mass manufacturing, per-unit-
check?

7-E40 Did the manufacturer perform burn-in tests?

Table 5 • Libero SoC v11.5 SP2 V-Model Activities Checklist

Reference Type (IEC
61508 or Libero SoC-
Specific) Item 
UG0771 User Guide Revision 1.0 42

	1 Revision History
	1.1 Revision 1.0

	2 Introduction
	3 Overview of Functional Safety and IEC 61508
	4 How to Use Libero SOC v11.5 SP2 in V-Model Development
	4.1 Step 1—FPGA Requirement Specification
	4.1.1 Microsemi References
	4.1.2 Verifying Step Was Completed Correctly
	4.1.3 Tools
	4.1.4 Specific Techniques and Measures

	4.2 Step 2—FPGA Architecture
	4.2.1 Microsemi References
	4.2.2 Verifying Step Was Completed Correctly
	4.2.3 Tools
	4.2.4 Specific Techniques and Measures

	4.3 Step 3—Test Plan
	4.3.1 Microsemi References
	4.3.2 Verifying Step Was Completed Correctly
	4.3.3 Tools
	4.3.4 Specific Techniques and Measures

	4.4 Step 4—Logical Module Design
	4.4.1 Step 4a—Logical Module Design: Design
	4.4.2 Step 4b—Logical Module Design: Test Plan
	4.4.3 Step 4c—Logical Module Design: Coding
	4.4.4 Step 4d—Logical Module Design: Test
	4.4.5 Step 5—Logical Module Integration
	4.4.6 Step 5a—Logical Module Integration: Design
	4.4.7 Step 5b—Logical Module Integration: Test Plan
	4.4.8 Step 5c—Logical Module Integration: Coding
	4.4.9 Step 5d—Logical Module Integration: Test

	4.5 Step 6—Synthesis
	4.5.1 Microsemi References
	4.5.2 Verifying Step Was Completed Correctly
	4.5.3 Tools
	4.5.4 Specific Techniques and Measures

	4.6 Step 7—Place and Route
	4.6.1 Microsemi References
	4.6.2 Verifying Step Was Completed Correctly
	4.6.3 Tools
	4.6.4 Specific Techniques and Measures

	4.7 Step 8—Static Timing Analysis
	4.7.1 Microsemi References
	4.7.2 Verifying Step Was Completed Correctly
	4.7.3 Tools
	4.7.4 Specific Techniques and Measures

	4.8 Step 9—Gate-level Simulation (Timed)
	4.8.1 Microsemi References
	4.8.2 Verifying Step Was Completed Correctly
	4.8.3 Tools
	4.8.4 Specific Techniques and Measures

	4.9 Step 10—Bitstream Generation
	4.9.1 Microsemi References
	4.9.2 Verifying Step Was Completed Correctly
	4.9.3 Specific Techniques and Measures

	4.10 Step 11—Validation Testing
	4.10.1 Microsemi References
	4.10.2 Verifying Step Was Completed Correctly
	4.10.3 Tools
	4.10.4 Specific Techniques and Measures

	5 Specific Restrictions of Use
	6 Techniques and Measures (IEC 61508-2, Table F2)
	6.0.1 Effectiveness

	7 Available IP Cores
	8 Failure Rate, Single Event Upset (SEU) Data
	8.1 Microsemi Reliability Report
	8.2 Conversion from 60% to 70% Confidence
	8.3 FIT Formula
	8.4 Failure Rate Prediction
	8.4.1 Example: G3 Products Based on 0.13µm

	8.5 Adjustment for Alternative Operating Conditions
	8.6 Soft Error Rate (SER)

	9 Appendix: Safety Compliance Checklists

