MICROCHIP

PolarFire® SoC Software Development and Tool Flow User

Guide

Introduction

The PolarFire SoC tool flow has been constructed to allow embedded designers and FPGA designers to develop
applications in the domain of their choice. Embedded designers and FPGA designers prefer using a tool flow they
are familiar with. The recommended starting point when designing with PolarFire SoC FPGA is the PolarFire SoC
MSS Configurator tool that graphically guides the user to define the initialization parameters for the microprocessor
subsystem, MSS peripherals, DDR, and the interfaces between the processor subsystem and the FPGA fabric. The
tool is also used to configure MSS /0.

The following flow diagram illustrates the high-level tool flow.

Figure 1. High-Level Tool Flow

Configuration Information for
Libero SoC (.CXZ)

Configuration Information for
SoftConsole (.XML)

PolarFire SoC MSS Configurator

4

Libero SoC IDE
FPGA Hardware Development

Design Implementation Tool

A

eNVM, sNVM Memory Clients

v

v

SmartDebug and
Identify

Debugging Tools

FlashPro Express
Software

Programming Tool

SoftConsole IDE
Embedded Software
Development

Compiler/
Linker Tools

Debugging
Tools

Embedded
Programming
FlashPro Embedded
Hardware Debugging
JTAG/UITAG

PolarFire SoC
Device

After the user completes a configuration, the MSS configurator exports the files needed for the embedded software
development flow and FPGA developers. The XML file contains the system configuration information needed to

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 1

generate header files for Bare Metal system startup code included in the Hart Software Services (HSS) to configure
the microprocessor subsystem to the expected state. The <project name>.cxz can be imported into Libero
SoC (v12.5 and above) and used by the FPGA designer to interface their design to the processor subsystem. The
PolarFire SoC MSS Configurator tool is used to change the state of the microprocessor subsystem or any of the
interfaces between the FPGA fabric and the microprocessor subsystem.

As the design progresses through the development process, different types of data are shared between the FPGA
designer (Libero SoC) and the embedded designer (SoftConsole). The following are some of the examples.

» SoftConsole: outputs that can be part of the FPGA bitstream or programmed directly through SoftConsole using
the FlashPro hardware.
— Boot Mode configuration
— Secure Boot Device Certificate
Embedded Non-Volatile Memory (eNVM) binary
Secure Non-Volatile Memory (sNVM) binary
» Libero SoC

— FPGA memory map
— FPGA design

The FPGA designer in collaboration with the embedded software designer defines and refines the MSS memory map

within the FPGA. The files generated by the PolarFire SoC MSS Configurator must be shared with the embedded
software developer for further development.

References

* For information about the PolarFire SoC MSS, see PolarFire SoC MSS Technical Reference Manual.

* For information about MSS peripherals, see PolarFire SoC MSS Technical Reference Manual.

» Forinformation about device power-up, see UG0890: PolarFire SoC FPGA Power-Up and Resets User Guide.
» For more information about Bare Metal, Yocto, and Buildroot applications, see GitHub.

» Forinformation about Yocto, see Yocto Project Reference Manual.

« For information about Buildroot, see Buildroot User Manual.

» For more information about PolarFire SoC MSS Configurator, see PolarFire SoC MSS Configurator.

» For more information about how to boot Linux on Icicle kit using eMMC, see GitHub.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245725%20PolarFire%20SoC%20FPGA%20MSS%20Technical%20Reference%20Manual
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245725%20PolarFire%20SoC%20FPGA%20MSS%20Technical%20Reference%20Manual
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574
http://github.com/polarfire-soc
https://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html
https://buildroot.org/docs.html
https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
http://github.com/polarfire-soc

Acronyms

The following acronyms are used in this document.

DTIM
DTS
eMMC
eNVM
FSBL
HAL
Hart
HSS

pPROM
LIM

MSS

MPFS
OpenSBI

PMP
POR
PUF
ROM
SBIC
sNVM

SRAM
SSBL

WFI
ZSBL

Data Tightly Integrated Memory

Device Tree Source

Embedded Multi-Media Controller
Embedded Non-Volatile Memory/BootFlash
First Stage Boot Loader

Hardware Abstraction Layer

Hardware Thread/Core/Processor Core
Hart Software Services

Micro Programmable Read-Only Memory

Loosely Integrated Memory
Microprocessor Subsystem

Microchip PolarFire SoC

Open Source Supervisor Binary Interface
Physical Memory Protection

Power-on Reset

Physically Unclonable Function
Read-only Memory

Secure Boot Image Certificate

Secure Non-volatile Memory

Static Random-Access Memory

Second Stage Boot Loader
Wait for Interrupt

Zero Stage Boot Loader

© 2021 Microchip Technology Inc. User Guide

DS60001659B-page 3

Table of Contents

a1 0T [8 o3 1] o SRR 1
LY (] T o7 PSP 2
F o (010370 T TSRS UPPSOUPSR 3
L B 1oAYt o] o] 1 4 T=T oL A e Yo] - PP EPPTPRRPN 6
1.1, PolarFire SOC MSS CONfIQUIATON..........eiiiiiiiiiii ittt 6
1.2, LDEIOT SOC ... ovveeeoeeeeeeeeeeeeeeeeoes oo esess e esss e 7
L T o 1 (O o =T][SR 7
T4, FIAShPIO EXPIESS. .. .oiiiiiiiiitii ettt ettt ettt e s e ekt e e et e nnee e e neneeeas 26
1.5, RISC-V GCC Bare MEtal..........cocouiieiiiiiieeiie ettt ettt e e st e e e nnne e enneas 26
1.6, RISC-V LiNUX TOOICN@IN. ... ettt et e et e sne e e enneeean 26
R S (o T (o T PR UPRRNE 26
< T = W11 4 o SRR 27
1.9, SMAMDEDUG. ... e 27
R O TR o =T 1 2 PSS 28
2. SOMWEAIE SEACK. ... ettt ettt e e e ettt e e e e e e nte e e e e e e e taetea e e e e nnteeaeeeantaeeaaeaannas 29
Dt TR S {1 TV I o T o 1= SR 29
2.2, Hart Software Services (HSS)......... it e e e e e e e e e 30
2.3, Bare Metal LIDraryot 31
D T W 1= T g o o o TSSO 32
P22 TR I 0D G [F= o =T U 33
2.8, FrEERTOS ™ ... ottt s 34
2.7, TR Party TOOIS. ..ottt et e et e et e esbe e e e breeeaee 35
ICTR AN o] o] [Toz= 1[0 g I B LoV =Y o] o] 1 4= o | SO R UPRPPN 36
3.1. Device Boot and Configuration ProCesS..........cccuuiiiiiiiiiiiii i 36
3.2. B0Ot MOAE O0-1A1€ BOOL.......ocoiiiiei et e e 38
3.3. Boot Mode 1-Direct Boot from eNVIM...... ... e 38
K N O (o Tod (g 1V =T g F= T [T 0 0 =T o | USSR PPPPOO 42
3.5. Physical Memory Protection (PMP)..........ooiiiiiiiiiie e 42
K S € 1= o T=T = g T T = o T] 0 = To 1= SO 43
3.7. Bare Metal DeVEIOPMENT........oeiiiiiiiiieeee e e e e e e e e e e e e e e ——————————— 48
3.8. Linux Application DevelOpPmMENt........ccouiiiiiiiiiie e 53
R N o] o 1= o T [RPPS 62
5. REVISION HISTOTYottt ettt st e et e e eae e nanee s 63
The MiICroChip WEDSILE.ot e e e e e e eeaaaaeaeeaeeesesaaaaaannsnsnrnnnnnns 64
Product Change NOtifiCation SEIVICE.ccuuiiiiiiicii e e e e e e e e anaeeeas 64
L0y (o] 1 1=T g0 o] o To] o S PO OP PR PP PP UUPRPOTRIN 64
Microchip Devices Code Protection FEAtUIE............c..uviiiiiiiiiie e 64
[ITo E= |l N o) o PO R T PPRPPTPPOE 65

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 4

LI (o =T 1 F= T T OO PP PP P OPPPTI 65
Quality Management SYSTEM.......c...iiiiiiiiiiii ettt sb et b e 66

WOrldWIide SAIES AN SEIVICE.uueeeieieeeeeeeee et e e e e e e e e ettt e e e e e e e e e e e eaeeeeaeeaes 67

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 5

11

Development Tools

Development Tools

PolarFire SoC comes with a suite of tools to help create a complete hardware and software solution. The following
table lists the suite of tools available for creating the FPGA and embedded design targeted for PolarFire SoC.

PolarFire SoC MSS A standalone tool to configure the MSS clock frequencies, peripherals, DDR, fabric

Configurator interfaces, and MSS /O configuration.

Libero SoC Standard Microchip tool to configure the programmable section of the PolarFire SoC
FPGA.

SoftConsole Software development platform to develop and debug the Bare Metal and RTOS

applications, which also includes debugging the software.

FlashPro Express Available as a standalone tool or integrated as part of a Libero installation. Used for
programming the MSS and programmable logic of the FPGA.

RISC-V GCC Bare Metal The RISC-V GCC toolchain bundled with SoftConsole for Bare Metal development.
Yocto An open source project to create Linux® distributions for embedded and loT applications.
Buildroot A tool to configure and generate embedded Linux distributions.

SmartDebug and Identify Available as a standalone tool or integrated as part of Libero to debug the hardware in
the MSS and programmable logic.

Identify is the Embedded Logic Analyzer tool for Microchip FPGA devices offered as part
of the Libero SoC software tool suite.

PolarFire SoC MSS Configurator

The PolarFire SoC MSS Configurator is a common tool to configure the PolarFire SoC MSS. It provides a seamless
experience for the embedded software developers targeting the MSS and hardware engineers developing a solution
using the MSS and the FPGA fabric. The PolarFire SoC MSS Configurator application is available in two options:

* As a standalone application
* As part of the Libero SoC Design Suite v12.5 and later

Installation

The PolarFire SoC MSS Configurator bundled with Libero is available at the following location in the Libero
installation folder:

* Windows:
<$Installation Directory>\Microsemi\Libero SoC vX.X\Designer\bin64\pfsoc mss.exe

* Linux: <$Installation Directory>\Microsemil\Libero SoC vX.X\bin64\pfsoc mss
Note: For Windows, a start menu entry is created for easy launching.
For more details on how to install Libero, see www.microsemi.com/product-directory/design-resources/1750-libero-
soc#documents

The PolarFire SoC MSS configurator can also be installed as a standalone application. For more information, see
www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents.

Running the PolarFire SoC MSS Configurator

The Standalone MSS Configurator can run in one of the following modes.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 6

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

1.2

1.3

Development Tools

Batch Mode

The PolarFire SoC MSS Configurator application can be executed in the Batch mode for scripted execution as
follows:
* Windows:

<Libero SoC or Standalone MSS Configurator installation area>\biné64\pfsoc mss.exe
—-CONFIGURATION FILE:<absolute path for configuration file name (.cfg)> -
OUTPUT DIR:<absolute path for output directory>

* Linux:

<Libero SoC or Standalone MSS Configurator installation area>/bin64/pfsoc mss
-CONFIGURATION FILE:<absolute path for configuration file name (.cfg)> -
OUTPUT DIR:<absolute path for output directory>

Interactive Mode

The Standalone MSS Configurator (pfsoc_mss) can be launched from the Libero SoC installation directory
(specified above) or from the Windows Start Menu.

For more details about Batch mode and Interactive mode usage, see www.microsemi.com/product-directory/soc-
design-tools/5587-pfsoc-mss-configurator-tool#documents.

Libero® SoC

Libero System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to learn, easy to
adopt development tools for designing with Microsemi’s power efficient Flash FPGAs, SoC FPGAs, and Rad-Tolerant
FPGAs. The suite integrates industry standard Synopsys Synplify Pro® synthesis and Mentor Graphics ModelSim®
simulation with best-in-class constraints management, debug capabilities, and secure production programming
support.

For more details, see the Libero SoC Design Flow User Guide at:

www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

SoftConsole

SoftConsole is an Eclipse-based IDE facilitating the development and debug of Bare Metal and RTOS-based C/C++
applications for Microchip SoC based FPGAs. It provides development and debug support for all Microchip SoC
FPGAs and 32-bit soft IP CPUs.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 7

https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

Development Tools

Figure 1-1. SoftConsole IDE

i Project Explorer & — -
ey i
@ fpga-cartex-m1-blinky
B mifpga-cortex-m1-blinky
B miv-rv3Zim-intermupt-blinky
@ miv-rv3Zim-systick-blinky
B miv-rv3zimaf-mandelbrot-ua
@ miv-rv3Zimaf-raytracer-uart-c
& mpfs-blinky
» 4 Binaries
» @ Includes
v @ e
~ = application
¥ & hartQ
» @eSlc
* o harti
* @ inc
* @ modules
* @ platform
* @ Debug
B mpfs-blinky hw Debug.lau
B mpfs-blinky Renode Debu
B mpfs-blinky Renode Start-
@ README. html
B README.md
& mpfs-freertos-hwip
@ mpfs-mustein-julia
W smartfusion-cortex-m3-blinky
@ smartfusion2 -cortex-m3-blink

<

< I >

For the latest SoftConsole Release Notes, see the SoftConsole webpage.

S¢ workspace.examples - mpfs-blinky/sre/application/hartl/e51.c - SoftConsole v6.4.0410
File Edit Source Refsctor Mavigate Search Project Run Window UltraDevelop Help

- €

157

158 for (uintsd_t i = 8; i< delay loop max; i++) {

-] X

MrLdulo-S>2p~ 0GR Eivecanrep S Lsivdingradrradr SvorhrSsryHREshrireeras v|mion Q @NRes

@e51.c B - - = 2 EO0utline & ® Build Targets —lz

143 raise_soft_interruptilu); - Ena o % |

i:;} * gpicl_bit2_or_gpio2_bit13_plic_2_IRC A

145 * gpioD_non_direct_plic_IROHandler{ve

147+void e51_application(void) & gpiol_non_direct_plic IRQHandler{ve

148 { * gpiod_non_direct_plic |

149 safe_MSS_UART®_polled_tx_string("Hello World from e51 (hart @).\r\n"}; ® 851_setup{void) : void

= * &51_spphcation(void) : void

151 while (1) TP : v

153 /f Stay in the infinite loop, never return from main —

154 #-Varisbles CEeioe i =0

155 const uintsd_t delay

156 wvolatile uintéd_t d Name

= delay_loop_max
I o+ delay Joop_sum

s N
et Expression

162 safe = delay loop sum
163

£
& Problems & Tasks ©
+ & mpfs-blinky thoN delay_1
apioop o NEmE 1 delay_loop_sum
J'C..\M P Details: 59930000
A risovbd-unkng) pefaylt:99990000
~ Qs Polarfire-Sol-Ren Decimal: 55950080
o CAMicrachip\S Hex:@x5f5bafe

« @ mpfs-blinky Renol Binary:101111101611011106111110008

Y e ———

~ @& mpfs-blinky.elf <

159 delay_loop_sum = delay_loop_sum + i
}

Value

| >

N

v & Thread #1 [machine-0.e51[0]] 1 [core: 0] (Suspended : Breakpoint)

B e51_application() at 51.c156 0:8003c20
B 251() at e51.c186 OB cea

= main_other_hart() at system_startup.c162 OxBh02082
= main_first_hart{) at system_startup.c128 OxB002030

= 0

Y, ;S N N Y Tl L W SR L g D T P By

1.31 SoftConsole Presets

This section provides an outline of the default configurations for building projects for PolarFire SoC in SoftConsole
v6.4 and later.

|153: 36 : 4355

~

{Launchina mofs-blinky Re_d-debua: (100%) %

Existing SoftConsole projects can be downloaded from the PolarFire SoC Bare Metal Library: github.com/polarfire-

soc/polarfire-soc-bare-metal-library. To import a project, follow these steps:

1. Click File > Import.

2. Select the Existing Projects into Workspace option.

Notes:

1. The downloaded projects are pre-configured with default settings and can be used as a base to build a new
project.

2. The sample XML is included with the Bare Metal example projects; XML for reference designs can be found in
the kit design folder on Github. For example, the PolarFire SoC Icicle Kit Libero reference design can be found
here: github.com/polarfire-soc/icicle-kit-reference-design and contains an XML folder with reference XML for
eMMC and SD card targets.

1.3.1.1 Build Options
To view the properties of a project, right click an open project in the workspace and select Properties.

© 2021 Microchip Technology Inc.

DS60001659B-page 8

https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://github.com/polarfire-soc/icicle-kit-reference-design

Development Tools

To configure build options, select C/C++ Build followed by Settings. These options can be configured globally or for
individual build configurations using the Configuration field as shown in the following figure.

Figure 1-2. Project Properties—Build Configurations

SC Properties for mpfs-gpioc-interrupt

O X
type filter text .. Settings v o ow
> Resource

Builders ; ; - - -

v (/C++ Build Configuration: ‘DEbug [Active | ~ | Manage Configurations...
Build Variables |Debug [Active]
Envi i - {Release

S LRCEIREIGBE | All configurations] Parsers

Logging
Settings & Target Processor Architecture RV64G (-march=rv64g") v
Tool Chain Edi {2 Optimization Multiply extension (RVM)

#» C/C++ General & Warnings Atornic extension (RVA)

» concheclipse # Debugging

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 9

Development Tools

The default build configuration for the target processor section of a Bare Metal project are shown in the following

figure.

Figure 1-3. Configuration—Target Processor

SC Properties for mpfs-gpio-interrupt

type filter text

* Resource
Builders
~ (C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Edi
» C/C++ General
» cppcheclipse
> MCU
Project Matures
Project Reference:
Run/Debug Settir

Settings

Configuration: | Debug [Active]

Tool Settings ® Toolchains B Devices # Build Steps

(¥ Target Processor
= Optimization
2 Warnings
22 Debugging
¥ & GNU RISC-V Cross Assembler
& Preprocessor
& Includes
& Warnings
& Miscellaneous
v & GMNU RISC-V Cross C Compiler
& Preprocessor
& Includes
& Optimization
& Warnings
& Miscellaneous
v @ GNU RISC-V Cross C Linker
& General
& Libraries
& Miscellaneous
v ® GNU RISC-V Cross Create Flash Image
& General
v @ GMNU RISC-V Cross Create Listing
& General
v & GNU RISC-V Cross Print Size
& General

w

Manage Configurations...

Build Artifact ki Binary Parsers @ Error Parsers

Architecture RVB64G (-march=rvb4g*) s

Multiply extension (RVM)

Atomic extension (RVA)

Nane

[+] Compressed extension (RVC)
Integer ABI LP&4 (-mabi=lp64*) =
Floating point ABI |Double precision (d) v
Tuning Toolchain default 1
Code model Medium Low (-mcmodel=medlow) w
Small data limit | 8
Align Toolchain default (-mtune) e
[] small prologue/epilogue (-msave-restore)

Force string operations to call library functions (-mmemcpy)
Other target flags |

Restore Defaults

Apply and Close

Apply

Cancel

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 10

Development Tools

The following figure shows the default Includes for the GNU RISC-V Cross Assembler.
Figure 1-4. Configuration—GNU RISC-V Cross Assembler—Includes

SC Properties for mpfs-gpio-interrupt

type filter text

* Resource
Builders
~ (C/C++ Build
Build Variables
Environment
Logging
Settings
Tool Chain Edi
» C/C++ General
» cppcheclipse
> MCU
Project Matures
Project Reference:
Run/Debug Settir

Settings

Configuration: | Debug [Active]

Tool Settings ® Toolchains B Devices # Build Steps

&2 Target Processor
= Optimization
2 Warnings
22 Debugging
¥ & GNU RISC-V Cross Assembler
& Preprocessor
& Includes
& Warnings
& Miscellaneous
v & GMNU RISC-V Cross C Compiler
& Preprocessor
& Includes
& Optimization
& Warnings
& Miscellaneous
v @ GNU RISC-V Cross C Linker
& General
& Libraries
& Miscellaneous
v ® GNU RISC-V Cross Create Flash Image
& General
v @ GMNU RISC-V Cross Create Listing
& General
v & GNU RISC-V Cross Print Size
& General

~ Manage Configurations...

Build Artifact ki Binary Parsers @ Error Parsers

Include paths (-1) o @

"${workspace_loc/${ProjName}/src/applica
"${workspace_loc;/${ProjName}/src/modules}”
"${workspace_loc,/${ProjNamel}/src/platform)”

Include system paths (-isystem) LR

| Includs_: file_sj_gjncludg}_ &

Restore Defaults

Apply and Close

Apply

Cancel

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 11

Development Tools

The default Includes for the GNU RISC-V Cross C Compiler are shown in the following figure.
Figure 1-5. Configuration—GNU RISC-V Cross C Compiler—Includes

5C Properties for mpfs-gpio-interrupt a X
: type filter text Settings o -
» Resource
Builders = . == = - .
v C/C++ Build Configuration: |Debug [Active] Manage Configurations...

Build Variables
Environment
Logging
Settings i Target Processor Include paths (-1) €@
Tool Chain Edi 2 Optimization "${workspace_loc/${ProjName}/src/application}”
» C/C++ General & Warnings "${workspace_loc;/${ProjName}/src/modules}”
"${workspace_loc,/${ProjNamel}/src/platform)”

Tool Settings ® Toolchains B Devices # Build Steps * Build Artifact & Binary Parsers @ Error Parsers

» cppeheclipse 2 Debugging
5 MCU ¥ & GNU RISC-V Cross Assembler
Project Natures & Preprocessor
Project Reference: & Includes
Run/Debug Settir & Warnings
& Miscellaneous
v & GMNU RISC-V Cross C Compiler
& Preprocessor Include system paths (-isystem) LR
& Includes

& Optimization

& Warnings
& Miscellaneous
v ® GNU RISC-V Cross C Linker
& General
& Libraries
& Miscellaneous
v ® GNU RISC-V Cross Create Flash Image
& General
v @ GMNU RISC-V Cross Create Listing
& General
v & GNU RISC-V Cross Print Size
& General

| Includs_: file_sj_gjncludg}_ &

2 s Restore Defaults Apply

@ Apply and Close Cancel

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 12

Development Tools

The default Linker script used by the GNU RISC-V Cross C Linker targets the LIM as show in the following figure
and several sample Linker scripts to target different memory sources are included in the sample projects.

Figure 1-6. Configuration—GNU RISC-V Cross C Linker—General

SC Properties for mpfs-gpio-interrupt O X
Ir type filter text | Settings it ¥
> Resource
Builders 3 . . 3 :
v C/C++ Build Configuration: [Debug [Active] ~ | Manage Configurations...
Build Variables
Environment ¥ Tool Settings ® Toolchains B Devices # Build Steps Build Artifact =i Binary Parsers @ Error Parsers
Logging
Settings % Target Processor _ Script files (-T) €48
Tool Chain Edi # Optimization "${workspace loc/${ProjNamel/src/platform/config/linker/mpfs-lim.Id}"
» CfC++ General & Warnings
> cppcheclipse & Debugging
s MCU v & GNU RISC-V Cross Assembler
Project Natures & Preprocessor
Project Reference: & Includes
Run/Debug Settir & Warnings
& Miscellaneous
v ® GNU RISC-V Cross C Compiler
¢ Preprocessor
& Includes
& Optimization
& Warnings
& Miscellaneous
v & GNU RISC-V Cross C Linker
& General
& Libraries
& Miscellaneous
v @ GNU RISC-V Cross Create Flash Image
& General
v @ GNU RISC-V Cross Create Listing
& General .
v 8 GNU RISC-V Cross Print Size [v] Do not use standard start files (-nostartfiles)
& General [_] Do not use default libraries (-nodefaultlibs)
D No startup or default libs (-nostdlib)
[«~] Remove unused sections (-Xlinker --gc-sections)
| Print removed sections (-Xlinker --print-gc-sections)
] Omit all symbol information (-s)
< 5 Restore Defaults Apply

@ Apply and Close Cancel

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 13

Development Tools

To change the Linker script, double click on the existing Linker script and select the Workspace option to select the
Linker script from the project as shown in the following figure.

Figure 1-7. Edit File Path

SC Edit file path

File:

‘ |"${workspace_loc:z’${ProjName}xsrcfplatformfconfigflinkerfmpfs-lirn.ld}"

OK

Cancel

Workspace...

File system...

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 14

Development Tools

The default output file format selected in GNU RISC-V Cross Create Flash Image for a Bare Metal project is Intel
HEX. See the following figure.

Figure 1-8. Configuration—GNU RISC-V Cross Create Flash Image—General

SC Properties for mpfs-gpio-interrupt O X
l type filter text | Settings ALY
» Resource
Builders Configuration: | Debug [Active] Manage Configurati
v C/C++ Build onfiguration: ug [Active anage Configurations...

Build Variables

Environment ® Tool Settings ® Toolchains M Devices # Build Steps * Build Artifact & Binary Parsers @ Error Parsers

Logging
Settings & Target Processor Output file format (-0) |Intel HEX
Tool Chain Edi (# Optimization [Section: 3 e
> C/C++ General & Warnings [JSection: j.data | Motorola S-record
> cppcheclipse (2 Debugging Ofher sections (3 Motorola S-record (symbols)
> MCU » % GNU RISC-V Cross Assembler \Raw binary
Project Natures 2 Preprocessor
Project Reference: & Includes
Run/Debug Settir & Warnings

2 Miscellaneous
v ® GNU RISC-V Cross C Compiler
 Preprocessor
& Includes
2 Optimization
&2 Warnings
Miscellaneous
¥ ® GNU RISC-V Cross C Linker
& General
&2 Libraries
& Miscellaneous
¥ ® GNU RISC-V Cross Create Flash Image
2 General
v & GNU RISC-V Cross Create Listing
2 General
v ® GNU RISC-V Cross Print Size
2 General

Other flags

< 3 Restore Defaults Apply

@ Apply and Close Cancel

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 15

Development Tools

1.3.1.2 Debug Configurations

Debug Configuration Window

All the example Bare Metal projects contain a Renode™ debug configuration and a hardware debug configuration
in the GDB OpenOCD Debugging section. The debug configuration also contains a Launch Group configuration
option, which can be used to launch the Renode emulation platform and start the Renode debug configuration in one
step as opposed to launching them independently. The following figure shows the Debug Configuration window.

Figure 1-9. Debug Configuration Window

S€ Debug Configurations O X
Create, manage, and run configurations ﬁ“ |
FaX|BY ~

Configure launch settings from this dialog:

type filter text

F - Press the 'Mew Configuration’ button to create a configuration of the selected type.
|| v ©1GDE OpenOCD Debugging
=l mpfs-mmuart-interrupt hw all-harts debug
2] mpfs-mmuart-interrupt renode all-harts debug
~ % Launch Group - Press the 'Duplicate’ button to copy the selected configuration.

¥ - Press the 'New Frototype' button to create a launch configuration prototype of the selected type.

& - Press the 'Export’ button to export the selected configurations.

% mpis-mmuart-interrupt renode all-harts start-platforr | % - press the 'Delete’ button to remove the selected configuration,
®LMrzDevelop Agent - Press the ‘Filter' button to configure filtering options.
= Edit or view an existing configuration by selecting it.
L - Select launch configuration(s) and then select ‘Link Prototype’ menu item to link a prototype.
u - Select launch configuration(s) and then select ‘Unlink Prototype’ menu item to unlink a prototype.

- Select launch configuration(s) and then select ‘Reset with Prototype Values' menu item to reset with prototype values.

Configure launch perspective settings from the Por

< preference page.

< >

| Filter matched 7 of 17 items

7 Close

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 16

Development Tools

Debugger Tab

The default settings in the Debugger tab is shown in the following figure.
Figure 1-10. Debug Configurations—Debugger

SC Debug Configurations] *

Create, manage, and run configurations @ |
v X7 -

Name: | mpfs-mmuart-interrupt hw all-harts debug

ter text

~ [EGDB OpenOCD Debugging
@ mpfs-mmuart-interrupt hw all-harts debug

Main % Debugger . ® Startup % Source| D Commaon| %: SVD Path
OpenOCD Setup

= [] Start OpenOCD locally

& mpfs-mmuart-interrupt renode all-harts debug
~ 4 Launch Group Executable path: | ${openocd_pathl/${openocd_executable) Browse... Variables...
A& mpfs-mmuart-interrupt renode all-harts start-platforr| Actual executable: | CAMicrochip\scWindows-5.4.0.400-20200811-1627 36\edipse\/. fopenccd/bin/openocd.exe

56 UltraDevelop Agent (to change it use the global or workspace preferences pages or the project properties page)

GDB port: 3333
Telnet port: 4444
Td port: 6666
Config options: | --command "set DEVICE MPFS”

--file board/microsemi-riscv.cfg

Al ¥ o for OpenOCD Allacat nzale for the telnet connaction
Allocate console for OpenQCI Allocate console for the telnet connection

GDB Client Setup

'_~/J' Start GDB session

Executable name: | ${erass prefidjgdb$fcrass suffic Browse... |Variables...
Actual executable: | riscvbd-unknown-elf-gdb

Other options:

Commands: set Starget_riscv=1 2

set mem inaccessible-by-default off

s e

Remote Target

Host name or IP address:

Port number:

[_] Force thread list update on suspend

< >
Filter matched 7 of 17 items

@ Close

In the Debugger tab, under the OpenOCD Setup > Config options section, the default commands used are the
following:

--command "set DEVICE MPFS"
--file board/microsemi-riscv.cfg

In the Debugger tab, under the GDB Client Setup > Commands section, the default commands used are the
following:
set Starget riscv=1l

set mem inaccessible-by-default off
file ${config name:mpfs-mmuart-interrupt}/mpfs-mmuart-interrupt.elf

Note: The file command shown in the preceding section must match the name of the project being used. The
{config name:mpfs-mmuart-interrupt}/ section selects the folder for build files used in the configuration
(that is, Debug or Release) and the mpfs-mmuart-interrupt.elf is the name of the .e1f file produced on a
successful build.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 17

1.3.2

Development Tools

Startup Tab

The default settings in the Startup tab is shown in the following figure.
Figure 1-11. Debug Configurations—Startup

SC Debug Configurations

Create, manage, and run configurations

E EIE M MName: | mpfs-mmuart-interrupt hw all-harts debug
1= ter et Main | ¥ Debugger # Startup -, % Source T Common| % SVD Path
~ [©GDB OpenOCD Debugging Initialization Commands

[mpfs-mmuart-interrupt hw all-harts debug

= (] Initial Reset. Type: | init
] mpfs-mmuart-interrupt renode all-harts debug ey

~ & Launch Group
& mpfs-mmuart-interrupt renade all-harts start-platforr
% UltraDevelop Agent (] Enable ARM semihosting
Load Symbols and Executable
(] Load symbaols
(® Use project binary: mpfs-mmuart-interrupt.elf

O Use file:
Symbols offset (hex):

[+] Load executable
(®) Use project binary: mpfs-mmuart-interrupt.elf

) Use fill:

Executable offset (hex):

Runtime Options

(] Debug in RAM

Run/Restart Commands

[Pre-run/Restart reset Type:
thread apply all set $pc=_start

J Set program counter at (hex):
] Set breakpoint at: e51

[Continue

< >
Filter matched 7 of 17 items

%)

In the Startup tab, under the Run/Restart Commands section, the default commands used are the following:

thread apply all set $pc= start

Debugging using SoftConsole

See the SoftConsole section for information on configuring builds and setting up debug configurations using

SoftConsole.

© 2021 Microchip Technology Inc. User Guide

DS60001659B-page 18

1.3.21

Development Tools

Launching a Debug Configuration
Follow these steps to launch the debug configuration.

1. To launch a debug session, click the drop down arrow beside the debug icon and then, click the Debug
Configurations option.

Figure 1-12. Debug Configurations
SC test - mpfs-mmuart-interrupt/src/application/hart0/e51.c - SoftConsole v6.4.0.400
Eile Edit Source Refactor Navigate Search Project Git Run Window Help

ﬁv‘g - - o fa | G 'OviLv.fh.,v & - -
& Project Explorer &2 =% i ° 0 Resicn B 1 PolarFire SoC UltraSoC Trace Connection
& mpfs-gpio-interrupt 15 fprx Debug As y rrrsrsrssssrnrnsrererenrarns

@ mpfs-i2c-master-slave E : Debug Configurations... fged Systems Solutions.
x =
v % mpfs-mmuart-interrupt 4 * Organize Favorites...
& Includes 5 S
v & src 6 * Application code running on ES51
v = application %|)
v & bt 8 * Example project demonstrating the use of polled and interrupt driven
- 9 * transmission and reception over MMUART. Please refer README.txt in th
< e5hc 1@ * folder of this example project
hart1 11 %
& hart2 12
& hart3 13 #include <stdio.h>
s el 14 #include <string.h>
T 15 #include "mpfs_hal/mss_hal.h"
& inc 16 #include "drivers/mss_mmuart/mss_uart.h”
& boards 17
. L L L T PP T PP TP PP PP P PP PP PP PP

19 * Instruction message. This message will be transmitted over the UART w

. 20 * the program starts.
mpfs-mmuart-interrupt renode n1 EREEERS e T P P pRpapp

mpfs-mmuart-interrupt hw all-hi

2. Select the debug session to be launched and click Debug.
Figure 1-13. Debug Configurations

5C Debug Configurations O

X |
Create, manage, and run configurations 5\.

Name: | mpfs-mmuart-interrupt hw all-harts debug

ol Main |, ® Debugger * Startup % Source T Common % SVD Path
v [T GDB OpenOCD Debugging

e 2 Project:

= mpfs-mmuart-interrupt hw all-harts debug iedt

[mpfs-mmuart-interrupt renode all-harts debug mpfs-mmuart-interrupt Browse...
~ & Launch Group C/C+ + Application:

% mpfs-mmuart-interrupt renode all-harts start-platforr ${config_name:mpfs-mmuart-interrupt)/mpfs-mmuart-interrupt.elf

56 UltraDevelop Agent

Variables... Search Project... Browse...
Build (if required) before launching
Build Configuration: |Use Active o
() Enable auto build () Disable auto build
'! Use workspace settings Configure Workspace Settings
< >
Filter matched 7 of 17 items et Apply

2 Close

The debug session is launched and connects to the target.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 19

Development Tools

1.3.2.2 Perspectives

There are several perspectives to choose from, each has a different layout optimized for different tasks. Perspectives
can be chosen using icons at the top-right corner of the SoftConsole window. The following figure and table show
icons for different perspectives and their description.

Figure 1-14. Choosing Different Perspectives

Q |® |2kt

Pt \ - {:I -~ AL - — —
The description for each number is provided in the following table.

1 View all available perspectives
2 Develop and debug perspective
3 C/C++ perspective

4 Debug perspective

5 UltraDevelop perspective

To add windows or tools to the perspective, select Window > Show View and choose the required window. In the
following figure, the Debug window is chosen.

Figure 1-15. Adding Windows or Tools for Perspectives

SC test - mpfs-mmuart-interrupt/src/application/hartd/fe51.c - SoftConsole v6.4.0.400
Eibe Edit Source Refactor HNavigate Search Project Bun Window UltraDevelop Help

A= il ARNE I BN N Window P& v Al whow - - |
© Debug . ? Editor > |
~ & mpfs-mmuart-interrupt renode all-harts start-platform-i Appearance > .) -~
8 CMicrochiphscWindows-6.4.0.400-20200811-1627 3 st B Bm'kp;mn e |ce: -
o8 riscy6d-unknown-ef-gdb Perspuctive > 9 Console Alt+ShiftsQ. € |rte.
~ G PolarFire-Sol-lcde-Renode-emulation-platform [Progra & Debug lrupts of the co ng MMUART
& Ch\Microchip\scWindows-6.4.0.400-20200811-16273 Navigation P Debug Sources rupt of MMUARTI enabled. *
« [mpfs-mmauart-interrupt renode all-harts debug [GDB Oy Preferences @ Debugger Console
v & mpfs-mmuart-interruptelf [cores: 0,1,2.3.4) i = Disassernbly
~ o Theead #1 [machine-0.e51(0]] 1 (core: 0] (Suspended : Br 3 9 Error log A+ Shift+Q, L

O Executables
@ Execution View
* Expressions

= a51() at e51.cA85 ;80053 1e
E main_other_hart{) at system_startup.c205 0x3002eb0
~ o Thread #2 [machine-0uS4_1[1]) 2 [core: 1] (Suspended

= 45410 at uS4_1.c50 OxBO050ac 0 Memory |
= main_other_hart() at system_startup.c:211 (h8002ec8 0 Memory Browser | (1u << 6u) |
v o Thread #3 [machine-0.u54_2[2]) 3 [core: 2] (Suspended S Message Log | (lu << 8u) | (lu << 9u));
B u54_2() at uS4_2.c50 OxB004eba = Modules
= main_other_hart() at system_startup.c:217 (hB8002ee0 = Outline Alt+Shift+Q. O
~ o# Theead #4 [machine-0.u54_3[3]) 4 [core: 3] (Suspended Peripherals
= u54_3) at uS4_3.c50 OxBO04ccH £ Problems Alt+Shift+0, X
= main_other_hart{) at system startup.c223 0xB002¢f8 % Progress
v & Thread #5 [machine-0.u54_4[4]] § [core: 4] (Suspended Project Explores
= u54_40 at uS4_4.049 (xBOC4ad6 Ragks tacs
B main_other_hart{) at system_startup.c:229 0x3002f10 _- Stgnats
3 riscvbd-unknown-elf-gdb = Tempiates . [_NO_PARITY | MSS_UART_OME_STOP_BIT);
& Terminal Crl+ Tl = — e =
, " Trace Control lease see uartd_rx_handler() for
= Variables Alt+Shift+Q, v S
- b
Otther.. :‘EII:_S!\.H._!:.(?__?“J}_‘

MEEC IIART ETEN CTMAIE RVTE\:

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 20

Development Tools

1.3.2.3 Debugging a Hart

Each hart in the system appears as a different thread in the Debug window. This window is automatically shown in
the Debug perspective and can be added to an active perspective. All the threads appear under the project name as
shown in the following figure.

Figure 1-16. Debug Window Showing Harts as Threads
4 Debug = { » 5 x| ¥

v & mpfs-mmuart-interrupt renode all-harts start-platform-and-debug [Launch Group)
o CAMicrochip\scWindows-6.4.0.400-20200811-162736\renode\bin\Renode.exe
i riscvb4-unknown-elf-gdb

1|

v Q PolarFire-SoC-Icicle-Renode-emulation-platform [Program]
o CA\Microchip\scWindows-6.4.0.400-20200811-162736\renode\bin\Renode.exe
v [€] mpfs-mmuart-interrupt renode all-harts debug [GDB OpenOCD Debugging]
v & mpfs-mmuart-interrupt.elf [cores: 0,1,2,3.4)
v ® Thread #1 [machine-0.e51[0]] 1 [core: 0] (Suspended : Breakpoint)
e51() at e51.c85 0x800531e
main_other_hart() at system_startup.c:205 0x8002eb0
v ® Thread #2 [machine-0.u54_1[1]] 2 [core: 1] (Suspended : Container)
| = 15410 at uS4_1.c50 0x80050ac |
main_other_hart() at system_startup.c:211 0x8002ec8
v o Thread #3 [machine-0.u54_2[2]] 3 [core: 2] (Suspended : Container)
uS4_2() at uS4_2.c50 0x8004eba
= main_other_hart() at system_startup.c:217 0x8002ee0
v @ Thread #4 [machine-0.u54_3[3]] 4 [core: 3] (Suspended : Container)
u54_3() at u54_3.c50 0x8004cc8
= main_other_hart() at system_startup.c223 0x8002ef8
Thread #5 [machine-0.u54_4[4]] 5 [core: 4] (Suspended : Container)
u54_4() at uS4_4.c49 0x8004ad6
main_other_hart() at system_startup.c:229 0x8002f10
v riscvb4-unknown-elf-gdb

4
1]

Each thread in the preceding figure represents a hart, and the function listed below each thread is the code being
executed.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 21

1.3.24

1.3.2.5

Development Tools

The following figure describes how to interpret the current function that is executed on a hart.
Figure 1-17. Current Function Executing on a Hart

% Debug = >0 E =0
v & mpfs-mmuart-interrupt renode all-harts start-platform-and-debug [Launch Group]
wi C:\Microchip\scWindows-6.4.0.400-20200811-162736\renode\bin\Renode.exe
! riscv64-unknown-elf-gdb
v Q PolarFire-SoC-Icicle-Renode-emulation-platform [Program]
wl C:\Microchip\scWindows-6.4.0.400-20200811-162736\renode\bin\Renode.exe
v [€ mpfs-mmuart-interrupt renode all-harts debug [GDB OpenOCD Debugging]
v & mpfs-mmuart-interrupt.elf [cores: 0,1,2,3,4]
v 4® Thread #1 [machine-0.e51[0]] 1 [core: 0] (Suspended : Breakpoint)
= e51() at 51.c:85 0x800531e
T T1 T
1 2 3 4

The description for each number is provided in the following table.

1 Shows the function that is currently being executed.

2 Shows the file in which function is found.

3 Shows the line of the file where the code is currently being executed
4 Memory address of the code that is executed

Debug Session Controls
The following figure shows the buttons that are used to control the execution of the debug session.
Figure 1-18. Buttons to Control Debug Session

R[>0 @ N 3D R
1 2 3 4 5 6 7 8

1. Disable breakpoints 2. Resume 3.Halt 4.Stop 5.Stepinto 6. Stepover 7. Step return
8. Instruction Stepping Mode

Setting Breakpoints

To add Breakpoints, right click beside the line number where the Breakpoint is required and select Toggle
Breakpoint. Alternately, the same can be achieved by double clicking on the same location.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 22

Development Tools

Figure 1-19. Toggle Breakpoint

€ e51.c ¥ |dsystem startup.c ©u54 1.c |9 mss_uart.c

76

77=/* Main function for the hart®(ES51 processor).

78 * Application code running on harte is placed here.

79 * MMUART® local interrupt is enabled on harte.

8@ * In the respective U54 harts, local interrupts of the corresponding MMUART
81 * are enabled. e.g. in U54 1.c local interrupt of MMUART1l is enabled. */
82-void e51 (void)

83 {
84 int8_t info_string[1€@];
85 uint64_t mcycle_start = eu;
86 uinté4_t mcycle_end = oU;
Toggle Breakpoint Ctrl+Shift+B 14,
| Add Breakpoint.. Ctrl+Double Click
s Reset */
Add Printf...
manschn << 5u) | (1u << 6u) |
Disable Breakpoint Shift+Double Click ¢< 7u) | (1u << 8u) | (1u << 9u));
Breakpoint Properties... Ctrl+Double Click
Breakpoint T »
reakpoint Types FEFEE;
Build Selected File(s)
Clean Selected File(s)
Go to Annotation Ctrl+1 lock);
cppcheck >
Add Bookmark...
Add Tk WSS_UART_NO_PARITY | MSS_UART_ONE_STOP_BIT);
i '~ Show Quick Diff Ctrl+Shift+Q now. Please see uart@_rx_handler() for
~ Show Line Numb
; 0# ine Numbers Jarte_lo,
Folding > k_handler,
rafaranras’ r_FIFO_SINGLE_BYTE) -
111 MSS_UART_enable_local_irq(&g_mss_uartl_lo);
112
H113 /* Demonstratine polled MMUART transmission */

These breakpoints are set for all harts.
If a breakpoint is required only for a single hart and shared code is being run, the breakpoint can be filtered using the
following steps:

1. Click the Breakpoints window.

2. Right click the breakpoint to be filtered and select Breakpoint Properties.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 23

Development Tools

Figure 1-20. Breakpoint Properties

- Variables ® Breakpoints & “ Expressions == Peripherals

€ [function: e51] [type:
2 e51.c[line: 91]
2 mss_uart.c [line: 1346

Go to File

Enable
! Disable
¥ Remove

of

Remove All Triggers
% Remove All

Select All Ctrl+A
i Copy Ctrl+C
Paste Ctrl+V

e Import Breakpoints...
o Export Breakpoints...

Breakpoint Properties...

3. Select the Filter option and enable the breakpoint for the hart(s) required.
Figure 1-21. Filter Breakpoints

SC Properties for C/C++ Function Breakpoint O X
type filter text Filter R4 v &
C
orlnmon Restrict to Selected Processes and Threads:
Actions
Filter v [m] & mpfs-mmuart-interrupt.elf
+@ Thread #1 [machine-0.e51[0]] 1
[]+® Thread #2 [machine-0.u54_1[1]] 2
[]+® Thread #3 [machine-0.u54_2[2]] 3
[]+® Thread #4 [machine-0.u54_3[3]] 4
[]s® Thread #5 [machine-0.u54 4[4]] 5
@ Apply and Close Cancel

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 24

Development Tools

1.3.2.6 Setting Watchpoints
Watchpoints can be set on variables while running a debug session. To set a Watchpoint, open the Variables
window, right click on the variable and select Add Watchpoint (C/C+#+)....

Figure 1-22. Add Watchpoint

- X
Q W2 RWFS
= Variables e Breakpoints “ Expressions %: Peripherals BE|fie 8 70
Name Type Value
& info_string int&_t [100] 0x800a350
o mq’c:' Select All Ctl+A | g
[*F
meaycl Copy Variables Ctrl+C
00 delta_ 0
) Number Format > |
= hartid 0
% Cast To Type...
<1 Display As Array...
View Memory
Find... Ctrl+F
% Add Watchpoint (C/C++)...
%' Watch
This Watchpoint can be configured using the Properties for C/C++ Watchpoint window.
Figure 1-23. Watchpoint Properties Window
sC
Common Common v v &
Class: C/C++ Watchpoint
Expression to watch: | mcycle_start ‘
Range: | 8 ‘
[] Read
Write
Enabled
Condition: | ‘
Ignore count: | 0 ‘
@
| @ Apply and Close Cancel

The added Watchpoint appears in the Breakpoints window as an expression.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 25

1.3.3

1.4

1.5

1.6

1.7

Development Tools

Figure 1-24. Breakpoints Window with Watchpoint

®-=Variables “e Breakpoints © % Expressions 7 Peripherals

€ [function: e51] [type: Temporary]
[v]# e51.c[line: 91]

[v]# mss_uart.c [line: 1346]

[expression: 'mcycle_start’] [units: 8]

Renode™

Renode is an open-source software development framework with commercial support from Antmicro that lets you
develop, debug and test multi-node device systems reliably, scalably, and effectively.

For more information, see: https://renode.io/ and https://github.com/renode/renode.

FlashPro Express
FlashPro Express is the software tool for programming PolarFire SoC using the FlashPro Programmer hardware.

For the latest version of FlashPro Express User Guide, see www.microsemi.com/product-directory/design-resources/
1750-libero-soc#documents.

RISC-V GCC Bare Metal

The GNU Compiler Collection (GCC) is a compiler system produced by the GNU Project supporting various
programming languages. GCC is a key component of the GNU toolchain and the standard compiler for most projects
related to GNU and Linux, including the Linux kernel. The Free Software Foundation (FSF) distributes GCC under the
GNU General Public License (GNU GPL). GCC has played an important role in the growth of free software, as both a
tool and an example.

SoftConsole is shipped with Bare Metal riscv-gcc-toolchain with newlib and newlib.nano for 40 abi/arch multilib
combinations that allow a single toolchain to target various different target architectures (see SoftConsole Release
Notes for more details).

For GCC documentation, see Using the GNU Compiler Collection.
For GCC RISC-V specific options, see RISC-V Options.

For more details about march, mabi, and mtune arguments, see www.sifive.com/blog/all-aboard-part-1-compiler-args
and The RISC-V Instruction Set Manual, Volume |: User-Level ISA, Document Version 2.2.

RISC-V Linux Toolchain
The RISC-V GNU Linux-ELF/glibc toolchain is used by the Linux build tools (Yocto and Buildroot) to build a Linux
image.

The source used for the toolchain is available on GitHub at the following location: github.com/riscv/riscv-gnu-
toolchain.

Yocto

Yocto is an opensource development build environment for Linux. It can be used to customize a Linux image for
embedded or loT application deployment. The Yocto framework is modular in nature and designed as a software
stack with layers managing different tasks and functions. The BSP layer provides machine configurations. The

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 26

https://renode.io/
https://github.com/renode/renode
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://gcc.gnu.org/onlinedocs/gcc/index.html
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html
https://www.sifive.com/blog/all-aboard-part-1-compiler-args
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

1.8

1.9

Development Tools

distro layer includes the top level polices for a distribution. The OpenEmbedded Build system (referred to as "the
build system") is the build system used by Yocto based on "Poky". BitBake is used by the build system for image
generation.

The Microchip Yocto BSP can be found at the following location: github.com/polarfire-soc/meta-polarfire-soc-yocto-
bsp. It contains predefined recipes to build different PolarFire SoC targets and build images with different bundles of
tools. For a full list of available builds, see the readme or the console output after successfully configuring a build.

Important: Microchip peripheral drivers are currently added as patches with the Microchip PCle driver
being up streamed to the Linux kernel version 5.8, it is planned to upstream remaining drivers for other
system peripherals in later releases.

Yocto builds supported on Linux and Yocto are not currently supported by the Windows Subsystem for Linux.
More information about Yocto is available on the Yocto project website.

Related Links
https://www.yoctoproject.org/
https://www.yoctoproject.org/docs/?section=reference-manuals

Buildroot

Buildroot is a tool that simplifies and automates the process of building a complete Linux system for an embedded
system, using cross-compilation. It is able to generate a cross-compilation toolchain, a root filesystem, a Linux kernel
image, and a bootloader for the target.

The Microchip PolarFire SoC Buildroot SDK is available at the following location: github.com/polarfire-soc/polarfire-
soc-buildroot-sdk. It contains configured builds for different PolarFire SoC targets. For a full list of available builds,
see the readme.

Important: Microchip peripheral drivers are currently added as patches with the Microchip PCle driver
being up streamed as to the Linux kernel version 5.8, it is planned to upstream remaining drivers for other
system peripherals in later releases.

Buildroot is supported on Linux and supported by the Windows Subsystem for Linux.
More information about Buildroot is available on the Buildroot website.

Related Links
https://buildroot.org/

https://buildroot.org/downloads/manual/
manual.html#:~:text=Buildroot%20is %20a%20tool%20that,a%20bootloader%20for%20your%20target

SmartDebug

SmartDebug is a tool that enables verification and troubleshooting at the hardware level. It provides access to sNVM,
SRAM, transceiver, uPROM, and fabric probe capabilities.

SmartDebug accesses the built-in probe points through the Active Probe and Live Probe features that enable
designers to check the state of inputs and outputs in real-time without modification of the design.

SmartDebug can be run in the following modes:

* Integrated mode from the Libero Design Flow
» Standalone mode

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 27

https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://www.yoctoproject.org/
https://www.yoctoproject.org/docs/?section=reference-manuals
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk
https://buildroot.org/
https://buildroot.org/downloads/manual/manual.html#:~:text=Buildroot%20is%20a%20tool%20that,a%20bootloader%20for%20your%20target
https://buildroot.org/downloads/manual/manual.html#:~:text=Buildroot%20is%20a%20tool%20that,a%20bootloader%20for%20your%20target

Development Tools

» Demo mode (without target hardware connected)

For the latest version of SmartDebug User Guides, see www.microsemi.com/product-directory/design-resources/
1750-libero-soc#documents.

1.10 Identify

Identify is a tool to find and correct functional design bugs by probing internal signals of the design directly from the
FPGA at the system speed.

For more information, see Identify ME webpage.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 28

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/debug/4984-identify-me-downloads#overview

21

211

Software Stack

Software Stack

RISC-V is a large ecosystem with a variety of compilers, software libraries, examples, and tools available for
application development. This section outlines the open source RISC-V libraries available, along with Microchip
applications and examples to aid development for PolarFire SoC.

RISC-V Libraries

Standard libraries provide generic type definitions, functions, and macros for tasks that will be undertaken on a
system. This section provides information on the Newlib C standard library implementation and the GNU Binary
Utilities toolset bundled with SoftConsole.

Newlib

Newlib is a C standard library implementation intended for use on embedded systems. It is a conglomeration of
several library parts, all under free software licenses that make them easily usable for embedded products.

SoftConsole's RISC-V GCC toolchain and its multilibs come with pre-compiled and ready-to-use “newlib” and “newlib-
nano” C library.

Microchip’s toolchains come with generic basic Newlib implementation.
More information about Newlib and FAQ is available on the Sourceware website.

Related Links
https://www.sourceware.org/newlib/faq.html
https://www.sourceware.org/newlib/docs.html

Binutils
The GNU Binary Utilities, or binutils, are a set of programming tools for creating and managing binary programs,
object files, libraries, profile data, and assembly source code.

SoftConsole comes bundled with a ready-to-use Bare Metal binutils. The SoftConsole Release Notes show some use
cases of how to use nm and objcopy; however, most of the tools are used and invoked automatically by the IDE.
These tools are generic and can be used to target the 32-bit Mi-V RISC-V cores and the 64-bit PolarFire SoC targets.

as Assembler sourceware.org/binutils/docs/as/

Id Linker sourceware.org/binutils/docs/Id/

gprof Profiler sourceware.org/binutils/docs/gprof/

addr2line Convert address to file and line sourceware.org/binutils/docs/binutils/addr2line.html
ar Create, modify, and extract from archives sourceware.org/binutils/docs/binutils/ar.html

c+filt Demangling filter for C++ symbols sourceware.org/binutils/docs/binutils/

c_002b_002bfilt.html

nm List symbols in object files sourceware.org/binutils/docs/binutils/nm.html
objcopy Copy object files, possibly making changes sourceware.org/binutils/docs/binutils/objcopy.html
objdump Dump information about object files sourceware.org/binutils/docs/binutils/objdump.html
ranlib Generate indices for archives (for compatibility, sourceware.org/binutils/docs/binutils/ranlib.html

same as ar -s)

readelf Display content of ELF files sourceware.org/binutils/docs/binutils/readelf.html

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 29

https://www.sourceware.org/newlib/faq.html
https://www.sourceware.org/newlib/docs.html
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/ld/
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/binutils/addr2line.html
https://sourceware.org/binutils/docs/binutils/ar.html
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://sourceware.org/binutils/docs/binutils/nm.html
https://sourceware.org/binutils/docs/binutils/objcopy.html
https://sourceware.org/binutils/docs/binutils/objdump.html
https://sourceware.org/binutils/docs/binutils/ranlib.html
https://sourceware.org/binutils/docs/binutils/readelf.html

2.2

Software Stack

........... continued

size List total and section sizes sourceware.org/binutils/docs/binutils/size.html
strings List printable strings sourceware.org/binutils/docs/binutils/strings.html
strip Remove symbols from an object file sourceware.org/binutils/docs/binutils/strip.html

Hart Software Services (HSS)

Hart Software Services, commonly referred to as “HSS”, is a collection of services that run on the E51 monitor core.
HSS is used for the following:
* Program memory using USB mass storage or YMODEM transfer.

* Copy a program (Linux or Bare Metal) from a non-volatile storage (for example, eMMC or SD card) to the LIM or
DDR.

» Create a payload containing multiple applications to be booted and run.
» Pass messages between cores in the MSS.

Operation

The HSS uses Bare Metal drivers to initialize the system, which are found in the PolarFire SoC Bare Metal Library. It
also relies on XML generated by the PolarFire SoC MSS Configurator to configure the system on boot.

The HSS comprises of the following:

» A superloop monitor running on the E51 processor, which receives requests from the individual U54 application
processors to perform certain services on their behalf.

» A Machine-Mode software interrupt trap handler, which allows the E51 to send messages to the U54s, and
requests them to perform certain functions for it related to rebooting the U54.

HSS as a ZSBL

The HSS can function as a Zero Stage Boot Loader (ZSBL) to boot Linux. In this case, the HSS loads U-Boot acting
as a ZSBL with U-Boot subsequently loading an OS. U-Boot is a First Stage Boot Loader (FSBL) and a Second
Stage Boot Loader (SSBL).

HSS as a FSBL
The HSS can be used to boot Linux directly like the Berkeley Boot Loader (BBL) acting as an FSBL and SSBL.

Licenses

This software is released under an MIT license. It also uses other open source tools. RISC-V OpenSBI is released
under a BSD-2-Clause and FastLZ compression is released under an MIT license. More information on licensing can
be found at: github.com/polarfire-soc/hart-software-services/blob/master/LICENSE.md.

Building

The HSS can be built as a standalone image. The source is published on GitHub and build instructions for different
targets can be found in its readme: github.com/polarfire-soc/hart-software-services.

Releases

The HSS GitHub repository is the most up-to-date location to retrieve the source files and build instructions for the
HSS.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 30

https://sourceware.org/binutils/docs/binutils/size.html
https://sourceware.org/binutils/docs/binutils/strings.html
https://sourceware.org/binutils/docs/binutils/strip.html
https://github.com/polarfire-soc/hart-software-services/blob/master/LICENSE.md
https://github.com/polarfire-soc/hart-software-services
https://github.com/polarfire-soc/hart-software-services

2.3

Software Stack

Bare Metal Library

The PolarFire SoC Bare Metal Library contains the most recent version of the PolarFire SoC HAL source code with
a pre-populated platform folder for a PolarFire SoC Bare Metal project with all drivers. It also contains Bare Metal
examples for each driver available for PolarFire SoC. These examples show how to use different functions available
in the drivers and how they are configured for PolarFire SoC.

To use the Bare Metal Library examples, follow the instructions in the polarfire-soc-bare-metal-
library/examples readme.md file available at: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/
master/examples

To use the pre-populated platform folder in a Bare Metal project, follow these steps:

1. Download the Bare Metal Library repository and extract it.
2. Delete the existing platform folder in the project (back up any changes such as, Linker script updates).
Figure 2-1. Removing Platform Folder

SC workspace.examples - SoftConsole v6.4.0.410

File Edit Source Refactor Mavigate Search Project Run Window UltraDevelop

= - W& v Gt D .| W | &
Project Explorer = 8

O fpga-cortex-m1-blinky

O hart-software-services

O m1fpga-cortex-m1-blinky

9 miv-rv32im-interrupt-blinky

S miv-rv32im-systick-blinky

miv-rv32imaf-mandelbrot-uart

r

C

miv-rv32imaf-raytracer-uart-cpp

C

mpfs-blinky
O mpfs-freertos-lwip
¥ & mpfs-mmuart-interrupt

& Includes
¥ & src MNew >
El Go Into
b . ,
Open in New Window
P . (
mpf: Show In Alt+Shift+W » bconsole
mpf: Show in Local Terminal > \at this time.
mpf: Copy Ctrl+C
REAI Paste trl+V
U mpfs-m| #& Delete [Delete | Delete
@ smartfu Source ; >
O smartfu Move...
Rename... F2
Import...
Export...
® Robot Framework >
Build Proiact Alt+R

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 31

https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples

2.4

Software Stack

3. Copy the platform folder extracted from the Bare Metal Library repository into the SoftConsole project and
re-implement any changes that were made.
Figure 2-2. Adding Updated Platform Folder

sc

(g - vi@itviD w 9 AL O viv@Ew GvOvQRve v - -
Project Explorer
@ fpga-cortex-m1-blinky

@ hart-software-services

© m1fpga-cortex-m1-blinky

© miv-rv32im-interrupt-blinky

& miv-rv32im-systick-blinky b t y = i Newitem -

© miv-rv32imaf-mandelbrot-uart \) B Easy access -
s Delete Rename — New

© miv-rv32imaf-raytracer-uart-cpp fold = B, History H
older e ’

© mpfs-blinky .
& mpfs-freertos-lwip hiew it
v i mpfs-mmuart-interrupt > polarfire-soc-bare-metal-library-master > polarfire-soc-bare-metal-library-master > src
& Includes

v SIC Name Date modified Type
application

boards - SSD (D) *
mpfs-mmuart-interrupt hw all-hart

n platform 21/09/2020 09:26 File folder

§ Downloads
mpfs-mmuart-interrupt renode all-

R Go

mpfs-mmuart-interrupt renode all-

The only folder that might be modified by the user is the plat form/config folder. The drivers, hal, and mpfs_hal
do not need user modification.

mpfs_hal contains the part of the HAL specific to PolarFire SoC. It contains startup code, MSS register descriptions,
and performs DDR training. The content of this folder is not intended to be modified. It also contains the code for
interrupt and exception handling, and hardware access methods.

Linker Scripts
The main purpose of the Linker script is to describe how the sections in the input files must be mapped into the
output file, and to control the memory layout of the output file.
Each SoftConsole project comes with at least one Linker script. Specify the memory location where the application
will be deployed. The sample Linker scripts provided include:

* mpfs-ddr-e51

* mpfs-dtim
* mpfs-envm
* mpfs-lim

* mpfs-lim-Ima-scratchpad-vma
To switch between them, open Settings and navigate to the Script files:

Project's Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C Linker > General >
Script files

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 32

Software Stack

Figure 2-3. Tool Settings

5 Properties for mpfs-blinky

|:‘-j'p'rf|lt:rte*.t Settings L [» 8
Resource
Builders

w CFC++ Build Configuration: Debug [Active | ~ | Manage Configurations...

Build Variables
Environment

Logging B Tool Settings # Toolchains [Devices & Build Steps Build Artifact i} Binary Parsers € Eror Parsers
Settings
Tool Chain Editor é-’? Target Processor Seript files (-T)
 CfC++ General ‘E—? Optirmization =

cppcheclipse 5 Warnings

MCU é? Debugging

Project Matures w B3 GNU RISC-V Cross Assernbler

Project References (5 Preprocessor

Run/Debug Settings (53 Includes

(2 Warnings
[,?_5? Miscellaneous
~ B GNU RISC-V Cross C Carmpiler
E:% Preprocessor
LQ Includes
(5 Optimization
(5 Warnings
(2 Miscellaneous
v 185 GNU RISC-V Cross C Linker
(2 Genenal
(3 Libraries
g Miscellaneous
~ B8 GNU RISC-Y Cross Create Flash Image
éj General
w B GNU RISC-V Cross Create Listing
[5}; General
v 83 GNU RISC-V Cross Print Size
(5 General

M Do not use standard start files {-nostartfiles)

[Do not use default libraries {-nodefaultlibs)

Mo startup or default libs {-nostdlib)

EARemove unused sections (-Xlinker --gc-sections)

I Print rermoved sections (-Xlinker --print-ge-sections)

|CJ Omit all symbol information (-5)

Restore Defaults Apphy

ft‘) Apply and Close Cancel

Microchip recommends users to use the supplied Linker scripts (located in the src/platform/config/linker
folder) and use these as a base script for their custom Linker scripts (when the supplied Linker scripts are not
sufficient).

For the Linker script manual, see: sourceware.org/binutils/docs/Id/Scripts.html

Related Links
https://www.sifive.com/blog/all-aboard-part-2-relocations
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain

Linux Images

The current Linux kernel version (at the time of publishing this document) is 5.6.16. The next update is for moving
to Linux kernel version 5.8. Beyond version 5.8, it is planned to use the latest long-term support kernel in all builds.
Information on long-term support for kernels is available on: www.kernel.org/.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 33

https://sourceware.org/binutils/docs/ld/Scripts.html
https://www.sifive.com/blog/all-aboard-part-2-relocations
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain
https://www.kernel.org/

Software Stack

In Yocto, the kernel version used in the build is specified in the recipes-kernel/linux/*.bb file as shown in the
following figure.

Figure 2-4. Example of Yocto Linux Kernel Version
' master - meta-polarfire-soc-yocto-bsp / recipes-kernel / linux / mpfs-linux_5.%.bb Go to file

[2"]

= lhankyu Sorting cut f bandul 1 {5 History

ches for the Aloevera and Aloevera lite. (o Latest commil 5asvcal

Fa 1 contributor

74 Mnes (64 sloc) 2.94 k8 Raw Blame CopyFle 2uke¢p 0 &2 O

require recipes-kernelflinus mpfs- 1inux-¢ommon, inc

LINUXY_VERSION 7= "5.6.x"

KERMNEL_WERSTON_SANITY SKIP="1%

BRANCH = “linux-$.6.y"
SRCREV = “w5.6.16"
SRC_URT

gite/fgit.kernel . orgfpub/sscmlinux kernel fgit/stable/linux, git;branch=5{BRANCH]} Y

For Buildroot, the specific commit of the kernel used can be seen in the top-level folder specified as linux @
[commit number] as shown in the following figure.

Figure 2-5. Example of Buildroot Linux Kernel Version

¥ master - ¥ 2branches © 2 tags Go to file Add file = + Code -
% ConchuOD doc: readme rephrasing 6514211 14 days ago &) 257 commits
bsp/env/freedom-u500-... adding openocd.cfg file for freedom unleashed board. 2 years ago
buildroot @ 497e3df icicle: add initial support last maonth
conf hss: use xml flow for emmc design 28 days ago
fsbl @ 54bfc90 fsbl: Build FSBL not U-Boot M-Mode 103 Bytes &> 6 months ago
hardware-config-genera... icicle: bump hwcfg gen script P 19 days ago
hart-software-services ... icicle: add sd card support 61 Bytes & last month
linux @ 960adcc icicle: add initial support 2137 KB &9 last month
openshi @ ac5e821 opensbi: bump to v0.6 10.87 KB 4> 6 months ago

FreeRTOS™

FreeRTOS is a real-time operating system kernel for embedded devices that has been ported to many microcontroller
platforms. It is distributed under the MIT license.

SoftConsole is shipped with a bundled FreeRTOS example, see the mpfs-freertos-1lwip example. The example
can target the bundled Renode emulation and users can access the webserver running on it (See the mpfs-freertos-
Iwip's readme).

The following figure shows a webserver running on top of FreeRTOS and Iwip.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 34

Software Stack

Figure 2-6. Webserver Running on Top of FreeRTOS and Iwip
& polarfire SoC icicle kit-Fro x4

&« (D Notsecure | 172.16.0.3

MICROCHIP

PolarFire SoC Block Diagram

In Deterministic, Coherent CPU Cluster

128K Boot Flash : ‘ : ‘

RISC- RISC

RVEHMAC RVE4GC
Secure Boot Manitor Core Quad Gore

Deter 2 Memory — Coherent Switch

| } f

DDR4ALPDORA Controller — AMBA Switch with Memicry Protection and QoS

| } f

DORIO PHY

Low Power
PolarFire™ FPGA
Architecture

»_Deterministic Coherent Multi-core CPU Cluster

H QRcode #r O

Perormnances / Event
Counters

= Instruction Trace

= AX] Bus Monitors

» 50 Break Poins

» Fabric Logic Manitor
» SmartDebug

* Debug Locks

Innovative Real-Time + Linux Architecture

The latest version of FreeRTOS targeting PolarFire SoC hardware is available from the Bare Metal Library at this
location: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples/mss-ethernet-mac

More information is available on the FreeRTOS website.

Related Links
https://www.freertos.org/a00104.html#getting-started
https://www.freertos.org/Documentation/RTOS_book.html

2.7 Third Party Tools

The following third party tool is used for emulating RISC-V subsystem:
* Renode

© 2021 Microchip Technology Inc. User Guide

DS60001659B-page 35

https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples/mss-ethernet-mac
https://www.freertos.org/a00104.html#getting-started
https://www.freertos.org/Documentation/RTOS_book.html

3.1

Application Development

Application Development

PolarFire SoC supports Bare Metal, Linux, and RTOS. This section describes the device boot process, boot modes,
and development flow to build user applications for these types of embedded systems. For example, the following
can be executed on the application cores.

* Bare Metal applications

» Linux user applications

+ RTOS

» Combination of the above (AMP)

Bare Metal applications for PolarFire SoC devices can be developed using SoftConsole. The PolarFire SoC Bare
Metal firmware drivers and source files for Linux user application development are available on the PolarFire SoC
GitHub.

PolarFire SoC MSS comprises of one E51 monitor core and four U54 application cores. The E51 core executes the
Hart System Services (HSS), which configures the MSS and responds to runtime events. The U54 cores execute any
of the following:

* Bare Metal user applications
» Operating Systems

Device Boot and Configuration Process

The boot-up sequence starts when the PolarFire SoC FPGA is powered-up or the device is reset. It ends when

the processor is ready to execute user applications. The booting sequence runs through several stages before it
begins execution of user application code. A set of operations are performed during the boot-up process that includes
Power-on Reset of the hardware, peripheral initialization, memory initialization, and loading a user-defined application
from non-volatile memory to volatile memory for execution.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 36

https://github.com/polarfire-soc
https://github.com/polarfire-soc

Application Development

The following figure shows the different phases of the boot-up sequence.

Figure 3-1. Boot-Up Sequence

Device Power-on/
Device Reset

Power-on Reset (POR)

Phase 2

Device Boot

Phase 3

Design and Memory
Initialization

Phase 4

MSS Pre-Boot

Phase 5

MSS User Boot

Execute Application

For more information about the booting process, see UG0890: PolarFire SoC FPGA Power-Up and Resets User

Guide.

PolarFire SoC MSS supports the following boot modes:

* Boot Mode 0—Wait for Interrupt Mode/Idle Boot Mode (Used for debugging)
» Boot Mode 1—Non-Secure User Boot Mode (Direct boot from eNVM)

* Boot Mode 2—Secure User Boot Mode

* Boot Mode 3 —Factory-Secure Boot: MSS boots using this protocol

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 37

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574

3.2

3.3

3.3.1

Application Development

Important: Boot Mode 2 and Boot Mode 3 are currently not supported.

These boot modes are performed by the E51 core and are configured using SoftConsole.

Boot Mode 0-ldle Boot

Boot Mode 0 is set by default. If the MSS is not configured (for example, blank device), it executes a fixed,
pre-configured boot ROM program, which holds all the processors in an infinite loop until a debugger connects to the
target. The boot vector registers maintain their value until a new Boot mode configuration is programmed. This mode
is typically used for initial software development and debug phase where the application code is loaded using the
debugging through SoftConsole.

Boot Mode 1-Direct Boot from eNVM
In this mode, the MSS executes from a specified eNVM address without authentication. It is the fastest boot option,
but there is no authentication of the code image. Boot Mode 1 includes the following steps:
1. The user application image needs to be programmed into eNVM using SoftConsole and the Boot mode is set.
2. Ifthe eNVM content is a boot loader, it fetches the final user application from non-volatile storage and loads it
to the desired memory location specific by the application, the harts then execute the application.

Boot vector addresses for all five processors are absolute addresses in eNVM.

Programming the eNVM

Launch SoftConsole and create an application project. Ensure that the SoftConsole application project contains
latest mpfs_hal and firmware drivers from GitHub. For illustration purposes, mpfs_blinky is used as an example
application project. To configure the project’s build tool settings, follow these steps:

1. Right click mpfs_blinky and select Properties as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 38

Application Development

Figure 3-2. Properties for mpfs-blinky

3 Project Explorer 2 =1 g = mpfs-envm.ld &2

34 * s
New >
Go Into

Open in New Window

Show In Alt+Shift+W >
Show in Local Terminal >
Copy Ctrl+C

¥ Delete Delete
Source >

Rename... F2
Import...
y Export...
& Robot Framework >
Build Project
Clean Praoject

Refresh F5
Close Project

se Unrelated Projef open Properties Dialog
< Build Configurations]
4+ Debug 2 Build Targets >
Index >
Profiling Tools * '
O RunAs > |
4# Debug As > ;
Profile As > |
Restore from Local History... |
Run UD py_lib script |
cppcheck > |
% Run C/C++ Code Analysis I
Team » |
Compare With b
Configure >
l Properties Alt+Enter I [

The Properties window appears.
2. Expand C/C++ Build, and select Settings.
Set the Configuration to Release.

4. Expand GNU RISC-V Cross C Linker, select General and perform the following actions to select the
appropriate Linker script:

4.1. Click Add....
4.2, Select Workspace on the Add File path window.

5. In the File Selection tab, expand the mpfs-blinky and browse to: mpfs-blinky > src > platform
>Config > linker > examples > mpfs-envm. 1d file. Then, click OK.

w

The Linker is a script file which provides the information about the memory from where the code must be
executed and how that memory must be used for heap and stack.

For Release mode, the Linker script mpfs—-envm. 1d is selected to build the application that executes the
code from eNVM with the stack and heap in LIM. Other Linker script files are also available to execute the
code out of LIM (mpfs-1im.1d), DDR memory (mpfs-ddr-e51.1d), and Data Tightly Integrated Memory
(mpfs-dtim.1d).

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 39

Application Development

Figure 3-3. mpfs-blinky Release Window
sC

type filter text Settings

Resource 7

Builde
v C/C++ Build Configuration: |Release ~ Manage Configurations..

Build Variables

Environment . 5 =
B Tool Settings i Toolchains M Devices # Build Steps Build Artifact b Binary Parsers @ Error Parsers

Logaging -
(2 Target Processor Script files (-T) e
Tool Chain Editor (% Optimization

C/C++ General = Warnings

cppcheclipse

Debugging
MCU ~ & GNU RISC-V Cross Assembler
Project Natures (2 Preprocessor
Project References 2 Includes
Run/Debug Settings (% Warnings
(& Miscellaneous ‘ "${workspace_loc./${ProjName}/src/platform/config/linker/examples/mpfs-envm.id}
~ % GNU RISC-V Cross C Compiler
(% Preprocessor
2 Includes
3 Optimization)
2 Warnings OK Cancel | File system...
* Miscellaneous
¥ GNU RISC-V Cross C Linker
(= General
(2 Libraries

SC Edit file path P

File:

s 0 G 0

<

(# Miscellaneous

% GNU RISC-V Cross Create Flash Image
2 General

GNU RISC-V Cross Create Listing

(2 General |
% GNU RISC-V Cross Print Size |[7] Do not use standard start files (-nostartfiles)

(2 General |C] Do not use default libraries (-nodefaultlibs)
I as M v . PTTIIRS

\" Apply and Close Cancel

<

€

6. Click Apply and Close.
7. Select Project > Clean to clean the project.

Now, the project build settings are completed and ready for building.
8. Select Project > Build All.
The project is built successfully as shown in the following figure.
Figure 3-4. Project Successful Message
B Console 2
CDT Build Consale [mpfs-blinky]

13:82:44 Build Finished. @ errors, @ warnings. (took 743ms)

9. Thempfs-blinky.elf file is generated in the Release folder. This ELF file is programmed to the eNVM
storage using SoftConsole so that at device power-up the MSS executes the application from eNVM.

To program the Boot mode settings and eNVM using SoftConsole, select the desired project and click Run >
External Tools > PolarFire SoC program non-secure boot mode 1 as shown in the following figure.
Note: This step requires Libero SoC or the Program/Debug tool to be installed on the host PC. It also
requires pre-configuration in SoftConsole. For information on pre-configuration and installation, see the
readme.txt file in (SoftConsole install)/extras/mpfs.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 40

Application Development

Figure 3-5. PolarFire SoC Boot Mode 1

File Edit Source Refactor Navigate Search Project Git Window Help

| & vin|>oE o [i+ ©&|% 8% v i |nstruction Stepping Mode
& Project Explorer 2. 2% 7 & = 0 Move to Line (C/C++) =
Resume at Line (C/C++)
Resume
Suspend

> 5 mpfs-blinky

Terminate
Step Into
Step Over
Step Return
Run to Line

-]

% Run Last Launched Ctrl+F11
% Debug Last Launched F11
Run History >
O RunAs >
Run Configurations...
Debug History >
4 Debug As >
Debug Configurations...
Breakpoint Types >

R Toggle Breakpoint Ctrl+Shift+B
ebug]

* Problems 22) Toggle Line Breakpoint 199 "B vy =

No consoles to ¢ Toggle Watchpoint

Toggle Method Breakpoint

Skip All Breakpoints Ctrl+Alt+B

Remove All Breakpoints

@ External Tools >| Q1 PolarFire SoC program idle boot mode 0

| % 2 Polarfire SoC program non-secure boot mode 1
% 3 Mi-V-Renode-emulation-platform

s

Q. 4 PolarFire-SoC-Icicle-Renode-emulation-platform
@ 5 PolarFire-SoC-Renode-emulation-platform

Run As >

This sets the Boot mode to 1 and programs the application to eNVM as shown in the following figure. After power-
cycling the board, the application gets executed from eNVM.

Figure 3-6. Programming the Application

File Edit Source Refactor Mavigate Search Project Git Run Window Help
[, 2 W i e [+ S@| e O B~0~QUe®yr fEv o~
= |2 Problems (2 Markers © Console &2 | 8% Terminal < Search @ Debugger Console
O <terminated> Polarfire SoC Boot Mode 1 [Program] C\Microchip\softconsole-vé. &\scWindows-6.4.0.304-20200720-2151 34\ build_tools\binksh (04-Aug-2020, 11:22:23 am - 11:22:47 am)

7 programser '03616° : FlashProd
4 Opened 'C:\Users\schippa\Desktop\workspace\mpfs-1lpddrd-1sram-demo\Release\fpgenproghproi_fph\proi_fp.pro’
% The "open_project’ command succeeded.
Warning: Programming is already enabled for device "target'.
The ‘enable_device' command succeeded.
PPD file 'C:/Users/schippa/Desktop/workspace/mpfs-lpddrd-lsram-demo/Release/fpgenprog/proj_fp/target.ppd” has been loaded successfully.
DESIGHN : TOP; CHECKSUM : ©008; PDE_VERSION : 1.8
The "set_programming_file' command succeeded.
The "set_programming_action' command succeeded.
programser ‘93616° : Scan Chain...
Programser: "93616' : ITAG TCK frequency = 1 MHz
programeer '93616° : Check Chain...
programser '93616° : Scan and Check Chain PASSED.
programeer ‘93616' : device 'target' : Executing action PROGRAM
Programser: "93616° : JTAG TCK frequency = 4 MHz
programser ‘93616° : device ‘target’ : EXPORT Algo_version[16] = 9802
programmer '93616° : device 'target’ : EXPORT IDCODE([32] = @f8lalcf
programser '93616° : device 'target' : EXPORT ISC_ENABLE_RESULT[32] = 00oe000d
programmer '03616° : device 'target’ : EXPORT CRCERR[1] = @
programser '93616° : device 'target' : Programming elVM...
programmer ‘93616' : device ‘target’ : EXPORT BITS component bitstream digest[256] = 25295f8d1d592a98b333e26e85149708208e9f3e8bc18f6c77bd62f 8ad7at866
programser '93616° : device 'target’ : EXPORT eNvM component bitstreas digest[256] = b5227feeiS4872fd2f2e7fb7c@3024d0fefe39a502008b3cafa53701702f7d46
programser ‘93616° : device 'target' : EXPORT EOB component bitstream digest[256] = 55bB52781b9995a44c939b64e441ae2724b96F39cBFAFb9a141cfcOB42cbBed
programser ‘93616° : device 'target’ @ === e
programeer ‘93616° : device 'target’ :
programser ‘93616° : device 'target’ :
programser '93616° : device 'target' :
programser ‘93616° : device 'target’ : Executing action PROGRAM PASSED.
programser '93616° : Chain programming PASSED.
Chain Programming Finished: Tue Aug 4 11:22:44 2020 (Elapsed time 90:00:83)

0-0-0-0-0-0

The "run_selected_actions® command succeeded.

Project saved.

The "save_project’ command succeeded.

Project closed.

Exported log file C:\Users\schippa\Desktop\workspace\mpfs-lpddra-1sras-demo\Release\fpgenprogproi_fpi\proi_fp. log.
The ‘close_project' command succeeded.

The Execute Script command succeeded.

[Finished]

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 41

Application Development

3.4 Clock Management

The clock configuration made in the Clocks tab of the PolarFire SoC MSS Configurator is stored in the XML file. The
SoftConsole build process converts the XML file into hardware configuration files that include the clock configuration
as shown in the following figure. If any changes to the clock configuration are required, these changes need to be
made in the PolarFire SoC MSS Configurator and the updated XML file needs to be imported into the SoftConsole
project. The system start-up code uses these configuration files to configure the PLLs and clocking related system
registers.

Figure 3-7. Clocks Folder
A= (e
= application
~ = platform
~ (= config
~ = hardware
v (= clocks
[v hw_clk_ddr_pllh
[8 hw_clk_mss_cfm.h
[8 hw_clk_mss_pllLh
[h hw_clk_sgmii_cfm.h
[8 hw_clk_sgmii_pllL.h
[a hw_clk_sysreg.h
[8 hw_mss_clks.h

3.5 Physical Memory Protection (PMP)

3.5.1 Using the PMPs in Bare Metal

To support secure execution of application code, it is required to limit the physical addresses accessible by the
software running on a Hardware Thread (Hart). The access to physical addresses can be restricted using the PMP
unit in each hart. The PMP defines a finite number of regions that can be individually configured by setting the PMP
registers using the user application code. It is applied on harts to allow physical memory access privileges (read,
write, and execute). A PMP is configured to achieve the following:

» Security of the system is improved as there is no possibility of code injection attacks. The memory of one hart is
not accessible to other harts.

» If there is any overflow in the stack usage, PMP detects it.

» ltis less expensive to get safety certification for the product.

3.5.2 Using the PMPs in Linux

When booting Linux using HSS, the PMPs are automatically configured by the HSS for the system configuration
based on the payload created.

Important: Configuring the PMPs using Libero is currently not supported and will be available in the next
release.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 42

Application Development

3.6 Generating Boot Images

This section outlines the software configuration for Bare Metal project(s) that targets different harts for user
applications. The steps to configure a Bare Metal application as the sole application to run on the system are
provided along with how to configure multiple independent Bare Metal applications. This section also outlines the
steps required to configure an application to be executed directly from eNVM and how to configure an application
to be stored in the external memory and load it using the HSS. The process of programming the eNVM is also
introduced.

3.6.1 Targeting Harts

The MPFS HAL (PolarFire SoC HAL) can be used to target multiple or single cores in a Bare Metal application. In the
Bare Metal application in src > platform > config > software > mpfs_hal the mss_sw_config.h file can be used to
target harts.

Figure 3-8. Targeting Harts

C Project Explorer & 87 F T B ®mss_sw_configh 5
¥ Empfs:gpio-intemupt :5 ¥ i'*.ar-t; t;_acl’:uéii-';dﬁtart.-l- B S
5 Includes 36 * Set MPFS_HAL_FIRST_HART to a value other than @ if
¥ & srC 37 to start and execute code on the ES51 hart.
& application .S Si‘i :le_‘fS;:iL_LAST_"I'—IR_ to a value smaller than 4 if
)= a 54 ts.
IMOL‘:UIPS 48 * Harts that are not started will remain in an infini
v @ platform 41 * through scme other method
v & config 42 %
& hardware 43-#ifndef MPFS_HAL_FIRST_HART
& linker 44 #define MPFS_HAL_FIRST_HART @
45 #endif
v = software a6
& drivers 47~ #ifndef MPFS_HAL_LAST_HART
¥ & mpfs_hal 48 #define MPFS_HAL_LAST_HART 4
5 mss_sw_config.h 49 #endif
readme.txt 'f"

The MPFS HAL FIRST HART define selects the hart that will boot up and configure the system. The
MPFS HAL LAST HART define selects the hart that will be the last to start up. In the preceding image, the e51
is the hart selected to start up first and will be used to wake all of the U54 harts from WFI (Wait For Interrupt) mode.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 43

Project Explorer # mss_sw_config |

w

w

Praject Explares - B *mss_sw_config.h

v & mpfs-gpio-interrupt

w

3.6.2

3.6.3

% mipfs-gpio-internspt -:

w

s

Application Development

If the system was configured as shown in the following figure, the €51 is still the main hart but only the U54_1 and
U54_2 are taken out of the WFI mode (the €51 is hart 0).

Figure 3-9. MPFS_HAL_LAST_HART Configuration

A

cludes 36 * Set MPFS5_ o a valus than @ if you do not want your code

C * to start a L cogde

on th
application _3 . 39: T_HART to a value smaller than 4 if you do not wish to use
madules 48 * Harts that are not started will remain in an infinite WFI loop unless used
& platform 41 * through seme other "nEtr.D:i
& config 4z *
&= hardwarg 43-gifndef MPFS_HAL_FIRST_HART
lirvkees 44 #define MPFS_HAL _FIRST_HART @
il 15 #endif - T
~ = software
drivers a7 #ifndef MPF5S_HAL_LAST_HART
« @ mpfs_hal 45 #define MPES_HAL_LAST HART 2
= mss_sw_config.h 42 #endif

= I

readme txt

If the system is configured as shown in the following figure, the €51 is held in WFI mode and the U54_1 becomes the
main hart to wake the other U54 harts from WFI mode, in this case only the U54_2 is taken out of the WFI mode.

Figure 3-10. MPFS_HAL_FIRST_HART and MPFS_HAL_LAST_HART Configuration

MML_rAR3i_fMR1T alid PIFF2_MAL_LAZI_MAR | WSl LSS WUaEU LU SPELLly milil

ally start

cludes 36 * Set MPFS HAL

_HART to a value other than @ 1f you do not want your code
Sre 37 * to start ecute code on the ES51 hart.
& application 38 * Set MPFS_HAL_LAST HART to a value smaller than 4 if you do not wish to use
39 " all US4 harts.
miodules s R e e R Infioite WET 1 {EEs ad
e 1at are not started will remain in an infinite WFI loop unless used
platform 41 zame other method
- config 42 =
i hardware 43-gifndef MPFS_HAL_FIRST_HART
PO 44 pdefine MPFS_HAL_FIRST_HART 1
" 45 #endif
w software 4
= drivers 47 #ifndef MPFS_HAL_LAST_HART
v @ mpfs_hal 18 #define MPFS_HAL_LAST HART 2
9 #endif

= mss_sw_config.h
readme.ta

W e &
-]

The projects must be built targeting the memory they will be executed from (for example, DDR) and not in the
location they will be stored in (for example, eMMC). When built in SoftConsole, the resulting files created using the
HSS tools are called a payload. The HSS readme contains information on the steps for creating a payload, and

the tools required are stored in tools folder of the repository. This payload can then be programmed to the intended
memory (for example, SD card or eMMC) using the HSS. The HSS then boots on the €51 and unpacks the payload
into the relevant memory locations they are targeted for and wakes the harts they will run on.

Storing a Single Bare Metal Application in an eNVM

If a single Bare Metal application targeting one or more harts is to be used and no other application is running on
the system, the application can be stored directly in the eNVM, provided it is less than 128 kB, and executed from
memory. The €51 can be used as the main hart of the system (MPFS_HAL_FIRST_HART 0) and wakes any of the
required U54 harts from WFI.

Storing Bare Metal Application(s) to an External Memory

If a single Bare Metal application or multiple independent applications are being used in the system and cannot be
stored in the eNVM (for example, they are greater than 128 kB), then the HSS must be used to program the external
non-volatile storage with the applications and copy their code to the relevant memory location on boot.

The HSS must be programmed into the eNVM to be executed on boot, it uses a small portion of the LIM for stack and
heap when running on the E51. The Bare Metal application(s) can then be developed—they must not target the €51
as this will be running the HSS and must not overlap with the LIM memory locations used by the HSS. The area of
LIM used by the HSS can be identified using the . map file generated when the HSS is built.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 44

3.6.3.1

3.6.3.2

Application Development

Single Bare Metal Application

If a single Bare Metal application is created, the first hart must target one of the U54s (for example,
MPFS_HAL_FIRST_HART 1) that wakes the other U54 harts in the system. The project must be built in the memory
it will be executed from (for example, DDR) and not in the location it will be stored in (for example, eMMC). When
built in SoftConsole, the resulting files created using the HSS tools are called payload. The HSS readme contains
information on steps for creating a payload, and the tools required are stored in tools folder of the repository. This
payload can then be programmed to the memory intended to be used for storing the payload (for example, SD

card or eMMC) using the HSS. The HSS then boots on the €51 and unpacks the payload into the relevant memory
location it is targeted for and wakes the harts it will run on.

Multiple Bare Metal Applications

If multiple Bare Metal applications are created, the first hart for each project must target separate U54s and the last
hart in the project (that is, the final U54 this project will run on) must not overlap with the first hart of a subsequent
project.

See the following example:
Project 1:

MPFS HAL FIRST HART 1
MPFS HAL LAST HART 2

This project runs on U54_1 and U54_2.

Project 2:
MPFS HAL FIRST HART 3

MPFS HAL LAST HART 4

This project runs on U54_3 and U54_4.

For more information, see the 3.6.1 Targeting Harts section.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 45

Application Development

3.64 Programming the eNVM

SoftConsole is capable of programming the eNVM and setting the boot modes for the harts used in the system. If a
single Bare Metal project is used, it can be programmed directly into the eNVM. If multiple projects are used (that is,
as a payload), the HSS must be programmed into the eNVM. This programming is achieved using an external tool

configuration provided with SoftConsole.

Figure 3-11. External Tools Setting Boot Modes

5C test - mpfs-gplo-interrupt/sre/platform/config/software/mpfs_hal/mss_sw_config.h - SoftConsacle v6.4.0.400
File Edit Source Refactor Mavigate Search Project Git Run Window Help

Bl ~iw S i
@ Project Explorer =

v Qv

v & mpfs-gpio-interrupt
» & Includes
¥ @& src
= application
» modules
v = platform
¥ & config

CPPPPEP

» = hardware
¢ 2 linker
v = software
& drivers
v = mpfs_hal
= mss_sw_config.h
readme. byt
& drivers
& hal
= mpfs_hal
mpfs-gpio-example hw-emulation all-harts debug.launch
mpfs-gpio-example hw-emulation all-harts release.launch
mpfs-gpio-example renode attach-to-hart0.launch
mpfs-gpio-example renode attach-to-hart1.launch
mpfs-gpio-example renode start-platform-and-debuglaunch
README. txt
Working_with_Renode.md
& mpfs-mmuart-interrupt

L A

1 PolarFire SoC program idle boot mode 0

2 PolarFire SoC program non-secure boot mode 1

3 PolarFire SoC program user secure boot mode 2

4 PolarFire SoC program factory secure boot mode 3
5 Mi-V-Renode-emulation-platform

6 PolarFire-SoC-lcicle-Renode-emulation-platform

7 PolarFire-SoC-Renode-emulation-platform

Run As

External Tools Configurations...

Organize Favorites...

—_—r

46
47
48
49

o

Wl e

o O O N
&

~J
D D 00~ 0 D

|

-

-

L_Hhh__ﬂjl_”ﬁhi WEl LliED
=]
I

value other than @ if
n the E51 hart.

value smaller than 4 1

will remain in an infin

IR s

#ifndef MPFS_HAL_LAST_HART
#define MPFS_HAL_LAST HART 2

#endif

* Markers used to indicate startup status of hart
#define HLS_DATA_IN_WFI Bx1234567
#define HLS_DATA_PASSED_WFI Bx8765432

* Define the size of the HLS used

In our HAL, we are using Hart Local storage for de
as well as flags for wfi instruction management.
The TLS will take memory from top of the stack if

% §

#define HLS_DEBUG_AREA_SIZE 64

/* define the required tick rate in Milliseconds */

=/* if this program is running on one hart only, only

* will be used */

#define HART@_TICK_RATE_MS 1@euL
#define HART1_TICK_RATE_MS SUL
#define HART2_TICK_RATE_MS 5UL

To use this tool, you must have the project to be programmed selected in the project explorer and the build
configuration is used to locate programming files. This implies, if a project is built in a Debug configuration,
SoftConsole programs it using the files from the Debug folder in the project, whereas if the project is built in a
Release configuration, SoftConsole uses the files from the Release folder.

The external tool generates a bitstream containing only the eNVM programming files (that is, it does not overwrite
FPGA programming) and sets the Boot mode accordingly.

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 46

Application Development

3.6.5 Unused Harts

If harts are not going to be used (for example, only U54_1 and U54_2 are used), no main function(s) (for example,
u54_3.c) need to be provided for unused harts.

Figure 3-12. Unused Harts

v & mpfs-gpio-interrupt
&) Includes
¥ [=sIC
v = application
& hart0
v & hart1
l¢ ub4 1.c
v @ hart2
lg ub4 2.c
& hart3
& hart4
= inc
= modules
= platform
The mpfs_hal contains weakly linked functions that are used in place of strongly linked functions if no main function

is found, which implies, if no u54_3() function is found in the project, the function shown in the following figure
“system_startup.c” file is used.

The mpfs_hal contains weakly linked functions for all main functions available for each hart. A weakly linked function
is used as a fallback or default function if a strongly linked function is not defined. By default, all functions are strongly
linked without any modification and if present overrides the weakly linked functions. The mpfs_hal weakly linked
functions can be found in platform/mpfs hal/system startup.c.

A function is defined as weakly linked by adding the following attribute to its definition: attribute ((weak)).

Consider the following examples for U54_1:
» Weakly linked function: _attribute ((weak)) void u54 1 (void)
+ Strongly linked function: void u54 1 (void)

Attention: If a strongly linked function and a weakly linked function are defined, only the strongly linked
function will be included in the build. If two strongly linked functions are defined with the same name a
symbol link error occurs at build time.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 47

Application Development

Figure 3-13. system_startup.c File Showing Weakly Linked Functions

s Project Explorer

3.7

3.71

maodules
« = platform
config
drivers
& hal
v @& mpfs_hal
s atomich
& bits.h
5 encoding.h
£ antry.S
5 mcallh
% mss_clinth
W miss_coreplexch
f miss_h2f.c
i mss_h2fh
% mss_halh
= mss_hart_intsh
® miss_ints.h
£ Mss_Mmpu.c
s mss_mipuh
£ mss_miutexS
w mss_peripheral_base_addh
% miss_plich
s mss_preih
% mss_seqg.h
& mss_stubs.c
s mss_sysreg.h
g miss_util.c
5 mss_utilh
& mitrap.c
s mitrap.h
& newlib_stubs.c
£ system_startup.c
% systemn_startup.h
mpfs-gpio-example hw-emulation all-harts debug.lausnch
mpfs-gpio-example hw-emulation all-harts release.launch
mpfs-gpio-example rencde attach-to-hartQ.launch
mpfs-gpio-example renode attach-to-hart1.launch
mpfs-gpio-example rencde start-platform-and-debug launch

% system_startup.c ©

volatile static uinted_t counter = 8U;

* Added some code as debugger hanmgs if in loop doing nothing */
counter = counter + 1;

* In absen
* function

This de

lication function of this name with strong linkage, this

. If you need to

our own one in an application directory space.

* modify t.".i;
-attrihute({weak)) void uS4_3({void)

uint8d_t hartid = read_csr{mhartid);

/*Clear pending software interrupt in case there was any.

Enable the soft nterrupt so that other core can bring this core
out of y raising a software interrupt.
Note that any other interrupt can also be used to bring CPU out of WFI*/

clear_soft_interrupt();
set_cszr(mie, MIP_MSIP);
/*put this hart into WFI.*/

do

{
__asm{“wfi");
Jwhile(® == (read_csr{mip) & MIP_MSIP));

f*The hart is out of WFI, cle
can enable and use any inter
clear_soft_interrupt();

he SW interrupt. Here onwards Application
"
5

_—enable_irqg();

while(1)

volatile static uinted_t counter = 8U;

* Added some code as debugger hangs i
counter = counter + 1;

in loop doing nothing =/

This function is entered if the hart is taken out of WFI (if the MPFS_HAL_LAST_HART value still includes this hart, it
is included in the system) and simply puts the hart back into WFI as no code is found for it to run.

Bare Metal Development

The firmware drivers and associated platform specific files are available on GitHub Bare Metal Library. The Bare
Metal application(s) can be executed from one of the memories—LIM, eNVM, DDR memory and so on. Linker script
files to execute applications from corresponding memories are also available on GitHub Bare Metal Library. If the
application size is more than eNVM size (128 kB), it is recommended to store the application in an external flash
memory. The HSS that runs on E51 fetches the application from the external memory and buffers it in DDR, it then
copies to the address in LIM or DDR that the application runs from and executes the application. The E51 core
releases the U54 cores from WFI depending upon the application requirements. The SoftConsole tool provides an

environment to develop Bare Metal applications.

Single U54

The Bare Metal start-up code (mpfs_hal) initializes the system clocks and external memory. For single U54 Bare
Metal development, the E51 wakes the U54 hart from WFI mode by raising the software interrupt. The U54 executes
the application tasks. The remaining harts are kept in WFI mode by the default weakly linked functions defined in the

start-up code.

© 2021 Microchip Technology Inc.

User Guide DS60001659B-page 48

3.7.2

3.7.3

Application Development

Multiple U54s

For multiple U54 Bare Metal development, the E51 wakes any combination of U54 harts from WFI mode by raising
the software interrupt on each hart. The unused harts are held in the WFI mode. All of the harts run the same
start-up code, read their hart ID, and enter WFI. When the U54s receive a software interrupt from E51, they exit the
WFI mode and execute their application(s). The U54 harts can execute the same application or different individual
applications depending upon application requirements. The HSS provides the necessary functions for the E51 hart to
communicate with individual U54 harts to perform certain services on their behalf.

Initializing the Application Execution Space (LIM or DDR)

The E51 core runs the HSS to fetch a payload containing an application or applications from an external memory. It
buffers the application to DDR and then copies the application to the destination memory and releases the U54(s)
from WFI. The U54 cores run the application from the destination memory. Linker script files to execute applications
from different memory locations are available from the PolarFire SoC Bare Metal Library .

The HSS uses a portion of the LIM while running. The Bare Metal application start addresses must be greater than
the end address of memory used by HSS. When built a .map file is produced for the HSS outlining memory locations
used for functions, variables, and so on. The following image shows a output .map file.

Figure 3-14. HSS output.map File

= Kconfig

= Kconfig.build

= Kconfig.general

= LICENSE.md
Makefile

-l output.map

= README.md

® rules.mk

targets.mk

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 49

Application Development

This file can be opened in the SoftConsole text editor or an external editor. The last region of memory used by HSS is
the stack, searching the map file for _stack top h4$ shows the last address used for data in the stack, as shown
in the following figure.

Figure 3-15. Stack Location HSS output.map File

output.map =

.bss
=(COMMON)

.stack

fill

fill

fill

. *F1}1%

Fill

@xeeeaga0asellscen

exeeeeecae88e118e8
@xeeeeeeeeag8elliser

gxeoegegasasellses
axegecesaaagallane
axegegesesasallone
2xeoeeepeaselsoee
exeeececceasallaee
@xeeeeecaeaselsoes
gxeoeceeneaselssee
a@xegeceseaasaloons
Bxeoeeeepensalsoee
exegeeeceeasalases
axedegecaaasalosee
gxeoeceeeeaseldiee
@xggecesaaagaloons
Bxeoeeeepansaldies
exeoeecepeeseldase
exeeeeecaeasazlsee
gxeoegecaeaseldiee
axegecesaaagazlage
axegegeseaasa2lane
2xeoeeeopease2soee
exeeeeeceaasazlaee
exeeeeeca888025988
2xeeeeepee08025900
Bxegecesaaagazsone

SOUTPUT(hss.elf elfé4-littleriscv)

8x280 thirdparty/opensbi/build/lib/libsbi.a(sbi_ipi.o)

. = ALIGN (@xi1@)
__bss_end = .

exldege load address @xeeeegees2e23bdse

ex4eee

ex4808

2x4eea

exdege

ex4eee

__stack_bottom = .
__stack_bottom_hes = .
. = (. + STACK_SIZE_PER_HART)

__Stack_top_hég = .
__stack_bottom_hl$ = .
. = (. + STACK_SIZE_PER_HART)

__stack_top_hl% = .
__stack_bottom_h2% = .
. = (. + STACK_SIZE_PER_HART)

__stack_top_h2% = .
__stack bottom_h3% = .
. = (. + STACK_SIZE_PER_HART)

__stack_top_h3g = .
__stack_bottom_h4% = .
. = (. + STACK_SIZE_PER_HART)

=.
__stack_top = .
_end = .

SC Find/Replace | X
FEind: _stack_top_h4%
Replace with:
Direction Scope
(®) Forward (o) Al
() Backward () Selected lines
Options

[Case sensitive [] Wrap search
:. Whole word D Incremental
[Reguilar expressions

Replace/find
Beplace Replace All
Close

In the preceding example, the last address used in the HSS is 0x8025900 and the target Bare Metal application must
use an address greater than this as its start address.

The standard Bare Metal Library applications use E51 as the main hart of the system. When the E51 hart runs the
HSS, a different hart, one of the U54s, must be used to wake harts in use from the WFI mode. The main hart defined
inthe mss_sw_config.hfileinplatform/mpfs_hal config mustbe changed to reflect that the U54 core is the

main hart.

© 2021 Microchip Technology Inc.

User Guide

DS60001659B-page 50

Application Development

The following figure shows a standard mss_sw_config.h configuration.

Figure 3-16. Standard mss_sw_config.h File

[n mss_sw_config.h &2

31 #ifndef USER_CONFIG_MSS USER_CONFIG_H_
32 #define USER_CONFIG_MSS_USER_CONFIG_H_

33

A8 ¥
35 * MPFS_HAL FIRST _HART and MPFS_HAL LAST HART defines used to specify which

36 * harts to actually start.

37 ¥ Set MPFS_HAL_FIRST HART to a value other than @ if you do not want vour code
38 * to start and execute code on the E51 hart.

39 * Set MPFS_HAL LAST HART to a wvalue smaller than 4 if you do not wish to use
40 * all US54 harts.

41 * Harts that are not started will remain in an infinite WFI loop unless used
42 * through some other method

43 */

44= $ifndef MPFS_HAL_FIRST HART

45 #define MPFS_HAL_FIRST HART ©
46 #endif

47

48= #ifndef MPFS_HAL_LAST_HART

49 #define MPFS_HAL_LAST HART 4
50 #endif

51

[y T 4

The MPFS_HAL_FIRST_HART is set to 0 and the MPFS_HAL_LAST_HART is set to 4. The hart values are as
follows:

E51: Hart 0

U54_1: Hart 1

U54_2: Hart 2

U54_3: Hart 3

U54_4: Hart 4

Changing the MPFS_HAL_FIRST_HART value to 1 sets U54_1 as the main hart of the system.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 51

Application Development

Figure 3-17. mss_sw_config.h File Using U54_1 as the Main Hart

[*mss_sw_config.h &2

1= #ifndef USER_CONFIG_MSS_USER_CONFIG_H_
32 #define USER_CONFIG_MSS_USER_CONFIG_H_

33

A8 ¥
35 * MPFS_HAL FIRST_HART and MPFS_HAL LAST HART defines used to specify which

36 * harts to actually start.

37 * Set MPFS _HAL FIRST HART to a walue other than @ if you do not want vour code
38 * to start and execute code on the E51 hart.

39 * Set MPFS_HAL_LAST HART to a value smaller than 4 if you do not wish to use
48 * all U54 harts.

41 * Harts that are not started will remain in an infinite WFI loop unless used
42 * through some other method

43 */

44= #ifndef MPF5_HAL_FIRST_HART

45 #define MPF5_HAL _FIRST_HART 1
46 #endif

47

A45= #ifndef MPF5_HAL_LAST_HART

49 #define MPF5_HAL_LAST_HART 4
58 #endif

51

This implies that on system start up U54_1 wakes the other three U54 harts from WFI. If less harts are used by this
application (for example, U54_1 and U54_2 only), then the last hart value can be changed.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 52

Application Development

Figure 3-18. mss_sw_config.h File

[n] *mss_sw_config.h &2

31- #ifndef USER_CONFIG_MSS_USER_CONFIG_H_
32 #define USER_CONFIG_MSS USER CONFIG H_

3.74

3.8

33

A ¥ o
35| * MPFS_HAL_FIRST_HART and MPFS_HAL_LAST HART defines used to specify which

36| * harts to actually start.

37| * Set MPFS_HAL FIRST HART to a value other than ® if you do not want vour code
38| * to start and execute code on the E51 hart.

39| * Set MPFS_HAL_LAST HART to a value smaller than 4 if vou do not wish to use
4a| * all US4 harts.

41| * Harts that are not started will remain in an infinite WFI loop unless used
42| * through some other method

43| *f

Ad- #ifndef MPFS_HAL FIRST HART
45 #define MPFS_HAL FIRST HART 1
#endif

46
47

437 #ifndef MPFS_HAL_LAST_HART
49 | #define MPFS_HAL_LAST_HART 2

5

50 #endif

This uses U54_1 to wake U54_2 and then both harts continue on to the application.

Merging Multiple Bare Metal Applications
To merge Bare Metal applications, see the HSS readme in its GitHub repository.

Linux Application Development
A typical boot process consists of multiple stages.

1.

The HSS is executed from the eNVM. The HSS acts as a ZSBL that includes the Open Source Supervisor
Binary Interface (OpenSBIl). OpenSBl is a platform-specific firmware running in M-mode. It acts as an interface
between the HSS and U-boot. The HSS loads the first stage boot loader (U-Boot) from a boot device to an
external RAM. The HSS uses the OpenSBI functions to switch the execution mode from M-mode to S-mode
when transferring execution control to U-Boot.

U-Boot initializes the peripherals and loads the kernel. The boot device can either be an embedded memory
microcontroller (eMMC) or an SD card. U-Boot loads the Linux kernel from the boot device to DDR.

In the next stage, Linux is executed (from DDR).
Init is the first process executed by the Linux kernel and it is the parent of all processes.
In the final stage, user applications are executed in Linux.

The following figure shows the boot process flow.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 53

https://github.com/polarfire-soc

3.81

3.8.2
3.8.2.1

Application Development

Figure 3-19. Linux Boot Process Flow

HSS
(Open SBI)
IIIIIIHaHIIIIII

User Application

Building Linux Images

Linux images can be built using the Yocto or Buildroot build systems. Both of these systems come with a readme that
lists the required packages and build steps.

The Microchip Yocto BSP can be found at: github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp

It supports several board targets and build configurations for different images (for example, minimal/development
tools).

The Microchip Buildroot SDK can be found at: github.com/polarfire-soc/polarfire-soc-buildroot-sdk

It supports several board targets and is pre-configured to generate a minimal image.

Integrating Linux Applications in Yocto

Existing Linux Applications

To integrate an existing Linux application (package) into Yocto, ensure that the package is a part of the Yocto source
and add the package to the final image. An example on integrating Linux package using apache2 is shown in the
following steps.

1. Find the package .bb file in the Yocto repository apache?2 (web server), which is shown as an example in the
following code snippet.

microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$ find ./meta-* -name apache2
. /meta-openembedded/meta-webserver/recipes-httpd/apache?2

. /meta-openembedded/meta-webserver/recipes-httpd/apache2/apache2

2. Ensure that the package meta layer directory is present in the bblayers. conf file.

microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$ 1ls build/conf/bblayers.conf
build/conf/bblayers.conf

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 54

https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk

Application Development

3. If the package meta layer directory is not part of bblayers.conf file, add the directory path as highlighted in
the following code snippet.

LAYER CONF VERSION is increased each time build/conf/bblayers.conf
changes incompatibly

LCONF VERSION = "7"
BBPATH = "${TOPDIR}"
BBFILES 2= ""
BBLAYERS ?= " \

/home/microchip/riscv/icicle/yocto-dev/openembedded-core/meta \
/home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-oe \
/home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-python \
/home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-multimedia \
/home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-networking \
/home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-webserver \
/home/microchip/riscv/icicle/yocto-dev/meta-riscv \
/home/microchip/riscv/icicle/yocto-dev/meta-polarfire-soc-yocto-bsp \

"

4. The following code snippet shows the mpfs-dev-cli.bb files folder in Yocto source for PolarFire SoC, open
the mpfs-dev-cli.bb file.

microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-devs$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-devs$ ls meta-polarfire-soc-yocto-
bsp/recipes-core/images/

mpfs-dev-cli.bb riscv-initramfs-image.bb

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 55

Application Development

5. Thempfs-dev-cli.bb files show a list of packages added in the PolarFire SoC device. Add apache?2
package in the existing list as shown in the following code snippet.

DESCRIPTION = "Microchip MPFS Development CLI Linux image"

inherit image-buildinfo core-image extrausers
EXTRA USERS_PARAMS = "usermod -P microchip root;"

IMAGE FEATURES += " ssh-server-openssh \
tools-debug tools-sdk debug-tweaks \
dev-pkgs dbg-pkgs \

IMAGE INSTALL = "\
packagegroup-core-boot \
packagegroup-core-full-cmdline \
perl-modules \
alsa-utils \
i2c-tools \
apache2 \
screen \
apps \

vim vim-vimrc \
dhcp-client \
nbd-client \
mpfr-dev \

gmp-dev \
libmpc-dev \
zlib-dev \

flex \

bison \

dejagnu \

gettext \

texinfo \

procps \

glibc-dev \
elfutils \
elfutils-dev \
pciutils \
usbutils \
mtd-utils \
sysfsutils \

htop \

iw \

python3 \

git \

swig \

boost \

orc \

libudev \

glib-2.0 \

evtest devmem2 iperf3 memtester lmbench \
tepdump \

iw \

libudev \

nano \
nfs-utils-client \
cifs-utils \
openssh-sftp \
openssh-sftp-server \
procps \

protobuf \

ntp ntpdate ntp-utils \
linux-firmware \
libsodium \
sglite3 \

tar \

wget \

zip \

unzip \

rsync \
kernel-modules kernel-devsrc kernel-dev \
${CORE_IMAGE EXTRA INSTALL} \

Upon successful addition of the apache2 package as shown in the preceding steps, Yocto source can be built.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 56

Application Development

3.8.2.2 Custom Linux Applications
To integrate an existing Linux application into Yocto, ensure that the particular package is part of the Yocto source
and add the package to the final image. An example of integrating Linux application using apache2 is shown in the
following steps.
Note: The user package recipe must be placed under the apps folder to be part of the Yocto build process.

The following code snippet shows a sample application . bb file.
#

This file was derived from the 'Hello World!' example recipe in the
Yocto Project Development Manual.

#

DESCRIPTION = "Simple application to blink LEDs"

SECTION = "examples"

LICENSE = "MIT"

LIC FILES CHKSUM = "file://${COMMON LICENSE DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4£302"
PR = "r0"

SRC_URI = "file://led blinky.c \

S = "${WORKDIR}/"

do_compile () {

${CC} led blinky.c ${LDFLAGS} -o led blinky
}

FILES_S${PN} += "/microchip-apps"

do_install() {
install -d ${D}/microchip-apps
install -m 0755 led blinky.c ${D}/microchip-apps
install -m 0755 led blinky ${D}/microchip-apps

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 57

Application Development

The mpfs-dev-cli.bb file shows the list of packages added in the PolarFire SoC device. Add apps package in the
existing list as shown in the following code snippet.

DESCRIPTION = "Microchip MPFS Development CLI Linux image"

inherit image-buildinfo core-image extrausers
EXTRA USERS_ PARAMS = "usermod -P microchip root;"

IMAGE FEATURES += " ssh-server-openssh \
tools-debug tools-sdk debug-tweaks \
dev-pkgs dbg-pkgs \

IMAGE INSTALL = "\
packagegroup-core-boot \
packagegroup-core-full-cmdline \
perl-modules \
alsa-utils \
i2c-tools \
screen \
apps \

vim vim-vimrc \
dhcp-client \
nbd-client \
mpfr-dev \

gmp-dev \
libmpc-dev \
zlib-dev \

flex \

bison \

dejagnu \

gettext \

texinfo \

procps \

glibc-dev \
elfutils \
elfutils-dev \
pciutils \
usbutils \
mtd-utils \
sysfsutils \

htop \

iw \

python3 \

git \

swig \

boost \

orc \

libudev \

glib-2.0 \

evtest devmem2 iperf3 memtester lmbench \
tcpdump \

iw \

libudev \

nano \
nfs-utils-client \
cifs-utils \
openssh-sftp \
openssh-sftp-server \
procps \

protobuf \

ntp ntpdate ntp-utils \
linux-firmware \
libsodium \
sglite3 \

tar \

wget \

zip \

unzip \

rsync \
kernel-modules kernel-devsrc kernel-dev \
S { CORE IMAGE EXTRA INSTALL} \

Upon successful addition of the apps package as shown in the preceding code snippet, Yocto source can be built.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 58

3.8.3

3.8.3.1

3.8.3.2

Application Development

For more information about Yocto, see Yocto Reference Manual.

Microchip offers a complete Yocto source image for PolarFire SoC Icicle Kit that can be used for customized Linux
images including application development. See GitHub page for more information about the directory structure,
source files, and documentation.

Integrating Linux Application in Buildroot

Existing Linux Applications

To integrate existing Linux application (package) into Buildroot, go to the PolarFire SoC Buildroot SDK path and
execute the following commands.

* To configure an eMMC target, execute the command:

microchip@microchip-OptiPlex-9010:~/riscv/icicle/polarfire-soc-buildroot-sdk$ make
DEVKIT=icicle-kit-es buildroot_initramfs-menuconfig

» To configure an SD card target, execute the command:
microchip@microchip-OptiPlex-9010:~/riscv/icicle/polarfire-soc-buildroot-sdk$ make

DEVKIT=icicle-kit-es-sd buildroot rootfs-menuconfig

When the make command is successfully executed, the Config menu appears as shown in the following figure.
Search for the package that needs to be added. Select the package and Save. Apache is used as an example
package in the following figure.

Figure 3-20. Apache Buildroot

Upon successful addition of the apache package as shown in the preceding image, the Buildroot source can be built.

Custom Linux Applications
To integrate a custom Linux application (package) into Buildroot, follow these steps:

1. Create a new directory in the package folder of Buildroot source. For example, microchip-apps package
folder is used as an example, which consists of two files—Config.in and microchip-apps.mk. If you
have any C source files, create a directory f£iles to store the source files.

The following code snippet shows the microchip-apps folder.
microchip@microchip-OptiPlex-9020:~/work/icicle/polarfire-soc-buildroot-sdk/buildroot/

package/microchip-apps$ 1ls
Config.in files microchip-apps.mk

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 59

https://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html
https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp

3.8.4

Application Development

microchip@microchip-OptiPlex-9020:~/work/icicle/polarfire-soc-buildroot-sdk/buildroot/
package/microchip-apps$

2. Create a Config. in file with the following code snippet.

#
buildroot/package/microchip-apps/Config.in
#
config BR2_PACKAGE MICROCHIP APPS

bool "microchip-apps"

help

Microchip applications for blinking LEDs

3. Create amicrochip-apps.mk file with the following code snippet.

#
buildroot/package/microchip-apps/microchip-apps.mk
#
MICROCHIP APPS VERSION =
MICROCHIP APPS SITE = $(T
MICROCHIP APPS SITE METHO

1.0
OPDIR) /package/microchip-apps/files
D = local

define MICROCHIP APPS BUILD CMDS
$ (MAKE) CC="$(TARGET7CC)" LD="$(TARGET7LD)" -C $(@D) all
endef

define MICROCHIP APPS INSTALL TARGET CMDS
$ (INSTALL) -D -m 0755 $(@D)/led blinky $(TARGET DIR)/microchip-apps/led blinky
endef

$(eval $(generic-package))

4. Edit the parent package config file (package/Config. in)to include the microchip-apps package.

source "package/microchip-apps/Config.in"

5. Addthe microchip-apps package to the buildroot initramfs config file to build the microchip-
apps package as part of the eMMC Linux image.

BR2_TOOLCHAIN EXTERNAL CUSTOM GLIBC=y
BR2 PACKAGE GDB NEEDS CXX11l= =y

BR2 TOOLCHAIN EXTERNAL _CXX=y

BR2 TOOLCHAIN EXTERNAL INET RPC=y

BR2 _ROOTFS_DEVICE CREATION DYNAMIC MDEV=y
BR2 TARGET GENERIC ROOT _ PASSWD= "mlcrochlp"
BR2 . SYSTEM DHCP="eth("

BR2 PACKAGE DHRYSTONE= vy
BR2_PACKAGE_LMBENCH %

BR2 PACKAGE E2FSPROGS=y

BR2 PACKAGE MTD=y

BR2 _PACKAGE MICROCHIP _APPS=y

BR2 PACKAGE MTD NANDDUMP is not set

BR2_PACKAGE_MTD_NANDTEST is not set

BR2_PACKAGE_MTD_ NANDWRITE is not set

BR2 PACKAGE MTD UBIATTACH is not set

Upon successful addition of the apps package as shown in the preceding steps, Buildroot source can be built.

Different Sources of Booting

The PolarFire SoC target hardware runs the HSS from eNVM to load the Linux image either from eMMC or SD card
depending on its configuration when built as shown in the following figure.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 60

Application Development

Figure 3-21. Different Sources of Booting

Icicle Kit

SD

USB/UART/Ethernet - PolarFire SoC
Host PC > FPGA

eMMC

When the customized Linux images are available, USB, UART or Ethernet can be used to transfer the image to
eMMC or SD card.

To boot Linux on Icicle kit using eMMC, see GitHub.

3.8.5 Device Tree Source (DTS)

A Device Tree is a data structure for describing the hierarchy of hardware subsystems within a hardware platform,
or an add-on peripheral to that platform. It is used to select and configure the device drivers for Embedded Linux
platform during the boot process. It can be represented in different formats, such as

» Device Tree Source format (. dts)
» Compiled binary Device Tree binary format (. dtb)
* Forexample, icicle-kit-es-a000-microchip.dts and icicle-kit-es-a000-microchip.dtb

Additional peripherals like GPIO, LSRAM, and so on, can be added to a kernel by including them in the DTS.

3.8.5.1 Adding a Sample Device Node for GPIO
The following example device node can be added to a Device Tree.

gpioR@20122000 {

compatible = "microsemi,ms-pf-mss-gpio";
interrupt-parent = <&Ll>;

interrupts = <53 53 53 53 53 53 53>;
gpio-controller;

reg = <0x0 0x20122000 0x0 0x1000>;
reg-names = "control";

status = "okay";

}i

3.8.5.2 Adding a Sample Device node for LSRAM (UIO Framework)

The following example device node can be added to device tree (icicle-kit-es-a000-microchip.dts).
uio 1sram@0x60000000 {
compatible = "generic-uio";
reg = < 0x0 0x60000000 0x0 0x00010000 // LSRAMO Memory
0x0 0x60010000 0x0 0x00010000 >; //LSRAM1 Memory

status = "okay";
}i

Hardware that is ideally suited for an UIO driver fulfills all the following.

* The device has memory that can be mapped. The device can be controlled completely by writing to this memory.
* The device usually generates interrupts.
» The device does not fit into one of the standard kernel subsystems.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 61

http://github.com/polarfire-soc

Appendix

Appendix

HSS

The HSS is a ZSBL that is stored in the eNVM of PolarFire SoC. It can be used to program memories and boot
applications running on different harts in the system. It runs in a super loop executing on the E51 core and provides a
machine mode trap handler to pass messages between the U54 harts.

The HSS can be found on GitHub here: github.com/polarfire-soc/hart-software-services

HAL

The MPFS HAL provides the initial boot code, interrupt handling, hardware access methods for the PolarFire SoC
MSS and DDR training code. The terms PolarFire-SoC HAL and MPFS HAL are used interchangeably but the term
MPFS HAL is preferred. The MPFS HAL is a combination of C and assembly source code.

Location of the repository: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/src/platform/mpfs_hal

Peripheral Driver Library
The PolarFire SoC Bare Metal Library includes:

» Source code for start-up code and HAL the PolarFire SoC MSS.

» Source code for the PolarFire SoC MSS peripheral drivers.

» Documentation for the HAL and peripheral drivers.

» SoftConsole example projects demonstrating the use of the various PolarFire SoC peripherals.

Location of the repository: github.com/polarfire-soc/polarfire-soc-bare-metal-library

Presentation recording: microchip.webex.com/microchip/Isr.php?RCID=ed4bf40309bd37afa46d9723270bb192

Presentation slides: www.microsemi.com/document-portal/doc_download/1244894-polarfire-soc-renode-webinar-10

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 62

https://github.com/polarfire-soc/hart-software-services
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/src/platform/mpfs_hal
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://microchip.webex.com/microchip/lsr.php?RCID=ed4bf40309bd37afa46d9723270bb192
https://www.microsemi.com/document-portal/doc_download/1244894-polarfire-soc-renode-webinar-10

Revision History

Revision History
The revision history describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

L S T

B 05/2021 Updated the References section
A 09/2020 Initial Revision

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 63

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

* Product Support — Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

* Business of Microchip — Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

» Distributor or Representative

* Local Sales Office

» Embedded Solutions Engineer (ESE)
» Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

» Microchip products meet the specifications contained in their particular Microchip Data Sheet.

» Microchip believes that its family of products is secure when used in the intended manner and under normal
conditions.

* There are dishonest and possibly illegal methods being used in attempts to breach the code protection features
of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

» Microchip is willing to work with any customer who is concerned about the integrity of its code.

» Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code
protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 64

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY

OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeelLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BlueSky,

BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM,

MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial

Quad I/0, SMART-L.S., SQI, SuperSwitcher, SuperSwitcher Il, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany Il GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.
ISBN: 978-1-5224-8247-5

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 65

Quality Management System

For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 66

http://www.microchip.com/quality

MICROCHIP

Worldwide Sales and Service

AMERICAS ASIA/PACIFIC ASIA/PACIFIC [EUROPE |

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, Ml

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC

Tel: 919-844-7510
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

© 2021 Microchip Technology Inc.

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing

Tel: 86-10-8569-7000
China - Chengdu

Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing

Tel: 86-25-8473-2460
China - Qingdao

Tel: 86-532-8502-7355
China - Shanghai

Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou

Tel: 86-186-6233-1526
China - Wuhan

Tel: 86-27-5980-5300
China - Xian

Tel: 86-29-8833-7252
China - Xiamen

Tel: 86-592-2388138
China - Zhuhai

Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune

Tel: 91-20-4121-0141
Japan - Osaka

Tel: 81-6-6152-7160
Japan - Tokyo

Tel: 81-3-6880- 3770
Korea - Daegu

Tel: 82-53-744-4301
Korea - Seoul

Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore

Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei

Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

User Guide

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo

Tel: 358-9-4520-820
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan

Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana

Tel: 972-9-744-7705
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw

Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

DS60001659B-page 67

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	References
	Acronyms
	Table of Contents
	1. Development Tools
	1.1. PolarFire SoC MSS Configurator
	1.1.1. Installation
	1.1.2. Running the PolarFire SoC MSS Configurator

	1.2. Libero® SoC
	1.3. SoftConsole
	1.3.1. SoftConsole Presets
	1.3.1.1. Build Options
	1.3.1.2. Debug Configurations

	1.3.2. Debugging using SoftConsole
	1.3.2.1. Launching a Debug Configuration
	1.3.2.2. Perspectives
	1.3.2.3. Debugging a Hart
	1.3.2.4. Debug Session Controls
	1.3.2.5. Setting Breakpoints
	1.3.2.6. Setting Watchpoints

	1.3.3. Renode™

	1.4. FlashPro Express
	1.5. RISC-V GCC Bare Metal
	1.6. RISC-V Linux Toolchain
	1.7. Yocto
	1.8. Buildroot
	1.9. SmartDebug
	1.10. Identify

	2. Software Stack
	2.1. RISC-V Libraries
	2.1.1. Newlib
	2.1.2. Binutils

	2.2. Hart Software Services (HSS)
	2.3. Bare Metal Library
	2.4. Linker Scripts
	2.5. Linux Images
	2.6. FreeRTOS™
	2.7. Third Party Tools

	3. Application Development
	3.1. Device Boot and Configuration Process
	3.2. Boot Mode 0-Idle Boot
	3.3. Boot Mode 1-Direct Boot from eNVM
	3.3.1. Programming the eNVM

	3.4. Clock Management
	3.5. Physical Memory Protection (PMP)
	3.5.1. Using the PMPs in Bare Metal
	3.5.2. Using the PMPs in Linux

	3.6. Generating Boot Images
	3.6.1. Targeting Harts
	3.6.2. Storing a Single Bare Metal Application in an eNVM
	3.6.3. Storing Bare Metal Application(s) to an External Memory
	3.6.3.1. Single Bare Metal Application
	3.6.3.2. Multiple Bare Metal Applications

	3.6.4. Programming the eNVM
	3.6.5. Unused Harts

	3.7. Bare Metal Development
	3.7.1. Single U54
	3.7.2. Multiple U54s
	3.7.3. Initializing the Application Execution Space (LIM or DDR)
	3.7.4. Merging Multiple Bare Metal Applications

	3.8. Linux Application Development
	3.8.1. Building Linux Images
	3.8.2. Integrating Linux Applications in Yocto
	3.8.2.1. Existing Linux Applications
	3.8.2.2. Custom Linux Applications

	3.8.3. Integrating Linux Application in Buildroot
	3.8.3.1. Existing Linux Applications
	3.8.3.2. Custom Linux Applications

	3.8.4. Different Sources of Booting
	3.8.5. Device Tree Source (DTS)
	3.8.5.1. Adding a Sample Device Node for GPIO
	3.8.5.2. Adding a Sample Device node for LSRAM (UIO Framework)

	4. Appendix
	5. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

