

 PolarFire® SoC Software Development and Tool Flow User

Guide

Introduction
The PolarFire SoC tool flow has been constructed to allow embedded designers and FPGA designers to develop
applications in the domain of their choice. Embedded designers and FPGA designers prefer using a tool flow they
are familiar with. The recommended starting point when designing with PolarFire SoC FPGA is the PolarFire SoC
MSS Configurator tool that graphically guides the user to define the initialization parameters for the microprocessor
subsystem, MSS peripherals, DDR, and the interfaces between the processor subsystem and the FPGA fabric. The
tool is also used to configure MSS I/O.

The following flow diagram illustrates the high-level tool flow.

Figure 1. High-Level Tool Flow

PolarFire SoC MSS Configurator

Configuration Information for
SoftConsole (.XML)

Configuration Information for
Libero SoC (.CXZ)

Libero SoC IDE
FPGA Hardware Development

Design Implementation Tool

eNVM, sNVM Memory Clients

SmartDebug and
Identify

Debugging Tools

FlashPro Express
Software

Programming Tool

FlashPro
Hardware

SoftConsole IDE
Embedded Software

Development

Compiler/
Linker Tools

Debugging
Tools

Embedded
Programming

Embedded
Debugging

PolarFire SoC
Device

JTAG/UJTAG

After the user completes a configuration, the MSS configurator exports the files needed for the embedded software
development flow and FPGA developers. The XML file contains the system configuration information needed to

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 1

generate header files for Bare Metal system startup code included in the Hart Software Services (HSS) to configure
the microprocessor subsystem to the expected state. The <project_name>.cxz can be imported into Libero®

SoC (v12.5 and above) and used by the FPGA designer to interface their design to the processor subsystem. The
PolarFire SoC MSS Configurator tool is used to change the state of the microprocessor subsystem or any of the
interfaces between the FPGA fabric and the microprocessor subsystem.

As the design progresses through the development process, different types of data are shared between the FPGA
designer (Libero SoC) and the embedded designer (SoftConsole). The following are some of the examples.

• SoftConsole: outputs that can be part of the FPGA bitstream or programmed directly through SoftConsole using
the FlashPro hardware.

– Boot Mode configuration
– Secure Boot Device Certificate
– Embedded Non-Volatile Memory (eNVM) binary
– Secure Non-Volatile Memory (sNVM) binary

• Libero SoC

– FPGA memory map
– FPGA design

The FPGA designer in collaboration with the embedded software designer defines and refines the MSS memory map
within the FPGA. The files generated by the PolarFire SoC MSS Configurator must be shared with the embedded
software developer for further development.

References
• For information about the PolarFire SoC MSS, see PolarFire SoC MSS Technical Reference Manual.
• For information about MSS peripherals, see PolarFire SoC MSS Technical Reference Manual.
• For information about device power-up, see UG0890: PolarFire SoC FPGA Power-Up and Resets User Guide.
• For more information about Bare Metal, Yocto, and Buildroot applications, see GitHub.
• For information about Yocto, see Yocto Project Reference Manual.
• For information about Buildroot, see Buildroot User Manual.
• For more information about PolarFire SoC MSS Configurator, see PolarFire SoC MSS Configurator.
• For more information about how to boot Linux on Icicle kit using eMMC, see GitHub.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 2

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245725%20PolarFire%20SoC%20FPGA%20MSS%20Technical%20Reference%20Manual
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1245725%20PolarFire%20SoC%20FPGA%20MSS%20Technical%20Reference%20Manual
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574
http://github.com/polarfire-soc
https://www.yoctoproject.org/docs/3.1/ref-manual/ref-manual.html
https://buildroot.org/docs.html
https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
http://github.com/polarfire-soc

Acronyms
The following acronyms are used in this document.

Acronym Expanded

DTIM Data Tightly Integrated Memory

DTS Device Tree Source

eMMC Embedded Multi-Media Controller

eNVM Embedded Non-Volatile Memory/BootFlash

FSBL First Stage Boot Loader

HAL Hardware Abstraction Layer

Hart Hardware Thread/Core/Processor Core

HSS Hart Software Services

μPROM Micro Programmable Read-Only Memory

LIM Loosely Integrated Memory

MSS Microprocessor Subsystem

MPFS Microchip PolarFire SoC

OpenSBI Open Source Supervisor Binary Interface

PMP Physical Memory Protection

POR Power-on Reset

PUF Physically Unclonable Function

ROM Read-only Memory

SBIC Secure Boot Image Certificate

sNVM Secure Non-volatile Memory

SRAM Static Random-Access Memory

SSBL Second Stage Boot Loader

WFI Wait for Interrupt

ZSBL Zero Stage Boot Loader

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 3

Table of Contents

Introduction...1

References...2

Acronyms... 3

1. Development Tools..6

1.1. PolarFire SoC MSS Configurator... 6
1.2. Libero® SoC..7
1.3. SoftConsole..7
1.4. FlashPro Express...26
1.5. RISC-V GCC Bare Metal..26
1.6. RISC-V Linux Toolchain... 26
1.7. Yocto...26
1.8. Buildroot... 27
1.9. SmartDebug... 27
1.10. Identify..28

2. Software Stack.. 29

2.1. RISC-V Libraries.. 29
2.2. Hart Software Services (HSS)..30
2.3. Bare Metal Library..31
2.4. Linker Scripts..32
2.5. Linux Images..33
2.6. FreeRTOS™... 34
2.7. Third Party Tools.. 35

3. Application Development.. 36

3.1. Device Boot and Configuration Process...36
3.2. Boot Mode 0-Idle Boot..38
3.3. Boot Mode 1-Direct Boot from eNVM...38
3.4. Clock Management.. 42
3.5. Physical Memory Protection (PMP)..42
3.6. Generating Boot Images.. 43
3.7. Bare Metal Development..48
3.8. Linux Application Development..53

4. Appendix... 62

5. Revision History.. 63

The Microchip Website...64

Product Change Notification Service..64

Customer Support.. 64

Microchip Devices Code Protection Feature.. 64

Legal Notice... 65

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 4

Trademarks.. 65

Quality Management System... 66

Worldwide Sales and Service...67

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 5

1. Development Tools
PolarFire SoC comes with a suite of tools to help create a complete hardware and software solution. The following
table lists the suite of tools available for creating the FPGA and embedded design targeted for PolarFire SoC.

Tool Description

PolarFire SoC MSS
Configurator

A standalone tool to configure the MSS clock frequencies, peripherals, DDR, fabric
interfaces, and MSS I/O configuration.

Libero SoC Standard Microchip tool to configure the programmable section of the PolarFire SoC
FPGA.

SoftConsole Software development platform to develop and debug the Bare Metal and RTOS
applications, which also includes debugging the software.

FlashPro Express Available as a standalone tool or integrated as part of a Libero installation. Used for
programming the MSS and programmable logic of the FPGA.

RISC-V GCC Bare Metal The RISC-V GCC toolchain bundled with SoftConsole for Bare Metal development.

Yocto An open source project to create Linux® distributions for embedded and IoT applications.

Buildroot A tool to configure and generate embedded Linux distributions.

SmartDebug and Identify Available as a standalone tool or integrated as part of Libero to debug the hardware in
the MSS and programmable logic.

Identify is the Embedded Logic Analyzer tool for Microchip FPGA devices offered as part
of the Libero SoC software tool suite.

1.1 PolarFire SoC MSS Configurator
The PolarFire SoC MSS Configurator is a common tool to configure the PolarFire SoC MSS. It provides a seamless
experience for the embedded software developers targeting the MSS and hardware engineers developing a solution
using the MSS and the FPGA fabric. The PolarFire SoC MSS Configurator application is available in two options:

• As a standalone application
• As part of the Libero SoC Design Suite v12.5 and later

1.1.1 Installation
The PolarFire SoC MSS Configurator bundled with Libero is available at the following location in the Libero
installation folder:

• Windows:
<$Installation_Directory>\Microsemi\Libero_SoC_vX.X\Designer\bin64\pfsoc_mss.exe

• Linux: <$Installation_Directory>\Microsemi\Libero_SoC_vX.X\bin64\pfsoc_mss
Note:  For Windows, a start menu entry is created for easy launching.

For more details on how to install Libero, see www.microsemi.com/product-directory/design-resources/1750-libero-
soc#documents

The PolarFire SoC MSS configurator can also be installed as a standalone application. For more information, see
www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents.

1.1.2 Running the PolarFire SoC MSS Configurator
The Standalone MSS Configurator can run in one of the following modes.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 6

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

Batch Mode

The PolarFire SoC MSS Configurator application can be executed in the Batch mode for scripted execution as
follows:

• Windows:
 <Libero SoC or Standalone MSS Configurator installation area>\bin64\pfsoc_mss.exe
-CONFIGURATION_FILE:<absolute path for configuration file name (.cfg)> -
OUTPUT_DIR:<absolute path for output directory>

• Linux:
<Libero SoC or Standalone MSS Configurator installation area>/bin64/pfsoc_mss
-CONFIGURATION_FILE:<absolute path for configuration file name (.cfg)> -
OUTPUT_DIR:<absolute path for output directory>

Interactive Mode

The Standalone MSS Configurator (pfsoc_mss) can be launched from the Libero SoC installation directory
(specified above) or from the Windows Start Menu.

For more details about Batch mode and Interactive mode usage, see www.microsemi.com/product-directory/soc-
design-tools/5587-pfsoc-mss-configurator-tool#documents.

1.2 Libero® SoC
Libero System-on-Chip (SoC) design suite offers high productivity with its comprehensive, easy to learn, easy to
adopt development tools for designing with Microsemi’s power efficient Flash FPGAs, SoC FPGAs, and Rad-Tolerant
FPGAs. The suite integrates industry standard Synopsys Synplify Pro® synthesis and Mentor Graphics ModelSim®

simulation with best-in-class constraints management, debug capabilities, and secure production programming
support.

For more details, see the Libero SoC Design Flow User Guide at:

www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

1.3 SoftConsole
SoftConsole is an Eclipse-based IDE facilitating the development and debug of Bare Metal and RTOS-based C/C++
applications for Microchip SoC based FPGAs. It provides development and debug support for all Microchip SoC
FPGAs and 32-bit soft IP CPUs.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 7

https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
https://www.microsemi.com/product-directory/soc-design-tools/5587-pfsoc-mss-configurator-tool#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents

Figure 1-1. SoftConsole IDE

For the latest SoftConsole Release Notes, see the SoftConsole webpage.

1.3.1 SoftConsole Presets
This section provides an outline of the default configurations for building projects for PolarFire SoC in SoftConsole
v6.4 and later.

Existing SoftConsole projects can be downloaded from the PolarFire SoC Bare Metal Library: github.com/polarfire-
soc/polarfire-soc-bare-metal-library. To import a project, follow these steps:

1. Click File > Import.
2. Select the Existing Projects into Workspace option.

Notes: 
1. The downloaded projects are pre-configured with default settings and can be used as a base to build a new

project.
2. The sample XML is included with the Bare Metal example projects; XML for reference designs can be found in

the kit design folder on Github. For example, the PolarFire SoC Icicle Kit Libero reference design can be found
here: github.com/polarfire-soc/icicle-kit-reference-design and contains an XML folder with reference XML for
eMMC and SD card targets.

1.3.1.1 Build Options
To view the properties of a project, right click an open project in the workspace and select Properties.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 8

https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://github.com/polarfire-soc/icicle-kit-reference-design

To configure build options, select C/C++ Build followed by Settings. These options can be configured globally or for
individual build configurations using the Configuration field as shown in the following figure.
Figure 1-2. Project Properties—Build Configurations

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 9

The default build configuration for the target processor section of a Bare Metal project are shown in the following
figure.

Figure 1-3. Configuration—Target Processor

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 10

The following figure shows the default Includes for the GNU RISC-V Cross Assembler.
Figure 1-4. Configuration—GNU RISC-V Cross Assembler—Includes

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 11

The default Includes for the GNU RISC-V Cross C Compiler are shown in the following figure.

Figure 1-5. Configuration—GNU RISC-V Cross C Compiler—Includes

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 12

The default Linker script used by the GNU RISC-V Cross C Linker targets the LIM as show in the following figure
and several sample Linker scripts to target different memory sources are included in the sample projects.

Figure 1-6. Configuration—GNU RISC-V Cross C Linker—General

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 13

To change the Linker script, double click on the existing Linker script and select the Workspace option to select the
Linker script from the project as shown in the following figure.

Figure 1-7. Edit File Path

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 14

The default output file format selected in GNU RISC-V Cross Create Flash Image for a Bare Metal project is Intel
HEX. See the following figure.

Figure 1-8. Configuration—GNU RISC-V Cross Create Flash Image—General

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 15

1.3.1.2 Debug Configurations

Debug Configuration Window

All the example Bare Metal projects contain a Renode™ debug configuration and a hardware debug configuration
in the GDB OpenOCD Debugging section. The debug configuration also contains a Launch Group configuration
option, which can be used to launch the Renode emulation platform and start the Renode debug configuration in one
step as opposed to launching them independently. The following figure shows the Debug Configuration window.
Figure 1-9. Debug Configuration Window

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 16

Debugger Tab

The default settings in the Debugger tab is shown in the following figure.
Figure 1-10. Debug Configurations—Debugger

In the Debugger tab, under the OpenOCD Setup > Config options section, the default commands used are the
following:
--command "set DEVICE MPFS"
--file board/microsemi-riscv.cfg

In the Debugger tab, under the GDB Client Setup > Commands section, the default commands used are the
following:
set $target_riscv=1
set mem inaccessible-by-default off
file ${config_name:mpfs-mmuart-interrupt}/mpfs-mmuart-interrupt.elf

Note:  The file command shown in the preceding section must match the name of the project being used. The
{config_name:mpfs-mmuart-interrupt}/ section selects the folder for build files used in the configuration
(that is, Debug or Release) and the mpfs-mmuart-interrupt.elf is the name of the .elf file produced on a
successful build.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 17

Startup Tab

The default settings in the Startup tab is shown in the following figure.
Figure 1-11. Debug Configurations—Startup

In the Startup tab, under the Run/Restart Commands section, the default commands used are the following:

thread apply all set $pc=_start

1.3.2 Debugging using SoftConsole
See the SoftConsole section for information on configuring builds and setting up debug configurations using
SoftConsole.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 18

1.3.2.1 Launching a Debug Configuration
Follow these steps to launch the debug configuration.

1. To launch a debug session, click the drop down arrow beside the debug icon and then, click the Debug
Configurations option.
Figure 1-12. Debug Configurations

2. Select the debug session to be launched and click Debug.
Figure 1-13. Debug Configurations

The debug session is launched and connects to the target.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 19

1.3.2.2 Perspectives
There are several perspectives to choose from, each has a different layout optimized for different tasks. Perspectives
can be chosen using icons at the top-right corner of the SoftConsole window. The following figure and table show
icons for different perspectives and their description.

Figure 1-14. Choosing Different Perspectives

The description for each number is provided in the following table.

1 View all available perspectives

2 Develop and debug perspective

3 C/C++ perspective

4 Debug perspective

5 UltraDevelop perspective

To add windows or tools to the perspective, select Window > Show View and choose the required window. In the
following figure, the Debug window is chosen.
Figure 1-15. Adding Windows or Tools for Perspectives

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 20

1.3.2.3 Debugging a Hart
Each hart in the system appears as a different thread in the Debug window. This window is automatically shown in
the Debug perspective and can be added to an active perspective. All the threads appear under the project name as
shown in the following figure.

Figure 1-16. Debug Window Showing Harts as Threads

Each thread in the preceding figure represents a hart, and the function listed below each thread is the code being
executed.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 21

The following figure describes how to interpret the current function that is executed on a hart.
Figure 1-17. Current Function Executing on a Hart

The description for each number is provided in the following table.

1 Shows the function that is currently being executed.

2 Shows the file in which function is found.

3 Shows the line of the file where the code is currently being executed

4 Memory address of the code that is executed

1.3.2.4 Debug Session Controls
The following figure shows the buttons that are used to control the execution of the debug session.
Figure 1-18. Buttons to Control Debug Session

1. Disable breakpoints  2. Resume  3. Halt  4. Stop  5. Step into  6. Step over  7. Step return 
8. Instruction Stepping Mode  

1.3.2.5 Setting Breakpoints
To add Breakpoints, right click beside the line number where the Breakpoint is required and select Toggle
Breakpoint. Alternately, the same can be achieved by double clicking on the same location.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 22

Figure 1-19. Toggle Breakpoint

These breakpoints are set for all harts.

If a breakpoint is required only for a single hart and shared code is being run, the breakpoint can be filtered using the
following steps:

1. Click the Breakpoints window.
2. Right click the breakpoint to be filtered and select Breakpoint Properties.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 23

Figure 1-20. Breakpoint Properties

3. Select the Filter option and enable the breakpoint for the hart(s) required.
Figure 1-21. Filter Breakpoints

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 24

1.3.2.6 Setting Watchpoints
Watchpoints can be set on variables while running a debug session. To set a Watchpoint, open the Variables
window, right click on the variable and select Add Watchpoint (C/C++)....
Figure 1-22. Add Watchpoint

This Watchpoint can be configured using the Properties for C/C++ Watchpoint window.
Figure 1-23. Watchpoint Properties Window

The added Watchpoint appears in the Breakpoints window as an expression.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 25

Figure 1-24. Breakpoints Window with Watchpoint

1.3.3 Renode™

Renode is an open-source software development framework with commercial support from Antmicro that lets you
develop, debug and test multi-node device systems reliably, scalably, and effectively.

For more information, see: https://renode.io/ and https://github.com/renode/renode.

1.4 FlashPro Express
FlashPro Express is the software tool for programming PolarFire SoC using the FlashPro Programmer hardware.

For the latest version of FlashPro Express User Guide, see www.microsemi.com/product-directory/design-resources/
1750-libero-soc#documents.

1.5 RISC-V GCC Bare Metal
The GNU Compiler Collection (GCC) is a compiler system produced by the GNU Project supporting various
programming languages. GCC is a key component of the GNU toolchain and the standard compiler for most projects
related to GNU and Linux, including the Linux kernel. The Free Software Foundation (FSF) distributes GCC under the
GNU General Public License (GNU GPL). GCC has played an important role in the growth of free software, as both a
tool and an example.

SoftConsole is shipped with Bare Metal riscv-gcc-toolchain with newlib and newlib.nano for 40 abi/arch multilib
combinations that allow a single toolchain to target various different target architectures (see SoftConsole Release
Notes for more details).

For GCC documentation, see Using the GNU Compiler Collection.

For GCC RISC-V specific options, see RISC-V Options.

For more details about march, mabi, and mtune arguments, see www.sifive.com/blog/all-aboard-part-1-compiler-args
and The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2.2.

1.6 RISC-V Linux Toolchain
The RISC-V GNU Linux-ELF/glibc toolchain is used by the Linux build tools (Yocto and Buildroot) to build a Linux
image.

The source used for the toolchain is available on GitHub at the following location: github.com/riscv/riscv-gnu-
toolchain.

1.7 Yocto
Yocto is an opensource development build environment for Linux. It can be used to customize a Linux image for
embedded or IoT application deployment. The Yocto framework is modular in nature and designed as a software
stack with layers managing different tasks and functions. The BSP layer provides machine configurations. The

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 26

https://renode.io/
https://github.com/renode/renode
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://gcc.gnu.org/onlinedocs/gcc/index.html
https://gcc.gnu.org/onlinedocs/gcc/RISC-V-Options.html
https://www.sifive.com/blog/all-aboard-part-1-compiler-args
https://riscv.org/technical/specifications/
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain

distro layer includes the top level polices for a distribution. The OpenEmbedded Build system (referred to as "the
build system") is the build system used by Yocto based on "Poky". BitBake is used by the build system for image
generation.

The Microchip Yocto BSP can be found at the following location: github.com/polarfire-soc/meta-polarfire-soc-yocto-
bsp. It contains predefined recipes to build different PolarFire SoC targets and build images with different bundles of
tools. For a full list of available builds, see the readme or the console output after successfully configuring a build.

Important:  Microchip peripheral drivers are currently added as patches with the Microchip PCIe driver
being up streamed to the Linux kernel version 5.8, it is planned to upstream remaining drivers for other
system peripherals in later releases.

Yocto builds supported on Linux and Yocto are not currently supported by the Windows Subsystem for Linux.

More information about Yocto is available on the Yocto project website.

Related Links
https://www.yoctoproject.org/
https://www.yoctoproject.org/docs/?section=reference-manuals

1.8 Buildroot
Buildroot is a tool that simplifies and automates the process of building a complete Linux system for an embedded
system, using cross-compilation. It is able to generate a cross-compilation toolchain, a root filesystem, a Linux kernel
image, and a bootloader for the target.

The Microchip PolarFire SoC Buildroot SDK is available at the following location: github.com/polarfire-soc/polarfire-
soc-buildroot-sdk. It contains configured builds for different PolarFire SoC targets. For a full list of available builds,
see the readme.

Important:  Microchip peripheral drivers are currently added as patches with the Microchip PCIe driver
being up streamed as to the Linux kernel version 5.8, it is planned to upstream remaining drivers for other
system peripherals in later releases.

Buildroot is supported on Linux and supported by the Windows Subsystem for Linux.

More information about Buildroot is available on the Buildroot website.

Related Links
https://buildroot.org/
https://buildroot.org/downloads/manual/
manual.html#:~:text=Buildroot%20is%20a%20tool%20that,a%20bootloader%20for%20your%20target

1.9 SmartDebug
SmartDebug is a tool that enables verification and troubleshooting at the hardware level. It provides access to sNVM,
SRAM, transceiver, uPROM, and fabric probe capabilities.

SmartDebug accesses the built-in probe points through the Active Probe and Live Probe features that enable
designers to check the state of inputs and outputs in real-time without modification of the design.

SmartDebug can be run in the following modes:

• Integrated mode from the Libero Design Flow
• Standalone mode

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 27

https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://www.yoctoproject.org/
https://www.yoctoproject.org/docs/?section=reference-manuals
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk
https://buildroot.org/
https://buildroot.org/downloads/manual/manual.html#:~:text=Buildroot%20is%20a%20tool%20that,a%20bootloader%20for%20your%20target
https://buildroot.org/downloads/manual/manual.html#:~:text=Buildroot%20is%20a%20tool%20that,a%20bootloader%20for%20your%20target

• Demo mode (without target hardware connected)

For the latest version of SmartDebug User Guides, see www.microsemi.com/product-directory/design-resources/
1750-libero-soc#documents.

1.10 Identify
Identify is a tool to find and correct functional design bugs by probing internal signals of the design directly from the
FPGA at the system speed.

For more information, see Identify ME webpage.

Development Tools

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 28

https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/design-resources/1750-libero-soc#documents
https://www.microsemi.com/product-directory/debug/4984-identify-me-downloads#overview

2. Software Stack
RISC-V is a large ecosystem with a variety of compilers, software libraries, examples, and tools available for
application development. This section outlines the open source RISC-V libraries available, along with Microchip
applications and examples to aid development for PolarFire SoC.

2.1 RISC-V Libraries
Standard libraries provide generic type definitions, functions, and macros for tasks that will be undertaken on a
system. This section provides information on the Newlib C standard library implementation and the GNU Binary
Utilities toolset bundled with SoftConsole.

2.1.1 Newlib
Newlib is a C standard library implementation intended for use on embedded systems. It is a conglomeration of
several library parts, all under free software licenses that make them easily usable for embedded products.

SoftConsole's RISC-V GCC toolchain and its multilibs come with pre-compiled and ready-to-use “newlib” and “newlib-
nano” C library.

Microchip’s toolchains come with generic basic Newlib implementation.

More information about Newlib and FAQ is available on the Sourceware website.

Related Links
https://www.sourceware.org/newlib/faq.html
https://www.sourceware.org/newlib/docs.html

2.1.2 Binutils
The GNU Binary Utilities, or binutils, are a set of programming tools for creating and managing binary programs,
object files, libraries, profile data, and assembly source code.

SoftConsole comes bundled with a ready-to-use Bare Metal binutils. The SoftConsole Release Notes show some use
cases of how to use nm and objcopy; however, most of the tools are used and invoked automatically by the IDE.
These tools are generic and can be used to target the 32-bit Mi-V RISC-V cores and the 64-bit PolarFire SoC targets.

Tool Name What it does Documentation

as Assembler sourceware.org/binutils/docs/as/

ld Linker sourceware.org/binutils/docs/ld/

gprof Profiler sourceware.org/binutils/docs/gprof/

addr2line Convert address to file and line sourceware.org/binutils/docs/binutils/addr2line.html

ar Create, modify, and extract from archives sourceware.org/binutils/docs/binutils/ar.html

c++filt Demangling filter for C++ symbols sourceware.org/binutils/docs/binutils/
c_002b_002bfilt.html

nm List symbols in object files sourceware.org/binutils/docs/binutils/nm.html

objcopy Copy object files, possibly making changes sourceware.org/binutils/docs/binutils/objcopy.html

objdump Dump information about object files sourceware.org/binutils/docs/binutils/objdump.html

ranlib Generate indices for archives (for compatibility,
same as ar -s)

sourceware.org/binutils/docs/binutils/ranlib.html

readelf Display content of ELF files sourceware.org/binutils/docs/binutils/readelf.html

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 29

https://www.sourceware.org/newlib/faq.html
https://www.sourceware.org/newlib/docs.html
https://www.microsemi.com/product-directory/design-tools/4879-softconsole#downloads
https://sourceware.org/binutils/docs/as/
https://sourceware.org/binutils/docs/ld/
https://sourceware.org/binutils/docs/gprof/
https://sourceware.org/binutils/docs/binutils/addr2line.html
https://sourceware.org/binutils/docs/binutils/ar.html
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://sourceware.org/binutils/docs/binutils/c_002b_002bfilt.html
https://sourceware.org/binutils/docs/binutils/nm.html
https://sourceware.org/binutils/docs/binutils/objcopy.html
https://sourceware.org/binutils/docs/binutils/objdump.html
https://sourceware.org/binutils/docs/binutils/ranlib.html
https://sourceware.org/binutils/docs/binutils/readelf.html

...........continued
Tool Name What it does Documentation

size List total and section sizes sourceware.org/binutils/docs/binutils/size.html

strings List printable strings sourceware.org/binutils/docs/binutils/strings.html

strip Remove symbols from an object file sourceware.org/binutils/docs/binutils/strip.html

2.2 Hart Software Services (HSS)
Hart Software Services, commonly referred to as “HSS”, is a collection of services that run on the E51 monitor core.
HSS is used for the following:

• Program memory using USB mass storage or YMODEM transfer.
• Copy a program (Linux or Bare Metal) from a non-volatile storage (for example, eMMC or SD card) to the LIM or

DDR.
• Create a payload containing multiple applications to be booted and run.
• Pass messages between cores in the MSS.

Operation

The HSS uses Bare Metal drivers to initialize the system, which are found in the PolarFire SoC Bare Metal Library. It
also relies on XML generated by the PolarFire SoC MSS Configurator to configure the system on boot.

The HSS comprises of the following:

• A superloop monitor running on the E51 processor, which receives requests from the individual U54 application
processors to perform certain services on their behalf.

• A Machine-Mode software interrupt trap handler, which allows the E51 to send messages to the U54s, and
requests them to perform certain functions for it related to rebooting the U54.

HSS as a ZSBL
The HSS can function as a Zero Stage Boot Loader (ZSBL) to boot Linux. In this case, the HSS loads U-Boot acting
as a ZSBL with U-Boot subsequently loading an OS. U-Boot is a First Stage Boot Loader (FSBL) and a Second
Stage Boot Loader (SSBL).

HSS as a FSBL
The HSS can be used to boot Linux directly like the Berkeley Boot Loader (BBL) acting as an FSBL and SSBL.

Licenses

This software is released under an MIT license. It also uses other open source tools. RISC-V OpenSBI is released
under a BSD-2-Clause and FastLZ compression is released under an MIT license. More information on licensing can
be found at: github.com/polarfire-soc/hart-software-services/blob/master/LICENSE.md.

Building

The HSS can be built as a standalone image. The source is published on GitHub and build instructions for different
targets can be found in its readme: github.com/polarfire-soc/hart-software-services.

Releases

The HSS GitHub repository is the most up-to-date location to retrieve the source files and build instructions for the
HSS.

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 30

https://sourceware.org/binutils/docs/binutils/size.html
https://sourceware.org/binutils/docs/binutils/strings.html
https://sourceware.org/binutils/docs/binutils/strip.html
https://github.com/polarfire-soc/hart-software-services/blob/master/LICENSE.md
https://github.com/polarfire-soc/hart-software-services
https://github.com/polarfire-soc/hart-software-services

2.3 Bare Metal Library
The PolarFire SoC Bare Metal Library contains the most recent version of the PolarFire SoC HAL source code with
a pre-populated platform folder for a PolarFire SoC Bare Metal project with all drivers. It also contains Bare Metal
examples for each driver available for PolarFire SoC. These examples show how to use different functions available
in the drivers and how they are configured for PolarFire SoC.

To use the Bare Metal Library examples, follow the instructions in the polarfire-soc-bare-metal-
library/examples readme.md file available at: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/
master/examples

To use the pre-populated platform folder in a Bare Metal project, follow these steps:

1. Download the Bare Metal Library repository and extract it.
2. Delete the existing platform folder in the project (back up any changes such as, Linker script updates).

Figure 2-1. Removing Platform Folder

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 31

https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples

3. Copy the platform folder extracted from the Bare Metal Library repository into the SoftConsole project and
re-implement any changes that were made.
Figure 2-2. Adding Updated Platform Folder

The only folder that might be modified by the user is the platform/config folder. The drivers, hal, and mpfs_hal
do not need user modification.

mpfs_hal contains the part of the HAL specific to PolarFire SoC. It contains startup code, MSS register descriptions,
and performs DDR training. The content of this folder is not intended to be modified. It also contains the code for
interrupt and exception handling, and hardware access methods.

2.4 Linker Scripts
The main purpose of the Linker script is to describe how the sections in the input files must be mapped into the
output file, and to control the memory layout of the output file.

Each SoftConsole project comes with at least one Linker script. Specify the memory location where the application
will be deployed. The sample Linker scripts provided include:

• mpfs-ddr-e51
• mpfs-dtim
• mpfs-envm
• mpfs-lim
• mpfs-lim-lma-scratchpad-vma

To switch between them, open Settings and navigate to the Script files:

Project's Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C Linker > General >
Script files

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 32

Figure 2-3. Tool Settings

Microchip recommends users to use the supplied Linker scripts (located in the src/platform/config/linker
folder) and use these as a base script for their custom Linker scripts (when the supplied Linker scripts are not
sufficient).

For the Linker script manual, see: sourceware.org/binutils/docs/ld/Scripts.html

Related Links
https://www.sifive.com/blog/all-aboard-part-2-relocations
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain

2.5 Linux Images
The current Linux kernel version (at the time of publishing this document) is 5.6.16. The next update is for moving
to Linux kernel version 5.8. Beyond version 5.8, it is planned to use the latest long-term support kernel in all builds.
Information on long-term support for kernels is available on: www.kernel.org/.

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 33

https://sourceware.org/binutils/docs/ld/Scripts.html
https://www.sifive.com/blog/all-aboard-part-2-relocations
https://www.sifive.com/blog/all-aboard-part-3-linker-relaxation-in-riscv-toolchain
https://www.kernel.org/

In Yocto, the kernel version used in the build is specified in the recipes-kernel/linux/*.bb file as shown in the
following figure.

Figure 2-4. Example of Yocto Linux Kernel Version

For Buildroot, the specific commit of the kernel used can be seen in the top-level folder specified as linux @
[commit number] as shown in the following figure.

Figure 2-5. Example of Buildroot Linux Kernel Version

2.6 FreeRTOS™
FreeRTOS is a real-time operating system kernel for embedded devices that has been ported to many microcontroller
platforms. It is distributed under the MIT license.

SoftConsole is shipped with a bundled FreeRTOS example, see the mpfs-freertos-lwip example. The example
can target the bundled Renode emulation and users can access the webserver running on it (See the mpfs-freertos-
lwip's readme).

The following figure shows a webserver running on top of FreeRTOS and lwip.

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 34

Figure 2-6. Webserver Running on Top of FreeRTOS and lwip

The latest version of FreeRTOS targeting PolarFire SoC hardware is available from the Bare Metal Library at this
location: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples/mss-ethernet-mac

More information is available on the FreeRTOS website.

Related Links
https://www.freertos.org/a00104.html#getting-started
https://www.freertos.org/Documentation/RTOS_book.html

2.7 Third Party Tools
The following third party tool is used for emulating RISC-V subsystem:

• Renode

Software Stack

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 35

https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/examples/mss-ethernet-mac
https://www.freertos.org/a00104.html#getting-started
https://www.freertos.org/Documentation/RTOS_book.html

3. Application Development
PolarFire SoC supports Bare Metal, Linux, and RTOS. This section describes the device boot process, boot modes,
and development flow to build user applications for these types of embedded systems. For example, the following
can be executed on the application cores.

• Bare Metal applications
• Linux user applications
• RTOS
• Combination of the above (AMP)

Bare Metal applications for PolarFire SoC devices can be developed using SoftConsole. The PolarFire SoC Bare
Metal firmware drivers and source files for Linux user application development are available on the PolarFire SoC
GitHub.

PolarFire SoC MSS comprises of one E51 monitor core and four U54 application cores. The E51 core executes the
Hart System Services (HSS), which configures the MSS and responds to runtime events. The U54 cores execute any
of the following:

• Bare Metal user applications
• Operating Systems

3.1 Device Boot and Configuration Process
The boot-up sequence starts when the PolarFire SoC FPGA is powered-up or the device is reset. It ends when
the processor is ready to execute user applications. The booting sequence runs through several stages before it
begins execution of user application code. A set of operations are performed during the boot-up process that includes
Power-on Reset of the hardware, peripheral initialization, memory initialization, and loading a user-defined application
from non-volatile memory to volatile memory for execution.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 36

https://github.com/polarfire-soc
https://github.com/polarfire-soc

The following figure shows the different phases of the boot-up sequence.

Figure 3-1. Boot-Up Sequence

Device Power-on/
Device Reset

Power-on Reset (POR)

Device Boot

Design and Memory
Initialization

MSS Pre-Boot

MSS User Boot

Execute Application

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

For more information about the booting process, see UG0890: PolarFire SoC FPGA Power-Up and Resets User
Guide.

PolarFire SoC MSS supports the following boot modes:

• Boot Mode 0—Wait for Interrupt Mode/Idle Boot Mode (Used for debugging)
• Boot Mode 1—Non-Secure User Boot Mode (Direct boot from eNVM)
• Boot Mode 2—Secure User Boot Mode
• Boot Mode 3 —Factory-Secure Boot: MSS boots using this protocol

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 37

http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574
http://www.microsemi.com/index.php?option=com_docman&task=doc_download&gid=1244574

Important:  Boot Mode 2 and Boot Mode 3 are currently not supported.

These boot modes are performed by the E51 core and are configured using SoftConsole.

3.2 Boot Mode 0-Idle Boot
Boot Mode 0 is set by default. If the MSS is not configured (for example, blank device), it executes a fixed,
pre-configured boot ROM program, which holds all the processors in an infinite loop until a debugger connects to the
target. The boot vector registers maintain their value until a new Boot mode configuration is programmed. This mode
is typically used for initial software development and debug phase where the application code is loaded using the
debugging through SoftConsole.

3.3 Boot Mode 1-Direct Boot from eNVM
In this mode, the MSS executes from a specified eNVM address without authentication. It is the fastest boot option,
but there is no authentication of the code image. Boot Mode 1 includes the following steps:

1. The user application image needs to be programmed into eNVM using SoftConsole and the Boot mode is set.
2. If the eNVM content is a boot loader, it fetches the final user application from non-volatile storage and loads it

to the desired memory location specific by the application, the harts then execute the application.

Boot vector addresses for all five processors are absolute addresses in eNVM.

3.3.1 Programming the eNVM
Launch SoftConsole and create an application project. Ensure that the SoftConsole application project contains
latest mpfs_hal and firmware drivers from GitHub. For illustration purposes, mpfs_blinky is used as an example
application project. To configure the project’s build tool settings, follow these steps:

1. Right click mpfs_blinky and select Properties as shown in the following figure.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 38

Figure 3-2. Properties for mpfs-blinky

The Properties window appears.
2. Expand C/C++ Build, and select Settings.
3. Set the Configuration to Release.
4. Expand GNU RISC-V Cross C Linker, select General and perform the following actions to select the

appropriate Linker script:
4.1. Click Add….
4.2. Select Workspace on the Add File path window.

5. In the File Selection tab, expand the mpfs-blinky and browse to: mpfs-blinky > src > platform
>Config > linker > examples > mpfs-envm.ld file. Then, click OK.

The Linker is a script file which provides the information about the memory from where the code must be
executed and how that memory must be used for heap and stack.

For Release mode, the Linker script mpfs-envm.ld is selected to build the application that executes the
code from eNVM with the stack and heap in LIM. Other Linker script files are also available to execute the
code out of LIM (mpfs-lim.ld), DDR memory (mpfs-ddr-e51.ld), and Data Tightly Integrated Memory
(mpfs-dtim.ld).

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 39

Figure 3-3. mpfs-blinky Release Window

6. Click Apply and Close.
7. Select Project > Clean to clean the project.

Now, the project build settings are completed and ready for building.
8. Select Project > Build All.

The project is built successfully as shown in the following figure.

Figure 3-4. Project Successful Message

9. The mpfs-blinky.elf file is generated in the Release folder. This ELF file is programmed to the eNVM
storage using SoftConsole so that at device power-up the MSS executes the application from eNVM.

To program the Boot mode settings and eNVM using SoftConsole, select the desired project and click Run >
External Tools > PolarFire SoC program non-secure boot mode 1 as shown in the following figure.
Note:  This step requires Libero SoC or the Program/Debug tool to be installed on the host PC. It also
requires pre-configuration in SoftConsole. For information on pre-configuration and installation, see the
readme.txt file in (SoftConsole install)/extras/mpfs.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 40

Figure 3-5.  PolarFire SoC Boot Mode 1

This sets the Boot mode to 1 and programs the application to eNVM as shown in the following figure. After power-
cycling the board, the application gets executed from eNVM.
Figure 3-6. Programming the Application

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 41

3.4 Clock Management
The clock configuration made in the Clocks tab of the PolarFire SoC MSS Configurator is stored in the XML file. The
SoftConsole build process converts the XML file into hardware configuration files that include the clock configuration
as shown in the following figure. If any changes to the clock configuration are required, these changes need to be
made in the PolarFire SoC MSS Configurator and the updated XML file needs to be imported into the SoftConsole
project. The system start-up code uses these configuration files to configure the PLLs and clocking related system
registers.

Figure 3-7. Clocks Folder

3.5 Physical Memory Protection (PMP)

3.5.1 Using the PMPs in Bare Metal
To support secure execution of application code, it is required to limit the physical addresses accessible by the
software running on a Hardware Thread (Hart). The access to physical addresses can be restricted using the PMP
unit in each hart. The PMP defines a finite number of regions that can be individually configured by setting the PMP
registers using the user application code. It is applied on harts to allow physical memory access privileges (read,
write, and execute). A PMP is configured to achieve the following:

• Security of the system is improved as there is no possibility of code injection attacks. The memory of one hart is
not accessible to other harts.

• If there is any overflow in the stack usage, PMP detects it.
• It is less expensive to get safety certification for the product.

3.5.2 Using the PMPs in Linux
When booting Linux using HSS, the PMPs are automatically configured by the HSS for the system configuration
based on the payload created.

Important:  Configuring the PMPs using Libero is currently not supported and will be available in the next
release.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 42

3.6 Generating Boot Images
This section outlines the software configuration for Bare Metal project(s) that targets different harts for user
applications. The steps to configure a Bare Metal application as the sole application to run on the system are
provided along with how to configure multiple independent Bare Metal applications. This section also outlines the
steps required to configure an application to be executed directly from eNVM and how to configure an application
to be stored in the external memory and load it using the HSS. The process of programming the eNVM is also
introduced.

3.6.1 Targeting Harts
The MPFS HAL (PolarFire SoC HAL) can be used to target multiple or single cores in a Bare Metal application. In the
Bare Metal application in src > platform > config > software > mpfs_hal the mss_sw_config.h file can be used to
target harts.

Figure 3-8. Targeting Harts

The MPFS_HAL_FIRST_HART define selects the hart that will boot up and configure the system. The
MPFS_HAL_LAST_HART define selects the hart that will be the last to start up. In the preceding image, the e51
is the hart selected to start up first and will be used to wake all of the U54 harts from WFI (Wait For Interrupt) mode.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 43

If the system was configured as shown in the following figure, the e51 is still the main hart but only the U54_1 and
U54_2 are taken out of the WFI mode (the e51 is hart 0).

Figure 3-9. MPFS_HAL_LAST_HART Configuration

If the system is configured as shown in the following figure, the e51 is held in WFI mode and the U54_1 becomes the
main hart to wake the other U54 harts from WFI mode, in this case only the U54_2 is taken out of the WFI mode.

Figure 3-10. MPFS_HAL_FIRST_HART and MPFS_HAL_LAST_HART Configuration

The projects must be built targeting the memory they will be executed from (for example, DDR) and not in the
location they will be stored in (for example, eMMC). When built in SoftConsole, the resulting files created using the
HSS tools are called a payload. The HSS readme contains information on the steps for creating a payload, and
the tools required are stored in tools folder of the repository. This payload can then be programmed to the intended
memory (for example, SD card or eMMC) using the HSS. The HSS then boots on the e51 and unpacks the payload
into the relevant memory locations they are targeted for and wakes the harts they will run on.

3.6.2 Storing a Single Bare Metal Application in an eNVM
If a single Bare Metal application targeting one or more harts is to be used and no other application is running on
the system, the application can be stored directly in the eNVM, provided it is less than 128 kB, and executed from
memory. The e51 can be used as the main hart of the system (MPFS_HAL_FIRST_HART 0) and wakes any of the
required U54 harts from WFI.

3.6.3 Storing Bare Metal Application(s) to an External Memory
If a single Bare Metal application or multiple independent applications are being used in the system and cannot be
stored in the eNVM (for example, they are greater than 128 kB), then the HSS must be used to program the external
non-volatile storage with the applications and copy their code to the relevant memory location on boot.

The HSS must be programmed into the eNVM to be executed on boot, it uses a small portion of the LIM for stack and
heap when running on the E51. The Bare Metal application(s) can then be developed—they must not target the e51
as this will be running the HSS and must not overlap with the LIM memory locations used by the HSS. The area of
LIM used by the HSS can be identified using the .map file generated when the HSS is built.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 44

3.6.3.1 Single Bare Metal Application
If a single Bare Metal application is created, the first hart must target one of the U54s (for example,
MPFS_HAL_FIRST_HART 1) that wakes the other U54 harts in the system. The project must be built in the memory
it will be executed from (for example, DDR) and not in the location it will be stored in (for example, eMMC). When
built in SoftConsole, the resulting files created using the HSS tools are called payload. The HSS readme contains
information on steps for creating a payload, and the tools required are stored in tools folder of the repository. This
payload can then be programmed to the memory intended to be used for storing the payload (for example, SD
card or eMMC) using the HSS. The HSS then boots on the e51 and unpacks the payload into the relevant memory
location it is targeted for and wakes the harts it will run on.

3.6.3.2 Multiple Bare Metal Applications
If multiple Bare Metal applications are created, the first hart for each project must target separate U54s and the last
hart in the project (that is, the final U54 this project will run on) must not overlap with the first hart of a subsequent
project.

See the following example:

Project 1:

MPFS_HAL_FIRST_HART 1
MPFS_HAL_LAST_HART 2
This project runs on U54_1 and U54_2.

Project 2:

MPFS_HAL_FIRST_HART 3
MPFS_HAL_LAST_HART 4

This project runs on U54_3 and U54_4.

For more information, see the 3.6.1 Targeting Harts section.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 45

3.6.4 Programming the eNVM
SoftConsole is capable of programming the eNVM and setting the boot modes for the harts used in the system. If a
single Bare Metal project is used, it can be programmed directly into the eNVM. If multiple projects are used (that is,
as a payload), the HSS must be programmed into the eNVM. This programming is achieved using an external tool
configuration provided with SoftConsole.

Figure 3-11. External Tools Setting Boot Modes

To use this tool, you must have the project to be programmed selected in the project explorer and the build
configuration is used to locate programming files. This implies, if a project is built in a Debug configuration,
SoftConsole programs it using the files from the Debug folder in the project, whereas if the project is built in a
Release configuration, SoftConsole uses the files from the Release folder.

The external tool generates a bitstream containing only the eNVM programming files (that is, it does not overwrite
FPGA programming) and sets the Boot mode accordingly.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 46

3.6.5 Unused Harts
If harts are not going to be used (for example, only U54_1 and U54_2 are used), no main function(s) (for example,
u54_3.c) need to be provided for unused harts.

Figure 3-12. Unused Harts

The mpfs_hal contains weakly linked functions that are used in place of strongly linked functions if no main function
is found, which implies, if no u54_3() function is found in the project, the function shown in the following figure
“system_startup.c” file is used.

The mpfs_hal contains weakly linked functions for all main functions available for each hart. A weakly linked function
is used as a fallback or default function if a strongly linked function is not defined. By default, all functions are strongly
linked without any modification and if present overrides the weakly linked functions. The mpfs_hal weakly linked
functions can be found in platform/mpfs_hal/system_startup.c.

A function is defined as weakly linked by adding the following attribute to its definition: __attribute__((weak)).

Consider the following examples for U54_1:
• Weakly linked function: __attribute__((weak)) void u54_1(void)
• Strongly linked function: void u54_1(void)

Attention:  If a strongly linked function and a weakly linked function are defined, only the strongly linked
function will be included in the build. If two strongly linked functions are defined with the same name a
symbol link error occurs at build time.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 47

Figure 3-13. system_startup.c File Showing Weakly Linked Functions

This function is entered if the hart is taken out of WFI (if the MPFS_HAL_LAST_HART value still includes this hart, it
is included in the system) and simply puts the hart back into WFI as no code is found for it to run.

3.7 Bare Metal Development
The firmware drivers and associated platform specific files are available on GitHub Bare Metal Library. The Bare
Metal application(s) can be executed from one of the memories—LIM, eNVM, DDR memory and so on. Linker script
files to execute applications from corresponding memories are also available on GitHub Bare Metal Library. If the
application size is more than eNVM size (128 kB), it is recommended to store the application in an external flash
memory. The HSS that runs on E51 fetches the application from the external memory and buffers it in DDR, it then
copies to the address in LIM or DDR that the application runs from and executes the application. The E51 core
releases the U54 cores from WFI depending upon the application requirements. The SoftConsole tool provides an
environment to develop Bare Metal applications.

3.7.1 Single U54
The Bare Metal start-up code (mpfs_hal) initializes the system clocks and external memory. For single U54 Bare
Metal development, the E51 wakes the U54 hart from WFI mode by raising the software interrupt. The U54 executes
the application tasks. The remaining harts are kept in WFI mode by the default weakly linked functions defined in the
start-up code.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 48

3.7.2 Multiple U54s
For multiple U54 Bare Metal development, the E51 wakes any combination of U54 harts from WFI mode by raising
the software interrupt on each hart. The unused harts are held in the WFI mode. All of the harts run the same
start-up code, read their hart ID, and enter WFI. When the U54s receive a software interrupt from E51, they exit the
WFI mode and execute their application(s). The U54 harts can execute the same application or different individual
applications depending upon application requirements. The HSS provides the necessary functions for the E51 hart to
communicate with individual U54 harts to perform certain services on their behalf.

3.7.3 Initializing the Application Execution Space (LIM or DDR)
The E51 core runs the HSS to fetch a payload containing an application or applications from an external memory. It
buffers the application to DDR and then copies the application to the destination memory and releases the U54(s)
from WFI. The U54 cores run the application from the destination memory. Linker script files to execute applications
from different memory locations are available from the PolarFire SoC Bare Metal Library .

The HSS uses a portion of the LIM while running. The Bare Metal application start addresses must be greater than
the end address of memory used by HSS. When built a .map file is produced for the HSS outlining memory locations
used for functions, variables, and so on. The following image shows a output.map file.

Figure 3-14. HSS output.map File

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 49

This file can be opened in the SoftConsole text editor or an external editor. The last region of memory used by HSS is
the stack, searching the map file for __stack_top_h4$ shows the last address used for data in the stack, as shown
in the following figure.

Figure 3-15. Stack Location HSS output.map File

In the preceding example, the last address used in the HSS is 0x8025900 and the target Bare Metal application must
use an address greater than this as its start address.

The standard Bare Metal Library applications use E51 as the main hart of the system. When the E51 hart runs the
HSS, a different hart, one of the U54s, must be used to wake harts in use from the WFI mode. The main hart defined
in the mss_sw_config.h file in platform/mpfs_hal_config must be changed to reflect that the U54 core is the
main hart.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 50

The following figure shows a standard mss_sw_config.h configuration.

Figure 3-16. Standard mss_sw_config.h File

The MPFS_HAL_FIRST_HART is set to 0 and the MPFS_HAL_LAST_HART is set to 4. The hart values are as
follows:

E51: Hart 0

U54_1: Hart 1

U54_2: Hart 2

U54_3: Hart 3

U54_4: Hart 4

Changing the MPFS_HAL_FIRST_HART value to 1 sets U54_1 as the main hart of the system.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 51

Figure 3-17. mss_sw_config.h File Using U54_1 as the Main Hart

This implies that on system start up U54_1 wakes the other three U54 harts from WFI. If less harts are used by this
application (for example, U54_1 and U54_2 only), then the last hart value can be changed.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 52

Figure 3-18. mss_sw_config.h File

This uses U54_1 to wake U54_2 and then both harts continue on to the application.

3.7.4 Merging Multiple Bare Metal Applications
To merge Bare Metal applications, see the HSS readme in its GitHub repository.

3.8 Linux Application Development
A typical boot process consists of multiple stages.

1. The HSS is executed from the eNVM. The HSS acts as a ZSBL that includes the Open Source Supervisor
Binary Interface (OpenSBI). OpenSBI is a platform-specific firmware running in M-mode. It acts as an interface
between the HSS and U-boot. The HSS loads the first stage boot loader (U-Boot) from a boot device to an
external RAM. The HSS uses the OpenSBI functions to switch the execution mode from M-mode to S-mode
when transferring execution control to U-Boot.

2. U-Boot initializes the peripherals and loads the kernel. The boot device can either be an embedded memory
microcontroller (eMMC) or an SD card. U-Boot loads the Linux kernel from the boot device to DDR.

3. In the next stage, Linux is executed (from DDR).
4. Init is the first process executed by the Linux kernel and it is the parent of all processes.
5. In the final stage, user applications are executed in Linux.

The following figure shows the boot process flow.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 53

https://github.com/polarfire-soc

Figure 3-19. Linux Boot Process Flow

HSS
(Open SBI)

U-Boot

Linux Kernel

Init

User Application

3.8.1 Building Linux Images
Linux images can be built using the Yocto or Buildroot build systems. Both of these systems come with a readme that
lists the required packages and build steps.

The Microchip Yocto BSP can be found at: github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp

It supports several board targets and build configurations for different images (for example, minimal/development
tools).

The Microchip Buildroot SDK can be found at: github.com/polarfire-soc/polarfire-soc-buildroot-sdk

It supports several board targets and is pre-configured to generate a minimal image.

3.8.2 Integrating Linux Applications in Yocto

3.8.2.1 Existing Linux Applications
To integrate an existing Linux application (package) into Yocto, ensure that the package is a part of the Yocto source
and add the package to the final image. An example on integrating Linux package using apache2 is shown in the
following steps.

1. Find the package .bb file in the Yocto repository apache2 (web server), which is shown as an example in the
following code snippet.
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$ find ./meta-* -name apache2
./meta-openembedded/meta-webserver/recipes-httpd/apache2
./meta-openembedded/meta-webserver/recipes-httpd/apache2/apache2

2. Ensure that the package meta layer directory is present in the bblayers.conf file.

microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$ ls build/conf/bblayers.conf
build/conf/bblayers.conf

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 54

https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp
https://github.com/polarfire-soc/polarfire-soc-buildroot-sdk

3. If the package meta layer directory is not part of bblayers.conf file, add the directory path as highlighted in
the following code snippet.
LAYER_CONF_VERSION is increased each time build/conf/bblayers.conf
changes incompatibly
LCONF_VERSION = "7"

BBPATH = "${TOPDIR}"
BBFILES ?= ""

BBLAYERS ?= " \
 /home/microchip/riscv/icicle/yocto-dev/openembedded-core/meta \
 /home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-oe \
 /home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-python \
 /home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-multimedia \
 /home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-networking \
 /home/microchip/riscv/icicle/yocto-dev/meta-openembedded/meta-webserver \
 /home/microchip/riscv/icicle/yocto-dev/meta-riscv \
 /home/microchip/riscv/icicle/yocto-dev/meta-polarfire-soc-yocto-bsp \
 "

4. The following code snippet shows the mpfs-dev-cli.bb files folder in Yocto source for PolarFire SoC, open
the mpfs-dev-cli.bb file.

microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$
microchip@microchip-OptiPlex-9010:~/riscv/icicle/yocto-dev$ ls meta-polarfire-soc-yocto-
bsp/recipes-core/images/
mpfs-dev-cli.bb riscv-initramfs-image.bb

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 55

5. The mpfs-dev-cli.bb files show a list of packages added in the PolarFire SoC device. Add apache2
package in the existing list as shown in the following code snippet.
DESCRIPTION = "Microchip MPFS Development CLI Linux image"

inherit image-buildinfo core-image extrausers
EXTRA_USERS_PARAMS = "usermod -P microchip root;"

IMAGE_FEATURES += " ssh-server-openssh \
 tools-debug tools-sdk debug-tweaks \
 dev-pkgs dbg-pkgs \
 "

IMAGE_INSTALL = "\
 packagegroup-core-boot \
 packagegroup-core-full-cmdline \
 perl-modules \
 alsa-utils \
 i2c-tools \
 apache2 \
 screen \
 apps \
 vim vim-vimrc \
 dhcp-client \
 nbd-client \
 mpfr-dev \
 gmp-dev \
 libmpc-dev \
 zlib-dev \
 flex \
 bison \
 dejagnu \
 gettext \
 texinfo \
 procps \
 glibc-dev \
 elfutils \
 elfutils-dev \
 pciutils \
 usbutils \
 mtd-utils \
 sysfsutils \
 htop \
 iw \
 python3 \
 git \
 swig \
 boost \
 orc \
 libudev \
 glib-2.0 \
 evtest devmem2 iperf3 memtester lmbench \
 tcpdump \
 iw \
 libudev \
 nano \
 nfs-utils-client \
 cifs-utils \
 openssh-sftp \
 openssh-sftp-server \
 procps \
 protobuf \
 ntp ntpdate ntp-utils \
 linux-firmware \
 libsodium \
 sqlite3 \
 tar \
 wget \
 zip \
 unzip \
 rsync \
 kernel-modules kernel-devsrc kernel-dev \
 ${CORE_IMAGE_EXTRA_INSTALL} \

Upon successful addition of the apache2 package as shown in the preceding steps, Yocto source can be built.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 56

3.8.2.2 Custom Linux Applications
To integrate an existing Linux application into Yocto, ensure that the particular package is part of the Yocto source
and add the package to the final image. An example of integrating Linux application using apache2 is shown in the
following steps.
Note:  The user package recipe must be placed under the apps folder to be part of the Yocto build process.

The following code snippet shows a sample application .bb file.

#
This file was derived from the 'Hello World!' example recipe in the
Yocto Project Development Manual.
#

DESCRIPTION = "Simple application to blink LEDs"
SECTION = "examples"
LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"
PR = "r0"
SRC_URI = "file://led_blinky.c \
 "

S = "${WORKDIR}/"

do_compile() {
 ${CC} led_blinky.c ${LDFLAGS} -o led_blinky
}

FILES_${PN} += "/microchip-apps"
do_install() {
 install -d ${D}/microchip-apps
 install -m 0755 led_blinky.c ${D}/microchip-apps
 install -m 0755 led_blinky ${D}/microchip-apps
}

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 57

The mpfs-dev-cli.bb file shows the list of packages added in the PolarFire SoC device. Add apps package in the
existing list as shown in the following code snippet.
DESCRIPTION = "Microchip MPFS Development CLI Linux image"

inherit image-buildinfo core-image extrausers
EXTRA_USERS_PARAMS = "usermod -P microchip root;"

IMAGE_FEATURES += " ssh-server-openssh \
 tools-debug tools-sdk debug-tweaks \
 dev-pkgs dbg-pkgs \
 "

IMAGE_INSTALL = "\
 packagegroup-core-boot \
 packagegroup-core-full-cmdline \
 perl-modules \
 alsa-utils \
 i2c-tools \
 screen \
 apps \
 vim vim-vimrc \
 dhcp-client \
 nbd-client \
 mpfr-dev \
 gmp-dev \
 libmpc-dev \
 zlib-dev \
 flex \
 bison \
 dejagnu \
 gettext \
 texinfo \
 procps \
 glibc-dev \
 elfutils \
 elfutils-dev \
 pciutils \
 usbutils \
 mtd-utils \
 sysfsutils \
 htop \
 iw \
 python3 \
 git \
 swig \
 boost \
 orc \
 libudev \
 glib-2.0 \
 evtest devmem2 iperf3 memtester lmbench \
 tcpdump \
 iw \
 libudev \
 nano \
 nfs-utils-client \
 cifs-utils \
 openssh-sftp \
 openssh-sftp-server \
 procps \
 protobuf \
 ntp ntpdate ntp-utils \
 linux-firmware \
 libsodium \
 sqlite3 \
 tar \
 wget \
 zip \
 unzip \
 rsync \
 kernel-modules kernel-devsrc kernel-dev \
 ${CORE_IMAGE_EXTRA_INSTALL} \
 "

Upon successful addition of the apps package as shown in the preceding code snippet, Yocto source can be built.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 58

For more information about Yocto, see Yocto Reference Manual.

Microchip offers a complete Yocto source image for PolarFire SoC Icicle Kit that can be used for customized Linux
images including application development. See GitHub page for more information about the directory structure,
source files, and documentation.

3.8.3 Integrating Linux Application in Buildroot

3.8.3.1 Existing Linux Applications
To integrate existing Linux application (package) into Buildroot, go to the PolarFire SoC Buildroot SDK path and
execute the following commands.

• To configure an eMMC target, execute the command:
microchip@microchip-OptiPlex-9010:~/riscv/icicle/polarfire-soc-buildroot-sdk$ make
DEVKIT=icicle-kit-es buildroot_initramfs-menuconfig

• To configure an SD card target, execute the command:
microchip@microchip-OptiPlex-9010:~/riscv/icicle/polarfire-soc-buildroot-sdk$ make
DEVKIT=icicle-kit-es-sd buildroot_rootfs-menuconfig

When the make command is successfully executed, the Config menu appears as shown in the following figure.
Search for the package that needs to be added. Select the package and Save. Apache is used as an example
package in the following figure.

Figure 3-20. Apache Buildroot

Upon successful addition of the apache package as shown in the preceding image, the Buildroot source can be built.

3.8.3.2 Custom Linux Applications
To integrate a custom Linux application (package) into Buildroot, follow these steps:

1. Create a new directory in the package folder of Buildroot source. For example, microchip-apps package
folder is used as an example, which consists of two files—Config.in and microchip-apps.mk. If you
have any C source files, create a directory files to store the source files.
The following code snippet shows the microchip-apps folder.

microchip@microchip-OptiPlex-9020:~/work/icicle/polarfire-soc-buildroot-sdk/buildroot/
package/microchip-apps$ ls
Config.in files microchip-apps.mk

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 59

https://www.yoctoproject.org/docs/3.1/mega-manual/mega-manual.html
https://github.com/polarfire-soc/meta-polarfire-soc-yocto-bsp

microchip@microchip-OptiPlex-9020:~/work/icicle/polarfire-soc-buildroot-sdk/buildroot/
package/microchip-apps$

2. Create a Config.in file with the following code snippet.

====================================
buildroot/package/microchip-apps/Config.in
====================================
config BR2_PACKAGE_MICROCHIP_APPS
 bool "microchip-apps"
 help
 Microchip applications for blinking LEDs

3. Create a microchip-apps.mk file with the following code snippet.

======================================
buildroot/package/microchip-apps/microchip-apps.mk
======================================
MICROCHIP_APPS_VERSION = 1.0
MICROCHIP_APPS_SITE = $(TOPDIR)/package/microchip-apps/files
MICROCHIP_APPS_SITE_METHOD = local

define MICROCHIP_APPS_BUILD_CMDS
 $(MAKE) CC="$(TARGET_CC)" LD="$(TARGET_LD)" -C $(@D) all
endef

define MICROCHIP_APPS_INSTALL_TARGET_CMDS
 $(INSTALL) -D -m 0755 $(@D)/led_blinky $(TARGET_DIR)/microchip-apps/led_blinky
endef

$(eval $(generic-package))

4. Edit the parent package config file (package/Config.in) to include the microchip-apps package.

source "package/microchip-apps/Config.in"

5. Add the microchip-apps package to the buildroot_initramfs_config file to build the microchip-
apps package as part of the eMMC Linux image.

BR2_TOOLCHAIN_EXTERNAL_CUSTOM_GLIBC=y
BR2_PACKAGE_GDB_NEEDS_CXX11=y
BR2_TOOLCHAIN_EXTERNAL_CXX=y
BR2_TOOLCHAIN_EXTERNAL_INET_RPC=y

BR2_ROOTFS_DEVICE_CREATION_DYNAMIC_MDEV=y
BR2_TARGET_GENERIC_ROOT_PASSWD="microchip"
BR2_SYSTEM_DHCP="eth0"
BR2_PACKAGE_DHRYSTONE=y
BR2_PACKAGE_LMBENCH=y
BR2_PACKAGE_E2FSPROGS=y
BR2_PACKAGE_MTD=y
BR2_PACKAGE_MICROCHIP_APPS=y
BR2_PACKAGE_MTD_NANDDUMP is not set
BR2_PACKAGE_MTD_NANDTEST is not set
BR2_PACKAGE_MTD_NANDWRITE is not set
BR2_PACKAGE_MTD_UBIATTACH is not set

Upon successful addition of the apps package as shown in the preceding steps, Buildroot source can be built.

3.8.4 Different Sources of Booting
The PolarFire SoC target hardware runs the HSS from eNVM to load the Linux image either from eMMC or SD card
depending on its configuration when built as shown in the following figure.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 60

Figure 3-21. Different Sources of Booting

Host PC
USB/UART/Ethernet

SD

eMMC

PolarFire SoC
FPGA

Icicle Kit

When the customized Linux images are available, USB, UART or Ethernet can be used to transfer the image to
eMMC or SD card.

To boot Linux on Icicle kit using eMMC, see GitHub.

3.8.5 Device Tree Source (DTS)
A Device Tree is a data structure for describing the hierarchy of hardware subsystems within a hardware platform,
or an add-on peripheral to that platform. It is used to select and configure the device drivers for Embedded Linux
platform during the boot process. It can be represented in different formats, such as

• Device Tree Source format (.dts)
• Compiled binary Device Tree binary format (.dtb)
• For example, icicle-kit-es-a000-microchip.dts and icicle-kit-es-a000-microchip.dtb

Additional peripherals like GPIO, LSRAM, and so on, can be added to a kernel by including them in the DTS.

3.8.5.1 Adding a Sample Device Node for GPIO
The following example device node can be added to a Device Tree.
gpio@20122000 {
compatible = "microsemi,ms-pf-mss-gpio";
interrupt-parent = <&L1>;
interrupts = <53 53 53 53 53 53 53>;
gpio-controller;
reg = <0x0 0x20122000 0x0 0x1000>;
reg-names = "control";
status = "okay";
};

3.8.5.2 Adding a Sample Device node for LSRAM (UIO Framework)
The following example device node can be added to device tree (icicle-kit-es-a000-microchip.dts).

uio_lsram@0x60000000 {
compatible = "generic-uio";
reg = < 0x0 0x60000000 0x0 0x00010000 // LSRAM0 Memory
0x0 0x60010000 0x0 0x00010000 >; //LSRAM1 Memory
status = "okay";
};

Hardware that is ideally suited for an UIO driver fulfills all the following.

• The device has memory that can be mapped. The device can be controlled completely by writing to this memory.
• The device usually generates interrupts.
• The device does not fit into one of the standard kernel subsystems.

Application Development

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 61

http://github.com/polarfire-soc

4. Appendix

HSS

The HSS is a ZSBL that is stored in the eNVM of PolarFire SoC. It can be used to program memories and boot
applications running on different harts in the system. It runs in a super loop executing on the E51 core and provides a
machine mode trap handler to pass messages between the U54 harts.

The HSS can be found on GitHub here: github.com/polarfire-soc/hart-software-services

HAL

The MPFS HAL provides the initial boot code, interrupt handling, hardware access methods for the PolarFire SoC
MSS and DDR training code. The terms PolarFire-SoC HAL and MPFS HAL are used interchangeably but the term
MPFS HAL is preferred. The MPFS HAL is a combination of C and assembly source code.

Location of the repository: github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/src/platform/mpfs_hal

Peripheral Driver Library

The PolarFire SoC Bare Metal Library includes:

• Source code for start-up code and HAL the PolarFire SoC MSS.
• Source code for the PolarFire SoC MSS peripheral drivers.
• Documentation for the HAL and peripheral drivers.
• SoftConsole example projects demonstrating the use of the various PolarFire SoC peripherals.

Location of the repository: github.com/polarfire-soc/polarfire-soc-bare-metal-library

Presentation recording: microchip.webex.com/microchip/lsr.php?RCID=ed4bf40309bd37afa46d9723270bb192

Presentation slides: www.microsemi.com/document-portal/doc_download/1244894-polarfire-soc-renode-webinar-10

Appendix

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 62

https://github.com/polarfire-soc/hart-software-services
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library/tree/master/src/platform/mpfs_hal
https://github.com/polarfire-soc/polarfire-soc-bare-metal-library
https://microchip.webex.com/microchip/lsr.php?RCID=ed4bf40309bd37afa46d9723270bb192
https://www.microsemi.com/document-portal/doc_download/1244894-polarfire-soc-renode-webinar-10

5. Revision History
The revision history describes the changes that were implemented in the document. The changes are listed by
revision, starting with the most current publication.

Revision Date Description

B 05/2021 Updated the References section

A 09/2020 Initial Revision

Revision History

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 63

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and
information easily available to customers. Some of the content available includes:

• Product Support – Data sheets and errata, application notes and sample programs, design resources, user’s
guides and hardware support documents, latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical support requests, online
discussion groups, Microchip design partner program member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip press releases, listing of
seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will
receive email notification whenever there are changes, updates, revisions or errata related to a specified product
family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to
help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.
• Microchip believes that its family of products is secure when used in the intended manner and under normal

conditions.
• There are dishonest and possibly illegal methods being used in attempts to breach the code protection features

of the Microchip devices. We believe that these methods require using the Microchip products in a manner
outside the operating specifications contained in Microchip’s Data Sheets. Attempts to breach these code
protection features, most likely, cannot be accomplished without violating Microchip’s intellectual property rights.

• Microchip is willing to work with any customer who is concerned about the integrity of its code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code

protection does not mean that we are guaranteeing the product is “unbreakable.” Code protection is constantly
evolving. We at Microchip are committed to continuously improving the code protection features of our products.
Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act.
If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue
for relief under that Act.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 64

http://www.microchip.com/
http://www.microchip.com/pcn
http://www.microchip.com/support

Legal Notice

Information contained in this publication is provided for the sole purpose of designing with and using Microchip
products. Information regarding device applications and the like is provided only for your convenience and may be
superseded by updates. It is your responsibility to ensure that your application meets with your specifications.

THIS INFORMATION IS PROVIDED BY MICROCHIP “AS IS”. MICROCHIP MAKES NO REPRESENTATIONS
OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY
OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE
OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR
CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE
INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE
POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW,
MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE
WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR
THE INFORMATION. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk,
and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or
expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual
property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime,
BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox,
KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo,
MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip
Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer,
Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control,
HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus,
ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider,
Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky,
BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP,
INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM,
MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM,
PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense,
ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A.
and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
© 2021, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-8247-5

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 65

Quality Management System
For information regarding Microchip’s Quality Management Systems, please visit www.microchip.com/quality.

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 66

http://www.microchip.com/quality

AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
www.microchip.com/support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Tel: 317-536-2380
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Tel: 951-273-7800
Raleigh, NC
Tel: 919-844-7510
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Tel: 408-436-4270
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

Australia - Sydney
Tel: 61-2-9868-6733
China - Beijing
Tel: 86-10-8569-7000
China - Chengdu
Tel: 86-28-8665-5511
China - Chongqing
Tel: 86-23-8980-9588
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
China - Hong Kong SAR
Tel: 852-2943-5100
China - Nanjing
Tel: 86-25-8473-2460
China - Qingdao
Tel: 86-532-8502-7355
China - Shanghai
Tel: 86-21-3326-8000
China - Shenyang
Tel: 86-24-2334-2829
China - Shenzhen
Tel: 86-755-8864-2200
China - Suzhou
Tel: 86-186-6233-1526
China - Wuhan
Tel: 86-27-5980-5300
China - Xian
Tel: 86-29-8833-7252
China - Xiamen
Tel: 86-592-2388138
China - Zhuhai
Tel: 86-756-3210040

India - Bangalore
Tel: 91-80-3090-4444
India - New Delhi
Tel: 91-11-4160-8631
India - Pune
Tel: 91-20-4121-0141
Japan - Osaka
Tel: 81-6-6152-7160
Japan - Tokyo
Tel: 81-3-6880- 3770
Korea - Daegu
Tel: 82-53-744-4301
Korea - Seoul
Tel: 82-2-554-7200
Malaysia - Kuala Lumpur
Tel: 60-3-7651-7906
Malaysia - Penang
Tel: 60-4-227-8870
Philippines - Manila
Tel: 63-2-634-9065
Singapore
Tel: 65-6334-8870
Taiwan - Hsin Chu
Tel: 886-3-577-8366
Taiwan - Kaohsiung
Tel: 886-7-213-7830
Taiwan - Taipei
Tel: 886-2-2508-8600
Thailand - Bangkok
Tel: 66-2-694-1351
Vietnam - Ho Chi Minh
Tel: 84-28-5448-2100

Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4485-5910
Fax: 45-4485-2829
Finland - Espoo
Tel: 358-9-4520-820
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Garching
Tel: 49-8931-9700
Germany - Haan
Tel: 49-2129-3766400
Germany - Heilbronn
Tel: 49-7131-72400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Germany - Rosenheim
Tel: 49-8031-354-560
Israel - Ra’anana
Tel: 972-9-744-7705
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Padova
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Norway - Trondheim
Tel: 47-72884388
Poland - Warsaw
Tel: 48-22-3325737
Romania - Bucharest
Tel: 40-21-407-87-50
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Gothenberg
Tel: 46-31-704-60-40
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

© 2021 Microchip Technology Inc. User Guide DS60001659B-page 67

http://www.microchip.com/support
http://www.microchip.com

	Introduction
	References
	Acronyms
	Table of Contents
	1. Development Tools
	1.1. PolarFire SoC MSS Configurator
	1.1.1. Installation
	1.1.2. Running the PolarFire SoC MSS Configurator

	1.2. Libero® SoC
	1.3. SoftConsole
	1.3.1. SoftConsole Presets
	1.3.1.1. Build Options
	1.3.1.2. Debug Configurations

	1.3.2. Debugging using SoftConsole
	1.3.2.1. Launching a Debug Configuration
	1.3.2.2. Perspectives
	1.3.2.3. Debugging a Hart
	1.3.2.4. Debug Session Controls
	1.3.2.5. Setting Breakpoints
	1.3.2.6. Setting Watchpoints

	1.3.3. Renode™

	1.4. FlashPro Express
	1.5. RISC-V GCC Bare Metal
	1.6. RISC-V Linux Toolchain
	1.7. Yocto
	1.8. Buildroot
	1.9. SmartDebug
	1.10. Identify

	2. Software Stack
	2.1. RISC-V Libraries
	2.1.1. Newlib
	2.1.2. Binutils

	2.2. Hart Software Services (HSS)
	2.3. Bare Metal Library
	2.4. Linker Scripts
	2.5. Linux Images
	2.6. FreeRTOS™
	2.7. Third Party Tools

	3. Application Development
	3.1. Device Boot and Configuration Process
	3.2. Boot Mode 0-Idle Boot
	3.3. Boot Mode 1-Direct Boot from eNVM
	3.3.1. Programming the eNVM

	3.4. Clock Management
	3.5. Physical Memory Protection (PMP)
	3.5.1. Using the PMPs in Bare Metal
	3.5.2. Using the PMPs in Linux

	3.6. Generating Boot Images
	3.6.1. Targeting Harts
	3.6.2. Storing a Single Bare Metal Application in an eNVM
	3.6.3. Storing Bare Metal Application(s) to an External Memory
	3.6.3.1. Single Bare Metal Application
	3.6.3.2. Multiple Bare Metal Applications

	3.6.4. Programming the eNVM
	3.6.5. Unused Harts

	3.7. Bare Metal Development
	3.7.1. Single U54
	3.7.2. Multiple U54s
	3.7.3. Initializing the Application Execution Space (LIM or DDR)
	3.7.4. Merging Multiple Bare Metal Applications

	3.8. Linux Application Development
	3.8.1. Building Linux Images
	3.8.2. Integrating Linux Applications in Yocto
	3.8.2.1. Existing Linux Applications
	3.8.2.2. Custom Linux Applications

	3.8.3. Integrating Linux Application in Buildroot
	3.8.3.1. Existing Linux Applications
	3.8.3.2. Custom Linux Applications

	3.8.4. Different Sources of Booting
	3.8.5. Device Tree Source (DTS)
	3.8.5.1. Adding a Sample Device Node for GPIO
	3.8.5.2. Adding a Sample Device node for LSRAM (UIO Framework)

	4. Appendix
	5. Revision History
	The Microchip Website
	Product Change Notification Service
	Customer Support
	Microchip Devices Code Protection Feature
	Legal Notice
	Trademarks
	Quality Management System
	Worldwide Sales and Service

