
www.embedded-world.eu

How to Implement high performance power efficient

Deep Learning on FPGAs

V. Rayapeta, D. Nandi

Microchip Technology Inc
Chandler, USA

R. Green, H. Richter

ASIC Design Services

Midrand, South Africa

Abstract – Field Programmable Gate Arrays (FPGAs) are a
compelling choice for hardware acceleration on the edge

especially when adding newer capabilities for machine learning

inference. Specialized neural networks called Convolutional

Neural Networks (CNN) are being deployed on the edge in

embedded vision systems to perform tasks such as object

detection, face and gesture recognition and pose estimation.

FPGA architecture provides a unique set of features to satisfy

the high computational complexity requirements along with

sufficient memory access (via local and external memories) to

realize CNNs efficiently. Their inherent programmability

provides the flexibility to integrate and upgrade customized

functions on a single device.

In this paper we share details about how Microchip’s

programmable hardware along with the Core Deep Learning

(CDL) framework from ASIC Design Services enable a power

efficient imaging and video solution platform for embedded and

edge computing applications. The techniques include

quantization of the CNN at 8-bit integer precision, neural

network optimization based on the underlying FPGA

architecture and the INT8 dot product mode of the Math block

to efficiently deploy Microchip FPGAs for machine learning

inference.

Keywords— Embedded Vision, Machine Learning, Edge

Computing, Hardware accelerators

I. INTRODUCTION

Breakthroughs in Deep Neural Networks (DNNs) have
paved the way for realizing an increasing number of image and
speech recognition applications. Improvements in the state of
the art performance of network models have led to efficient
architectures like MobileNetV2 that is tailored for resource
constrained environments [1]. Image and video processing
applications stand to benefit by including features such as object
detection, face and gesture recognition and pose estimation into
their existing pipelines.

For applications such as measuring wait times in stores and
traffic patterns it would be desirable to use computer vision to

extract information at the image sensor rather than in the cloud
[2]. Other applications such as autonomous vehicles, drone
navigation and robotics require local processing to minimize
both process latency and security risk.

The evolution of neural network architectures seems certain
to continue with end-to-end approaches for classical computer
vision problems [3], stereo vision [4] and face reconstruction [5].
Deploying a programmable hardware platform ensures the
flexibility to continuously provide algorithm upgrades and other
feature customizations.

In this paper we share details about how Microchip’s

programmable hardware along with the Core Deep Learning

(CDL) framework from ASIC Design Services enable a power
efficient imaging and video solution platform for embedded and

edge computing applications. The techniques include

quantization of the CNN at 8-bit integer precision, neural

network optimization based on the underlying FPGA

architecture and the INT8 dot product mode of the Math block

to efficiently deploy Microchip FPGAs for machine learning

inference. Specifically, we can demonstrate an object

classification application using the popular Tiny YOLO v2.0

algorithm running at 102GOPS/s/W at 8-bit integer precision.

II. INT8 DOT PRODUCT MODE IN MATH BLOCK

Inputs: ai Weights: wii, yii

Fig. 1. Fully Connected Neural Network Example

The dot product operation lies at the heart of the CNN [6].
These dot products are usually implemented using multiply-
accumulate units with several degrees of parallelism. The basic
computation for both the fully connected and convolutional
layers (Figure. 1) is of the form:

𝑜𝑗 = 𝑓(∑ 𝑎𝑖𝑖 𝑤𝑖,𝑗), 𝑖 ∈ [1, 𝑛] (1)

where 𝑓(𝑥) is a non-linear activation function like ReLU.

The equation in expanded form is:

𝑜𝑗 = 𝑓(𝑎1 ∗ 𝑤11 + 𝑎2 ∗ 𝑤21 + 𝑎3 ∗ 𝑤31 + ⋯) (2)

Traditionally, the compute and memory intensive nature of
CNNs have limited their deployment on embedded systems.
Multiple approaches have recently been developed to
successfully prune and quantize the network [7, 8].

Microchip FPGAs (SmartFusion2, RTG4, PolarFire) have a
dot product (DOTP) mode that is especially suited for 8-bit
arithmetic operations (Figure. 2).

Fig. 2. DOTP Mode available in PolarFire FPGA’s Math block.

In the DOTP mode, a single math block can accommodate
four useful operations:

• DOT Product Mode block can perform two multiplies
and one add:

𝑎1 ∗ 𝑤11 + 𝑎2 ∗ 𝑤21

• The accumulator block can perform one add needed to
accumulate the result from the previous math block in
cascade.

Unlike the Math block in Microchip FPGAs, alternative
FPGAs do not have a DOTP mode for INT8 arithmetic. Due to
this limitation, each Digital Signal Processing (DSP) block can
only accommodate two useful operations (one multiply and one
add).

To alleviate this inefficiency, a weight sharing architecture
has been proposed that computes the DOTP for two different
inputs using the same weights. However, since the computation
is for two different inputs, the results need to be separated in the
accumulator. This limits the length of the DSP cascade before

the upper and lower words result become unrecoverable. An
additional DSP must be used to handle the separation and
summing of the lower and upper words after each cascade. This
additional DSP reduces the effective useful operations per DSP.
Also, additional control logic needed to shift input data and
unpack results leads to a complex data flow with additional
limitations and reduced operational efficiency.

The presence of the in-built DOTP mode in Microchip
FPGAs enables higher efficiency for INT8 computations used
by the fully connected and convolutional layers (Table I).
Microchip FPGAs can deliver 100% higher efficiency compared
to competing FPGA and 14% higher efficiency compared to
competing FPGA with weight sharing.

TABLE I. MICROCHIP VS COMPETING FPGA COMPARISON

Family INT8 Operations per DSP / Math Block

Microchip FPGAa
 4

Alternative FPGA 2

Alternative FPGA

(Weight Sharing)
Up to 3.5b

a. PolarFire, SmartFusion2, and RTG4.

b. Requires overhead logic to shift input data and unpack results

III. CORE DEEP LEARNING FRAMEWORK

The Core Deep Learning (CDL) framework was developed
to accelerate CNNs on Microchip FPGAs. In addition to
utilizing the architectural efficiency of the INT8 DOTP mode,
the design of the framework attempts to achieve the following
goals:

1. Identify and utilize the opportunity to parallelize
computations in a CNN (kernel, input and output feature
maps).

2. Use data quantization methods to reduce compute and
memory requirements while preserving the network
accuracy.

3. Optimize the implementation considering the targeted
FPGA architecture and specific the CNN being
deployed. This allows the framework to be both scalable
and generative.

Fig. 3. Core Deep Learning Framework for Microchip FPGAs.

www.embedded-world.eu

The framework currently supports the standard Caffe CNN
description model. The input model along with some training
data is used to quantize the network from 32-bit floating to 8-bit
dynamic fixed-point. The design space exploration phase
determines the optimal design parameters for the specific
network and FPGA. The output from the design space
exploration configures the synthesizable System Verilog core.

Network models use 32-bit floating point implementations
during training and inference. Inference when running in servers
use GPUs or massively parallel FPGA arrays. However, on-the-
edge devices are constrained by space, compute capability and
power. Compressing the network from 32-bit floating point to 8-
bit dynamic fixed point is a key step in ensuring the models can
be implemented on FPGAs. Moving from a 32-bit
implementation to an 8-bit implementation is done without
much loss in accuracy of the model. In fact, several studies have
shown that the loss in accuracy in the model to be less than 1%
[9, 10] (Table II). Similar low accuracy loss is observed while
using the CDL framework. This phase yields a quantized trained
network that is bit-accurate to an FPGA design.

TABLE II: ACCURACY ON VARIETY OF DATASETS

 Gysel, 2016 Guo et al, 2016 CDL

Network 32b FPa 8bit Intb 32b FPa 8bit Intb 32b FPa 8bit Intb

LeNet 99.1% 99.1% 99.12% 99.13%

CIFAR-10 81.7% 81.4%

CaffeNet 56.9% 56.0% 77.12% 76.64%

VGG16 88.10% 87.60% 88.84% 87.54%

GoogLeNet 88.82% 88.64%

SqueezeNet 79.92% 79.16%

Scene Labelling 73.89% 73.31%

a: Floating Point, b: Integer

Inference on an FPGA is constrained by the number of math
blocks, logic elements, available memory bandwidth and the
fabric speed. In other words, the implementation can be either
computation bounded or memory bounded.

𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑓. = min{ 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓 𝐶𝑇𝐶 𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝐵𝑊}

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓 =
𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠

𝐶𝑇𝐶 =
𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠

 Red Dot: Optimal platform design parameter for performance

 Fig. 4. CDL Design Space Exploration

Design Space Exploration enables tweaking inputs to the model
and user constraints like availability of logic elements, DDR
bandwidth and fabric frequency that translates to real world
performance targets like frames per second performance,
accuracy and power consumption. It also enables scalable
designs spanning different FPGA sizes that share similar fabric
architectures (Figure 5).

The Design Space Exploration phase yields accurate
performance and usage report together with a network and
platform specific optimized SystemVerilog CDL core memory
map. The SystemVerilog CDL FPGA core interface is imported
to the Libero design environment and allows an easy integration
of a trained, quantized and optimized machine learning
inference core.

M2Sxxx: SmartFusion2, MPFxxxT: PolarFire, xxx- LUT4 in thousands

Fig 5: TinyYolov2 fps chart with SmartFusion2 and PolarFire FPGAs

IV. EVALUATING FRAMEWORK PERFORMANCE

(POWER EFFICIENCY)

YOLO (You Only Look Once) is a single pass through neural

network where an input image is processed to simultaneously

predict multiple bounding boxes and their class probabilities

[11]. Tiny YOLO is a reduced network based on YOLO that

detects 20 different object classes compared to more than

thousands object classes supported by YOLO.

Fig. 6: Tiny YOLOv2 benchmark demo on PolarFire MPF300

Tiny YOLO v2.0 when implemented using CDL into PolarFire

FPGA, with 300K logic elements and 924 (18x18) math blocks,

processes images in real-time at 43.5 frames per second while

Parameters Value

Input Image Shape 416 x 416

Number of Convolutional Layers 9

GOPs (MULACC) 7

Performance 43.6 fps

GOPs 304

Power Consumption (Core) 2.98W

GOPs/W 102

consuming 2.98W of power, thereby offering a 102GOPs/W

performance (Fig. 6).

V. IMAGE PROCESSING PIPELINE

FPGAs bring unmatched value for machine learning inference

in edge-devices. They have the requisite compute power (DSP

math blocks) compared to MCUs, MPUs and CPUs, and low

power consumption compared to GPUs. FPGAs integrate

functions like video, communication and security, and allow

firmware upgrade of the system that includes newer trained
network models.

Blue: Video and Imaging pipeline, Grey: CDL inference pipeline

Fig. 8. Integrating Video and Machine Learning on-chip

An embedded designer can upgrade existing video signal chain

to add machine learning by simply upgrading to a device with

more logic elements and adding the Core CDL framework

interface.

 Fig. 7: CDL FPGA Core Interface

In a networking camera example (Fig. 8), the FPGA hardware

interfaces an image sensor using MIPI-CSI2, runs the CDL

inference engine and uses a USXGMII multi-rate PHY to

transport a H.264 compressed video as well as intelligence

pertaining to object detection and classification (Table 3).

TABLE III: RESOURCE UTILIZATION

IP LUT4s (K) DFFs (K) DSP (18x18)

MIPI-CSI2 1.3 1.6 0

DDR4 (Imaging) 24.1 19 0

TinyYolov2 @40fps 60 77 512

DDR4 (Inference) 17 15 0

H.264 Encode 90 90 59

USXGMII 15.5 18 0

Dual RISC V 27.2 14 4

Total 235.1 234.6 575

MPF300 300 300 924

Utilization 78.4% 78.2% 62.2%

Compressing video reduces the bandwidth requirement on the

Ethernet network and enables moving intelligence from the

gateway or cloud towards the edge. Inference on the edge

eliminates the need to send high quality uncompressed video

upstream, while reducing latency in decision making. This also

increases the capacity of an existing network allowing more

cameras to be supported.

VI. BENCHMARK DATA

The Core Deep Learning FPGA framework has been developed

on Microchip’s PolarFire FPGA that offer high-efficiency INT8

Dot Product Mode math blocks. The CDL framework supports

multiple frameworks like Convolutional, Pooling, Depthwise

Separable Convolutional, Fully Connected, Non-Linear

Activation, Concatenation and Residual layers etc. and has been

tested on various networks supported by the Caffe framework

(Table IV).

TABLE IV: CDL BENCHMARKS ON POLARFIRE FPGA

Network Lenet Squeezenet Pose VGG
VGG

(SVD)

Tiny-

Yolo

Network GOPs 0.005 0.782 3.578 30.941 30.764 6.970

Fabric 4LUT 59469 78268 73000 85531 68484 59991

Fabric DFF 80968 84048 84782 96103 77554 76674

uSRAM Blocks

(64x12)
1440 1024 1024 1008 1024 1024

LSRAM Blocks

(20k bit)
126 578 578 550 434 306

Total RAM

(Mbits)
3.52 12.04 12.04 11.48 9.23 6.73

Math Blocks

(18x18 MACC)
720 512 512 504 512 512

FPS 2747.25 155.02 23.14 5.67 8.51 39.47

Power (mW) 3653.53 4522.60 4422.43 4181.42 3803.46 3456.16

Performance

(GOPs/s)
12.60 121.19 82.79 175.43 261.80 275.11

Power Efficiency

(GOPs/s/W)
3.45 26.80 18.72 41.96 68.83 79.60

DSP Efficiency

(GOPs/s/DSP)
0.02 0.24 0.16 0.35 0.51 0.54

Control IP External Memory

Control IP AXI Interface

C
o

n
tr

o
ll

er
s

C
o

n
tr

o
ll

er
s

Input

Buffers

Input

Buffers

 Computing Engine

PE PE PE PE

F
P

G
A

www.embedded-world.eu

VII. CONCLUSION

In this paper we have shown how FPGAs offer a suitable

architecture for running Inference algorithms in edge devices.
FPGAs offer high compute capabilities to devices that are

power and space constrained and need low-latency in decision

making. They are suitable for designing platforms, offering the

flexibility to add or upgrade new features, including security

functions. The Core Deep Learning framework along with

Microchip’s highly efficient INT8 dot product mode FPGAs

makes it very easy for embedded designers to add optimized

machine learning core for a single-chip design.

REFERENCES

[1] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.C. Chen,

“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,

2018, pp. 4510–4520.

[2] V. Sze, Y.H. Chen, J. Emer, A. Suleiman, and Z. Zhang, “Hardware for
machine learning: Challenges and opportunities,” in IEEE Custom

Integrated Circuits Conference (CICC), 2017.

[3] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to see in the dark,” in
The IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[4] A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A.

Bachrach, and A. Bry, “End-to-end learning of geometry and context for
deep stereo regression,” in International Conference on Computer Vision

(ICCV), 2017.

[5] P. Dou, S.K. Shah, and I.A. Kakadiaris, “End-to-end 3D face
reconstruction with deep neural networks,” in Computer Vision and

Pattern Recognition (CVPR), 2017.

[6] M. Vestias, R. Duarte, J.T. de Sousa, and H. Neto, “Parallel Dot-Products
for Deep Learning on FPGA,” in 27th International Conference on Field

Programmable Logic and Applications (FPL), 2017.

[7] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-Oriented
Approximation of Convolutional Neural Networks,” in ICLR Workshop,

2016.

[8] S. Han, H. Mao, and W.J. Dally, “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman

Coding,” in International Conference on Learning Representations

(ICLR), 2016.

[9] Philipp Gysel. Ristretto: Hardware-oriented approximation of

convolutional neural networks. arXiv:1605.06402, 2016

[10] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery

for efficient dnns. In Advances In Neural Information Processing

Systems, pp. 1379–1387, 2016.

[11] Joseph Redmon, Santosh Divala, Ross Girshick, Ali Farhad. You Only

Look Once: Unified, Real-Time Obect Detection.arXiv: 1506,0264v5

