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Abstract – Field Programmable Gate Arrays (FPGAs) are a 
compelling choice for hardware acceleration on the edge 

especially when adding newer capabilities for machine learning 

inference. Specialized neural networks called Convolutional 

Neural Networks (CNN) are being deployed on the edge in 

embedded vision systems to perform tasks such as object 

detection, face and gesture recognition and pose estimation. 

FPGA architecture provides a unique set of features to satisfy 

the high computational complexity requirements along with 

sufficient memory access (via local and external memories) to 

realize CNNs efficiently. Their inherent programmability 

provides the flexibility to integrate and upgrade customized 

functions on a single device.  
 

In this paper we share details about how Microchip’s 

programmable hardware along with the Core Deep Learning 

(CDL) framework from ASIC Design Services enable a power 

efficient imaging and video solution platform for embedded and 

edge computing applications. The techniques include 

quantization of the CNN at 8-bit integer precision, neural 

network optimization based on the underlying FPGA 

architecture and the INT8 dot product mode of the Math block 

to efficiently deploy Microchip FPGAs for machine learning 

inference. 
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I.  INTRODUCTION 

Breakthroughs in Deep Neural Networks (DNNs) have 
paved the way for realizing an increasing number of image and 
speech recognition applications. Improvements in the state of 
the art performance of network models have led to efficient 
architectures like MobileNetV2 that is tailored for resource 
constrained environments [1]. Image and video processing 
applications stand to benefit by including features such as object 
detection, face and gesture recognition and pose estimation into 
their existing pipelines.  

For applications such as measuring wait times in stores and 
traffic patterns it would be desirable to use computer vision to 

extract information at the image sensor rather than in the cloud 
[2]. Other applications such as autonomous vehicles, drone 
navigation and robotics require local processing to minimize 
both process latency and security risk. 

The evolution of neural network architectures seems certain 
to continue with end-to-end approaches for classical computer 
vision problems [3], stereo vision [4] and face reconstruction [5]. 
Deploying a programmable hardware platform ensures the 
flexibility to continuously provide algorithm upgrades and other 
feature customizations.    

In this paper we share details about how Microchip’s 

programmable hardware along with the Core Deep Learning 

(CDL) framework from ASIC Design Services enable a power 
efficient imaging and video solution platform for embedded and 

edge computing applications. The techniques include 

quantization of the CNN at 8-bit integer precision, neural 

network optimization based on the underlying FPGA 

architecture and the INT8 dot product mode of the Math block 

to efficiently deploy Microchip FPGAs for machine learning 

inference. Specifically, we can demonstrate an object 

classification application using the popular Tiny YOLO v2.0 

algorithm running at 102GOPS/s/W at 8-bit integer precision. 
 

II. INT8 DOT PRODUCT MODE IN MATH BLOCK 

 

Inputs: ai Weights: wii, yii 

Fig. 1. Fully Connected Neural Network Example  



The dot product operation lies at the heart of the CNN [6]. 
These dot products are usually implemented using multiply-
accumulate units with several degrees of parallelism. The basic 
computation for both the fully connected and convolutional 
layers (Figure. 1) is of the form: 

𝑜𝑗 = 𝑓(∑ 𝑎𝑖𝑖 𝑤𝑖,𝑗), 𝑖 ∈ [1, 𝑛]    (1) 

where 𝑓(𝑥) is a non-linear activation function like ReLU. 

 

The equation in expanded form is: 

𝑜𝑗 = 𝑓(𝑎1 ∗ 𝑤11 +  𝑎2 ∗ 𝑤21 +  𝑎3 ∗ 𝑤31 + ⋯ )  (2) 

 

Traditionally, the compute and memory intensive nature of 
CNNs have limited their deployment on embedded systems. 
Multiple approaches have recently been developed to 
successfully prune and quantize the network [7, 8]. 

Microchip FPGAs (SmartFusion2, RTG4, PolarFire) have a 
dot product (DOTP) mode that is especially suited for 8-bit 
arithmetic operations (Figure. 2).  

 

Fig. 2. DOTP Mode available in PolarFire FPGA’s Math block. 

In the DOTP mode, a single math block can accommodate 
four useful operations: 

• DOT Product Mode block can perform two multiplies 
and one add: 

𝑎1 ∗ 𝑤11 +  𝑎2 ∗ 𝑤21  

• The accumulator block can perform one add needed to 
accumulate the result from the previous math block in 
cascade.   

Unlike the Math block in Microchip FPGAs, alternative 
FPGAs do not have a DOTP mode for INT8 arithmetic. Due to 
this limitation, each Digital Signal Processing (DSP) block can 
only accommodate two useful operations (one multiply and one 
add). 

To alleviate this inefficiency, a weight sharing architecture 
has been proposed that computes the DOTP for two different 
inputs using the same weights. However, since the computation 
is for two different inputs, the results need to be separated in the 
accumulator. This limits the length of the DSP cascade before 

the upper and lower words result become unrecoverable. An 
additional DSP must be used to handle the separation and 
summing of the lower and upper words after each cascade. This 
additional DSP reduces the effective useful operations per DSP. 
Also, additional control logic needed to shift input data and 
unpack results leads to a complex data flow with additional 
limitations and reduced operational efficiency. 

The presence of the in-built DOTP mode in Microchip 
FPGAs enables higher efficiency for INT8 computations used 
by the fully connected and convolutional layers (Table I). 
Microchip FPGAs can deliver 100% higher efficiency compared 
to competing FPGA and 14% higher efficiency compared to 
competing FPGA with weight sharing. 

TABLE I.  MICROCHIP VS COMPETING FPGA COMPARISON 

Family INT8 Operations per DSP / Math Block 

Microchip FPGAa
 4 

Alternative FPGA 2 

Alternative FPGA 

(Weight Sharing) 
Up to 3.5b 

a. PolarFire, SmartFusion2, and RTG4. 

b. Requires overhead logic to shift input data and unpack results 

III. CORE DEEP LEARNING FRAMEWORK 

The Core Deep Learning (CDL) framework was developed 
to accelerate CNNs on Microchip FPGAs. In addition to 
utilizing the architectural efficiency of the INT8 DOTP mode, 
the design of the framework attempts to achieve the following 
goals: 

1. Identify and utilize the opportunity to parallelize 
computations in a CNN (kernel, input and output feature 
maps). 

2. Use data quantization methods to reduce compute and 
memory requirements while preserving the network 
accuracy. 

3. Optimize the implementation considering the targeted 
FPGA architecture and specific the CNN being 
deployed. This allows the framework to be both scalable 
and generative. 

 

Fig. 3. Core Deep Learning Framework for Microchip FPGAs. 
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The framework currently supports the standard Caffe CNN 
description model. The input model along with some training 
data is used to quantize the network from 32-bit floating to 8-bit 
dynamic fixed-point. The design space exploration phase 
determines the optimal design parameters for the specific 
network and FPGA. The output from the design space 
exploration configures the synthesizable System Verilog core.  

Network models use 32-bit floating point implementations 
during training and inference. Inference when running in servers 
use GPUs or massively parallel FPGA arrays. However, on-the-
edge devices are constrained by space, compute capability and 
power. Compressing the network from 32-bit floating point to 8-
bit dynamic fixed point is a key step in ensuring the models can 
be implemented on FPGAs. Moving from a 32-bit 
implementation to an 8-bit implementation is done without 
much loss in accuracy of the model. In fact, several studies have 
shown that the loss in accuracy in the model to be less than 1% 
[9, 10] (Table II). Similar low accuracy loss is observed while 
using the CDL framework. This phase yields a quantized trained 
network that is bit-accurate to an FPGA design. 

TABLE II: ACCURACY ON VARIETY OF DATASETS 

 Gysel, 2016 Guo et al, 2016 CDL 

Network 32b FPa 8bit Intb 32b FPa 8bit Intb 32b FPa 8bit Intb 

LeNet 99.1% 99.1%   99.12% 99.13% 

CIFAR-10 81.7% 81.4%     

CaffeNet 56.9% 56.0% 77.12% 76.64%   

VGG16   88.10% 87.60% 88.84% 87.54% 

GoogLeNet   88.82% 88.64%   

SqueezeNet   79.92% 79.16%   

Scene Labelling     73.89% 73.31% 

a: Floating Point, b: Integer 

Inference on an FPGA is constrained by the number of math 
blocks, logic elements, available memory bandwidth and the 
fabric speed. In other words, the implementation can be either 
computation bounded or memory bounded. 

𝐴𝑡𝑡𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑝𝑒𝑟𝑓. = min{ 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓 𝐶𝑇𝐶 𝑟𝑎𝑡𝑖𝑜𝑛 𝑥 𝐵𝑊} 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑜𝑓 =
# 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑦𝑐𝑙𝑒𝑠
 

𝐶𝑇𝐶 =
# 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

# 𝑜𝑓 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑎𝑐𝑐𝑒𝑠𝑠
 

 

 Red Dot: Optimal platform design parameter for performance 

 Fig. 4. CDL Design Space Exploration 

Design Space Exploration enables tweaking inputs to the model 
and user constraints like availability of logic elements, DDR 
bandwidth and fabric frequency that translates to real world 
performance targets like frames per second performance, 
accuracy and power consumption. It also enables scalable 
designs spanning different FPGA sizes that share similar fabric 
architectures (Figure 5). 

The Design Space Exploration phase yields accurate 
performance and usage report together with a network and 
platform specific optimized SystemVerilog CDL core memory 
map. The SystemVerilog CDL FPGA core interface is imported 
to the Libero design environment and allows an easy integration 
of a trained, quantized and optimized machine learning 
inference core. 

 

M2Sxxx: SmartFusion2, MPFxxxT: PolarFire, xxx- LUT4 in thousands 

Fig 5: TinyYolov2 fps chart with SmartFusion2 and PolarFire FPGAs 

IV. EVALUATING FRAMEWORK PERFORMANCE 

(POWER EFFICIENCY) 

YOLO (You Only Look Once) is a single pass through neural 

network where an input image is processed to simultaneously 

predict multiple bounding boxes and their class probabilities 

[11]. Tiny YOLO is a reduced network based on YOLO that 

detects 20 different object classes compared to more than 

thousands object classes supported by YOLO.  

Fig. 6: Tiny YOLOv2 benchmark demo on PolarFire MPF300 

 

Tiny YOLO v2.0 when implemented using CDL into PolarFire 

FPGA, with 300K logic elements and 924 (18x18) math blocks, 

processes images in real-time at 43.5 frames per second while 

Parameters Value 

Input Image Shape 416 x 416 

Number of Convolutional Layers 9 

GOPs (MULACC) 7 

Performance 43.6 fps 

GOPs 304 

Power Consumption (Core) 2.98W 

GOPs/W 102 



consuming 2.98W of power, thereby offering a 102GOPs/W 

performance (Fig. 6). 
 

V. IMAGE PROCESSING PIPELINE 

FPGAs bring unmatched value for machine learning inference 

in edge-devices. They have the requisite compute power (DSP 

math blocks) compared to MCUs, MPUs and CPUs, and low 

power consumption compared to GPUs. FPGAs integrate 

functions like video, communication and security, and allow 

firmware upgrade of the system that includes newer trained 
network models. 

 
Blue: Video and Imaging pipeline, Grey: CDL inference pipeline 

 

Fig. 8. Integrating Video and Machine Learning on-chip  

 

An embedded designer can upgrade existing video signal chain 

to add machine learning by simply upgrading to a device with 

more logic elements and adding the Core CDL framework 

interface. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

  Fig. 7: CDL FPGA Core Interface 

In a networking camera example (Fig. 8), the FPGA hardware 

interfaces an image sensor using MIPI-CSI2, runs the CDL 

inference engine and uses a USXGMII multi-rate PHY to 

transport a H.264 compressed video as well as intelligence 

pertaining to object detection and classification (Table 3). 

 

 

 

TABLE III: RESOURCE UTILIZATION 

IP LUT4s (K) DFFs (K) DSP (18x18) 

MIPI-CSI2 1.3 1.6 0 

DDR4 (Imaging) 24.1 19 0 

TinyYolov2 @40fps 60 77 512 

DDR4 (Inference) 17 15 0 

H.264 Encode 90 90 59 

USXGMII 15.5 18 0 

Dual RISC V 27.2 14 4 

Total 235.1 234.6 575 

MPF300 300 300 924 

Utilization 78.4% 78.2% 62.2% 

 
Compressing video reduces the bandwidth requirement on the 

Ethernet network and enables moving intelligence from the 

gateway or cloud towards the edge. Inference on the edge 

eliminates the need to send high quality uncompressed video 

upstream, while reducing latency in decision making. This also 

increases the capacity of an existing network allowing more 

cameras to be supported. 

 

VI. BENCHMARK DATA 

The Core Deep Learning FPGA framework has been developed 

on Microchip’s PolarFire FPGA that offer high-efficiency INT8 

Dot Product Mode math blocks. The CDL framework supports 

multiple frameworks like Convolutional, Pooling, Depthwise 

Separable Convolutional, Fully Connected, Non-Linear 

Activation, Concatenation and Residual layers etc. and has been 

tested on various networks supported by the Caffe framework 

(Table IV). 

TABLE IV: CDL BENCHMARKS ON POLARFIRE FPGA 

Network Lenet Squeezenet Pose VGG 
VGG 

(SVD) 

Tiny-

Yolo 

Network GOPs 0.005 0.782 3.578 30.941 30.764 6.970 

Fabric 4LUT 59469 78268 73000 85531 68484 59991 

Fabric DFF 80968 84048 84782 96103 77554 76674 

uSRAM Blocks 

(64x12) 
1440 1024 1024 1008 1024 1024 

LSRAM Blocks 

(20k bit) 
126 578 578 550 434 306 

Total RAM 

(Mbits) 
3.52 12.04 12.04 11.48 9.23 6.73 

Math Blocks 

(18x18 MACC) 
720 512 512 504 512 512 

FPS 2747.25 155.02 23.14 5.67 8.51 39.47 

Power (mW) 3653.53 4522.60 4422.43 4181.42 3803.46 3456.16 

Performance 

(GOPs/s) 
12.60 121.19 82.79 175.43 261.80 275.11 

Power Efficiency 

(GOPs/s/W) 
3.45 26.80 18.72 41.96 68.83 79.60 

DSP Efficiency 

(GOPs/s/DSP) 
0.02 0.24 0.16 0.35 0.51 0.54 
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VII. CONCLUSION 

In this paper we have shown how FPGAs offer a suitable 

architecture for running Inference algorithms in edge devices. 
FPGAs offer high compute capabilities to devices that are 

power and space constrained and need low-latency in decision 

making. They are suitable for designing platforms, offering the 

flexibility to add or upgrade new features, including security 

functions. The Core Deep Learning framework along with 

Microchip’s highly efficient INT8 dot product mode FPGAs 

makes it very easy for embedded designers to add optimized 

machine learning core for a single-chip design. 
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