

Microsemi SoftConsole v6.0

Release Notes

2 Microsemi SoftConsole v6.0 Release Notes

Table of Contents

Table of Contents ... 2

Microsemi SoftConsole v6.0 ... 7

Introduction .. 7

Overview ... 7

Key features ... 7

Features not supported ... 7

Quick start guide .. 8

Supported platforms .. 9

Free/Open source packages ... 11

Packages used .. 11

Installation .. 16

Windows .. 16

Installing ... 16

Linux .. 16

Installing ... 16

After installing .. 17

Troubleshooting ... 20

Related Microsemi Tools/Resources ... 21

Libero SoC/Firmware Catalog ... 21

Firmware drivers .. 21

Hardware Abstraction Layers .. 21

Peripheral firmware drivers .. 21

Matching firmware to the target hardware ... 21

FlashPro JTAG programmer ... 22

SoftConsole v3.4 ... 22

SoftConsole v4.x .. 22

SoftConsole v5.1 RISC-V projects .. 22

Microsemi github .. 22

Workspaces .. 23

Example workspace... 23

Example projects ... 23

Example debug launch configurations .. 23

Empty workspace .. 24

Creating a new workspace .. 24

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 3

Projects ... 25

Creating a new project ... 25

Project Settings .. 26

All CPU targets .. 26

RISC-V targets... 29

Cortex-M targets .. 29

SmartFusion2 Cortex-M3 targets .. 30

Adding source files to a project ... 30

Building a project ... 30

Debugging .. 32

Debug launch configurations ... 32

OpenOCD command line options and scripts ... 37

SmartFusion/SmartFusion2 DEVICE .. 38

Board scripts .. 38

Cortex-M1 Board Script ... 39

FlashPro JTAG speed ... 40

Other OpenOCD options ... 40

SoftConsole OpenOCD script parameters .. 40

Board configuration for FlashPro debugging ... 40

Using a debug session .. 40

Launching a debug session ... 40

Memory Monitor ... 40

Console view ... 41

Built-in serial terminal view .. 41

Debug using a specific FlashPro programmer .. 41

Debugging using a non FlashPro JTAG interface ... 42

How to connect to/debug a running program .. 43

Troubleshooting ... 43

Renode emulation platform ... 45

Other Features ... 47

Cortex-M semi-hosting... 47

Integer only newlib support .. 47

Static stack profiling ... 48

Cppcheck ... 48

Known Issues and useful tips ... 49

Reset/power cycle the target hardware before each RISC-V debug session ... 49

Debug launch configuration settings differ for Cortex-M and RISC-V ... 49

RISC-V memory view problems .. 49

Memory Monitor fails to display ... 49

Windows occasionally crashes when plugging FlashPro in/out .. 49

OpenOCD crashes when attempting to debug RISC-V .. 49

RISC-V C++ support .. 49

Microsemi SoftConsole v6.0

4 Microsemi SoftConsole v6.0 Release Notes

FlashPro programmers cannot be shared by applications .. 50

Invalid command name "arm" when debugging RISC-V ... 50

Initial startup may be slow ... 50

Flash Programming ... 50

Build Project context menu option sometimes disabled .. 50

Windows firewall .. 50

Multiple debug sessions .. 50

FlashPro JTAG debugging is unreliable on virtual machines .. 50

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3 50

“Error: Got exception …” when reading some RISC-V registers ... 51

OpenOCD error/info messages when debugging RISC-V .. 51

Debugging and multiple device JTAG chains .. 51

RISC-V target support ... 52

SoftConsole v3.4 or earlier workspaces/projects .. 52

SoftConsole v5.0 RISC-V projects and debug launch configurations ... 52

SmartFusion2 DPK unlocking .. 52

CMSIS needs environment variable .. 55

FTDI detected as ttyUSB on Linux .. 55

Program file does not exist .. 56

Target emulation `elf64-littleriscv' does not match `elf32-littleriscv' .. 56

sprint()/scanf() print empty characters instead of floating point number digits .. 57

Error message: can't link hard-float modules with soft-float modules ... 57

Multiple definition of `_start'/`_init'/`_fini' etc. ... 57

Undefined reference to `printf'/`puts'/`write'/`strlen' etc. ... 57

Route printf() output to UART .. 57

Program image is too large ... 58

cc1: error: requested ABI requires -march to subsume the 'D' extension ... 59

undefined reference to `__stack_top' etc. ... 59

After duplication of the project (copy/paste) debugging no longer works .. 59

Progam has exited with code:0x00000003 ... 59

Size optimizations cause trap exception: Load address misaligned ... 60

<built-in>: internal compiler error: Illegal instruction .. 60

(Renode:5523): GLib-CRITICAL **: Source ID 13802 was not found when attempting to remove it 61

../riscv_hal/entry.S:113: Error: Instruction csrr requires absolute expression ... 61

Connecting to remote OpenOCD .. 61

Glitches, unstable UI and cosmetic issues on Linux ... 61

Debugger Console View is not working or GDB is misbehaving ... 61

Build fails when using “Print removed sections (-Xlinker --print-gc-sections)” .. 62

Debug launcher fails with “Error: gdb sent a packet with wrong register size”.. 63

Debug launcher is not connecting to ARM target .. 63

Application traps at random places or even before reaching main ... 64

Running SoftConsole from command line ... 64

Invalid project path: Duplicate path entries found Warnings ... 64

“No installed packages” ... 64

Other useful Documentation ... 66

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 5

Product Support ... 67

Customer Service .. 67

Customer Technical Support Center .. 67

Technical Support .. 67

Website ... 67

Contacting the Customer Technical Support Center .. 68

Email .. 68

My Cases ... 68

Outside the U.S. .. 68

ITAR Technical Support .. 68

Microsemi SoftConsole v6.0 Release Notes 7

Microsemi SoftConsole v6.0

Introduction
These are release notes for Microsemi SoftConsole v6.0.

This document uses <SoftConsole-install-dir> as a placeholder for the actual SoftConsole install directory.

Where this is mentioned substitute the actual SoftConsole install directory name (e.g.

C:\Microsemi\SoftConsole_v6.0 on Windows or $HOME/Microsemi_SoftConsole_v6.0 on Linux).

Overview

Key features

• Runs on Windows and Linux.

• Development/debug support for Microsemi PolarFire SoC RISC-V 64-bit multi-processor, Microsemi Mi-V

RISC-V and Arm® Cortex®-M CPUs/SoCs.

• Built using the latest industry standard stock free/open source components and tools for Arm® Cortex®-M

and RISC-V firmware development and debugging.

• Support for Microsemi PolarFire SoC, Microsemi SmartFusion® and SmartFusion2 Arm® Cortex-M3,

Microsemi Arm® Cortex-M1 and Microsemi Mi-V RISC-V firmware development and debugging.

• Uses OpenOCD for Arm Cortex-M and RISC-V debugging and SmartFusion/SmartFusion2/Fusion eNVM

programming/program download.

• Supports download to and debugging from SmartFusion eSRAM and eNVM, SmartFusion2 eSRAM, eNVM

and external RAM (MDDR), Cortex-M1 RAM and Fusion eNVM, and RISC-V RAM.

• Supports FlashPro JTAG programmer for debugging (FlashPro3/4/5 on Windows, FlashPro5 on Linux).

• Supports Arm Cortex-M semi-hosting redirection of standard/file I/O from target board to host debugger.

• Includes Antmicro’s Renode emulation platform which can be used to emulate PolarFire SoC and Mi-V

projects.

• Includes a built-in terminal emulator for connecting to a target board’s serial port.

• Includes cppcheck and companion cppcheclipse plugin integration for static code analysis.

• Supports newlib nano for Cortex-M and RISC-V providing an even more lightweight standard library

implementation ideal for resource constrained environments.

• Suitable for development and debug of bare metal and lightweight RTOS based embedded applications.

Features not supported

• Compatibility with SoftConsole v3.4 workspaces/projects/debug launch configurations. SoftConsole v3.4

workspaces/projects/debug launch configurations cannot be used with SoftConsole v4. SoftConsole v4

workspaces/projects/debug launch configurations cannot be use with SoftConsole v3.4.

• Compatibility with any 32bit Operating Systems, SoftConsole v6.0 needs a 64bit Operating System.

• Compatibility with SoftConsole v5.1 RISC-V projects. Due to a change in the RISC-V Eclipse plugin support

between SoftConsole v5.1 and SoftConsole v5.2, SoftConsole v5.1 RISC-V projects will not work in

SoftConsole v5.2. Such projects must be recreated using the same project source files and settings to work

in SoftConsole v5.2.

• Debugging a CoreJTAGDebug/UJTAG Cortex-M1 or Mi-V RISC-V CPU that is in one device in a multiple

device JTAG chain.

• Debugger driven download of programs to non-CFI external parallel flash memories.

• Core8051/Core8051s firmware development and debugging. Use Keil C51 Development Tools with

Core8051/Core8051s ISD-51 support.

Microsemi SoftConsole v6.0

8 Microsemi SoftConsole v6.0 Release Notes

Quick start guide
1. Read these release notes in full.

2. Download the SoftConsole installer from the Microsemi website. Verify the downloaded file integrity using the

checksum file provided.

3. Follow the installation instructions below for the relevant OS platform. If installing on Linux pay careful

attention to the pre-install and post-install instructions.

4. Run SoftConsole from the desktop shortcut or “Start” menu entries created by the installer. This will launch

SoftConsole and open the example workspace.

5. Do not use older or previous workspaces. Use the bundled workspaces, either workspace.examples which

has bundled examples or workspace.empty which has no imported projects .

6. To use the example projects in the example workspace on an actual board it is necessary to update the

projects to match the target hardware – for example by generating the relevant HAL/CMSIS and firmware

drivers from Libero SoC or the Firmware Catalog and copying the generated files into the project.

7. The example projects come with default debug launch configurations for debugging. If necessary, modify the

settings passed to OpenOCD so that they match the actual target hardware.

8. Use the Microsemi website (https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-

support), Firmware Catalog (https://www.microsemi.com/products/fpga-soc/design-resources/design-

software/firmware-catalog) and/or the Microsemi github (https://github.com/RISCV-on-Microsemi-FPGA) to

obtain example/demo/reference design Libero and SoftConsole projects.

https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://www.microsemi.com/product-directory/product-support/4217-fpgas-socs-support
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog
https://github.com/RISCV-on-Microsemi-FPGA

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 9

Supported platforms
• Operating systems - 64bit only

NOTE: physical machines only recommended/supported - see the Known Issues section for details of issues

with virtual machines.

o Windows

▪ 7

▪ 8.1

▪ 10

o Linux

▪ CentOS and Red Hat Enterprise Linux (RHEL)

• 6.9 (deprecated, support will be removed in the future releases)

• 7

▪ Ubuntu

• 14.04 LTS

• 16.04 LTS

▪ openSUSE

• LEAP 15

▪ Debian

• 9

• CPUs

o Microsemi PolarFire SoC RISC-V 64-bit multi-processor FPGA

o Microsemi Mi-V RISC-V CPU soft cores for PolarFire, RTG4, IGLOO2 and SmartFusion2 FPGAs

o Microsemi SmartFusion2 Arm Cortex-M3

o Microsemi SmartFusion Arm Cortex-M3

o Microsemi Arm Cortex-M1 for RTG4 and PolarFire FPGAs

o Microsemi Arm Cortex-M1 for M1 IGLOO, ProASIC3, ProASIC3L and Fusion FPGAs

• Boards

o Microsemi PolarFire SoC RISC-V 64-bit multi-processor FPGA

▪ Microsemi HiFive Unleashed Platform

▪ Renode Microsemi PolarFire SoC emulation model

o Mi-V RISC-V CPU soft cores

▪ IGLOO2 RISC-V Creative Development Board (M2GL025)

▪ IGLOO2 Evaluation Kit (M2GL010)

▪ SmartFusion2 Security Evaluation Kit (M2S090)

▪ SmartFusion2 Advanced Development Kit (M2S150)

▪ RTG4 Development Kit (RT4G150)

▪ PolarFire Evaluation Kit (MPF300TS)

o SmartFusion2 Arm Cortex-M3

▪ SmartFusion2 FPGA Development Kits and Boards

o SmartFusion Arm Cortex-M3

▪ SmartFusion FPGA Kits

o Arm Cortex-M1 for RTG4 and PolarFire FPGAs

▪ RTG4 Development Kit (RT4G150)

▪ PolarFire Evaluation Kit (MPF300TS)

o Arm Cortex-M1 for M1 FPGAs

▪ Fusion Embedded Development Kit (M1AFS1500)

• JTAG Debug

o Microsemi FlashPro3, FlashPro4 and FlashPro5 on Windows

https://www.microsemi.com/products/fpga-soc/mi-v-embedded-ecosystem/risc-v-cpu
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
https://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
https://www.microsemi.com/products/fpga-soc/fpga/igloo2-fpga
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2
https://www.microsemi.com/products/fpga-soc/mi-v-embedded-ecosystem/arm-cortex-m1
https://www.microsemi.com/products/fpga-soc/radtolerant-fpgas/rtg4
https://www.microsemi.com/products/fpga-soc/fpga/polarfire-fpga
http://soc.microsemi.com/products/ip/search/detail.aspx?id=652
https://www.microsemi.com/products/fpga-soc/fpga/igloo-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3-overview
https://www.microsemi.com/products/fpga-soc/fpga/proasic3l
https://www.microsemi.com/products/fpga-soc/fpga/fusion
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/risc-v-creative-board
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/igloo2/igloo2-evaluation-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/sf2-evaluation-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/smartfusion2/smartfusion2-advanced-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/rtg4-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire-kits
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion2#dhwr
https://www.microsemi.com/products/fpga-soc/soc-fpga/smartfusion#design-resources
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/rtg4-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/polarfire-kits
http://www.microsemi.com/products/fpga-soc/design-resources/dev-kits/fusion/fusion-embedded-development-kit
https://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#hardware

Microsemi SoftConsole v6.0

10 Microsemi SoftConsole v6.0 Release Notes

o Microsemi FlashPro5 on Linux

o Olimex ARM-USB-TINY-H

o Other JTAG debug probes supported by OpenOCD may be used but are not specifically tested or

supported

• Other software

o Microsemi Libero SoC

▪ Microsemi Libero SoC v11.9 SP1

▪ Microsemi Libero SoC PolarFire v2.3

▪ Microsemi Firmware Catalog v11.9 SP1

o Firmware (minimum required version)

▪ PolarFire SoC PSE_HAL 1.0.10

▪ RISC-V Hardware Abstraction Layer (HAL) 2.2.103

▪ SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

▪ SmartFusion CMSIS-PAL 2.4.102

▪ Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.101

▪ (DirectCore) Hardware Abstraction Layer 2.3.102

https://www.microsemi.com/products/fpga-soc/design-resources/programming/flashpro#hardware
https://www.olimex.com/Products/ARM/JTAG/ARM-USB-TINY-H/
http://openocd.org/doc/html/Debug-Adapter-Hardware.html
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/libero-soc-polarfire
https://www.microsemi.com/products/fpga-soc/design-resources/design-software/firmware-catalog

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 11

Free/Open source packages

Packages used

Microsemi SoftConsole uses several free and/or open source packages. Microsemi acknowledges and thanks those

organizations and individual developers who work on these projects and make them available to others for reuse

under the relevant license conditions.

Oracle Java SE

Version 10.0.2

Home page https://www.oracle.com/java/index.html

Documentation https://www.oracle.com/java/index.html

License Oracle Binary Code License Agreement for the Java SE Platform Products and JavaFX

http://www.oracle.com/technetwork/java/javase/terms/license/index.html

Notes Oracle Java SE provides the base Java platform on which Eclipse/CDT and other

Eclipse plugins run.

Credit/thanks to Oracle.

Eclipse/CDT

Version Eclipse 4.8 (Photon) + CDT 9.5.2 for Eclipse Photon

Home page https://www.eclipse.org/downloads/packages/release/photon/r

Documentation https://help.eclipse.org/photon/index.jsp

License Eclipse Public License v2.0

https://www.eclipse.org/legal/epl-2.0/

Notes Eclipse/CDT, in conjunction with the GNU MCU Eclipse plugins, provide the main

SoftConsole GUI Integrated Development Environment.

The Windows Eclipse/CDT starter.exe has been modified by Microsemi to allow for

graceful termination of OpenOCD launched from Eclipse.

Credit/thanks to the Eclipse/CDT developer community.

GNU MCU Eclipse Plugins

Version v4.4.2-201809300659

Home page https://gnu-mcu-eclipse.github.io/

Documentation https://gnu-mcu-eclipse.github.io/

License Eclipse Public License v1.0

https://gnu-mcu-eclipse.github.io/licenses/plug-ins/#eclipse-public-license

The copyright owner for all the GNU MCU Eclipse plug-ins is Liviu Ionescu and all

rights are reserved.

Notes Formerly GNU Arm Eclipse but renamed to GNU MCU Eclipse ever since the plugins

began supporting both Arm and RISC-V CPUs. The following GNU MCU Eclipse

plugins are used:

• GNU MCU C/C++ Arm Cross Compiler: provides specific support for ARM

targets by way of custom project properties pages and integration with the

back-end GNU Arm Embedded Toolchain.

• GNU MCU C/C++ RISC-V Cross Compiler: provides specific support for RISC-

V targets by way of custom project properties pages and integration with the

back-end RISC-V GNU toolchain.

https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://www.eclipse.org/downloads/packages/release/photon/r
https://help.eclipse.org/photon/index.jsp
http://www.eclipse.org/legal/epl-v10.html
https://www.eclipse.org/legal/epl-2.0/
https://gnu-mcu-eclipse.github.io/
https://gnu-mcu-eclipse.github.io/
http://www.eclipse.org/legal/epl-v10.html
https://gnu-mcu-eclipse.github.io/licenses/plug-ins/#eclipse-public-license

Microsemi SoftConsole v6.0

12 Microsemi SoftConsole v6.0 Release Notes

• GNU MCU C/C++ OpenOCD Debugging: provides specific support for

debugging Arm and RISC-V targets using OpenOCD from within the Eclipse

environment.

Credit/thanks to Liviu Ionescu.

GNU Arm Embedded Toolchain

Version 7.3.1-1.1 20180724-0637 (Arm/embdded-7-branch revision 255204) built using the

GNU MCU Eclipse Docker based build scripts (https://github.com/gnu-mcu-eclipse/arm-

none-eabi-gcc-build)

Home page https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

Documentation https://developer.arm.com/open-source/gnu-toolchain/gnu-rm

License https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt

Notes Provides a full GCC based toolchain (including GCC, GDB, binutils, newlib, newlib nano

etc.) for Arm Cortex-M and Cortex-R targets.

Details of the specific versions of the individual tools in each release package can be

found on the Arm Developer website.

Credit/thanks to Arm, the GNU Arm Embedded Toolchain development community and

Liviu Ionescu.

Arm Cortex Microcontroller Software Interface Standard (CMSIS)

Version V4.5

Home page https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-

interface-standard.php

Documentation http://www.keil.com/pack/doc/CMSIS/General/html/index.html

License Apache 2.0 License:

http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License

Notes Along with the Microsemi SmartFusion2 CMSIS Hardware Abstraction Layer and

SmartFusion CMSIS-PAL firmware packages provides a lightweight hardware

abstraction layer on which startup code and firmware drivers can operate.

Credit/thanks to Arm.

RISC-V GNU Toolchain

Version GCC 7.2.0 based RISC-V github (https://github.com/riscv/riscv-gnu-toolchain) built

using the GNU MCU Eclipse Docker based build scripts (https://gnu-mcu-

eclipse.github.io/toolchain/riscv/build-procedure/).

Home page https://github.com/riscv/riscv-gnu-toolchain

Documentation https://github.com/riscv/riscv-gnu-toolchain

License https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE

Notes The riscv64-unknown-elf prefixed tools support 32 and 64-bit bare metal targets and the

following multilibs:

• march=rv32i/mabi=ilp32

• march=rv32ia/mabi=ilp32

• march=rv32iac/mabi=ilp32

• march=rv32iaf/mabi=ilp32f

• march=rv32iafc/mabi=ilp32f

• march=rv32ic/mabi=ilp32

• march=rv32if/mabi=ilp32f

• march=rv32ifc/mabi=ilp32f

https://github.com/gnu-mcu-eclipse/arm-none-eabi-gcc-build
https://github.com/gnu-mcu-eclipse/arm-none-eabi-gcc-build
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://developer.arm.com/open-source/gnu-toolchain/gnu-rm
https://launchpad.net/gcc-arm-embedded/5.0/5-2016-q3-update/+download/license.txt
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
https://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-interface-standard.php
http://www.keil.com/pack/doc/CMSIS/General/html/index.html
http://www.keil.com/pack/doc/CMSIS/General/html/index.html#License
https://github.com/riscv/riscv-gnu-toolchain
https://gnu-mcu-eclipse.github.io/toolchain/riscv/build-procedure/
https://gnu-mcu-eclipse.github.io/toolchain/riscv/build-procedure/
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain
https://github.com/riscv/riscv-gnu-toolchain/blob/master/LICENSE

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 13

• march=rv32im/mabi=ilp32

• march=rv32ima/mabi=ilp32

• march=rv32imac/mabi=ilp32

• march=rv32imaf/mabi=ilp32f

• march=rv32imafc/mabi=ilp32f

• march=rv32imc/mabi=ilp32

• march=rv32imf/mabi=ilp32f

• march=rv32imfc/mabi=ilp32f

• march=rv64i/mabi=lp64

• march=rv64ia/mabi=lp64

• march=rv64iac/mabi=lp64

• march=rv64iaf/mabi=lp64f

• march=rv64iafc/mabi=lp64f

• march=rv64iafd/mabi=lp64d

• march=rv64iafdc/mabi=lp64d

• march=rv64ic/mabi=lp64

• march=rv64if/mabi=lp64f

• march=rv64ifc/mabi=lp64f

• march=rv64ifd/mabi=lp64d

• march=rv64ifdc/mabi=lp64d

• march=rv64im/mabi=lp64

• march=rv64ima/mabi=lp64

• march=rv64imac/mabi=lp64

• march=rv64imaf/mabi=lp64f

• march=rv64imafc/mabi=lp64f

• march=rv64imafd/mabi=lp64d

• march=rv64imc/mabi=lp64

• march=rv64imf/mabi=lp64f

• march=rv64imfc/mabi=lp64f

• march=rv64imfd/mabi=lp64d

• march=rv64imfdc/mabi=lp64d

Note that this suite of multilibs supports the “natural” ABI for each architecture.

The “native” mode of the tools is RV64GC in the absence of any -march/-mabi flags

being passed to the tools.

Credit/thanks to the RISC-V, GCC, LD, GDB, binutils, newlib, and GNU MCU Eclipse

development communities especially Liviu Ionescu.

OpenOCD

Version v0.10.0+dev-00352-gaa6c7e9b-dirty (2018-10-22-10:08) + mods (see notes)

Home page http://openocd.org/

Documentation http://openocd.org/documentation/

License GNU General Public License v2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Notes OpenOCD sits between GDB and the target hardware (JTAG debug probe, target

board and CPU) to allow for program download and debug on real hardware rather

than a simulated or emulated target. When debugging, Eclipse launches GDB and then

uses GDB’s GDB/MI (Machine Interface) to communicate with the debugger.

Meanwhile GDB communicates with OpenOCD using OpenOCD’s Remote Serial

Protocol (RSP) interface. GDB debug operations are translated into JTAG operations

by OpenOCD which communicates with the target hardware/CPU using JTAG via the

relevant JTAG debug probe. OpenOCD also has knowledge of specific CPU target

http://openocd.org/
http://openocd.org/documentation/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Microsemi SoftConsole v6.0

14 Microsemi SoftConsole v6.0 Release Notes

debug frameworks (e.g. Arm CoreSight, RISC-V Debug Module) so that it can

communicate with and debug supported CPUs.

The base OpenOCD v0.10.0 is supplemented by modifications by

• Microsemi – to add support for FlashPro, SmartFusion2/SmartFusion/Fusion

envm, finding scripts relative to OpenOCD bin directory, other fixes and

enhancements

• SiFive (https://www.sifive.com/) – to add support for RISC-V debugging via

RISC-V External Debug Support v0.11 and v0.13

• GNU MCU Eclipse – other modifications and Docker based build scripts

Credit/thanks to the OpenOCD development community and to SiFive.

GNU MCU Eclipse Build Tools (Windows only)

Version v2.10-20180103

Home page https://gnu-mcu-eclipse.github.io/windows-build-tools/

Documentation https://gnu-mcu-eclipse.github.io/windows-build-tools/

License https://gnu-mcu-eclipse.github.io/licenses/tools/

make:

GNU General Public License v3

http://www.gnu.org/copyleft/gpl.html

BusyBox

GNU General Public License v2

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Notes Provides common Unix style utilities such as cp, echo, make etc. for Windows.

Credit/thanks to Liviu Ionescu and the original developers of make and BusyBox.

Antmicro Renode

Version v1.6.0

Home page https://github.com/renode

https://renode.io/

Documentation https://renode.readthedocs.io/en/latest/

License MIT License:

https://github.com/renode/renode/blob/master/LICENSE

Notes Renode can simulate physical hardware systems - including both the CPU, peripherals,

sensors, environment and wireless medium between nodes.

Credit/thanks to the Antmicro development team.

Cppcheck

Version v1.83

Home page http://cppcheck.sourceforge.net/

Documentation https://sourceforge.net/p/cppcheck/wiki/Home/

License GNU Public License v3

http://www.gnu.org/copyleft/gpl.html

Notes Cppcheck is a static analysis tool for C/C++ code. It detects the types of bugs that the

compilers normally fail to detect. The goal is no false positives.

Credit/thanks to Daniel Marjamäki.

https://www.sifive.com/
https://gnu-mcu-eclipse.github.io/windows-build-tools/
https://gnu-mcu-eclipse.github.io/windows-build-tools/
https://gnu-mcu-eclipse.github.io/licenses/tools/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://github.com/renode
https://renode.io/
https://renode.readthedocs.io/en/latest/
https://github.com/renode/renode/blob/master/LICENSE
http://cppcheck.sourceforge.net/
https://sourceforge.net/p/cppcheck/wiki/Home/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 15

Cppcheclipse

Version v1.1.0

Home page https://github.com/kwin/cppcheclipse

Documentation https://github.com/kwin/cppcheclipse/wiki

License Apache 2.0 https://github.com/kwin/cppcheclipse/blob/master/LICENSE

Notes Cppcheclipse is an Eclipse plugin which integrates cppcheck with a CDT project.

Cppcheclipse can run/configure cppcheck from the Eclipse UI.

Inno Setup (Windows only)

Version Inno Setup QuickStart Pack v5.6.1-unicode

Home page http://www.jrsoftware.org/isdl.php

Documentation http://www.jrsoftware.org/ishelp/

License Inno Setup License

http://www.jrsoftware.org/files/is/license.txt

Notes Inno Setup is used to create the SoftConsole installer for Windows.

Credit/thanks to Jordan Russell.

InstallJammer (Linux only)

Version v1.2.15

Home page https://en.wikipedia.org/wiki/InstallJammer

Documentation http://installjammer.com/docs/ (domain expired)

https://sourceforge.net/p/installjammer/wiki/Home/

License GNU General Public License v2 with exception

Notes InstallJammer is used to create the SoftConsole installer for Linux.

Credit/thanks to the InstallJammer development community.

https://github.com/kwin/cppcheclipse
https://github.com/kwin/cppcheclipse/wiki
https://github.com/kwin/cppcheclipse/blob/master/LICENSE
http://www.jrsoftware.org/isdl.php
http://www.jrsoftware.org/ishelp/
http://www.jrsoftware.org/files/is/license.txt
http://www.jrsoftware.org/files/is/license.txt
http://installjammer.com/docs/
https://sourceforge.net/p/installjammer/wiki/Home/
http://installjammer.com/docs/

Microsemi SoftConsole v6.0

16 Microsemi SoftConsole v6.0 Release Notes

Installation

Windows

Installing

Refer to the Supported Platforms section for details of which Windows versions are supported.

The installer is a 64-bit executable GUI based program named Microsemi-SoftConsole-v6.0.0.x-Windows-

Installer.exe (where x is the build number). It must be run with admin privileges. Run the installer and follow

the GUI installer wizard instructions on screen.

If the FlashPro drivers installer FPDrivers – InstallShield Wizard presents the Modify/Repair/Remove page then

select Modify or Repair and continue with the installation.

There may be a slight pause completing the SoftConsole installation after the FlashPro drivers installer has

completed – this is normal.

The Renode emulation platform can be used out of the box on Windows 8.1 and Windows 10, but on Windows 7

Microsoft ,NET v4.7.2 must be installed first:

https://www.microsoft.com/net/download/dotnet-framework-runtime

Linux

Refer to the Supported Platforms section for details of which Linux distributions and versions are supported.

Many of the commands below require root privileges using su, sudo or by logging in as root.

Installing

SoftConsole is a 64-bit application with one 32-bit component, therefore it requires a 64bit operating system and can

be installed without any prerequisite steps.

1. The installer is a 64-bit executable GUI based program named Microsemi-SoftConsole-v6.0.0.x-

Linux-x86_64-Installer (where x is the build number).

2. Download the installer and ensure that the execute permission bit is set before attempting to run the

installer. If it is not, then set it as follows from the command line (the following assumes that the installer

has been downloaded to $HOME/Downloads):

cd ~/Downloads

chmod +x Microsemi-SoftConsole-v6.0.0.x-Linux-x86_64-Installer

3. Run the installer:

./Microsemi-SoftConsole-v6.0.0.x-Linux-x86_64-Installer

4. If errors of the following form appear:

can't invoke "winfo" command: application has been destroyed

 while executing

"winfo exists $info(Wizard)"

...

then run the installer in command line mode as follows:

./Microsemi-SoftConsole-v6.0.0.x-Linux-x86_64-Installer --mode console

5. Follow the installer GUI wizard or console mode instructions on screen. If necessary, run the installer in

debug mode to diagnose problems with running it:

https://www.microsoft.com/net/download/dotnet-framework-runtime

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 17

./Microsemi-SoftConsole-v6.0.0.x-Linux-x86_64-Installer --debugconsole

6. If, after installing, the desktop shortcuts do not appear or work correctly then log out and back in again first.

7. If still there is a problem, make sure the xdg-utils package is installed and reinstall the SoftConsole.

The installer requires the xdg-utils package to create shortcuts and menus, but the supported

distributions have it already installed by default.

After installing

To use debugging with hardware targets a single 32-bit package needs to be installed. The following commands

must be run with root/sudo provileges:

Ubuntu/Debian:

dpkg --add-architecture i386 && apt-get update && apt-get install

libstdc++6:i386

CentOS/Red Hat Enterprise Linux:

yum update && yum install libstdc++.i686

openSUSE:

zypper install libstdc++6-32bit

Notes:

1. Many platforms have GCC and make packages installed by default, but it is advisable to make sure that

these are installed.

Ubuntu/Debian:

apt-get install build-essential

CentOS/Red Hat Enterprise Linux:

yum groupinstall 'Development Tools'

openSUSE:
zypper install -t pattern devel_basis

2. It is recommended that the Linux platform used to run SoftConsole has all available updates installed.

It may be possible to install and run SoftConsole on other Linux distributions or versions once the required packages

are installed. However, some earlier distributions (for example, CentOS/RHEL 5.11) may not work and are not

recommended or supported.

Further packages are needed if the Renode emulation platform will be used:

1. Visit http://www.mono-project.com/download/stable/ and follow the instructions for your repository.

2. Install mono-complete instead of mono-develop

3. Some distributions need GTK related packages.

Debian/Ubuntu:

apt-get install mono-complete gtk-sharp2 libcanberra-gtk-module

CentOS/Red Hat Enterprise Linux:

yum install mono-complete.x86_x64 gtk-sharp2.x86_64 libcanberra-gtk2.x86_64

http://www.mono-project.com/download/stable/

Microsemi SoftConsole v6.0

18 Microsemi SoftConsole v6.0 Release Notes

CentOS 6 contains an old version of the cairo 2D graphics library package and without upgrading to 1.9.4 or newer

frequent UI crashes can happen as it is responsible for 2D drawing routines. Downloading the later RPM and installing

it manually from here can solve this problem:

http://rpm.pbone.net/index.php3/stat/4/idpl/33561465/dir/centos_6/com/cairo-1.10.0-9.21.x86_64.rpm.html

CentOS 7 unstable UI can be solved by switching to GTK3.0 - see Glitches, unstable UI and cosmetic issues on

Linux section.

openSUSE:

zypper install mono-complete gtk-sharp2 libcanberra-gtk2-module

openSUSE Leap 42.3 and 15 are not supported by the Mono project and the packages supplied with the

distribution must be used. Leap 15 includes Mono v5 which is what Renode requires. But Leap 42.3 contains

the older v4.6.x with which Renode may experience warning messages, UI issues and reduced usability of

the emulator. Ubuntu 17.10 is not supported by the Mono project and has to resort to the default repository,

which includes the older Mono v4.6,x and might experience issues as well.

By default, USB devices are only accessible with root privileges. To debug using SoftConsole and FlashPro5 as a

non-root user some additional steps must be taken.

1. Copy the OpenOCD udev rules file and tell the udev substystem to load it. This rules file describes all USB

JTAG devices supported by OpenOCD to the system and makes them accessible by non-root users:

cd <SoftConsole-install-dir>/openocd/share/openocd/contrib

sudo cp 60-openocd.rules /etc/udev/rules.d

sudo udevadm trigger

In some cases it may be necessary to reboot for the changes to take effect. Some distributions do not

create the plugdev group and add users to it automatically. In that case the plugdev group must be created

manually and the user added to the plugdev group. Refer to this link for instructions on how to do this:

https://www.howtogeek.com/50787/add-a-user-to-a-group-or-second-group-on-linux/

2. If you previously used SoftConsole v4.x or 5.0 and installed the 99-openocd.rules file into

/etc/udev/rules.d then you can delete that file (as it is now redundant) and run udevadm trigger

again or reboot for the changes to take effect.

3. To check that FlashPro5 can be used without root privileges…

Connect a FlashPro5 JTAG programmer to the host machine and check that it is visible to the operating

system:

lsusb

Bus 001 Device 004: ID 1514:2008 Actel

If the FlashPro5 device (ID 1514:2008 (vendor ID 0x1514, product ID 0x2008)) does not appear then

double check that the previous instructions were carried out correctly.

4. To the JTAG end of the FlashPro5 connect a suitable board containing a Cortex-M1, SmartFusion or

SmartFusion2 Cortex-M3, or RISC-V CPU based SoC design. Power the board on. Make sure that the

board is configured for FlashPro JTAG debugging of the target CPU (depending on the board and

CPU/SoC in use some board switches/jumpers configuration may be required). Run OpenOCD from the

command line to ensure that the debug connection can be established to the target CPU/SoC.

cd <SoftConsole-install-dir>/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd -f board/microsemi-cortex-m1.cfg

http://rpm.pbone.net/index.php3/stat/4/idpl/33561465/dir/centos_6/com/cairo-1.10.0-9.21.x86_64.rpm.html
https://www.howtogeek.com/50787/add-a-user-to-a-group-or-second-group-on-linux/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 19

OR

./openocd -c "set DEVICE M2S090" -f board/microsemi-cortex-m3.cfg

OR

./openocd -f board/microsemi-riscv.cfg

For Cortex-M1 the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb50266

Info : FlashPro port used: usb50266

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x2353a1cf (mfg: 0x0e7

(GateField), part: 0x353a, ver: 0x2)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

Info : JTAG tap: FPGA.dap enabled

Info : Cortex-M1 IDCODE = 0x4ba00477

Info : FPGA.cpu: hardware has 2 breakpoints, 1 watchpoints

cortex_m auto_bp_type off

For Cortex-M3 the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

M2S090

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: M2S090.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

Info : JTAG tap: M2S090.tap disabled

Info : JTAG tap: M2S090.dap enabled

Info : Cortex-M3 IDCODE = 0x4ba00477

Info : M2S090.cpu: hardware has 6 breakpoints, 4 watchpoints

For Mi-V RISC-V the output should be similar to the following:

Open On-Chip Debugger

Licensed under GNU GPL v2

http://openocd.org/doc/doxygen/bugs.html
http://openocd.org/doc/doxygen/bugs.html

Microsemi SoftConsole v6.0

20 Microsemi SoftConsole v6.0 Release Notes

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : only one transport option; autoselect 'jtag'

adapter speed: 6000 kHz

microsemi_flashpro tunnel_jtag_via_ujtag off

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: S201Z7LB20, E200X3ID7

Info : FlashPro port used: S201Z7LB20

Info : clock speed 6000 kHz

Info : JTAG tap: FPGA.tap tap/device found: 0x1f8071cf (mfg: 0x0e7

(GateField), part: 0xf807, ver: 0x1)

microsemi_flashpro tunnel_jtag_via_ujtag on

Info : JTAG tap: FPGA.tap disabled

Info : JTAG tap: FPGA.dap enabled

Info : RISC-V IDCODE = 0x10e31913

Info : Examined RISCV core; XLEN=32, misa=0x40902223

halted at 0x80000b60 due to debug interrupt

5. Output of the following form or other errors (excluding any documented in the known issues section)

indicate a problem in which case double check that all the previous steps have been carried out correctly

and that the target hardware/board is correctly configured for debugging of the target CPU/SoC.

Info: FlashPro ports available: none

Info: FlashPro port used: usb

Error: InitializeProgrammer(usb) failed: Can not connect to the programmer

Troubleshooting

After performing the steps above SoftConsole should run when launched from the system menu or desktop

shortcut. If it does not then the most likely cause is some other missing package/library or configuration. In this case

run the following commands and check for any errors that arise. If necessary install any other packages that are

missing:

cd <SoftConsole-install-dir>/eclipse

./eclipse

cd <SoftConsole-install-dir>/openocd/bin

export LD_LIBRARY_PATH=`pwd`

./openocd -v

cd <SoftConsole-install-dir>/fpServer/bin

./fpServer

cd <SoftConsole-install-dir>/arm-none-eabi-gcc/bin

./arm-none-eabi-gdb --version

cd <SoftConsole-install-dir>/riscv-unknown-elf-gcc/bin

./riscv64-unknown-elf-gdb --version

http://openocd.org/doc/doxygen/bugs.html

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 21

Related Microsemi Tools/Resources

Libero SoC/Firmware Catalog

Use Microsemi Libero SoC v11.9 or later to create hardware designs and to export firmware drivers and example

projects.

For PolarFire FPGAs use Microsemi Libero SoC PolarFire v2.3 or later.

The Microsemi Firmware Catalog can be used to generate firmware drivers and example projects for use in

SoftConsole v6.0.

Firmware drivers

Hardware Abstraction Layers

The following firmware cores (or later versions if available) must be used and can be generated from Libero SoC or

from the Firmware Catalog.

• PolarFire SoC PSE_HAL v1.0.10

• RISC-V Hardware Abstraction Layer (HAL) 2.2.103

• SmartFusion2 CMSIS Hardware Abstraction Layer 2.3.105

• SmartFusion CMSIS-PAL 2.4.102

• Cortex-M1 CMSIS Hardware Abstraction Layer 2.0.101

• (DirectCore) Hardware Abstraction Layer 2.3.102

Warning:

• If earlier versions of these firmware cores are used then there will be problems compiling, linking, running

and/or debugging the software.

Peripheral firmware drivers

Use Libero SoC or the Firmware Catalog to generate the latest available peripheral drivers for the target system.

Matching firmware to the target hardware

The firmware used in a SoftConsole project must match the target hardware. For SmartFusion and SmartFusion2

projects Libero SoC generates specific firmware files that must be used for the SoftConsole project to match and be

compatible with the target hardware.

The most convenient way to avoid mismatch problems is to ensure that Libero SoC is configured to use the

appropriate firmware repositories and the LIbero project is configured to use the latest versions of all firmware

drivers (including CMSIS/HAL). Then export the firmware from Libero and import/copy the generated files into the

SoftConsole project.

In some cases, the firmware project will define target specific details such as clock speeds, UART baud divisors etc.

that must match the target hardware for proper functionality.

Refer to the Libero SoC and Firmware Catalog documentation for more information about the firmware flows

supported by these tools.

Warning:

• Before importing/copying Libero SoC or Firmware Catalog generated firmware files into a SoftConsole

project it is advisable to manually delete all CMSIS, hal, drivers, riscv_hal, pse_hal and

drivers_config folders from the SoftConsole project leaving only the project specific custom source

files.

• For SmartFusion and SmartFusion2 projects the drivers_config folder must be generated/exported

from Libero SoC and copied/imported into the SoftConsole project every time that the Libero project is

modified to ensure that the SoftConsole project matches the target hardware.

• SoftConsole v3.4 workspaces or projects generated by Libero SoC or the Firmware Catalog are not

compatible with SoftConsole v5.1 or later and should not be used.

Microsemi SoftConsole v6.0

22 Microsemi SoftConsole v6.0 Release Notes

• SoftConsole v5.1 RISC-V projects are not compatible with SoftConsole v5.2 or later and must be recreated

using the same source files and equivalent project settings for use in SoftConsole v5.2 or later.

FlashPro JTAG programmer

SoftConsole includes OpenOCD which uses a FlashPro JTAG programmer for debug access to the target

platform/CPU.

On Windows the FlashPro3/4/5 programmers are supported, and the relevant drivers must be installed. On Linux,

only the FlashPro5 programmer is supported and the post-install configuration steps must be carried out to allow

access to the FlashPro5 programmer by non-root users.

SoftConsole v3.4

SoftConsole v3.4 workspaces, projects and debug launch configurations are not compatible with SoftConsole v5.1

or later and should not be used. They will not open or operate correctly. Existing SoftConsole v3.4 workspaces,

projects and debug launch configurations must be created anew in SoftConsole v6.0. However, this is not an

onerous task and is explained elsewhere in the release notes.

Similarly, SoftConsole v6.0 workspaces, projects and debug launch configurations are not compatible with
SoftConsole v3.4.

SoftConsole v4.x
SoftConsole v4.x workspaces, projects and debug launches will work in SoftConsole v5.x or later but it is advisable
to check all configuration settings to ensure that they are appropriate.

SoftConsole v5.1 RISC-V projects
SoftConsole v5.1 RISC-V projects and debug launch configurations are not compatible with SoftConsole v5.2 or
later and must be recreated. This is because SoftConsole v5.2or later uses different Eclipse plugins for RISC-V
support than SoftConsole v5.1.

Microsemi github
The Microsemi github (https://github.com/RISCV-on-Microsemi-FPGA) is a useful reference for
example/demo/reference RISC-V Libero and SoftConsole projects and for other up to date information about
Microsemi Mi-V ecosystem resources.

https://github.com/RISCV-on-Microsemi-FPGA

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 23

Workspaces

Example workspace

SoftConsole includes an example workspace which is opened by default when you run SoftConsole. This example

workspace is located at:

<SoftConsole-install-dir>/extras/workspace.examples

This workspace contains several simple example projects and debug launch configurations that are ready to use

once the relevant projects have been updated to match the target hardware – for example by copying the Libero

SoC generated drivers_config folder into the project where applicable. It is also advisable to update these

example projects with the relevant CMSIS/HAL and firmware drivers generated from the Firmware Catalog.

It is advisable to make a copy of this example workspace and use the copy for experimentation. Note that the

SoftConsole uninstaller will delete some or all of this workspace in which case any changes made may be lost.

Refer to the README.txt for each example project for more information.

Example projects

• pse-blinky: simple GPIO LED and UART example program targeting the Renode PolarFire SoC emulation

platform. The associated tool and debug launch configurations facilitate debugging this example on the

emulation platform. Refer to the README for more information.

• fpga-cortex-m1-blinky: LED blinker program for a system containing the encrypted HDL soft core

CoreCortexM1 (Microsemi:DirectCore:CoreCortexM1:<version>) in an RTG4 or PolarFire FPGA device.

• m1fpga-cortex-m1-blinky: LED blinker program for a system containing the pre placed and routed CortexM1

(Microsemi:DirectCore:CortexM1Top:<version>) in an M1 variant IGLOO, ProASIC3, ProASIC3L or Fusion

FPGA device.

• miv-rv32im-interrupt-blinky: interrupt driven LED blinker and UART echo program for a system containing the

Mi-V RISC-V soft processor that supports at least the M extension.

• miv-rv32im-systick-blinky: timer driven LED blinker and UART echo program for a system containing the Mi-

V RISC-V soft processor that supports at least the M extension.

• miv-rv32iamf-mandelbrot-uart: Displaying Mandelbrot fractals with ASCII art through UART while using the

RISC-V F extension

• miv-rv32iamf-raytracer-uart-cpp: ASCII art raytraced rendering of a sphere while using C++ and RISC-V F

extension. Output is displayed over UART, extra attention needs to be paid to the readme and get the UART

clocked correctly. The terminal window most likely must be resized to fit the content without any artifacts.

• smartfusion-cortex-m3-blinky: LED blinker program for a SmartFusion Cortex-M3 system.

• smartfusion2-cortex-m3-blinky: LED blinker program for a SmartFusion2 Cortex-M3 system.

• All the Mi-V projects can be run and debugged without target hardware on the Renode emulation platform.

• The projects have enabled cppcheck on each build.

Example debug launch configurations

Debug launch configurations for each of the above projects. Remember to ensure that the OpenOCD command

lines parameters used in the debug launch configuration (Debugger tab > Other options) matches the target

hardware/board used. Also, remember to configure the target hardware for FlashPro debugging (e.g. JTAG_SEL

tied high and, if applicable, FlashPro/USB rather than RVI debug access enabled).

Be aware of the differences in debug launch configuration settings between Cortex-M1, SmartFusion Cortex-M3,

SmartFusion2 Cortex-M3 and Mi-V RISC-V targets.

When creating new debug launch configurations for other systems use the example debug launch configurations as

a guide or else copy the one that most closely matches the target system and reconfigure it as needed.

Microsemi SoftConsole v6.0

24 Microsemi SoftConsole v6.0 Release Notes

Empty workspace

SoftConsole includes an empty workspace which has the new integrated “develop and debug” perspective and

identical settings to the example workspace. This workspace is located at:

../extras/workspace.empty

Creating a new workspace

To create a new workspace it is recommended to make a copy the workspace.empty example workspace and

open that. This is because the workspace.empty workspace has some useful settings – including an integrated

“develop and debug” perspective – preconfigured to make development and debug easier than with a completely

new/blank workspace.

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 25

Projects

Creating a new project

1. Select File > New > C Project or C++ Project depending on the type of project required.

2. In the C/C++ Project page of the wizard enter the Project name, select Project type = Executable > Empty

Project (or Static Library > Empty Project for a library project)

3. Select the appropriate toolchain.

For a Cortex-M project select Toolchains = Arm Cross GCC.

For a RISC-V project select Toolchains = RISC-V Cross GCC.

4. Click Next > to go to the next wizard page, Select Configurations.

Figure 1. New Project

Microsemi SoftConsole v6.0

26 Microsemi SoftConsole v6.0 Release Notes

5. The Select Configurations page of the wizard allows the configurations or build targets that the project will

support to be configured. By default, two configurations are created – Debug and Release. Should other

configurations be required these can be created using the Advanced settings… button which launches the

project Properties dialog in which additional configurations can be specified or properties for any or all

configurations can be changed. Normally the default Debug and Release configurations are sufficient. When

finished click the Next > button to go to the next wizard page, GNU Arm Cross Toolchain or GNU RISC-V

Cross Toolchain.

6. The GNU Arm Cross Toolchain or GNU RISC-V Cross Toolchain wizard page specifies the name and path

of the toolchain to be used to build the project. These should be correct by default but double check that the

values are as follows:

Cortex-M project:

Toolchain name = GNU Tools for Arm Embedded Processors (arm-none-eabi-gcc)

Toolchain path = ${eclipse_home}/../arm-none-eabi-gcc/bin

RISC-V project:

Toolchain name = RISC-V GCC/Newlib (riscv64-unknown-elf-gcc)

Toolchain path = ${eclipse_home}/../riscv-unknown-elf-gcc/bin

7. Click Finish > to complete the creation of the new project.

Project Settings

Most of the project settings default to usable values. However, some project settings must be modified manually

depending on the target device/CPU. Use the example projects as a guide to creating new project while bearing in

mind that these are just simple functional examples and a real application may benefit from the use of some of the

many other configuration options and command line options that the underlying GCC tools support.

To modify the project settings right click on the project in the Project Explorer and select Properties from the context

menu. Then navigate to C/C++ Build > Settings.

Select Configuration = [All configurations] to configure settings applicable to all build targets (by default Debug and

Release) or else select a specific configuration (e.g. Configuration = Debug or Configuration = Release) to configure

settings applicable only to that build target.

Except where noted the settings below can be configured for all [All Configurations].

All CPU targets

Target Processor

The characteristics of the target CPU are configured in the project’s Properties > C/C++ Build > Settings > Tool

Settings > Target Processor section.

For Cortex-M projects these will default to Arm Family = cortex-m3 which is correct for SmartFusion2 and

SmartFusion2. For Cortex-M1 projects this should be changed to cortex-m1.

For RISC-V projects the settings must be configured to match the target CPU characteristics so that the underlying

compiler tools are passed the correct -march=<arch> and -mabi=<abi> options, code is generated in line with

the supported and used extensions and the appropriate multilibs are linked. Note that the RISC-V toolchain defaults

to targeting rv64gc which may not be appropriate for all RISC-V target designs.

The main options of relevance here are:

Architecture: specifies the base architecture – e.g. RV32* for Mi-V 32-bit soft cores or RV64* for PolarFire SoC 64-

bit multi-processor

Multiply extension (RVM): check if the target supports the M (hardware multiply/divide) extension

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 27

Atomic extension (RVA): check if the target supports the A extension

Floating point: specifies what hardware floating point extension the target supports

Compressed extension (RVC): check if the target supports the C extension

Integer ABI: specifies the integer ABI to be used – usually set to LP32 (-mabi=ilp32) for Mi-V or LP64 (-mabi=lp64)

for PolarFire SoC

Floating point ABI: specifies the floating-point ABI to be used

Code model: specifies the code model to be used

Align: specifies the alignment policy – should be set to Strict (-mstrict-align) to avoid unaligned memory access

exceptions when using the Microsemi (Mi-V) RISC-V Hardware Abstraction Layer (HAL) or PolarFire SoC

PSE_HAL and -Os to optimize the program for size

Linker Script

It is essential that the appropriate linker script is configured for the project. This will often be one of the example

linker scripts bundled with the relevant CMSIS/HAL firmware core which has been generated and imported/copied

into the project.

Cortex-M project:

select Tool Settings > Cross Arm GNU C/C++ Linker > General

RISC-V project:

select Tool Settings > GNU RISC-V Cross C/C++ Linker > General

Click the Script files (-T) > Add... button and enter the linker script name into the Add file path dialog – e.g.:

• PolarFire SoC

Please refer to the PolarFire SoC PSE_HAL documentation and PolarFire SoC/PSE example project(s)

bundled with SoftConsole for guidance on how to configure this option.

• Mi-V RISC-V

"${workspace_loc:/${ProjName}/riscv_hal/microsemi-riscv-ram.ld}"

• SmartFusion2 Cortex-M3:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-microsemi-

smartfusion2-esram.ld}"

• SmartFusion Cortex-M3:

"${workspace_loc:/${ProjName}/CMSIS/startup_gcc/debug-in-actel-smartfusion-

envm.ld}"

• Cortex-M1:

"${workspace_loc:/${ProjName}/blinky_linker_config.ld}"

Notes:

• Refer to the relevant CMSIS/HAL documentation for more information about what example linker scripts are

available and the circumstances in which they are used.

• CMSIS/HAL bundled linker scripts are just examples that can usually be used as-is in simple cases but

should generally be adapted as required to match the requirements of a specific target/application.

• In some cases, different configurations/build targets will use different linker scripts.

Newlib-Nano

newlib is the standard library bundled with SoftConsole and it is optimized for use in resource/memory constrained

bare metal embedded firmware environments. newlib also comes with a “nano” version which is even smaller at the

cost of omitting some functionality which may be rarely used in such environments (e.g. the full range of *printf

Microsemi SoftConsole v6.0

28 Microsemi SoftConsole v6.0 Release Notes

formatting options etc.). In many cases it makes sense to use newlib-nano and only switch to the full blown newlib if

necessary because using newlib-nano can significantly reduce the compiled and linked programs which use

standard library features.

To use newlib-nano check the following option:

Cortex-M project:

Tool Settings > Cross Arm GNU C/C++ Linker > Miscellaneous > Use newlib-nano (--specs=nano.specs)

RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Linker > Miscellaneous > Use newlib-nano (--specs=nano.specs)

Create Extended Listing

An extended listing file (e.g. Debug/<project-name>.lst) is often useful for understanding the structure and

layout of the linked executable.

To enable generation of this file, check the Toolchains > Create extended listing checkbox.

Preprocessor Defines and Includes

If any preprocessor defines/symbols or includes are needed, then they can be specified under:

Cortex-M project:

Tool Settings > Cross Arm GNU C/C++ Compiler > Preprocessor > Defined symbols (-D)

Tool Settings > Cross Arm GNU C/C++ Compiler > Include paths (-I) or Include files (-include)

RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Preprocessor > Defined symbols (-D)

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Include paths (-I) or Include files (-include)

Depending on the target CPU and CMSIS/HAL used additional CMSIS/HAL related include paths may be required.

Refer to the relevant CMSIS/HAL documentation for more information.

Optimization Options

Most optimization options can be set at the project top level under Tool Settings > Optimization.

Other optimization settings, including Language standard (which defaults to GNU ISO C11 (-std=gnu11) or GNU

ISO 2011 C++ (-std=gnu++11)), can be specified under

Cortex-M project:

Tool Settings > Cross Arm GNU C/C++ Compiler > Optimization

RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Compiler > Optimization

“Fine grained” linking using -fdata-sections -ffunction-sections and -gc-sections is enabled by

default here and under

Cortex-M project:

Tool Settings > Cross Arm GNU C/C++ Linker > General > Remove unused sections (-Xlinker --gc-sections).

RISC-V project:

Tool Settings > GNU RISC-V Cross C/C++ Linker > General > Remove unused sections (-Xlinker --gc-sections).

Library Dependencies

Where an application project depends on a static library project this dependency can be configured in the

application project’s properties so that building the application will ensure that the static library project is also built

and up to date if necessary.

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 29

Note: for this to work the same configuration/build target (e.g. Debug or Release) must be selected for both

projects: e.g. right click on each project and from the context menu select Build Configurations > Set Active >

Debug or Release or any other configuration/build target.

To configure such an application/library project dependency right click on the application project in Project Explorer

and from the context menu select Properties then Project References and check the library project(s) on which the

application project depends.

Print Size

By default, the Print Size build step is configured to output size information in “Berkeley” format. The alternative,

“SysV” format is often more informative and useful. To change this option right click on the project in Project

Explorer and from the context menu select

Cortex-M project:

Properties > C/C++ Build > Settings > Tool Settings > Cross Arm GNU Print Size > General

RISC-V project:

Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross Print Size > General

and select Size format = SysV instead of Berkeley.

Other Options

There are many other options that can be set if needed. Explore the SoftConsole project properties dialog and refer

to the relevant GNU/GCC tool documentation for more information on these.

Specifying Options for All Build Configurations

Some project settings can be set once for all configurations/build targets (e.g. Debug and Release). To do this

select Configuration = [All Configurations] before specifying the relevant options and applying/saving them.

RISC-V targets

Do not use standard start files (-nostartfiles)

For RISC-V targets this option must be checked when using the Microsemi Mi-V RISC-V HAL (Hardware

Abstraction Layer) to avoid link errors:

Project > Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker > Do not use

standard start files (-nostartfiles)

Use strict alignment

Generally, and particularly when using the Microsemi RISC-V Hardware Abstraction Layer (HAL) strict alignment

should be used to avoid unaligned memory access exceptions when the program is optimized for size using -Os.

Project > Properties > C/C++ Build > Settings > Tool Settings > Align = Strict (-mstrict-align)

Cortex-M targets

CMSIS

Cortex-M projects require an additional setting for the preprocessor to find the toolchain CMSIS header files

otherwise compilation will fail to find certain CMSIS header files.

Under Tool Settings > Cross Arm GNU C/C++ Compiler > Miscellaneous set Other compiler flags = --

specs=cmsis.specs.

From SoftConsole v5.3 onwards the softconsole.cmd (Windows) or softconsole.sh (Linux) script used to

run SoftConsole configures the SC_INSTALL_DIR environment variable which is then referenced in the

<SoftConsole-install-dir>/arm-none-eabi-gcc/arm-none-eabi/lib/cmsis.specs file. If

SoftConsole is not run from the script (usually via a menu/desktop shortcut) or the Arm GCC tools are run from the

command line or a Makefile then the SC_INSTALL_DIR environment variable will need to be configured

appropriately otherwise the compiler will not find the toolchain CMSIS header files.

Microsemi SoftConsole v6.0

30 Microsemi SoftConsole v6.0 Release Notes

SmartFusion2 Cortex-M3 targets

Production-Smartfusion2-Relocate-to-External-Ram.ld

For a SmartFusion2 Cortex-M3 program linked using the SmartFusion2 CMSIS Hardware Abstraction Layer

example linker script production-smartfusion2-relocate-to-external-ram.ld some additional settings

must be specified.

When this linker script is used the hex (Intel HEX or Motorola S-record) file generated by SoftConsole is normally

used as the input file to a Libero SoC eNVM Data Storage client which is used to program the production firmware

into eNVM.

If the following project settings are not configured then the eNVM Data Storage client will reject the hex file as

invalid.

Under Tool Settings > Cross Arm GNU Create Flash Image > General > Other flags enter --change-section-

lma *-0x60000000.

This has the effect of “normalising” addresses in the Cortex-M3 memory map view of eNVM (based at 0x60000000)

to the more restricted view of memory of the eNVM Data Storage client which only sees eNVM based at

0x00000000.

For more on this and other objcopy options see here: https://sourceware.org/binutils/docs/binutils/objcopy.html.

Adding source files to a project

Once the project has been created the required source files should be added.

In most cases the best way to do this is to use Libero SoC to select the relevant firmware cores (including

CMSIS/HAL, SmartFusion/SmartFusion2 MSS peripheral drivers, DirectCore drivers etc.), generate these, export

the firmware files and then import or copy them into the SoftConsole project.

In fact, for SmartFusion and SmartFusion2 is it essential that at least the drivers_config folder is generated

by/exported from Libero SoC and imported/copied into the SoftConsole project every time that the hardware project

is changed. This is because the files in this folder contain information about the target platform that is essential to

the correct functioning on firmware on that hardware platform.

It is also possible to generate specific firmware cores/drivers from the Firmware Catalog and then import/copy them

into the SoftConsole project.

Refer to the Libero SoC and Firmware Catalog tools and documentation for more information on

generating/exporting firmware cores from these tools.

Warning: remember that any SoftConsole v3.4 workspaces or projects or SoftConsole v5.1 RISC-V projects

generated by Libero SoC or the Firmware Catalog cannot be used with SoftConsole v5.2 or later.

When importing/copying firmware files generated by/exported from Libero SoC or the Firmware Catalog it is safest

to first manually delete all relevant folders from the SoftConsole project (e.g. CMSIS, hal, pse_hal, drivers,

drivers_config) and retain only the custom source files created for the project itself.

Firmware folders/files can be copied by dragging and dropping from a file manager on Windows or Linux or by using

the SoftConsole import facility. Right click on the project in the Project Explorer and from the context menu select

Import... then select General > File System and click Next >. Browse to and select the directory from which the

firmware files are to be imported (e.g. the firmware directory below a Libero SoC project directory), select the

required folders/files and click Finish to import the files.

Building a project

Once a project has been correctly configured and populated with the required firmware it can be built.

https://sourceware.org/binutils/docs/binutils/objcopy.html

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 31

Select/click on the project in the Project Explorer and from the application menu select Project > Build

Configurations > Set Active and select the required configuration/build target – usually one of Debug or Release.

With the project still selected in the Project Explorer select Project > Build Project. The results of the build process

can be viewed in the Console view and the Problems view if there are any problems (e.g. errors or warnings).

Microsemi SoftConsole v6.0

32 Microsemi SoftConsole v6.0 Release Notes

Debugging

Debug launch configurations

To debug a program a debug launch configuration must be created. Most of the default settings for a debug launch

configuration can be left as they are but a few needs to be manually configured. Use the example projects and

debug launch configurations as a guide to creating new debug launch configurations.

1. Select the project in the Project Explorer and from the SoftConsole application menu select Run > Debug

Configurations...

2. In the Debug Configurations dialog select GDB OpenOCD Debugging and click on the New launch

configuration button which will create a new debug launch configuration for the previously selected project.

3. For PolarFire SoC Renode emulation please refer to the README provided with the PolarFire SoC/PSE

example project(s) in the example workspace.

4. On the Main tab ensure that the C/C++ Application field contains the correct executable name. Note that

using forward slashes in paths here aids portability of projects and debug launch configurations between

Windows and Linux:

Figure 2. Debug launch configuration Main tab

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 33

5. On the Debugger tab, it is critical that the Config options field contains the correct command line

options/script to be passed to OpenOCD. The example settings here work for SmartFusion or SmartFusion2

targets where the program uses only eSRAM and/or eNVM – if the DEVICE setting is modified to match the

actual target device (SmartFusion A2FXXX or SmartFusion2 M2SXXX where XXX is the three-digit device

size designator). Further details about these options are provided elsewhere in this documentation.

--command "set DEVICE ..." is mandatory for SmartFusion and SmartFusion2 Cortex-M3 targets but

is optional for Cortex-M1 and Mi-V RISC-V targets.

For a Cortex-M1 target the Config options should be:

--file board/microsemi-cortex-m1.cfg

Figure 3. Debug Configuration Debugger tab for Cortex-M3

6. For a RISC-V target the Debugger tab settings must be configured as follows:

Microsemi SoftConsole v6.0

34 Microsemi SoftConsole v6.0 Release Notes

OpenOCD Setup > Config options:

--file board/microsemi-riscv.cfg

or when targeting the HiFive Unleashed Platform using the integrated FTDI JTAG debug probe (rather than

FlashPro):

--file board/microsemi-sifive-hifive-unleashed.cfg

GDB Client Setup > Commands:

set mem inaccessible-by-default off

set $target_riscv = 1

When debugging a program on the Renode RISC-V 32-bit emulation model the bit-size of the target must be

specified as follows:

set arch riscv:rv32

This is not needed where the target is actual hardware or when debugging a program on the Renode RISC-

V 64-bit PolarFire SoC emulation model.

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 35

Figure 4. Debug Configuration Debugger tab for RISC-V

7. On the Startup tab the default settings should be configured as shown below and these are the default

settings so do not change them unless necessary and you understand what effect these changes will have.

Microsemi SoftConsole v6.0

36 Microsemi SoftConsole v6.0 Release Notes

Initialization Commands > Initial Reset must be checked and Type set to init. Enable ARM semihosting can

be enabled whether semi-hosting will be used or not.

Load symbols/executable should be configured as shown. Runtime Options > Debug in RAM should always

be disabled – even when targeting embedded or external RAM. Run/Restart Commands > Pre-run/Restart

reset must be disabled. Set breakpoint at main and Continue should normally be checked although can be

modified if, for example, an initial breakpoint somewhere other than main() is required or startup code

executed before main() needs to be debugged.

For PolarFire SoC Renode emulation please refer to the README provided with the PolarFire SoC/PSE

example project(s) in the example workspace.

Figure 5. Debug launch configuration Startup tab

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 37

8. On the Common tab the Save as > Local file option is selected by default. This causes the debug launch

configuration to be saved into the workspace. However, if the Shared file option is selected (the default

name can be accepted) then the debug launch configuration instead gets saved into the project which aids

portability as it means that the debug launch configuration moves in tandem with the project (e.g. when

copying or exporting/importing the project).

`

Figure 6. Debug launch configuration Common tab

OpenOCD command line options and scripts

As explained above, it is important that the correct command line options/scripts are passed to OpenOCD via the

Debugger > Config options setting in the debug launch configuration. This section explains these settings.

Note:

• All --command ... settings mentioned below must be placed before the --file ... setting.

• Commands can be specified using --command ... or -c

• Multiple commands can be specified individually

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

or together separated by semi-colons

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

Microsemi SoftConsole v6.0

38 Microsemi SoftConsole v6.0 Release Notes

SmartFusion/SmartFusion2 DEVICE

For SmartFusion and SmartFusion2 the target device must be specified using --command "set DEVICE

<devicename>".

For SmartFusion the target device must be set using --command "set DEVICE A2FXXX" where XXX is one of

060, 200 or 500.

For SmartFusion2 the target device must be set using --command "set DEVICE M2SXXX" where XXX is one of

005, 010, 025, 050, 060, 090 or 150.

Board scripts

The board script describes the relevant aspects of the target hardware to OpenOCD. A number of example scripts

are provided and are stored in <SoftConsole-install-dir>/openocd/share/openocd/scripts. The

following list enumerates these and outlines the context in which each of them can be used. Remember that the

target device must also be correctly specified in the debug launch configuration.

• SmartFusion/SmartFusion2 Cortex-M3

o board/microsemi-cortex-m3.cfg: for SmartFusion or SmartFusion2 programs that target

only eSRAM or eNVM.

• SmartFusion2 Cortex-M3 only

o board/microsemi-smartfusion2-eval-or-starter-kit-ddr.cfg: an example

script supporting a specific SmartFusion2 MDDR configuration on the SmartFusion2 Evaluation Kit,

Security Evaluation Kit or either of the Starter Kit boards. For use when downloading to/debugging

from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr.cfg: an example script supporting a

specific SmartFusion2 MDDR configuration on the SmartFusion2 Development Kit or Advanced

Development Kit boards. For use when downloading to/debugging from MDDR.

o board/microsemi-smartfusion2-dev-kit-ddr-ecc.cfg: an example script

supporting a specific SmartFusion2 MDDR configuration with ECC enabled on the SmartFusion2

Development Kit or Advanced Development Kit boards. For use when downloading to/debugging

from MDDR with ECC enabled.

• Cortex-M1

o board/microsemi-cortex-m1.cfg: for targeting Cortex-M1. Explained in the next section.

• RISC-V

o board/microsemi-riscv.cfg: for targeting RISC-V.

o board/microsemi-sifive-hifive-unleashed.cfg: for targeting the HiFive Unleashed

Platform

Note: For more information about SmartFusion2 MDDR external RAM support see elsewhere in this document

and in the <SoftConsole-install-dir>/extras/smartfusion2-mddr folder in the SoftConsole

installation.

The following outlines the normal correlation between the linker script used to link the program and the OpenOCD

board script used for debugging:

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 39

Mi-V RISC-V HAL and PolarFire SoC PSE_HAL

Linker script OpenOCD board script

Refer to the Mi-V RISC-V HAL, the PolarFire

SoC PSE_HAL and the various RISC-V example

projects provided for details of the

example linker scripts provided.

board/microsemi-riscv.cfg

board/Microsemi-sifive-hifive-unleashed.cfg

SmartFusion2 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

debug-in-microsemi-smartfusion2-esram.ld

debug-in-microsemi-smartfusion2-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-microsemi-smartfusion2-external-

ram.ld

board/microsemi-smartfusion2-eval-or-

starter-kit-ddr.cfg

board/microsemi-smartfusion2-dev-kit-

ddr.cfg

board/microsemi-smartfusion2-dev-kit-ddr-

ecc.cfg

production-smartfusion2-execute-in-place.ld

production-smartfusion2-relocate-to-

external-ram.ld

Not applicable – not for interactive debugging

SmartFusion CMSIS-PAL

Linker script OpenOCD board script

debug-in-actel-smartfusion-esram.ld

debug-in-actel-smartfusion-envm.ld

board/microsemi-cortex-m3.cfg

debug-in-external-ram.ld Not applicable – not yet supported

production-execute-in-place.ld

production-relocate-executable.ld

Not applicable – production flow, not for interactive

debugging

Hardware Abstraction Layer (Cortex-M1/DirectCore)

Linker script OpenOCD board script

ram-debug.ld board/microsemi-cortex-m1.cfg

boot-from-intel-flash.ld

boot-from-nvm.ld

Not applicable – production flow, not for interactive

debugging

run-from-nvm.ld

run-from-intel-flash.ld

Not applicable – not yet supported

Cortex-M1 CMSIS Hardware Abstraction Layer

Linker script OpenOCD board script

Refer to the Cortex-M1 CMSIS HAL documentation board/microsemi-cortex-m1.cfg

RISC-V Hardware Abstraction Layer (HAL)

Linker script OpenOCD board script

Refer to the Mi-V RISC-V HAL documentation board/microsemi-riscv.cfg

Cortex-M1 Board Script

Use the board/microsemi-cortex-m1.cfg board script when targeting a Cortex-M1 based system on chip.

Unlike SmartFusion/SmartFusion2 when targeting Cortex-M1 --command "set DEVICE ..." is not required.

If the Cortex-M1 system includes flash memory, then the board/microsemi-cortex-m1.cfg board script

needs to be modified (or copied and modified) to add this.

Microsemi SoftConsole v6.0

40 Microsemi SoftConsole v6.0 Release Notes

The Cortex-M1 can be configured to allow debugging using FlashPro “indirectly” via the FPGA’s UJTAG block or

“directly” via general I/O pins carrying the JTAG signals. The board script assumes the former (UJTAG) by default.

To override this and select “direct” debugging add the following:

--command "set FPGA_TAP N"

FlashPro JTAG speed

The SoftConsole OpenOCD scripts use a default JTAG clock speed of 6MHz. If this needs to be overridden, then it

can be specified (in kHz) alongside the target device – e.g. to use 1MHz (1000kHz):

--command "set DEVICE M2S090; set JTAG_KHZ 1000"

or

--command "set DEVICE M2S090" --command "set JTAG_KHZ 1000"

Warning: do not change the JTAG clock speed unless absolutely necessary and only if you understand the

implications and possible pitfalls of doing so.

Other OpenOCD options

In some cases, where OpenOCD debugging does not work as expected it may be useful to add the --debug n

(where n is a debug level between 0 and 3) or simply -d option to the debug launch configuration.

See also the OpenOCD User’s Guide for other OpenOCD options and commands:

http://openocd.org/documentation/.

SoftConsole OpenOCD script parameters

Several parameters can be used to configure/control how the SoftConsole OpenOCD scripts operate.

Refer to the comments in the example scripts for more details.

• <SoftConsole-install-dir>/openocd/share/openocd/scripts/interface/microsemi-

flashpro.cfg

• <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m1.cfg

• <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

cortex-m3.cfg

• <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

riscv.cfg

• <SoftConsole-install-dir>/openocd/share/openocd/scripts/target/microsemi-

sifive-hifive-unleashed.cfg

Board configuration for FlashPro debugging

Debugging a Cortex-M3 target with the FlashPro JTAG programmer requires that JTAG_SEL is tied high and,

where applicable, FlashPro/USB rather than RVI debug access is enabled.

If JTAG_SEL is not configured correctly, then debugging will not work.

Using a debug session

Launching a debug session

Select the project in the Project Explorer, right click on it and from the context menu select Debug As > Debug

Configurations, select the relevant debug launch configuration and click Debug.

Memory Monitor

The default Memory Monitor view rendering is Hex which may render values in big-endian rather than little-endian

form. If this is the case, then switch to Traditional or Hex Integer rendering which renders values properly as little-

endian.

http://openocd.org/documentation/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 41

Console view

During a debug session SoftConsole can display several different consoles in the Console view. By default, the

OpenOCD console is displayed showing OpenOCD output:

Figure 7. Debug session – OpenOCD console view

The highlighted Display Selected Console toolbar button allows different consoles to be selected:

Figure 8. Debug session – selecting a specific console view

The openocd and GDB consoles are usually the ones of most interest. If semihosting is used the I/O is done via the

GDB console. The GDB console must be the active console to manually enter GDB commands.

Built-in serial terminal view

SoftConsole includes a built-in serial terminal view which obviates the need to run a separate serial terminal

emulator when connecting to a target board using a UART. The plug-ins used to implement this view are pre-

installed. Refer to this blog post for information on how to show and configure the terminal view (but skip the parts

dealing with plug-in installation as this is already done):

https://mcuoneclipse.com/2017/10/07/using-serial-terminal-and-com-support-in-eclipse-oxygen-and-neon/

In order for the serial terminal to list the relevant serial/COM ports, especially for USB serial ports, the relevant OS

drivers may need to be installed. Refer to the relevant hardware/board documentation for more details.

Debug using a specific FlashPro programmer

By default, SoftConsole will debug using the first FlashPro5 programmer that it detects. If there is no FlashPro5

connected, then it will use the first FlashPro3/4 that it detects.

When there is only one FlashPro programmer connected and not used by any other application then SoftConsole

will automatically use that. In some cases, more than one FlashPro programmer will be connected in which case

SoftConsole needs to be told which one to use for debugging.

https://mcuoneclipse.com/2017/10/07/using-serial-terminal-and-com-support-in-eclipse-oxygen-and-neon/

Microsemi SoftConsole v6.0

42 Microsemi SoftConsole v6.0 Release Notes

A specific example of this is when using the M2S090 Security Evaluation Kit board. On this board J5 is the FlashPro

connector normally used for FlashPro programming of the FPGA and SoftConsole debugging. However, J18 is also

an on-board SPI only FlashPro5 programmer which can be used for programming the FPGA but cannot be used for

SoftConsole debugging. J18 is also used for access to serial ports on the target design.

In this case if both J5 and J18 are connected to the host computer on which SoftConsole is running then

SoftConsole needs to be told to use the former for debugging.

When OpenOCD runs, it lists the FlashPro programmers that it finds and indicates which one it uses by default –

e.g:

Open On-Chip Debugger

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.sourceforge.net/doc/doxygen/bugs.html

M2S010

Info : only one transport option; autoselect 'jtag'

adapter speed: 2000 kHz

cortex_m reset_config sysresetreq

trst_only separate trst_push_pull

do_board_reset_init

Info : FlashPro ports available: usb86709, S200XTYRZ3

Info : FlashPro port used: S200XTYRZ3

To use a specific FlashPro device when there is more than one connected in the debug launch configuration

change the following:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

to this which specifies which FlashPro programmer/port to use for debugging:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

--command "microsemi_flashpro port usb86709"

A partial port name can be specified and the first FlashPro port matched that starts with the specified string will be

used. (The string comparison is case insensitive). This is useful, for example, where there are two FlashPro5

programmers attached – one standalone (e.g. SXXXXX) and one embedded e.g. EXXXXX). In this case the

embedded one can be selected by simply specifying:

...

--command "microsemi_flashpro port e"

Note: The microsemi_flashpro_port command must appear after the board script has been specified

because this script sources the interface/microsemi-flashpro.cfg script.

Debugging using a non FlashPro JTAG interface

By default, the Microsemi OpenOCD board scripts (e.g. board/microsemi-cortex-m3.cfg) specify that a

FlashPro programmer will be used for debugging:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Device

http://openocd.sourceforge.net/doc/doxygen/bugs.html

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 43

source [find target/microsemi-cortex-m3.cfg]

Board specific initialization

proc do_board_reset_init {} {

}

This is akin to assuming that all boards come with an on-board FlashPro programmer even if some use a

discrete/external programmer. This is the normal and recommended debugging setup.

In this case the debug launch configuration will look something like this:

--command "set DEVICE M2S090"

--file board/microsemi-cortex-m3.cfg

However, it is possible to use any other JTAG probe that OpenOCD supports. As an example, to debug using the

Olimex ARM-USB-TINY-H

1. In the debug launch configuration put the following:

--command "set DEVCE M2S090; set FPGA_TAP N; set FLASHPRO N"

--file board/microsemi-cortex-m3.cfg

--file interface/ftdi/olimex-arm-usb-tiny-h.cfg

2. Ensure that the board's JTAG_SEL signal is tied low for RVI (for RVI debugging) rather than high (for

FlashPro debugging via the system controller).

3. Connect the Olimex ARM-USB-TINY-H programmer to the board's RVI connector and the USB end to the

computer. Ensure that the required drivers are installed. Debugging can now be done via the Olimex ARM-

USB-TINY-H device.

The same approach can be taken with other JTAG programmers supported by OpenOCD.

How to connect to/debug a running program

In some situations it is desirable to connect to a program already running on the target without resetting the target,

loading the program, executing from the startup code, breakpointing at main() etc. To enable this form of

debugging:

1. The program/project built must match the program running on the target – i.e. the same code, linker script

etc.

2. On the Startup page of the debug launch configuration...

3. Clear the Initial Reset checkbox

4. In the Initialization Commands text field enter monitor halt

5. Clear the Load Symbols and Executable > Load Executable checkbox

With these settings when the debug session is launched SoftConsole the program remains running and the

Suspend “pause” button can be used to halt it and thereafter normal debugging operations can be performed.

Troubleshooting

If the debug session fails to run as expected, then check the following:

Microsemi SoftConsole v6.0

44 Microsemi SoftConsole v6.0 Release Notes

a. On Linux was the udev rules file installed and activated in order to grant non-root access to users in the

relevant group (usually plugdev)?

b. Is a FlashPro device connected (FlashPro 5 on Linux, FlashPro3/4/5 on Windows)?

c. Is there more than one FlashPro device connected? If so SoftConsole may not be using the correct one. If

you want to use a specific one of several FlashPro devices connected, then you can add --command

"Microsemi_flashpro port <fp-port-name>" to the OpenOCD command line options.

d. On Windows did a previous FlashPro3/4 debug session fail leaving OpenOCD (openocd.exe or

fpserver.exe) running because abiactel.dll did not exit cleanly thus blocking access to the FlashPro

device? Check Task Manager/ProcessExplorer for openocd.exe and if it’s still running then unplug the

FlashPro USB cable and then reattach it and OpenOCD should terminate.

e. If the debug session starts but the program does not run/behave as expected, then check that the project

was updated to match the target hardware by having the Libero SoC generated firmware and

drivers_config copied in before rebuilding.

f. Ensure that the relevant CMSIS/HAL firmware core is used.

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 45

Renode emulation platform
Renode™ is an open source software development framework with commercial support from Antmicro that lets you develop,

debug and test multi-node device systems reliably, scalably and effectively. If all installation dependencies are met (see

installation section), then the RISC-V examples can be run in the emulator.

To debug an example in the emulator Renode must be run with Mi-V model (external tool launcher called Mi-V-Renode-

emulation-platform) or PolarFire SoC PSE model and a debug launcher attaches to the running Renode (for example miv-

rv32im-systick-blinky Attach-to-Renode). The debug launchers for Renode are almost identical to the launchers for real 32-bit

RISC-V targets except:

1. Debugger > OpenOCD Setup > Start OpenOCD locally has to be disabled/unchecked as Renode debugging does

not use OpenOCD/JTAG but connects GDB directly to the Renode GDB Remote Serial Protocol interface.

2. RISC-V 32-bit targets need the following: Debugger > GDB Client Setup > Commands must specify the command

set arch riscv:rv32

For convenience SoftConsole examples include Launch Groups that start the Renode emulation and then attach the debugger

to it:

Launch Group name

miv-rv32im-interrupt-blinky Start-Renode-emulator-and-attach

miv-rv32im-systick-blinky Start-Renode-emulator-and-attach

miv-rv32imaf-mandelbrot-uart Start-Renode-emulator-and-attach

miv-rv32imaf-raytracer-uart-cpp Start-Renode-emulator-and-attach

pse-blinky Start-Renode-emulator-and-attach

With current launchers and models only one instance of Renode is supported, which means that the previous session needs to

be completely closed before running a new session. This can be achieved either by selecting the group launcher and in the

Debug windows and terminating it with red stop icon (Ctrl+F2) in the main toolbar on the top to stop all nested launchers. Or

by closing all relevant windows from the taskbar. Failing to close all previous sessions will result failing to communicate on the

port 3333 (or 3333-3337 as pse-blinky uses five GDB ports, one for each hart). Remove All Terminated launchers from the

Debug window with the gray X icon can be used to make sure all previous sessions are terminated. Group launchers will work

successfully only when the Debug window is showing no running launcher.

Because Renode is work-in-progress there still might be some warnings about unimplemented commands. If required the

verbosity of Renode can be turned down (see the Renode documentation), but this is not recommended as it is good to see if

something important is not implemented. For example, qL12000000 warnings are only saying that the SoftConsole tries to

pool thread information about RTOS tasks (even on bare-metal projects which do not use RTOS) and Renode at the moment

cannot respond to these commands.

If the UART examples do not display correctly, then resize/maximizing the terminal window could resolve the issue, as the

miv-rv32iamf examples require bigger terminal than the default. Some examples might finish very quickly, therefore for the

best experience resizing should be done before continuing in the debug session.

For the PolarFire SoC example (pse-blinky) read the pse-blinky/README.md as it requires more careful considerations

when creating and using launchers.

For more information see the Renode documentation located at:

• <SoftConsole-install-dir>/documentation/renode.pdf

• https://media.readthedocs.org/pdf/renode/latest/renode.pdf

https://media.readthedocs.org/pdf/renode/latest/renode.pdf

Microsemi SoftConsole v6.0

46 Microsemi SoftConsole v6.0 Release Notes

• https://renode.readthedocs.io/en/latest/

https://renode.readthedocs.io/en/latest/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 47

Other Features

Cortex-M semi-hosting

Semi-hosting allows I/O (e.g. file I/O, standard I/O etc.) operations on the target board to be redirected to the

SoftConsole host via OpenOCD and the debugger. For example, this allows stdio input and output to be performed

via the SoftConsole GDB console and allows the program running on the target to read/write files on the host

filesystem.

The I/O operations on the target are trapped by library code running on the target and redirected to the host. To use

semi-hosting a number of steps must be taken:

• Under Project > Properties > C/C++ Build > Settings > Tool Settings > Cross Arm GNU C/C++ Linker >

Miscellaneous > Other linker flags add --specs=rdimon.specs in order to link the libraries required for

semi-hosting.

• The file CMSIS/startup_gcc/newlib_stubs.c clashes with the semi-hosting library support so must

be deleted from the project or excluded from the build (check Properties > C/C++ Build > Exclude resource

from build) otherwise the program will not link.

• The following code must be added (e.g. to main.c):

#include <stdio.h>

extern void initialise_monitor_handles(void);

int main()

{

 ...

 initialise_monitor_handles();

 ...

 iprintf("Hello, World\n");

 ...

}

• Programs that use semi-hosting must be run under the debugger and will not run standalone with no

debugger attached as they will hang in the library code that traps I/O operations and attempts to redirect

them to the host debugger.

• By default, semi-hosting output is buffered until a '\n' is output. This can be overridden to force character

granularity output using setvbuf(stdout, NULL, _IONBF, 0); but the output will be much slower

due to the overhead of many additional semi-hosting trap operations.

Integer only newlib support

SoftConsole bundles newlib standard library support (https://sourceware.org/newlib/).

It is often possible to build embedded programs in constrained resource (CPU, memory etc.) environments without

linking in any standard library overhead. However, where standard library support must be used newlib offers a

couple of ways to reduce the overhead:

• Smaller integer only *iprintf() APIs (e.g. iprintf(), siprintf(), fiprintf() etc.) that avoid

the significant additional overhead of floating point support. Refer to the newlib documentation for more

information.

• Nano newlib which is a cut down version of the standard newlib library. To use newlib-nano go to the project

properties and check the C/C++ Build > Settings > Tool Settings > Cross Arm GNU C/C++ Linker >

Miscellaneous > Use newlib-nano (--specs=nano.specs) option.

https://sourceware.org/newlib/

Microsemi SoftConsole v6.0

48 Microsemi SoftConsole v6.0 Release Notes

Static stack profiling

GCC supports static stack usage analysis/profiling.

See here for more on this and add the relevant options to the project settings as required:

https://mcuoneclipse.com/2015/08/21/gnu-static-stack-usage-analysis/

Cppcheck

Cppcheck is a C/C++ source code static analysis tool and cppcheclipse is an Eclipse plugin that integrates cppcheck

into the Eclipse/CDT SoftConsole IDE. Using cppcheck/cppcheclipse projects can be scanned for common source

code issues and bugs each time the project is built or on demand. The configuration options for cppcheck/cppcheclipse

are accessible via:

Project Properties > cppchecklipse

For more information on using cppcheck/cppcheclipse source code static analysis capabilities refer to these links:

• https://mcuoneclipse.com/2015/07/02/open-source-static-code-analysis-cppcheck-with-eclipse/

• https://github.com/kwin/cppcheclipse/wiki/WorkspacePreferences

• http://cppcheck.sourceforge.net/

• http://cppcheck.sourceforge.net/manual.pdf

• https://sourceforge.net/projects/cppcheck/files/Articles/

cppcheck can also be used from command line or as part of a Makefile based project. The required cppcheck binaries

are located in <SoftConsole-install-dir>/extras/cppcheck.

https://mcuoneclipse.com/2015/07/02/open-source-static-code-analysis-cppcheck-with-eclipse/
https://github.com/kwin/cppcheclipse/wiki/WorkspacePreferences
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/manual.pdf
https://sourceforge.net/projects/cppcheck/files/Articles/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 49

Known Issues and useful tips
Know issues documented in this section are under active investigation to ascertain the root cause and to resolve the underlying

problems with the intention that these are resolved in a future release.

Reset/power cycle the target hardware before each RISC-V debug session

At the moment, the debugger cannot effect a suitable RISC-V CPU/SoC reset at the start of each debug session so one debug

session may be impacted by what went before – e.g. a previous debug session leaves the CPU in an ISR and a subsequent

debug session does not behave as expected because of this. To mitigate this problem, it is recommended that the target

hardware/board is power cycled or otherwise reset before each new debug session.

Debug launch configuration settings differ for Cortex-M and RISC-V

Be aware that the debug launch configuration settings are different for Cortex-M and RISC-V targets as explained above. The

default settings may not automatically match the target CPU. Care must be taken to ensure that the correct configuration

settings are applied especially on the Debugger tab. The easiest way to avoid problems is to use the example workspace

debug launch configurations as a guide or copy the appropriate one and then customise and specific settings.

RISC-V memory view problems

When using the Memory Monitor or Memory Browser views to view memory in a Mi-V RISC-V system warnings such as the

following may appear in the debug/OpenOCD log view – these can be ignored for the moment.

Warn : negative acknowledgment, but no packet pending
Warn : keep_alive() was not invoked in the 1000ms timelimit. GDB alive packet not sent!
(1001). Workaround: increase "set remotetimeout" in GDB

or

Info : dtmcontrol_idle=5, dmi_busy_delay=8278771, ac_busy_delay=0

In some cases, the memory view may not display the memory contents correctly displaying, instead, question marks. This will

be fixed in a future release.

Memory Monitor fails to display

There have been unconfirmed reports that in some cases an attempt to configure/enable a Memory Monitor will fail and the

debug session may not operate correctly subsequently. If this happens then exit and restart SoftConsole.

Windows occasionally crashes when plugging FlashPro in/out

It has been observed in some cases that plugging a FlashPro JTAG programmer in/out of a Windows machine can

sporadically/occasionally cause it to “Blue Screen” (“Blue Screen of Death” or “BSOD”). When this happens, the error is often

a PAGE_FAULT_IN_NONPAGED_AREA in ftdibus.sys but in some cases a different cause may be displayed.

OpenOCD crashes when attempting to debug RISC-V

In some cases, OpenOCD may crash when attempting to debug a RISC-V target. This happens when the debug session

would fail anyway due to everything not being order for it to work – for example, the target board is not connected or powered

up or the wrong target board is connected. In some cases, such a crash may necessitate closing SoftConsole and restarting it

in order for a subsequent debug session to work.

RISC-V C++ support

RISC-V C++ projects have not been extensively tested within the SoftConsole Eclipse/CDT environment. The underlying

RISC-V GNU toolchain does support C++ but the SoftConsole IDE may not yet properly support C++ projects.

Microsemi SoftConsole v6.0

50 Microsemi SoftConsole v6.0 Release Notes

FlashPro programmers cannot be shared by applications

Due to limitations of the FlashPro driver/library software support used by FlashPro client applications (e.g. SoftConsole

OpenOCD, SmartDebug, Identify etc.) FlashPro programmers cannot be shared and used at the same time by multiple

applications and only one application can use a specific FlashPro programmer at any one time.

Invalid command name "arm" when debugging RISC-V
If the debug launch configuration option Startup > Initialization Commands > Enable Arm semihosting is checked/enabled
when debugging a RISC-V target, then the following error will be displayed by OpenOCD but this can be safely ignored or the
Enable Arm semihosting option simply unchecked/disabled:

invalid command name "arm"

Initial startup may be slow

SoftConsole may be slow to start up when run for the first time after installation while the projects in the example workspace

are indexed. The splash screen may be displayed for a period of time before the GUI proper appears. Please be patient if this

happens. It is a once off issue that does not happen on subsequent launches.

Flash Programming

OpenOCD has been enhanced to add support for program download to and debugging from SmartFusion eNVM,

SmartFusion2 eNVM and Fusion eNVM.

OpenOCD supports programming CFI (Common Flash Interface) external flash parts but not non-CFI external flash.

No unlocking or locking of eNVM pages is carried out when downloading to eNVM. eNVM pages to be modified are expected

and assumed to be unlocked.

Build Project context menu option sometimes disabled

Sometimes the Build Project option in the context menu that appears when right clicking on a project is disabled when it

should be enabled. This seems to be a CDT bug. If this happens right click on another node in the Project Explorer tree view

and then back onto the project in question and it will be re-enabled. Alternatively use the Build toolbar (hammer) icon to select

and build a specific project build target.

Windows firewall

On Windows if there is a firewall in use then the first time that a debug session is run the firewall may prompt that it is blocking

OpenOCD, fpServer.exe and/or Renode. Allow the firewall to unblock these and save this as the default setting if

necessary.

Multiple debug sessions

For a particular SoftConsole application instance, only one debug session should be active at any one time. If a deliberate or

inadvertent attempt is made to run more than one debug session, then SoftConsole may not work properly and it may be

necessary to exit and restart SoftConsole for further debugging to work properly.

FlashPro JTAG debugging is unreliable on virtual machines

FlashPro JTAG debugging is unreliable on virtual machines so it is recommended that only physical machines and not virtual

machines be used for SoftConsole debugging.

“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3

When debugging a SmartFusion2 Cortex-M3 target where the SmartFusion2 envm boot area does not contain a valid Cortex-

M3 program (for example zeroized or garbage envm contents), one or more instances of the following message may appear in

the OpenOCD log:

Info : DAP transaction stalled (WAIT) - slowing down

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 51

This arises because if the Cortex-M3 boots from zeroized or garbage envm it can end up in a double fault/lockup/reset cycle

and the debugger may experience delays while trying to reset it. However, the debugger will reset the target and these

messages can be safely ignored.

“Error: Got exception …” when reading some RISC-V registers
Not all RISC-V registers are implemented in all RISC-V targets. For example, RISC-V targets with no hardware floating point
support (no F, D or Q extension support) do not implement any FPU (Floating Point Unit) registers. Similarly, not all
Control/Status Registers (CSRs) are implemented in all cases. When an attempt is made to read a register that does not exist
then OpenOCD may display a message of the form:

Error: Got exception 0xffffffff when reading register ...

Such error messages can be safely ignored.

OpenOCD error/info messages when debugging RISC-V
When debugging a RISC-V target the following error/info messages may appear but the debug session proceeds without
problems. These messages can be safely ignored for now.

Info : RISC-V IDCODE = 0x10e31913

Info : dtmcontrol_idle=5, dmi_busy_delay=1, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=2, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=3, ac_busy_delay=0

Info : dtmcontrol_idle=5, dmi_busy_delay=4, ac_busy_delay=0

Error: Unable to execute program 0123ed74

Info : Disabling abstract command reads from CSRs.

...

Info : accepting 'gdb' connection on tcp/3333

Error: Unable to execute program 0123f554

Error: failed to execute program, abstractcs=0x0e000001

Error: exiting with ERROR_FAIL

...

Debugging and multiple device JTAG chains

Debugging a particular SmartFusion or SmartFusion2 Cortex-M3 in a multiple device JTAG chain can be achieved through

judicious and appropriate customization of the OpenOCD board script to include a description of other device TAPs in the

JTAG chain.

For example, make a copy of the <SoftConsole-install-

dir>/openocd/share/openocd/scripts/board/microsemi-cortex-m3.cfg board script and modify it to declare

any device TAPS before and/or after the device containing the CPU which is to be debugged. The following example

describes a three M2S090 device chain where the middle device contains the Cortex-M3 to be debugged:

FlashPro

source [find interface/microsemi-flashpro.cfg]

Ignore leading device

jtag newtap M2S090_0 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Want to debug the Cortex-M3 in this device

source [find target/microsemi-cortex-m3.cfg]

Ignore trailing device

jtag newtap M2S090_2 tap -irlen 8 -expected-id 0x0f8071cf -ignore-version

Board specific initialization

Microsemi SoftConsole v6.0

52 Microsemi SoftConsole v6.0 Release Notes

proc do_board_reset_init {} {

}

Debugging a particular UJTAG/CoreJTAGDebug connected Cortex-M1 or RISC-V in a multiple device JTAG chain is not yet

possible.

Where there are multiple UJTAG/CoreJTAGDebug connected Cortex-M1 and/or Mi-V RISC-V CPUs in a single device it is

possible to debug any one of these at a time by specifying the appropriate IRCODE configured in CoreJTAGDebug for the

relevant CPU. E.g.:

--command "set UJ_JTAG_IRCODE 0x34" --file board/microsemmi-cortex-m1.cfg

or

--command "set UJ_JTAG_IRCODE 0x56" --file board/microsemmi-riscv.cfg

The default UJ_JTAG_IRCODE used by target/microsemi-cortex-m1.cfg is 0x33 and by target/microsemi-

riscv.cfg is 0x55.

RISC-V target support

SoftConsole supports software development and debug for Microsemi Mi-V 32-bit soft cores and PolarFire SoC 64-bit

multiprocessor targets and comes bundled with the set of multilibs (for specific architecture/abi configurations) detailed earlier

in the document. However it should be possible to develop and debug with any other RISC-V implementation that is covered

by the bundled multilibs and which adheres to the RISC-V User-Level ISA (Instruction Set Architecture) v2.2

(https://riscv.org/specifications/) and the RISC-V Draft Privileged ISA Specification v1.10

(https://riscv.org/specifications/privileged-isa/).

SoftConsole and the underlying RISC-V GCC development/debug tools are configured to use RISC-V Draft Privileged ISA

Specification v1.10 names and locations for CSRs (Control and Status Registers) so may not work correctly for RISC-V

implementations that adhere to any earlier draft version of that specification.

SoftConsole v3.4 or earlier workspaces/projects

SoftConsole v3.4 or earlier workspaces, projects and debug launch configurations are not compatible with this version of

SoftConsole and must be recreated.

SoftConsole v5.0 RISC-V projects and debug launch configurations

Due to changes to the Eclipse Plugin for RISC-V GNU Toolchain since SoftConsole v5.0 was released it is possible that RISC-

V projects created using SoftConsole v5.0 may not work correctly in SoftConsole v5.1 or later. For this reason it is

recommended that existing projects created in SoftConsole v5.0 or any pre-release version of SoftConsole v5.x are recreated

in SoftConsole v5.1 or later. Note that SoftConsole v5.1 and later RISC-V debug launch configurations require -f

board/microsemi-riscv.cfg whereas some pre-release versions of SoftConsole v5.x used a different board script name

(for example -f board/microsemi-riscv-rv32im.cfg). If there are any problems using existing RISC-V debug launch

configurations then recreate them using one of the example workspace RISC-V debug launch configurations as a guide.

SmartFusion2 DPK unlocking

SmartFusion2 provides an option to lock down Cortex-M3 debug access using a DPK (Debug PassKey). If this is enabled in

the Libero design, then SoftConsole/OpenOCD needs to specify the DPK for debugging to work. To do this the 256-bit DPK

must be passed to OpenOCD as a 64-hex digit string as follows:

--command "set DPK 0x0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF"

--command "set DEVICE M2S090"

https://riscv.org/specifications/
https://riscv.org/specifications/privileged-isa/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 53

--file board/microsemi-cortex-m3.cfg

There is a known issue with some or all SmartFusion2 devices whereby the DPK unlock only works if the MSS is reset after
the DPK unlock operation has been executed and this does not happen automatically. If debug access does not work even
though the correct DPK was specified as above, then it may be necessary to add some logic to the FPGA design to reset the
MSS on detection of the DPK unlock operation at the UJTAG level. This logic and Verilog implementation is outlined below.

module trigger1(UDRCK, URSTB, UDRUPD, MSSRESET_N, UIREG);

input UDRCK, URSTB, UDRUPD;

output MSSRESET_N;

input [7:0] UIREG;

reg MSSRESET_N;

reg [1:0] state;

parameter CHECK = 2'b01, HIGH = 2'b10;

always @ (posedge UDRCK or negedge URSTB)

 begin

 if (!URSTB)

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 else

 begin

 case(state)

 CHECK:

 begin

Microsemi SoftConsole v6.0

54 Microsemi SoftConsole v6.0 Release Notes

 if ((UIREG[7:0] == 8'h0A) && (UDRUPD == 1))

 begin

 MSSRESET_N <= 0;

 state <= HIGH;

 end

 else

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 end

 HIGH:

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 default:

 begin

 MSSRESET_N <= 1;

 state <= CHECK;

 end

 endcase

 end

 end

endmodule

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 55

CMSIS needs environment variable

If an ARM project is built with a Makefile or any other unmanaged process then the SoftConsole install location needs to be

exported for the CMSIS to work:

export SC_INSTALL_DIR=<INSTALL_PATH>

When SoftConsole is run from the provided launcher script (softconsole.cmd on Windows and softconsole.sh on Linux) then the

script configures this environment variable so that the Arm GCC toolchain can find the CMSIS toolchain header files. If, when

compiling a Cortex-M project, the CMSIS toolchain header files are not found then make sure that SoftConsole is launched via

the script or that the SC_INSTALL_DIR environment variable is configured correctly on the system. In the past SoftConsole

could be run by simply running <SoftConsole-install-dir>/eclipse/eclipse.exe but if this is done in SoftConsole

v6.0 or later then the SC_INSTALL_DIR environment variable will not be set by default.

FTDI detected as ttyUSB on Linux

In some instances, all the FTDI channels might get taken by the serial driver and turned into the ttyUSB devices. If this happens

then OpenOCD may list one or more FlashPro programmers but fail to connect to one:

Info : FlashPro ports available: S201Z7LB20

Info : FlashPro port used: S201Z7LB20

Error: InitializeProgrammer(S201Z7LB20) failed : Can not connect to the programmer

Running dmesg can show that the ftdi_sio driver is registered to the device.

[1400.220327] usb 2-1.4: Product: FlashPro5

[1400.220329] usb 2-1.4: Manufacturer: Microsemi

[1400.220331] usb 2-1.4: SerialNumber: 01Z7LB20

[1400.280943] usbcore: registered new interface driver ftdi_sio

[1400.280972] usbserial: USB Serial support registered for FTDI USB Serial Device

[1400.281176] ftdi_sio 2-1.4:1.2: FTDI USB Serial Device converter detected

[1400.281264] usb 2-1.4: Detected FT4232H

[1400.281726] usb 2-1.4: FTDI USB Serial Device converter now attached to ttyUSB0

A script can be used as a temporary workaround which will then disable all serial drivers with the FTDI. This script will unload

the ftdi_sio module:

#!/bin/sh

$DEVNAME enviroment variable is most likely set to /dev/ttyUSB0

get the ttyUSB0 without the path

NAME=$(basename $DEVNAME)

Find FTDI child USB device with then $DEVNAME parent device

for DEVICE in /sys/bus/usb/drivers/ftdi_sio/*/

do

 if [-e $DEVICE/$NAME]

 then

 # Match found, unbind it from the FTDI driver

 echo -n "$(basename $DEVICE)" > /sys/bus/usb/drivers/ftdi_sio/unbind

 break

 fi

done

Microsemi SoftConsole v6.0

56 Microsemi SoftConsole v6.0 Release Notes

Save this script as /usr/local/bin/unbind_ftdi.sh and give it correct privileges:

sudo chmod a+x /usr/local/bin/unbind_ftdi.sh

sudo chown root:staff /usr/local/bin/unbind_ftdi.sh

Now find where the OpenOCD udev script was installed (most likely /etc/udev/rules.d/60-openocd.rules) and modify

the existing “Microsemi (Actel) FlashPro5” entry as follows:

Microsemi (Actel) FlashPro5

ATTRS{idVendor}=="1514", ATTRS{idProduct}=="2008", MODE="666",

RUN+="/usr/local/bin/unbind_ftdi.sh"

Depending on the distribution I might be necessary to reload the udev rules or reboot for the changes to take effect:

udevadm trigger

Now reconnecting the FlashPro device and watching dmesg messages should state that the ftdi_sio module was unloaded

and OpenOCD should be able to connect to and use the connected FlashPro programmer(s).

[10626.270300] usb 2-1.4: new high-speed USB device number 54 using ehci-pci

[10626.382547] usb 2-1.4: New USB device found, idVendor=1514, idProduct=2008

[10626.382554] usb 2-1.4: New USB device strings: Mfr=1, Product=2, SerialNumber=3

[10626.382556] usb 2-1.4: Product: FlashPro5

[10626.382560] usb 2-1.4: Manufacturer: Microsemi

[10626.382562] usb 2-1.4: SerialNumber: 01Z7LB20

[10626.387020] ftdi_sio 2-1.4:1.2: FTDI USB Serial Device converter detected

[10626.387085] usb 2-1.4: Detected FT4232H

[10626.387615] usb 2-1.4: FTDI USB Serial Device converter now attached to ttyUSB0

[10626.432272] ftdi_sio ttyUSB0: FTDI USB Serial Device converter now disconnected from

ttyUSB0

[10626.432296] ftdi_sio 2-1.4:1.2: device disconnected

Program file does not exist

Possible cause: If a build finishes successfully and the ELF file exists but the debug launch configuration cannot see it, then a

likely cause is the use of the wrong slash in the program path name. It is advisable to use the forward slash (/) in such paths for

Windows and Linux cross OS compatibility. If the backslash (\) is used then it will only work on Windows but the forward slash

works on both. Unfortunately the debug launch configuration editor on Windows defaults to using the backslash.

Workaround: Change the slash in launcher configuration C/C++ Application setting:

e.g. from "Debug\blinky.elf" to "Debug/blinky.elf"

Target emulation `elf64-littleriscv' does not match `elf32-littleriscv'

Possible cause: This can be caused when selected RISC-V architecture/abi does not have a matching multilib and the default

RV64GC is used instead.

Workaround: Use one of the arch/abi combinations mentioned earlier as being supported with a corresponding multilib.

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 57

sprint()/scanf() print empty characters instead of floating point number digits

Possible cause: Support in the libraries is not enabled by default when newlib-nano is used by having the Project Settings >

C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker > Miscellaneous > Use newlib-nano (--

specs=nano.specs) checked.

Workaround: Check the Project Settings > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker >

Miscellaneous > -u_printf_float and/or -u_scanf_float options. If newlib-nano is NOT in use but this problem occurs then it may

be caused by the GNU or a third party standard library used instead of newlib.

Error message: can't link hard-float modules with soft-float modules

Possible cause: Project settings affecting float usage changed without doing a clean rebuild.

Workaround: Delete the Debug/Release folders and check that the RVF floating point configuration options and selected arch/abi

match. Then rebuild the program from scratch.

Multiple definition of `_start'/`_init'/`_fini' etc.

Errors of the following form appear:

multiple definition of `_start'

multiple definition of `_init'

multiple definition of `_fini'

Possible cause: Trying to the RISC-V or PolarFire SoC startup code while the compiler is trying to use its own startup code.

Workaround: Do not use the compiler startup code. Check the Project Settings > C/C++ Build > Settings > Tool Settings > GNU

RISC-V Cross C/C++ linker > General > -nostartfiles option

Undefined reference to `printf'/`puts'/`write'/`strlen' etc.

Errors of the following form appear:

undefined reference to `printf'

undefined reference to `puts'

undefined reference to `write'

undefined reference to `strlen'

Possible cause: No libraries are present to implement these calls.

Workaround: Uncheck the Project Settings > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker >

General > Do not use default libraries (-nodefaultlibs) and No startup or default libs (-nostdlib) options.

Route printf() output to UART

To route printf() output to UART:

1. Set up CoreUART in such way that UART_polled_tx_string() output works

2. Add the following include file:

#include <stdio.h>

3. Add the define symbol "MSCC_STDIO_THRU_CORE_UART_APB" to In Project Settings > C/C++ Build > Settings

> Tool Settings > GNU RISC-V Cross C/C++ Compiler > Preprocessor > Defined Symbols add the symbol

MSCC_STDIO_THRU_CORE_UART_APB.

Microsemi SoftConsole v6.0

58 Microsemi SoftConsole v6.0 Release Notes

Program image is too large

If the program image size is too large, then check the list and map files for details of what application and library code is

contributing to the total size. Note that the ELF file size on disk is not indicative of the program image size when running on the

embedded hardware target. Some useful common tips for reducing the program image size:

1. Tell the compiler to optimize: Project Settings > C/C++ Build > Settings > Tool Settings > Optimization > Optimization

Level = Optimize for size -Os (this will negatively affect debugging capabilities)

2. Use newlib-nano: Check the option Project Settings > C/C++ Build > Settings > Tool Settings > GNU Arm/RISC-V

Cross C/C++ Linker > Miscellaneous > Use newlib-nano (--spec=nano.specs) and uncheck the options Project Settings

> C/C++ Build > Settings > Tool Settings > GNU Arm/RISC-V Cross C/C++ Linker > General > Do not use default

libraries (-nodefaultlibs) and No use startup or default libs (-nostdlib).

3. If printf() style functions are being used and the program is still too large even when using newlib-nano then it may

be possible to use a standalone small printf() implementation instead. Most such implementations may have

limitations compared to a “full” standard library printf() implementation but often these limitations are acceptable

in an embedded context. Examples of such “small” printf() implementations include:

https://github.com/mludvig/mini-printf

http://www.xappsoftware.com/wordpress/2011/01/17/a-tiny-printf-for-embedded-systems/

https://github.com/mpaland/printf (minimalistic printf() that supports floats)

Then disable the use of the compiler standard libraries:

Check the option Project Settings > C/C++ Build > Settings > Tool Settings >GNU Arm/RISC-V Cross C/C++ Linker >

General > Do not use default libraries (-nodefaultlibs).

Better still consider rewriting the relevant code to avoid the use of printf() functions which are generally not

recommended on embedded platforms because they are often large and often use the heap.

4. Wrap code that is not always required (e.g. verbose logging code used for debugging/diagnostics only) in #ifdef

<symbol> ... #endif blocks so that they can be conditionally compiled out when not needed.

5. Check if the floating point is using hardware and not software implementation. Not enabling hardware properly and

using floating point will emulate every instruction in software and enlarge the codebase significantly. Do not use RVF

or RVD floating point without setting the corresponding floating point ABI in Project Settings > C/C++ Build > Settings

> Target processor. With RISC-V cores implementing the F and/or D extensions the Floating-point divide/sqrt

instructions (-mfdiv) can also be enabled.

6. Check what function or blocks of project code should be prioritized for optimization. Create a size analysis post build

step under:

Project Settings > C/C++ Build > Settings > Build Steps > Post-build steps

and put the following in the Command field:

${cross_prefix}nm${cross_suffix} --print-size --size-sort ${BuildArtifactFileName}

Optionally a Description can be given to it, for example “------- Size analysis -------”.

After the build all symbols with their sizes will be displayed and ordered by the size. This can point to functions which

will benefit from optimizations the most. It can reveal design/code issues as when a large library could have been linked

into a project by mistake or other unnecessary code compiled in.

7. Enable hardware features if the core is capable – e.g. use the RISC-V M extension fully if present. Under Project

Settings > C/C++ Build > Settings > Tool Settings > Target processor enable/check the Multiply extension (RVM) and

the Integer divide instructions (-mdiv) options if appropriate. If the target implements the Compressed extension (RVC)

then enable/check that too:

https://github.com/mludvig/mini-printf
http://www.xappsoftware.com/wordpress/2011/01/17/a-tiny-printf-for-embedded-systems/
https://github.com/mpaland/printf

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 59

cc1: error: requested ABI requires -march to subsume the 'D' extension

Or the following:

cc1: error: ABI requires -march=rv64

Possible cause: The RISC-V Target Processor > Toolchain option was left configured as Toolchain default which will result in

the compiler assuming that the target arch/abi is rv64gc/lp64.

Workaround: Ensure that the Project Settings > C/C++ Build > Settings > Target processor > Architecture, Integer ABI and

Floating point ABI are configured correctly for the target hardware.

undefined reference to `__stack_top' etc.

Or the following errors:

undefined reference to `__sdata_start'

undefined reference to `__data_start'

undefined reference to `__sbss_start'

undefined reference to `_heap_end'

undefined reference to `__dso_handle'

hidden symbol `__dso_handle' isn't defined

Possible cause: Using old/wrong/no linker script.

Workaround: Ensure that the appropriate linker script is configured under Project Settings > C/C++ Build > Settings > Tool

Settings > GNU Arm/RISC-V Cross C/C++ Linker > Add linker script.

After duplication of the project (copy/paste) debugging no longer works

Possible cause: The copy/paste renames everything except launch configurations.

Workaround: Update the path to ELF file under:

Run > Debug configurations… > <PROJECT_DEBUG_LAUNCHER> >C/C++ Application

Progam has exited with code:0x00000003

Or any other exit codes.

Possible cause: The code got into unhandled exception/trap state

Workaround: Troubleshoot as a trap, the RISC-V exit code meanings are:

0x00000001=Instruction address misaligned

0x00000002=Instruction access fault

0x00000003=Illegal instruction

0x00000004=Breakpoint

0x00000005=Load address misaligned

0x00000006=Load access fault

0x00000007=Store/AMO address misaligned

0x00000008=Store/AMO access fault

0x00000009=Environment call from U-mode

0x0000000A=Environment call from S-mode

0x0000000C=Environment call from M-mode

0x0000000D=Instruction page fault

0x0000000E=Load page fault

Microsemi SoftConsole v6.0

60 Microsemi SoftConsole v6.0 Release Notes

0x00000010=Store/AMO page fault

The exit code is the RISC-V Privilege Specification mcause register value plus 1. For full information refer to the draft RISC-V

Privileged ISA Specification:

https://riscv.org/specifications/privileged-isa/

Get value of mepc CSR register, it points to memory where the trap happened. Create breakpoint on this location. Single step if

needed and the moment right after the trap happened, get values from the following CSRs: mcause, mip, mie, mtval/mbadaddr,

mtvec, mepc, mscratch and mstatus. When asking for assistance, all these CSRs can give vital information to troubleshoot the

problem.

mcause Should be the same as exi code -1, if it’s not then different trap happened in this debug session.

mip Displays pending interrupts.

mie Displays what interrupts are enabled.

mtval/mbadaddr Depending on the assembler the name of the CSR might be either mtval or mbadaddr. If the exit code is 1,2,

5, 6, 7, 8, E or 10 then this CSR points to the memory address which caused this fault. If the exit code is 3 then this CSR contains

the opcode which caused it. Together with the exit code this can point to what happened and where it happened. Note that

mcause and exit code are almost identical except the exit code is offset by 1.

mtvec Is trap handler vector, address where to jump when the trap happens.

mepc Is the value of Program Counter at the moment of the exception (address to code which caused the trap).

mscratch Temporary values, sometimes it can hold value of the A0 register which is used for arguments passing or return

values from the functions.

mstatus Can contain global interrupt enable bit but many other flags:

Size optimizations cause trap exception: Load address misaligned

Possible cause: Using default HAL without any modifications and allowing unaligned accesses in the project settings.

Fix: Project > Properties > C/C++ Build > Settings > Tool Settings > Align Strict (-mstrict-align)

<built-in>: internal compiler error: Illegal instruction

Possible cause: The gmp big number library which is bundled into the gcc might have been set to use a newer cpu than you

actually have.

Fix: Contact us, so we know what CPUs target for the next release.

https://riscv.org/specifications/privileged-isa/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 61

(Renode:5523): GLib-CRITICAL **: Source ID 13802 was not found when attempting to
remove it

Possibly caused by not meeting Renode’s dependancies. Renode requires the mono to be at least v5. Double check if the

newest versions of the mono-complete, gtk-sharp2 and libcanberra-gtk are installed. And confirm the mono is v5 or higher:

mono --version

../riscv_hal/entry.S:113: Error: Instruction csrr requires absolute expression

Possible cause: The RISC-V assembler is behind and is not recognizing the newer name mtval of the CSR.

Fix: Use older mbadaddr CSR name instead of the mtval which is the same CSR.

Connecting to remote OpenOCD

The binding behavior of the OpenOCD changed from the SoftConsole 5.2. Now by default, it’s binding itself to the 127.0.0.1

instead of the 0.0.0.0 which means that the remote OpenOCD will listen only to its loopback address instead on all interfaces

and it will not be reachable remotely. This default behavior can be overridden by adding the -c “bindto 0.0.0.0” argument to

the OpenOCD command.

openocd.exe -c "bindto 0.0.0.0" <rest-of-your-arguments>

Glitches, unstable UI and cosmetic issues on Linux

On the Linux SoftConsole 6.0 the GTK2 is getting deprecated and it might cause incorrectly rendered UI elements in some cases

and on some distributions even unstable UI. If SoftConsole 6.0 is not used for ARM projects then it’s safe to comment out with

a # symbol (or remove) the line below from the softconsole.sh launcher:

export SWT_GTK3=0 # force GTK 2 because: "ARM project settings -> target" was extremely slow with GTK3

Debugger Console View is not working or GDB is misbehaving

SoftConsole 6.0 debugger version detection can fail and not show Debugger Console. The Debugger Console will work when

macros are not used, copy content of the Debug Configuration -> Debugger -> GDB Client Setup -> Actual name (should

be “riscv64-unknown-elf-gdb” or “arm-none-eabi-gdb”) and then paste it instead of the ${cross_prefix}gdb${cross_suffix}

macro in the Debug Configuration -> Debugger -> GDB Client Setup -> Executable.

Microsemi SoftConsole v6.0

62 Microsemi SoftConsole v6.0 Release Notes

Build fails when using “Print removed sections (-Xlinker --print-gc-sections)”

When the option to print removed unused sections is selected CDT may report that the build has failed even though it was

completed correctly. This is because of a bug in CDT whereby the --print-gc-sections option prints removed sections to

stderr and CDT incorrectly interprets ANY output on stderr to be a build error. This bug has been reported to the CDT project

and for now it is safe to ignore such build failure false positives. Alternatively disable the --print-gc-sections option by

unchecking the following option:

RISC-V: Project Properties > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Linker > General > Print

removed sections (-Xlinker --print-gc-sections)

Arm projects: Project Properties > C/C++ Build > Settings > Tool Settings > Cross Arm GNU C/C++ Linker > General > Print

removed sections (-Xlinker --print-gc-sections)

When the --print-gc-sections option is enabled then the following false positive build failure may occur:

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.text.__disable_irq' in file

'./riscv_hal/riscv_hal.o'

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.text.handle_m_ext_interrupt' in

file './riscv_hal/riscv_hal_stubs.o'

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.text.SysTick_Handler' in file

'./riscv_hal/riscv_hal_stubs.o'

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.sbss.__env' in file

'./riscv_hal/syscall.o'

...

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.text.isatty' in file

'lib/rv32im/ilp32\libg_nano.a(lib_a-sysisatty.o)'

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.debug_frame' in file

'lib/rv32im/ilp32\libg_nano.a(lib_a-sysisatty.o)'

riscv64-unknown-elf/bin/ld.exe: Removing unused section '.sdata._global_impure_ptr' in file

'lib/rv32im/ilp32\libg_nano.a(lib_a-impure.o)'

Finished building target: miv-rv32im-systick-blinky.elf

12:35:47 Build Failed. 71 errors, 0 warnings. (took 2s.428ms)

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 63

Debug launcher fails with “Error: gdb sent a packet with wrong register size”

Error: gdb sent a packet with wrong register size

Info : dropped 'gdb' connection

This indicates mismatch between target architecture and what is expected. This can happen when debugging RISC-V 64-bit

software on a RISC-V 32-bit target (or vice versa) and in general it is critical that the selected architecture and abi match the

target platform.

close attention needs to be paid to the selected architecture and abi needs to be paid , checking project settings. If floating point

extension and floating point abi is set correctly. If the debug launcher is not setting wrong arch, found in the launcher properties:

Debug Configuration -> Debugger -> GDB Client Setup -> Commands -> set arch riscv:rv32

In an edge case this problem might be present even when all settings are correct, but using Makefile non-managed project on

Linux SoftConsole. This happens when cross compiler is incorrectly detected and the native tools are used instead (which are

x86 and they do not match the RISC-V registers). Debug Configuration -> Debugger -> GDB Client Setup -> Executable

name ${cross_prefix}gdb${cross_suffix} is tool name which will be used, it uses macros and should be resolved into correct

actual target name. The Debug Configuration -> Debugger -> GDB Client Setup -> Actual name should be riscv64-

unknown-elf-gdb. In case this actual name got resolved into gdb only then the issue can be fixed by hardcoding full name

riscv64-unknown-elf-gdb without using the ${cross_prefix} and ${cross_suffix} macros.

Debug launcher is not connecting to ARM target

Info : Listening on port 6666 for tcl connections

Info : Listening on port 4444 for telnet connections

Info : clock speed 6000 kHz

Info : JTAG tap: M2S090.tap tap/device found: 0x0f8031cf (mfg: 0x0e7 (GateField), part: 0xf803, ver: 0x0)

Warn : JTAG tap: M2S090.tap UNEXPECTED: 0x0f8031cf (mfg: 0x0e7 (GateField), part: 0xf803, ver: 0x0)

Error: JTAG tap: M2S090.tap expected 1 of 1: 0x0f8071cf (mfg: 0x0e7 (GateField), part: 0xf807, ver: 0x0)

Error: Trying to use configured scan chain anyway...

Warn : Bypassing JTAG setup events due to errors

Info : Listening on port 3333 for gdb connections

Started by GNU MCU Eclipse

Info : accepting 'gdb' connection on tcp/3333

Error: Target not examined yet

undefined debug reason 7 - target needs reset

Error: Target not examined yet

Error: Target not examined yet

Error: Target not examined yet

Possible cause: Using different target while having different target launcher.

Fix: As mentioned in the beginning of the release notes the launchers have to be changed depending on the target. Check

exactly what target you have and change it in the debug launcher:

--command "set DEVICE M2S090"

to match the target device

Microsemi SoftConsole v6.0

64 Microsemi SoftConsole v6.0 Release Notes

Application traps at random places or even before reaching main

This can be caused by many causes but frequently repeated cause is when users ignore the instructions of using newer up-to-

date HAL. The HAL in the bundled examples was tested and made sure it does behave properly. It was tested with supplied

workspaces (workspace.examples and workspace.empty). Use of older or bespoke HAL or even using custom workspace can

cause unexpected issues. Follow the Quick start guide sections to avoid any future problems.

Even if the project will import from correctly the code is not migrated. Manual steps are required to migrate a project:

https://github.com/RISCV-on-Microsemi-FPGA/SoftConsole

One change in the HAL covers GP relaxation issue and without current HAL older projects will frequently malfunction:

https://gnu-mcu-eclipse.github.io/arch/riscv/programmer/

Running SoftConsole from command line

If for some reason the SoftCosole needs to be executed from command line then the appropriate launcher scripts need to be

used:

• softconsole.sh (Linux OS)

• softconsole.cmd (Windows OS)

Running eclipse.exe binary directly will not work and cause many issues as the launcher scripts do setup required paths

and environment variables for the SoftConsole and Renode to function properly.

Invalid project path: Duplicate path entries found Warnings

Using macros in include files can cause these warnings, use relative paths on all included folders instead.

RISC-V projects:

Project settings > C/C++ Build > Settings > Tool Settings > GNU RISC-V Cross C/C++ Compiler > Includes

For example replace "${workspace_loc:/${ProjName}/drivers/CoreUARTapb}" with

"../drivers/CoreUARTapb"

Arm projects:

Project settings > C/C++ Build > Settings > Tool Settings > Cross Arm GNU C/C++ Compiler > Includes

For example replace "${workspace_loc:/${ProjName}/CMSIS}" with "../CMSIS"

“No installed packages”

Messages of the following form can be safely ignored. They relate to the GNU MCU Eclipse (CMSIS) Packs support which

SoftConsole does not use at this point in time.

2018-11-26 12:31:36

Extracting devices & boards...

Loading repos summaries...

Parsing cached content file

"...\extras\Packages\.cache\.content_www_keil_com_pack_index_pidx.xml"...

File does not exist, ignored.

Identifying installed packages...

Found no installed packages.

Completed in 1ms.

No installed packages.

Completed in 1ms.

https://github.com/RISCV-on-Microsemi-FPGA/SoftConsole
https://gnu-mcu-eclipse.github.io/arch/riscv/programmer/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 65

2018-11-26 13:55:54

Extracting devices & boards...

No installed packages.

Completed in 1ms.

Microsemi SoftConsole v6.0

66 Microsemi SoftConsole v6.0 Release Notes

Other useful Documentation
1. Microsemi github: https://github.com/RISCV-on-Microsemi-FPGA

2. RISC-V specifications: https://riscv.org/specifications/

3. Erich Styger’s “MCU on Eclipse” blog (http://mcuoneclipse.com/): Useful tips and tricks for using

Eclipse/CDT, GNU ARM Eclipse, GNU Tools for ARM Embedded Processors, OpenOCD etc. The

Compendium page is a good place to find posts/articles relevant to Eclipse, OpenOCD etc.

4. The websites and documentation links for the various open source components used in SoftConsole are

also useful references. These are listed elsewhere in this document.

https://github.com/RISCV-on-Microsemi-FPGA
https://riscv.org/specifications/
http://mcuoneclipse.com/
http://mcuoneclipse.com/compendium/

Microsemi SoftConsole v6.0

Microsemi SoftConsole v6.0 Release Notes 67

Product Support

Microsemi SoC Products Group backs its products with various support services, including Customer Service,

Customer Technical Support Center, a website, electronic mail, and worldwide sales offices. This appendix contains

information about contacting Microsemi SoC Products Group and using these support services.

Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update

information, order status, and authorization.

From North America, call 800.262.1060
From the rest of the world, call 650.318.4460
Fax, from anywhere in the world 408.643.6913

Customer Technical Support Center
Microsemi SoC Products Group staffs its Customer Technical Support Center with highly skilled engineers who can

help answer your hardware, software, and design questions about Microsemi SoC Products. The Customer Technical

Support Center spends a great deal of time creating application notes, answers to common design cycle questions,

documentation of known issues and various FAQs. So, before you contact us, please visit our online resources. It is

very likely we have already answered your questions.

Technical Support
For Microsemi SoC Products Support, visit http://www.microsemi.com/products/fpga-soc/design-support/fpga-soc-

support.

Website
You can browse a variety of technical and non-technical information on the Microsemi SoC Products Group home

page, at http://www.microsemi.com/soc/.

http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/index.php?option=com_content&view=article&id=2112&catid=1731&Itemid=3022
http://www.microsemi.com/soc
http://www.microsemi.com/soc
http://www.microsemi.com/soc/

Microsemi SoftConsole v6.0

68 Microsemi SoftConsole v6.0 Release Notes

Contacting the Customer Technical Support Center
Highly skilled engineers staff the Technical Support Center. The Technical Support Center can be contacted by email

or through the Microsemi SoC Products Group website.

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or

phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly

monitor the email account throughout the day. When sending your request to us, please be sure to include your full

name, company name, and your contact information for efficient processing of your request.

The technical support email address is soc_tech@microsemi.com.

My Cases

Microsemi SoC Products Group customers may submit and track technical cases online by going to My Cases.

Outside the U.S.

Customers needing assistance outside the US time zones can either contact technical support via email

(soc_tech@microsemi.com) or contact a local sales office. Visit About Us for sales office listings and corporate

contacts.

ITAR Technical Support
For technical support on RH and RT FPGAs that are regulated by International Traffic in Arms Regulations (ITAR),

contact us via soc_tech_itar@microsemi.com. Alternatively, within My Cases, select Yes in the ITAR drop-down list.

For a complete list of ITAR-regulated Microsemi FPGAs, visit the ITAR web page.

file:///C:/Documents%20and%20Settings/alim/Local%20Settings/Temporary%20Internet%20Files/Content.Outlook/BPCDM203/soc_tech@microsemi.com
http://www.microsemi.com/soc/mycases/
mailto:tech@microsemi.com
http://www.microsemi.com/soc/company/contact/default.aspx
http://www.microsemi.com/salescontacts
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/index.php?option=com_content&view=article&id=137&catid=9&Itemid=747
http://www.microsemi.com/soc/company/contact/default.aspx#itartechsupport
mailto:soc_tech_itar@microsemi.com
http://www.microsemi.com/mycases/
http://www.microsemi.com/soc/ITAR/

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and

system solutions for communications, defense & security, aerospace and industrial markets.

Products include high-performance and radiation-hardened analog mixed-signal integrated

circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization

devices and precise time solutions, setting the world's standard for time; voice processing

devices; RF solutions; discrete components; security technologies and scalable anti-tamper

products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design

capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has

approximately 3,600 employees globally. Learn more at www.microsemi.com.

Microsemi Corporate Headquarters
One Enterprise, Aliso Viejo,
CA 92656 USA

Within the USA: +1 (800) 713-4113
Outside the USA: +1 (949) 380-6100
Sales: +1 (949) 380-6136
Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2018 Microsemi Corporation. All
rights reserved. Microsemi and the
Microsemi logo are trademarks of
Microsemi Corporation. All other
trademarks and service marks are the
property of their respective owners.

XXXXXXXX-28Nov2018

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or

the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability

whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and

any other products sold by Microsemi have been subject to limited testing and should not be used in

conjunction with mission-critical equipment or applications. Any performance specifications are believed to

be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of

the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data

and performance specifications or parameters provided by Microsemi. It is the Buyer’s responsibility to

independently determine suitability of any products and to test and verify the same. The information

provided by Microsemi hereunder is provided “as is, where is” and with all faults, and the entire risk

associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly,

to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself

or anything described by such information. Information provided in this document is proprietary to

Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to

any products and services at any time without notice.

http://www.microsemi.com/
mailto:sales.support@microsemi.com

	Table of Contents
	Key features 7
	Features not supported 7
	Quick start guide 8
	Packages used 11
	Windows 16
	Linux 16
	Libero SoC/Firmware Catalog 21
	Firmware drivers 21
	FlashPro JTAG programmer 22
	SoftConsole v3.4 22
	SoftConsole v4.x 22
	SoftConsole v5.1 RISC-V projects 22
	Microsemi github 22
	Example workspace 23
	Empty workspace 24
	Creating a new workspace 24
	Creating a new project 25
	Project Settings 26
	Adding source files to a project 30
	Building a project 30
	Debug launch configurations 32
	OpenOCD command line options and scripts 37
	Board configuration for FlashPro debugging 40
	Using a debug session 40
	Troubleshooting 43
	Cortex-M semi-hosting 47
	Integer only newlib support 47
	Static stack profiling 48
	Cppcheck 48
	Reset/power cycle the target hardware before each RISC-V debug session 49
	Debug launch configuration settings differ for Cortex-M and RISC-V 49
	RISC-V memory view problems 49
	Memory Monitor fails to display 49
	Windows occasionally crashes when plugging FlashPro in/out 49
	OpenOCD crashes when attempting to debug RISC-V 49
	RISC-V C++ support 49
	FlashPro programmers cannot be shared by applications 50
	Invalid command name "arm" when debugging RISC-V 50
	Initial startup may be slow 50
	Flash Programming 50
	Build Project context menu option sometimes disabled 50
	Windows firewall 50
	Multiple debug sessions 50
	FlashPro JTAG debugging is unreliable on virtual machines 50
	“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3 50
	“Error: Got exception …” when reading some RISC-V registers 51
	OpenOCD error/info messages when debugging RISC-V 51
	Debugging and multiple device JTAG chains 51
	RISC-V target support 52
	SoftConsole v3.4 or earlier workspaces/projects 52
	SoftConsole v5.0 RISC-V projects and debug launch configurations 52
	SmartFusion2 DPK unlocking 52
	CMSIS needs environment variable 55
	FTDI detected as ttyUSB on Linux 55
	Program file does not exist 56
	Target emulation `elf64-littleriscv' does not match `elf32-littleriscv' 56
	sprint()/scanf() print empty characters instead of floating point number digits 57
	Error message: can't link hard-float modules with soft-float modules 57
	Multiple definition of `_start'/`_init'/`_fini' etc. 57
	Undefined reference to `printf'/`puts'/`write'/`strlen' etc. 57
	Route printf() output to UART 57
	Program image is too large 58
	cc1: error: requested ABI requires -march to subsume the 'D' extension 59
	undefined reference to `__stack_top' etc. 59
	After duplication of the project (copy/paste) debugging no longer works 59
	Progam has exited with code:0x00000003 59
	Size optimizations cause trap exception: Load address misaligned 60
	<built-in>: internal compiler error: Illegal instruction 60
	(Renode:5523): GLib-CRITICAL **: Source ID 13802 was not found when attempting to remove it 61
	../riscv_hal/entry.S:113: Error: Instruction csrr requires absolute expression 61
	Connecting to remote OpenOCD 61
	Glitches, unstable UI and cosmetic issues on Linux 61
	Debugger Console View is not working or GDB is misbehaving 61
	Build fails when using “Print removed sections (-Xlinker --print-gc-sections)” 62
	Debug launcher fails with “Error: gdb sent a packet with wrong register size” 63
	Debug launcher is not connecting to ARM target 63
	Application traps at random places or even before reaching main 64
	Running SoftConsole from command line 64
	Invalid project path: Duplicate path entries found Warnings 64
	“No installed packages” 64

	Microsemi SoftConsole v6.0
	Introduction
	Overview
	Key features
	Features not supported
	Quick start guide

	Supported platforms
	Free/Open source packages
	Packages used

	Installation
	Windows
	Installing

	Linux
	Installing
	After installing
	Troubleshooting

	Related Microsemi Tools/Resources
	Libero SoC/Firmware Catalog
	Firmware drivers
	Hardware Abstraction Layers
	Peripheral firmware drivers
	Matching firmware to the target hardware

	FlashPro JTAG programmer
	SoftConsole v3.4
	SoftConsole v4.x
	SoftConsole v5.1 RISC-V projects
	Microsemi github

	Workspaces
	Example workspace
	Example projects
	Example debug launch configurations

	Empty workspace
	Creating a new workspace

	Projects
	Creating a new project
	Project Settings
	All CPU targets
	Target Processor
	Linker Script
	Newlib-Nano
	Create Extended Listing
	Preprocessor Defines and Includes
	Optimization Options
	Library Dependencies
	Print Size
	Other Options
	Specifying Options for All Build Configurations

	RISC-V targets
	Do not use standard start files (-nostartfiles)
	Use strict alignment

	Cortex-M targets
	CMSIS

	SmartFusion2 Cortex-M3 targets
	Production-Smartfusion2-Relocate-to-External-Ram.ld

	Adding source files to a project
	Building a project

	Debugging
	Debug launch configurations
	OpenOCD command line options and scripts
	SmartFusion/SmartFusion2 DEVICE
	Board scripts
	Cortex-M1 Board Script
	FlashPro JTAG speed
	Other OpenOCD options
	SoftConsole OpenOCD script parameters

	Board configuration for FlashPro debugging
	Using a debug session
	Launching a debug session
	Memory Monitor
	Console view
	Built-in serial terminal view
	Debug using a specific FlashPro programmer
	Debugging using a non FlashPro JTAG interface
	How to connect to/debug a running program

	Troubleshooting

	Renode emulation platform
	Other Features
	Cortex-M semi-hosting
	Integer only newlib support
	Static stack profiling
	Cppcheck

	Known Issues and useful tips
	Reset/power cycle the target hardware before each RISC-V debug session
	Debug launch configuration settings differ for Cortex-M and RISC-V
	RISC-V memory view problems
	Memory Monitor fails to display
	Windows occasionally crashes when plugging FlashPro in/out
	OpenOCD crashes when attempting to debug RISC-V
	RISC-V C++ support
	FlashPro programmers cannot be shared by applications
	Invalid command name "arm" when debugging RISC-V
	Initial startup may be slow
	Flash Programming
	Build Project context menu option sometimes disabled
	Windows firewall
	Multiple debug sessions
	FlashPro JTAG debugging is unreliable on virtual machines
	“DAP transaction stalled (WAIT)” messages when debugging SmartFusion2 Cortex-M3
	“Error: Got exception …” when reading some RISC-V registers
	OpenOCD error/info messages when debugging RISC-V
	Debugging and multiple device JTAG chains
	RISC-V target support
	SoftConsole v3.4 or earlier workspaces/projects
	SoftConsole v5.0 RISC-V projects and debug launch configurations
	SmartFusion2 DPK unlocking
	CMSIS needs environment variable
	FTDI detected as ttyUSB on Linux
	Program file does not exist
	Target emulation `elf64-littleriscv' does not match `elf32-littleriscv'
	sprint()/scanf() print empty characters instead of floating point number digits
	Error message: can't link hard-float modules with soft-float modules
	Multiple definition of `_start'/`_init'/`_fini' etc.
	Undefined reference to `printf'/`puts'/`write'/`strlen' etc.
	Route printf() output to UART
	Program image is too large
	cc1: error: requested ABI requires -march to subsume the 'D' extension
	undefined reference to `__stack_top' etc.
	After duplication of the project (copy/paste) debugging no longer works
	Progam has exited with code:0x00000003
	Size optimizations cause trap exception: Load address misaligned
	<built-in>: internal compiler error: Illegal instruction
	(Renode:5523): GLib-CRITICAL **: Source ID 13802 was not found when attempting to remove it
	../riscv_hal/entry.S:113: Error: Instruction csrr requires absolute expression
	Connecting to remote OpenOCD
	Glitches, unstable UI and cosmetic issues on Linux
	Debugger Console View is not working or GDB is misbehaving
	Build fails when using “Print removed sections (-Xlinker --print-gc-sections)”
	Debug launcher fails with “Error: gdb sent a packet with wrong register size”
	Debug launcher is not connecting to ARM target
	Application traps at random places or even before reaching main
	Running SoftConsole from command line
	Invalid project path: Duplicate path entries found Warnings
	“No installed packages”

	Other useful Documentation
	Product Support
	Customer Service
	Customer Technical Support Center
	Technical Support
	Website
	Contacting the Customer Technical Support Center
	Email
	My Cases
	Outside the U.S.

	ITAR Technical Support

