Precision Voltage Regulator # Description This monolithic voltage regulator is designed for use with either positive or negative supplies as a series, shunt, switching, or floating regulator with currents up to 150 mA. Higher current requirements may be accommodated through the use of external NPN or PNP power transistors. This device consists of a temperature compensated reference amplifier, error amplifier, power series pass transistor, current limit, and remote shutdown circuitry. The SG723 will operate over the full military ambient temperature range of -55°C to 125°C. #### **Features** - Positive or Negative Supply Operation - Series, Shunt, Switching or Floating Operation - Low Line and Load Regulation - Output Adjustable from 2 V to 37 V - Output Current to 150 mA - Low Standby Current Drain - 0.002%/°C Average Temperature Variation ### High Reliability Features - MIL-M38510/10201BHA SG723F-JAN - MIL-M38510/10201BIA SG723T-JAN - MIL-M38510/10201BCA SG723J-JAN - MSC-AMS Level "S" Processing Available ### **Block Diagram** ### Absolute Maximum Ratings (Note 1) | Pulse (50 ms) Input Voltage from V _{IN} to V | 5 | 50 V | |---|-----|------| | Continuous Input Voltage from V _{IN} to V | | | | Input to Output Voltage Differential | 4 | 10 V | | Maximum Output Current | 150 | mΑ | | Current from V _Z (J-Package only) | 25 | mΑ | Note 1. Exceeding these ratings could cause damage to the device. ### **Thermal Data** J Package: Note A. Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. Note B. The above numbers for θ_{JC} are maximums for the limiting thermal resistance of the package in a standard mounting configuration. The θ_{JA} numbers are meant to be guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow. ### Recommended Operating Conditions (Note 2) Note 2. Range over which the device is functional. ### **Electrical Characteristics** (Unless otherwise specified, these specifications apply for the operating ambient temperature of $T_A = 25^{\circ}C$, $V_{IN} = V_C = 12$ V, $V_{-} = 0$ V, $V_{OUT} = 5$ V, $I_{L} = 1$ mA, $I_{SC} = 0$ $I_{C} = 100$ pF, and divider impedance as seen by error amplifier $I_{C} = 100$ k $I_{C} = 100$ k $I_{C} = 100$ k $I_{C} = 100$ pF, and divider impedance as seen by error amplifier $I_{C} = 100$ k $I_$ | Parameter | Teet Conditions | | SG723 | Units | | |--------------------------------|--|-----|---------|-------|-------------------| | Parameter | Test Conditions | | ı. Typ. | | Max. | | Input Voltage Range | | 9.9 | 5 | 40 | V | | Output Voltage Range | | 2.0 |) | 37 | V | | Input to Output Differential | | 3.0 |) | 38 | V | | Line Regulation (Note 3) | $V_{IN} = 12 \text{ V to } 15 \text{ V}$ | | 0.01 | 0.1 | %V _{out} | | | $T_A = T_{MIN}$ to T_{MAX} | | | 0.3 | %V _{OUT} | | | $V_{IN} = 12 \text{ V to } 40 \text{ V}$ | | 0.02 | 0.2 | %V _{онт} | | Load Regulation (Note 3) | I _L = 1 to 50 mA | | 0.03 | 0.15 | %V _{OUT} | | | $T_A = T_{MIN}$ to T_{MAX} | | | 0.6 | %V _{OUT} | | Ripple Rejection | f = 50 Hz to 10 kHz | | | | | | | $C_{REF} = 0$ | | 74 | | dB | | | $C_{RFF} = 5 \mu F$ | | 86 | | dB | | Temperature Stability (Note 4) | $T_A = T_{MIN}$ to T_{MAX} | | 0.002 | 0.015 | %/°C | | Short Circuit Current Limit | $R_{sc} = 10 \Omega$ | | 65 | | mA | | Reference Voltage | | 6.9 | 5 7.15 | 7.35 | V | | Output Noise Voltage | BW = 100 Hz to 10 kHz | | | | | | | $C_{REF} = 0$ | | 20 | | μV_{rms} | | | $C_{REF} = 5 \mu F$ | | 2.5 | | μV_{rms} | | Standby Current Drain | $I_{L} = 0, V_{IN} = 30 \text{ V}$ | | 2.3 | 3.5 | mÄ | | Long Term Stability | - " | | 0.1 | | %/khr | Note 3. Applies for constant junction temperature. Temperature drift effects must be taken into account separately when the unit is operating under conditions of high dissipation. Note 4. These parameters, although guaranteed, are not tested in production. ### **Characteristic Curves** Figure 1. Load Regulation Figure 2. Maximum Load Current Figure 3. Current Limiting Characteristics Figure 4. Regulations vs. Input-Output Voltage Regulation Figure 5. Standby Current Drain Figure 6. Transient Response ## **Application Information** Figure 7 - Basic Low Voltage Regulator V_{OUT} = 2 V TO 7 V Figure 8 - Basic High Voltage Regulator V_{OUT} = 7 V TO 37 V # Application Information (Continued) Figure 9 - High Current Regulator External NPN Transistor $I_1 = 1.0 \text{ A}$ Figure 10 - Negative Voltage Regulator ## Connection Diagrams and Ordering Information (See Notes Below) | Package | Part Number | Ambient
Temperature Range | Connection Diagram | |--|----------------------|----------------------------------|--| | 10-PIN CERAMIC
FLAT PACK
F - PACKAGE | SG723F-JAN | -55°C to 125°C | (Note 3) CURRENT SENSE | | 14-PIN CERAMIC
DIP J - PACKAGE | SG723J-JAN | -55°C to 125°C | N.C. | | 10-PIN METAL CAN
T - PACKAGE | SG723T-JAN
SG723T | -55°C to 125°C
-55°C to 125°C | (Notes 3 & 4) CURRENT LIMIT CURRENT SENSE 1 10 9 FREQ. COMPENSATION INVERTING INPUT 2 8 V _N NON-INVERTING INPUT 3 7 V _C V _{REF} 4 6 V _{OUT} | - Note 1. Contact factory for JAN product availablity. - All packages are viewed from the top. Lead finish is Sn63/Pb37 for RoHS compliant version contact factory. - 3. V₇ output is not available in T, F-packages. - 4. Pin 5 is connected to case. ## Package Outline Dimensions Controlling dimensions are in inches, metric equivalents are shown for general information. | DIM | MILLIMETERS INC | | HES | | |-----|-----------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 1.45 | 1.90 | 0.057 | 0.075 | | b | 0.25 | 0.483 | 0.010 | 0.019 | | С | 0.102 | 0.152 | 0.004 | 0.006 | | D | - | 7.37 | ı | 0.290 | | Е | 6.04 | 6.40 | 0.238 | 0.252 | | E1 | - | 6.91 | - | 0.272 | | е | 1.27 BSC | | 0.050 BSC | | | L | 6.35 | 9.40 | 0.250 | 0.370 | | Q | 0.51 | 1.02 | 0.020 | 0.040 | | S1 | 0.20 | 0.38 | 0.008 | 0.015 | #### Note: - 1. Lead No. 1 is identified by tab on lead or dot on cover. - Leads are within 0.13 mm (.0005") radius of the true position (TP) at maximum material condition. - 3. Dimension "e" determines a zone within which all body and lead irregularities lie. - 4. Dimensions are in mm, inches are for reference only. Figure 11 · F 10-Pin Ceramic Flat-pack Package Outline Dimensions | DIM | MILLIMETERS | | INCHES | | |-----|-------------|-------|-----------|-------| | DIN | MIN | MAX | MIN | MAX | | Α | - | 5.08 | - | 0.200 | | b | 0.38 | 0.51 | 0.015 | 0.020 | | b2 | 1.04 | 1.65 | 0.045 | 0.065 | | С | 0.20 | 0.38 | 0.008 | 0.015 | | D | 19.30 | 19.94 | 0.760 | 0.785 | | E | 5.59 | 7.11 | 0.220 | 0.280 | | е | 2.54 BSC | | 0.100 BSC | | | eA | 7.37 | 7.87 | 0.290 | 0.310 | | Н | 0.63 | 1.78 | 0.025 | 0.070 | | L | 3.18 | 5.08 | 0.125 | 0.200 | | α | - | 15° | - | 15° | | Q | 0.51 | 1.02 | 0.020 | 0.040 | #### Note: Dimensions do not include protrusions; these shall not exceed 0.155 mm (.006") on any side. Lead dimension shall not include solder coverage. Figure 12 · J 14-Pin Ceramic Dip Package Dimensions # Package Outline Dimensions (Continued) | DIM | MILLIMETERS | | INCHES | | |-------|-------------|-------|-----------------|-------| | DIIVI | MIN | MAX | MIN | MAX | | D | 8.890 | 9.398 | 0.350 | 0.370 | | D1 | 8.00 | 8.51 | 0.315 | 0.335 | | Α | 4.191 | 4.699 | 0.165 | 0.185 | | b1 | 0.406 | 0.533 | 0.016 | 0.021 | | F | - | 1.016 | - | 0.040 | | е | 5.842 TYP | | 2 TYP 0.230 TYP | | | k | 0.711 | 0.864 | 0.028 | 0.034 | | k1 | 0.737 | 1.143 | 0.029 | 0.045 | | L | 12.70 | 14.48 | 0.500 | 0.570 | | α | 36° TYP | | 36° TYP | | | D2 | 3.556 | 4.064 | 0.140 | 0.160 | | L1 | 0.254 | 1.016 | 0.010 | 0.040 | #### Note: Dimensions do not include protrusions; these shall not exceed 0.155 mm (.006") on any side. Lead dimension shall not include solder coverage. Figure 13 · T 10-Pin Metal Can Package Dimensions **Microsemi Corporate Headquarters** One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 **Fax**: +1 (949) 215-4996 **E-mail:** sales.support@microsemi.com © 2015 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi Corporation (MSCC) offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 3,600 employees globally. Learn more at www.microsemi.com. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.