

Footprint Compatibility of Microsemi Clock Buffers with Competitors

Application Note

December 2012

1.0 Introduction

In order to help customers quickly integrate the new Microsemi clock distribution buffers into existing designs, selected clock buffer devices are footprint compatible with other devices. This application note lists the compatible parts and highlights the differences between the Microsemi devices and their footprint compatible parts. The devices and their industry counterparts are listed here:

Microsemi Device	Industry Counterpart	
ZL40203	SY58021U	
ZL40203	ADCLK944	
ZL40211	SY89837U	

Table 1 - Compatible Devices

2.0 Footprint Compatibility of ZL40203 with Micrel SY58021U

The ZL40203 has been designed to be footprint compatible with the Micrel SY58021U. The following table shows the similarity of the pin map and also highlights the slight differences.

Pin	ZL40203 Pin Name	SY58021U Pin Name	Comment
1	clk_p	IN	
2	vt	VT	
3	ctrl	VREF-AC	See differences
4	clk_n	/IN	
5	gnd	GND	
6	out3_n	/Q3	
7	out3_p	Q3	
8	vdd	VCC	
9	out2_n	/Q2	
10	out2_p	Q2	
11	out1_n	/Q1	
12	out1_p	Q1	
13	vdd	VCC	
14	out0_n	/Q0	
15	out0_p	Q0	
16	gnd	GND	

Table 2 - Pin Commonality between ZL40203 and SY58021U

For a DC coupled LVPECL input on pin 1 and 4, the SY58021U and the ZL40203 should be configured identically as shown in Figure 1. Note that for the ZL40203, pin 3 (ctrl) is a control pin which engages the internal biasing network when asserted. It is internally pulled to gnd (i.e logic 0) when unconnected. This pin could optionally be pulled down externally. Pin 3 (VREF-AC) on SY58021U is a voltage reference and should be left floating.

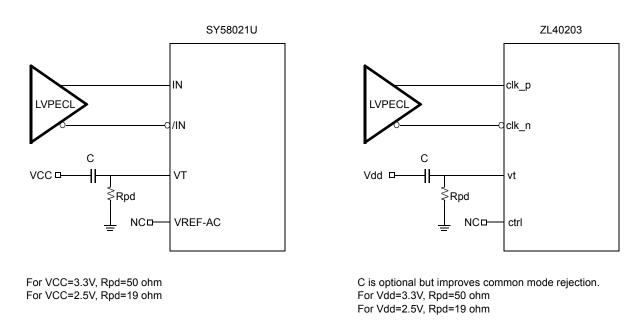


Figure 1 - DC-Coupled LVPECL input

For an AC-coupled LVPECL input, the devices should be configured as shown in Figure 2.

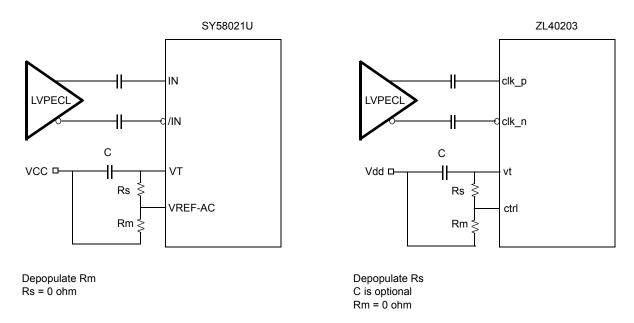


Figure 2 - AC-coupled LVPECL input

For a DC-coupled LVDS input signal, the devices should be configured identically as shown in Figure 3. Note again that the ctrl pin on the ZL40203 is pulled down internally.

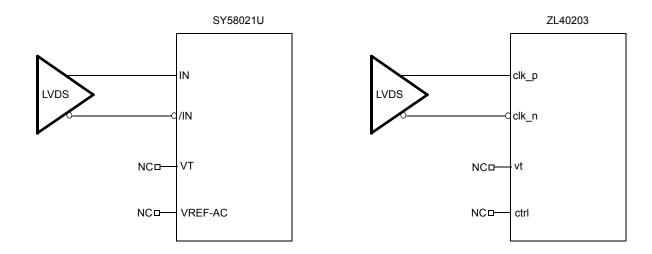


Figure 3 - DC-coupled LVDS input

For AC-coupled LVDS, the devices should be configured as shown in Figure 4.

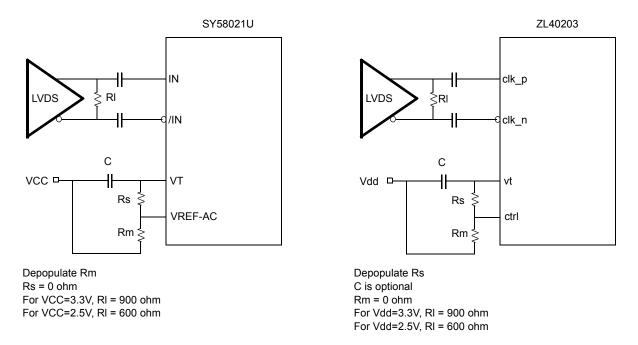


Figure 4 - AC-Coupled LVDS input

3.0 Footprint Compatibility of ZL40203 with ADI ADCLK944

The ZL40203 has been designed to be footprint compatible with the ADI ADCLK944. The following table shows the similarity of the pin map and also highlights the slight differences.

Pin	ZL40203 Pin Name	ADCL944 Pin Name	Comment
1	clk_p	CLK	
2	vt	VT	
3	ctrl	VREF	See differences
4	clk_n	CLK	
5	gnd	VEE	
6	out3_n	Q3	
7	out3_p	Q3	
8	vdd	VCC	
9	out2_n	Q2	
10	out2_p	Q2	
11	out1_n	Q1	
12	out1_p	Q1	
13	vdd	VCC	
14	out0_n	Q0	
15	out0_p	Q0	
16	gnd	VEE	

Table 3 - Pin Commonality between ZL40203 and ADCLK944

For a DC-coupled LVPECL input on pin 1 and 4, the ADCLK944 and the ZL40203 should be configured identically as shown in Figure 5. Note that for the ZL40203, pin 3 (ctrl) is a control pin which engages the internal biasing network when asserted. It is internally pulled to gnd (i.e logic 0) when unconnected. This pin could optionally be pulled down externally. Pin 3 (VREF) on ADCLK944 is a voltage reference and should be left floating.

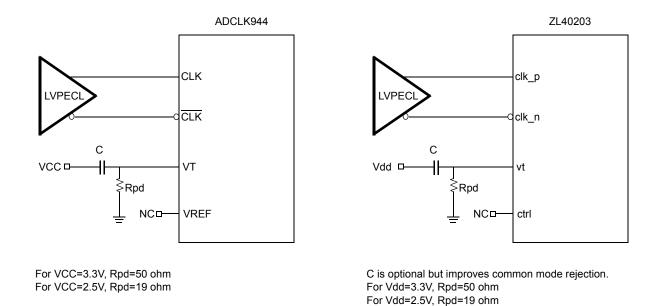


Figure 5 - DC-coupled LVPECL input

For an AC-coupled LVPECL input, the devices should be configured as shown in Figure 6.

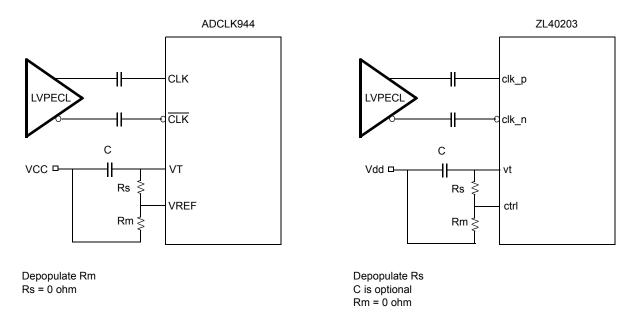


Figure 6 - AC-coupled LVPECL input

For a DC coupled LVDS input signal, the devices should be configured identically as shown in Figure 7. Note again that the ctrl pin on the ZL40203 is pulled down internally.

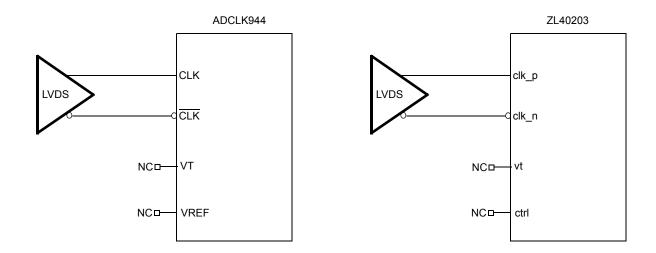


Figure 7 - DC-coupled LVDS input

For AC coupled LVDS, the devices should be configured as shown in Figure 8.

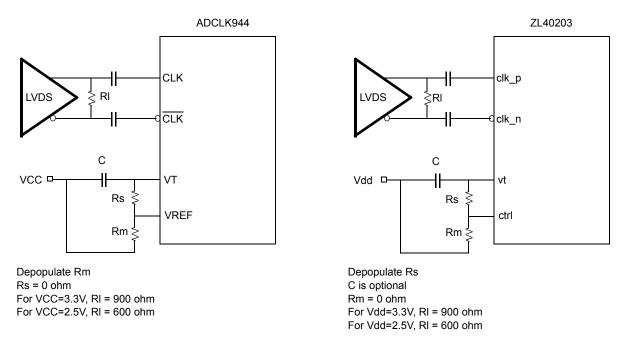


Figure 8 - AC Coupled LVDS input

4.0 Footprint Compatibility of ZL40211 with SY89837U

The ZL40211 is a 2:8 LVPECL buffer that has been designed to be footprint compatible with the Micrel SY89837U. The following table shows the similarity of the pin map and also highlights the slight differences.

Pin	ZL40203 Pin Name	SY58021U Pin Name	Comment
1	clk0_p	IN0	
2	vt0	VT0	
3	clk0_n	/INO	
4	ctrl0	VREF-AC0	See differences
5	ctrl1	VREF-AC1	See differences
6	clk1_p	IN1	
7	vt1	VT1	
8	clk1_n	/IN1	
9	vdd	VCC	
10	NC	CAP	See differences
11	out7_n	/Q7	
12	out7_p	Q7	
13	out6_n	/Q6	
14	out6_p	Q6	
15	out5_n	/Q5	
16	out5_p	Q5	
17	out4_n	/Q4	
18	out4_p	Q4	
19	vdd	VCC	
20	gnd	gnd	
21	gnd	gnd	
22	vdd	VCC	
23	out3_n	/Q3	
24	out3_p	Q3	
25	out2_n	/Q2	
26	out2_p	Q2	
27	out1_n	/Q1	
28	out1_p	Q1	
29	out0_n	/Q0	
30	out0_p	Q0	
31	sel	SEL	
32	vdd	VCC	

Table 4 - Pin Commonality between ZL40211 and SY89837U

The difference in VREF-AC on the SY89837U and "ctrl" ZL40211 are the same as highlighted for the 1:4 devices. That is, VREF-AC provides a reference voltage that can be used in conjunction with the VT pin to set the bias point for the device. Ctrl is different in that it is a control pin that when asserted engages an internal biasing network. In addition to this difference, the SY89837U requires a capacitor to connected to pin 10 to correctly initialize the Runt Pulse Elimination (RPE) circuit. The pin can be connected directly to Vcc to disable the RPE circuit. This pin is a No-connect on the ZL40211.

Refer to Figures 1 to 4 to for guidelines on how to connect vt and ctrl vs VT and VREF-AC on these devices. The treatment of these pins is identical on the 1:4 devices and the 1:8 devices.

For more information about all Microsemi products visit our Web Site at

www.microsemi.com

Information relating to products and services furnished herein by Microsemi Corporation or its subsidiaries (collectively "Microsemi") is believed to be reliable. However, Microsemi assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Microsemi or licensed from third parties by Microsemi, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Microsemi, or non-Microsemi furnished goods or services may infringe patents or other intellectual property rights owned by Microsemi

This publication is issued to provide information only and (unless agreed by Microsemi in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Microsemi without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical and other products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Microsemi's conditions of sale which are available on request.

Purchase of Microsemi's I2C components conveys a license under the Philips I2C Patent rights to use these components in an I2C System, provided that the system conforms to the I2C Standard Specification as defined by Philips.

Microsemi, ZL, and combinations thereof, VoiceEdge, VoicePort, SLAC, ISLIC, ISLAC and VoicePath are trademarks of Microsemi Corporation.

TECHNICAL DOCUMENTATION - NOT FOR RESALE